EP2696999A1 - Reinigungsvorrichtung - Google Patents

Reinigungsvorrichtung

Info

Publication number
EP2696999A1
EP2696999A1 EP12715656.0A EP12715656A EP2696999A1 EP 2696999 A1 EP2696999 A1 EP 2696999A1 EP 12715656 A EP12715656 A EP 12715656A EP 2696999 A1 EP2696999 A1 EP 2696999A1
Authority
EP
European Patent Office
Prior art keywords
cleaning device
ionization
contaminating particles
flow channel
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12715656.0A
Other languages
English (en)
French (fr)
Other versions
EP2696999B1 (de
Inventor
Jochen Lorenscheit
Ingo Schulz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SKF AB
Original Assignee
SKF AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SKF AB filed Critical SKF AB
Publication of EP2696999A1 publication Critical patent/EP2696999A1/de
Application granted granted Critical
Publication of EP2696999B1 publication Critical patent/EP2696999B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B6/00Cleaning by electrostatic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/68Control systems therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode has multiple serrated ends or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/24Details of magnetic or electrostatic separation for measuring or calculating parameters, efficiency, etc.

Definitions

  • Embodiments of the present invention are concerned with a cleaning device for removing contaminating particles from a medium, in particular using an electric field.
  • a high voltage DC plasma may be used for cleaning when an electrostatic or electrodynamic field is generated between 2 electrodes between which the gas or medium to be cleaned flows.
  • contaminants in the medium or impurity-forming particles or molecules in the field may be ionized.
  • This so-called field ionization leaves a positively charged body of the particle or contaminant, which is directed under the influence of the ionization-inducing field and removed along the field lines from the region of ionization, or along the field lines from the site of ionization to one Cathode drifts.
  • the voltage between the electrodes and thus the resulting field strength is suitably chosen, so that approximately all particles or all contaminating particles are ionized, one can speak of a plasma in which all contaminating particles are ionized.
  • the cleaning with a plasma generally requires to maintain high fields or the high voltages required to generate a high field permanently, which is extremely energy-consuming.
  • Some embodiments of the invention use, in addition to an ionization device, which can generate an electric field by means of two electrodes located opposite on different sides of a flow channel, in addition a Veranalismssensor that detects the degree of contamination of the medium to be cleaned.
  • a control device is also coupled to the contamination sensor, which can change an operating mode of the ionization device depending on a determined characteristic of the contaminating particles, for example the concentration or the particle size of the impurities.
  • the field strength of the Ionisierangs leverage be dynamically adapted to the circumstances or to time-varying requirements.
  • the field strength can be reduced, or a voltage at the electrodes of the ionization device can be reduced. In some embodiments, this reduction may optionally be done until a power supply is turned off, ie, the controller may operate in the form of a binary controller and selectively turn the power on or off.
  • This procedure can save a considerable amount of energy to maintain the electric field, while ensuring a continuously high cleaning effect.
  • Voltages with which the electrodes of some exemplary embodiments are subjected to ionization devices in order to achieve a cleaning effect can lie between 1 kV and 100 kV, preferably between 3 kV and 20 kV.
  • Some embodiments of the invention comprise a cascade of ionization devices arranged one behind the other in the flow direction of the medium to be cleaned.
  • another embodiment may include a second ionization device, which in turn has two opposing electrodes.
  • only one downstream element of the cascade, that is to say, for example, the second ionization device, is influenced or switched on and off by means of the control device.
  • the energy consumption can be reduced in principle to half, with a reliable cleaning effect is given at any time.
  • a Veran invasionssensor is arranged both before and after the first Ionisierangs adopted a cascade or a single Ionisierangs adopted.
  • both the cleaning performance of Ionization be varied until a complete cleaning is achieved, as well as harmless the maximum energy saving can be achieved if in the medium for a certain period a priori no contaminating particles are included.
  • the concentration of contaminant particles between the first and second ionizer devices is determined to reliably determine whether the downstream second ionizer device can be shut down or operated at reduced power.
  • only the second ionization device located downstream of the first ionization device is influenced by the controller such that, for example, if a predetermined maximum value of tolerable contaminants is not reached, the second ionizer device is turned off.
  • sensors used to detect contaminants in the medium to be cleaned are IR sensors, laser particle sensors (air particle counter) or ultrasonic sensors.
  • IR sensors IR sensors
  • laser particle sensors air particle counter
  • ultrasonic sensors functioning according to other principles sensors can be used.
  • any sensor or device by means of which an impurity in a medium or a substance differing from a medium within the medium can be recognized as an impurity sensor.
  • FIG. 1 shows an embodiment of a cleaning device
  • FIG. 2 shows a further embodiment of a cleaning device with cascaded ionization directions
  • FIG. 3 shows an exemplary embodiment of a method for operating a cleaning device.
  • FIG. 1 shows an exemplary embodiment of a cleaning device for removing contaminating particles 4 from a medium or from a gas or gas mixture.
  • the gas or the contaminated medium flows along a flow channel in a flow direction 6, so that the gas or medium flowing in a flow direction 6 along the flow channel can be removed by means of the cleaning device.
  • This is not to be understood as meaning that in fact a volume flow in the flow direction has to take place in order to be able to clean a medium or to ensure the desired functionality. Rather, the direction of flow 6 indicates that direction with respect to which the contaminating particles can be removed when they enter the cleaning device from the direction of flow 6.
  • the direction of flow 6 indicates that direction in which a cleaning action takes place, so that in the flow direction 6 downstream of the cleaning device, the concentration of the contaminating particles 4 after passing through the cleaning device is lower than before passing through the cleaning device.
  • the cleaning device comprises at least one ionization device 8, which has a pair of electrodes facing each other on different sides of the flow channel.
  • an ionization device 8 which has a pair of electrodes facing each other on different sides of the flow channel.
  • FIG. 1 as one of the possible embodiments of the pair of electrodes, an anode 10 with a plurality of tips and a flat cathode 12 are shown.
  • the specific shape of the electrodes, which the shape of the generated electric field which may be adapted to other geometric conditions and other conditions.
  • the arrangement of cathode and anode can be reversed, ie an application of voltage to the electrodes can be opposite to that in FIG. 1, where an optional high voltage supply 14 is coupled to the electrodes 10 and 12 such that the anode 10 is connected to the electrodes pointed electrodes is formed.
  • the polarity may be the other way around than shown in FIG.
  • only a single electrode can be used for the anode 10 or the number of electrodes or the tips of an electrode can be
  • the cleaning apparatus further includes at least one contaminant sensor 16 configured to determine a characteristic, such as concentration or size of the contaminant particles in the medium.
  • Figure 1 shows an optional second Verancurissensor 18, which is arranged in the flow direction 6 after the Ionisierangs Huawei 8, can be dispensed with alternative AusSteangsbeiard one of the Veranalismssensoren 16 or 18 shown in Figure 1.
  • the contaminant sensor 16 or 18 may determine the concentration and / or the size or other property of the contaminating particles in the medium.
  • the annealing cleaning sensor 16 may be an optical sensor based on the intensity of light emitted from the opposite side of the flow channel or intensity of a light emitted from the annealing sensor 16 itself and reflected from the opposite side to the concentration can close the contaminating particles in the medium.
  • Other possible sensors that can be used as contamination sensor are IR sensors, laser particle sensors (air particle counter) or ultrasonic sensors.
  • the cleaning device furthermore has a control device 20, which is connected both to the ionization device 8 and to the contamination purification sensor 16. is coupled.
  • the control device 20 is designed to vary an operating mode of the ionization device 8 as a function of the characteristic of the contaminating particles 4 determined by the contaminant sensor 16. This can be done, for example, by varying the height of the voltage applied to the electrodes 10 and 12.
  • a simple further possibility of the control is to switch off the concentration of the contaminating particles 4, the ionization device 8 when it falls below a predetermined maximum value or to ensure that the Ionisierangs worn 8 generates no electric field more.
  • the ionization device 20 may also be optionally coupled to the voltage supply 14, for example in an alternative embodiment.
  • the maximum cleaning performance of a cleaning device can be increased if the contaminating particles in the direction of flow can pass through a plurality of ionization devices arranged one behind the other.
  • FIG. 2 shows an exemplary embodiment or a possible arrangement of such a cleaning device with cascaded ionization devices.
  • FIG. 2 shows, as a possible arrangement, three ionizing devices 28a-28c arranged one behind the other in the flow direction 6, as well as contaminating sensors 26a-26d adjacent to the ionizing devices 28a-28c.
  • FIG. 2 shows an optional possibility of designing the cathodes 32a-32c opposite the anodes 30a-30c, which are short-circuited with one another and thus form a common cathode surface.
  • discrete cathodes or alternative embodiments of the cathodes 32a-32c as well as a reverse polarity are also possible here. Only for the sake of representability is omitted in Figure 2 on the representation of an optional power supply.
  • the control device 20 is coupled to both the purge sensors 26a to 26d and to the ionization devices 28a to 28c to be dependent to vary the operating conditions or the control of the ionization devices 28a to 28c from the concentrations or characteristics of the contaminating particles detected by the individual contamination sensors.
  • individual ones of the ionization devices 28a to 28c can either be switched on or off or the supply voltage of individual ionization devices can be selectively or collectively varied, ie increased or decreased.
  • the ionizer 28c may be turned off.
  • any other control algorithms are possible.
  • the contamination sensors 26a to 26d or a sensor before and / or in the effective range of the plasma or the electric field can by detecting, for example, the size and / or the number of the substance to be influenced or the contaminating particles of this plasma generating high voltage DC switched on or off or be varied in height.
  • a cascade control as shown by way of example in Figure 2, also a demand-dependent control is subdivided into individual plasma zones or zones of a non-disappearance electric field feasible.
  • a power consumption in the cleaning by means of a plasma or by means of an ionizing electric field is reduced. Furthermore, a reduction of the ozone emission can be achieved, as well as a reduction of the wear of the electrodes.
  • FIG. 3 shows schematically an embodiment of a method for operating a cleaning device for removing contaminating particles from a medium flowing in a flow direction along a flow channel, wherein the cleaning device is designed to use different Chen sides of the flow channel opposite electrodes to generate an electric field in the flow channel.
  • a characteristic of the contaminating particles in the medium is determined.
  • an operation mode of the ionization device is varied.
  • embodiments of a cleaning device can be used as a seal by unwanted parts or particles from a bearing or a component to be protected surrounding medium, such as air or gas, are removed so that they can not get into the component to be protected.
  • a cleaning device in bearings, in particular plain bearings and bearings can be used to protect the bearing from contamination and premature wear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electrostatic Separation (AREA)

Abstract

Eine Reinigungsvorrichtung zum Entfernen von verunreinigenden Partikeln (4) aus einem in einer Flussrichtung (6) entlang eines Strömungskanals strömendem Medium, umfasst eine Ionisierungseinrichtung (8), die ausgebildet ist, mittels eines sich auf unterschiedlichen Seiten des Strömungskanals gegenüberliegenden Elektrodenpaares (10, 12) ein elektrisches Feld in dem Strömungskanal zu erzeugen und zumindest einen Verunreinigungssensor (16), der ausgebildet ist, um eine Charakteristik der verunreinigenden Partikel in dem Medium zu bestimmen. Mit dem Verunreinigungssensor (16) und der Ionisierungseinrichtung (8) ist eine Kontrolleinrichtung (20) gekoppelt, die ausgebildet ist, einen Betriebsmodus der Ionisierungseinrichtung (8) abhängig von der von dem Verunreinigungssensor (16) ermittelten Charakteristik der verunreinigenden Partikel (4) zu variieren.

Description

B e s c h r e i b u n g
Reinigungsvorrichtung
Ausführungsbeispiele der vorliegenden Erfindung befassen sich mit einer Reinigung s Vorrichtung zum Entfernen von verunreinigenden Partikeln aus einem Medium, insbesondere unter Verwendung eines elektrischen Feldes.
Zur Reinigung von Medien oder Gasen, wie beispielsweise Luft, existieren eine große Anzahl von Verfahren. Abseits von herkömmlichen Methoden, wie beispielsweise der Verwendung eines Filters, können Medien, wie beispielsweise strömende Gase oder dergleichen, auch mittels Plasmen, also mittels vollständig oder großteils ionisierten Gasen oder, allgemein gesprochen, durch Ionisation gereinigt werden. Zusätzlich zu der Möglichkeit, Medien bzw. strömende Gase mittels Hochstromplasmen zu reinigen, also dadurch, dass das zu reinigende Medium einer großen Menge vollständig ionisierten Gases ausgesetzt wird, besteht auch die Möglichkeit, so genannte Hochspannungs- Gleichstrom- Plasmen zu verwenden bzw. zu erzeugen, bei denen eine geringere elektrische Leistung zur Erzeugung des Plasmas erforderlich sein kann. Diese können unter Anderem in Abscheidern, Dichtungen, Filtern, Reinigern, Schabern, Signalübertragern oder weiteren maschinenbaulichen Erzeugnissen eingesetzt werden.
Ein Hochspannungs- Gleichstrom- Plasma kann zur Reinigung dann verwendet werden, wenn ein elektrostatisches oder elektrodynamisches Feld zwischen 2 Elektroden erzeugt wird, zwischen denen das zu reinigende Gas bzw. Medium strömt. Bei ausreichend hoher Feldstärke können Verunreinigungen in dem Medium bzw. die Verunreinigungen bildenden Partikel oder Moleküle in dem Feld ionisiert werden. Durch diese so genannte Feldionisation verbleibt ein positiv geladener Rumpf des Partikels bzw. der Verunreinigung, der unter dem Einfluss des die Ionisation hervorrufenden Feldes gerichtet und entlang der Feldlinien aus dem Bereich der Ionisation entfernt wird, bzw. entlang der Feldlinien vom Ort der Ionisation zu einer Kathode driftet. Ist die Spannung zwischen den Elektroden und damit die resultierende Feldstärke passend gewählt, sodass näherungsweise alle Partikel bzw. alle verunreinigenden Partikel ionisiert werden, kann von einem Plasma gesprochen werden, in dem sämtliche verunreinigenden Partikel ionisiert sind.
Die Reinigung mit einem Plasma erfordert es allgemein, hohe Felder bzw. die zur Erzeugung eines hohen Feldes erforderlichen hohen Spannungen permanent aufrecht zu erhalten, was äußerst Energieaufwändig ist.
Es besteht somit die Notwendigkeit, eine Reinigungsvorrichtung zur Verfügung zu stellen, die effizienter betrieben werden kann.
Einige Ausführungsbeispiele der Erfindung verwenden neben einer Ionisierungseinrichtung, die mittels zweier sich auf unterschiedlichen Seiten eines Strömungskanals gegenüberliegenden Elektroden ein elektrisches Feld erzeugen kann, zusätzlich einen Veranreinigungssensor, der den Grad der Verunreinigung des zu reinigenden Mediums feststellt. Mit dem Verunreinigungssensor ist ferner eine Kontrolleinrichtung gekoppelt, die abhängig von einer ermittelten Charakteristik der verunreinigenden Partikel, beispielsweise der Konzentration oder der Partikelgröße der Verunreinigungen, einen Betriebsmodus der Ionisierangseinrichtung verändern kann. Mit anderen Worten kann bei einigen Ausführungsbeispielen der Erfindung die Feldstärke der Ionisierangseinrichtung dynamisch an die Gegebenheiten bzw. an zeitlich schwankende Anforderungen angepasst werden. Wird beispielsweise von dem Veranreinigungssensor detektiert, dass aktuell keine verunreinigenden Partikel in einem Strom von Luft bzw. einem anderen Medium enthalten sind, kann die Feldstärke reduziert werden, bzw. es kann eine Spannung an den Elektroden der Ionisierangseinrichtung reduziert werden. Bei einigen Ausführungsbeispielen kann diese Reduzierung optional bis zum Abschalten einer Spannungsversorgung vorgenommen werden, d.h. die Kontrolleinrichtung kann in Form einer binären Steuerung arbeiten und die Spannungsversorgung wahlweise ein- oder ausschalten.
Dieses Vorgehen kann eine erhebliche Menge Energie zur Aufrechterhaltung des elektrischen Feldes sparen, wobei gleichzeitig eine kontinuierlich hohe Reinigungswirkung sichergestellt ist.
Spannungen, mit denen die Elektroden einiger Ausführungsbeispiele von Ionisie- rangseinrichtungen beaufschlagt werden, um eine Reinigungswirkung zu erzielen, können zwischen lkV und lOOkV, bevorzugt zwischen 3kV und 20kV, liegen.
Einige Ausführungsbeispiele der Erfindung weisen eine Kaskade von Ionisierungseinrichtungen auf, die in der Strömungsrichtung des zu reinigenden Mediums hintereinander angeordnet sind. So kann beispielsweise ein weiteres Ausführungsbeispiel eine zweite Ionisierangseinrichtung aufweisen, welche wiederum über zwei einander gegenüberliegende Elektroden verfügt. Bei einigen Ausführungsbeispielen der Erfindung wird lediglich ein nachgelagertes Element der Kaskade, also beispielsweise die zweite Ionisierangseinrichtung, mittels der Kontrolleinrichtung be- einflusst bzw. an- und ausgeschaltet. So kann der Energieverbrauch prinzipiell auf bis zur Hälfte reduziert werden, wobei eine zuverlässige Reinigungswirkung zu jedem Zeitpunkt gegeben ist.
Bei weiteren Ausführungsbeispielen ist sowohl vor als auch nach der ersten Ionisierangseinrichtung einer Kaskade bzw. einer einzelnen Ionisierangseinrichtung ein Veranreinigungssensor angeordnet. Somit kann sowohl die Reinigungsleistung der Ionisierungseinrichtung variiert werden, bis eine vollständige Reinigung erzielt ist, als auch unschädlich die maximale Energieeinsparung erzielt werden, wenn in dem Medium für einen gewissen Zeitraum a priori keine verunreinigenden Partikel enthalten sind.
Bei einigen Ausführungsbeispielen wird die Konzentration der verunreinigenden Partikel zwischen der ersten und der zweiten Ionisierangseinrichtung bestimmt, um zuverlässig entscheiden zu können, ob die stromabwärts gelegene zweite Ionisierangseinrichtung abgeschaltet oder mit reduzierter Leistung betrieben werden kann.
Bei einigen Ausführungsbeispielen wird nur die zweite Ionisierangseinrichtung, die stromabwärts von der ersten Ionisierangseinrichtung gelegen ist, mittels der Kontrolleinrichtung beeinflusst, so dass beispielsweise bei Unterschreiten eines vorbestimmten Maximalwerts von tolerierbaren Verunreinigungen die zweite Ionisierangseinrichtung abgeschaltet wird.
Bei einigen Ausführungsbeispielen der vorliegenden Erfindung werden als Sensoren zu der Detektion von Verunreinigungen in dem zu reinigenden Medium IR- Sensoren, Laserpartikelsensoren (Luftpartikelzähler) oder Ultraschallsensoren verwendet. Selbstverständlich können bei weiteren Ausführungsbeispielen auch nach anderen Prinzipien funktionierende Sensoren verwendet werden. Als Veranreini- gungssensor soll insoweit jeder Sensor oder jede Vorrichtung verstanden werden, mittels derer eine Verunreinigung in einem Medium bzw. ein von einem Medium abweichender Stoff innerhalb des Mediums erkannt werden kann.
Bevorzugte Ausführangsbeispiele der vorliegenden Erfindung werden nachfolgen, bezugnehmend auf die beigefügten Figuren, näher erläutert. Es zeigen:
Figur 1 ein Ausführangsbeispiel einer Reinigungsvorrichtung; Figur 2 ein weiteres Ausführungsbeispiel einer Reinigungsvorrichtung mit kaska- dierten Ionisierungseimichtungen; und
Figur 3 ein Ausführungsbeispiel eines Verfahrens zum Betreiben einer Reinigungsvorrichtung.
Figur 1 zeigt ein Ausführungsbeispiel einer Reinigungsvorrichtung zum Entfernen von verunreinigenden Partikeln 4 aus einem Medium oder aus einem Gas bzw. Gasgemisch. Das Gas bzw. das verunreinigte Medium strömt entlang eines Strömungskanals in einer Flussrichtung 6, so dass mittels der Reinigungsvorrichtung das in einer Flussrichtung 6 entlang des Strömungskanals strömende Gas bzw. Medium entfernt werden kann. Dies ist nicht allein so zu verstehen, dass tatsächlich ein Volumenstrom in der Flussrichtung erfolgen muss, um ein Medium reinigen zu können bzw. um die gewünschte Funktionalität zu gewährleisten. Die Flussrichtung 6 gibt vielmehr diejenige Richtung an, bezüglich derer die verunreinigenden Partikel entfernt werden können, wenn sie aus der Flussrichtung 6 in die Reinigungsvorrichtung geraten. Dies muss nicht notwendigerweise durch einen gerichteten Volumenstrom des Mediums in der Flussrichtung 6 der Fall sein, sondern kann beispielsweise auch aus Gründen der Diffusion der Fall sein. Die Flussrichtung 6 gibt also allgemein gesprochen diejenige Richtung vor, in der eine Reinigungswirkung erfolgt, so dass in der Flussrichtung 6 stromabwärts von der Reinigungsvorrichtung die Konzentration der verunreinigenden Partikel 4 nach dem Durchgang durch die Reinigungsvorrichtung geringer ist als vor dem Durchgang durch die Reinigungsvorrichtung.
Die Reinigungsvorrichtung umfasst zumindest eine Ionisierangseinrichtung 8, welche ein Paar von Elektroden aufweist, die sich auf unterschiedlichen Seiten des Strömungskanals gegenüberliegen. In Figur 1 ist als eine der möglichen Ausführungsformen des Elektrodenpaars eine Anode 10 mit einer Mehrzahl von Spitzen sowie eine flächige Kathode 12 gezeigt. Es versteht sich von selbst, dass bei weiteren Ausführungsbeispielen die spezifische Form der Elektroden, welche die Form des erzeugten elektrischen Feldes beeinflussen kann, den möglicherweise anderen geometrischen Gegebenheiten und sonstigen Rahmenbedingungen angepasst sein kann. Insbesondere kann beispielsweise die Anordnung aus Kathode und Anode vertauscht werden, d.h. eine Beaufschlagung der Elektroden mit einer Spannung kann entgegengesetzt sein als in Figur 1, wo exemplarisch eine optionale Hochspannungsversorgung 14 mit den Elektroden 10 und 12 derart gekoppelt ist, dass die Anode 10 von den spitzen Elektroden gebildet wird. Mit anderen Worten kann die Polarität auch anders herum sein als in Figur 1 dargestellt. Zusätzlich kann auch lediglich eine einzelne Elektrode für die Anode 10 verwendet werden bzw. die Anzahl der Elektroden oder der Spitzen einer Elektrode kann beliebig gewählt werden.
Die Reinigung s Vorrichtung enthält ferner zumindest einen Veranreinigungssensor 16, der ausgebildet ist, um eine Charakteristik, beispielsweise eine Konzentration oder eine Größe der verunreinigenden Partikel in dem Medium zu bestimmen.
Wenngleich Figur 1 einen optionalen zweiten Veranreinigungssensor 18 zeigt, der in der Flussrichtung 6 nach der Ionisierangseinrichtung 8 angeordnet ist, kann bei alternativen Ausführangsbeispielen auf einen der beiden in Figur 1 dargestellten Veranreinigungssensoren 16 oder 18 verzichtet werden. Der Veranreinigungssensor 16 bzw. 18 kann die Konzentration und/oder die Größe bzw. eine andere Eigenschaft der verunreinigenden Partikel in dem Medium bestimmen. Beispielsweise kann der Veranreinigungssensor 16 ein optischer Sensor sein, der aufgrund der Intensität eines von der gegenüberliegenden Seite des Strömungskanals emittierten Lichtes bzw. aufgrund einer Intensität eines von dem Veranreinigungssensor 16 selbst ausgestrahlten und von der gegenüberliegenden Seite reflektierten Lichtes auf die Konzentration bzw. auf die Eigenschaft der verunreinigenden Partikel in dem Medium schließen kann. Andere mögliche Sensoren, die als Veranreinigungssensor verwendet werden können, sind IR-Sensoren, Laserpartikelsensoren (Luftpartikelzähler) oder Ultraschallsensoren.
Die Reinigungsvorrichtung weist ferner eine Kontrolleinrichtung 20 auf, die sowohl mit der Ionisierangseinrichtung 8 als auch mit dem Veranreinigungssensor 16 ge- koppelt ist. Die Kontrolleinrichtung 20 ist ausgebildet, um einen Betriebsmodus der Ionisierungseinrichtung 8 abhängig von der von dem Veranreinigungssensor 16 ermittelten Charakteristik der verunreinigenden Partikel 4 zu variieren. Dies kann beispielsweise durch Variation der Höhe der an den Elektroden 10 und 12 anliegenden Spannung erfolgen. Eine einfache weitere Möglichkeit der Regelung ist, bei unterschreiten eines vorbestimmten Maximalwertes die Konzentration der verunreinigenden Partikel 4 die Ionisierangseinrichtung 8 abzuschalten bzw. dafür zu sorgen, dass die Ionisierangseinrichtung 8 kein elektrisches Feld mehr erzeugt. Zu diesem Zweck kann die die Ionisierangseinrichtung 20 beispielsweise in einem alternativen Ausführungsbeispiel auch optional mit der Spannungs Versorgung 14 gekoppelt sein.
Bei weiteren Ausführangsbeispielen, bei denen eine Mehrzahl von kaskadierten Io- nisierangseinrichtungen verwendet wird, kann die maximale Reinigungsleistung einer Reinigung s Vorrichtung erhöht werden, wenn die verunreinigenden Partikel in der Flussrichtung mehrere hintereinander angeordnete Ionisierangseinrichtungen passieren können.
Figur 2 zeigt ein Ausführangsbeispiel bzw. einem mögliche Anordnung einer solchen Reinigung s Vorrichtung mit kaskadierten Ionisierangseinrichtungen. Figur 2 zeigt als eine mögliche Anordnung drei in der Flussrichtung 6 hintereinander angeordnet Ionisierangseinrichtungen 28a - 28c, sowie zu den Ionisierangseinrichtungen 28a -28c benachbarte Veranreinigungssensoren 26a-26d. Figur 2 zeigt eine optionale Möglichkeit der Ausgestaltung der den Anoden 30a-30c gegenüberliegenden Kathoden 32a-32c, die miteinander kurzgeschlossen sind und so eine gemeinsame Kathodenfläche bilden. Selbstverständlich sind auch hier diskrete Katoden bzw. alternative Ausgestaltungen der Kathoden 32a -32c sowie eine Umkehrang der Polarität möglich. Lediglich der Darstellbarkeit halber wird in Figur 2 auf die Darstellung einer optionalen Spannungsversorgung verzichtet.
Die Kontrolleinrichtung 20 ist sowohl mit den Veranreinigungssensoren 26a bis 26d als auch mit den Ionisierangseinrichtungen 28a bis 28c gekoppelt, um abhängig von der von den einzelnen Verunreinigungssensoren delektierten Konzentrationen bzw. Charakteristika der verunreinigenden Partikel die Betriebsbedingungen bzw. die Ansteuerung der Ionisierungseinrichtungen 28a bis 28c zu variieren. Dabei können einzelne der Ionisierungseinrichtungen 28a bis 28c entweder zu- oder abgeschalteten werden bzw. es kann die Versorgungsspannung einzelner Ionisierungseinrichtungen selektiv oder kollektiv variiert, d.h. erhöht oder erniedrigt werden.
Beispielsweise kann, wenn mittels des Verunreinigungssensor 26c kein verunreinigtes Partikel detektiert werden kann bzw. wenn die Konzentration der verunreinigenden Partikel unterhalb eines vorbestimmten Maximalwertes bleibt, die Ionisierungseinrichtung 28c abgeschalteten werden. Selbstverständlich sind auch beliebige andere Steuer- bzw. Regelungsalgorithmen möglich. Durch den Einsatz der Verunreinigungssensoren 26a bis 26d bzw. einer Sensorik vor und/oder in dem Wirkbereich des Plasmas bzw. des elektrischen Feldes kann durch die Detektion beispielsweise der Größe und/oder der Anzahl des zu beeinflussenden Stoffes bzw. der verunreinigenden Partikel der dieses Plasma erzeugende Hochspannungs-Gleichstrom an- oder abgeschaltet bzw. in seiner Höhe variiert werden. Durch eine Kaskadenregelung, wie sie exemplarisch in Figur 2 dargestellt ist, ist zudem eine bedarfsabhängige Regelung unterteilt in einzelne Plasmazonen bzw. Zonen eines nicht verschwinden elektrischen Feldes realisierbar.
Durch Ausführungsbeispiele der Erfindung wird ein Stromverbrauch bei der Reinigung mittels eines Plasmas bzw. mittels eines eine Ionisierung verursachenden elektrischen Feldes verringert. Ferner kann eine Verringerung der Ozon-Emission erreicht werden, sowie eine Verringerung des Verschleißes der Elektroden.
Figur 3 zeigt schematisch ein Ausführungsbeispiel eines Verfahrens zum Betreiben einer Reinigung s Vorrichtung zum Entfernen von verunreinigenden Partikeln aus einem in einer Flussrichtung entlang eines Strömungskanals strömenden Mediums, wobei die Reinigungsvorrichtung ausgebildet ist, um mittels sich auf unterschiedli- chen Seiten des Strömungskanals gegenüberliegenden Elektroden ein elektrisches Feld in dem Strömungskanal zu erzeugen.
In einem Prüfschritt 40 wird eine Charakteristik der verunreinigenden Partikel in dem Medium bestimmt. Abhängig von der bestimmten Charakteristik wird in einem Steuer-/Regel Schritt 42 ein Betriebsmodus der Ionisierungseinrichtung variiert.
Obwohl bei den vorhergehenden Betrachtungen der Reinigungsvorrichtungen im Wesentlichen auf die Reinigung eines Mediums abgestellt wurde, versteht es sich von selbst, dass eine solche Reinigungsvorrichtung auch mit anderen Zielsetzungen verwendet werden kann.
Beispielsweise können Ausführungsbeispiele einer Reinigungsvorrichtung als Dichtung verwendet werden, indem unerwünschte Teile bzw. Partikel aus einem ein Lager oder ein zu schützendes Bauteil umgebendem Medium, wie beispielsweise Luft oder Gas, entfernt werden, so dass diese nicht in das zu schützende Bauteil gelangen können. Beispielsweise können also weitere Ausführungsbeispiele der vorliegenden Reinigung s Vorrichtung in Lagern, insbesondere Gleitlagern und Wälzlagern verwendet werden, um das Lager vor Verunreinigung und vorzeitigem Verschleiß zu schützen.
Bezugszeichenliste
4 verunreinigende Partikel
6 Flussrichtung
8 Ionisierungseinlichtung
lOAnode
12 Kathode
14 Spannungs Versorgung
16 Verunreinigungssensor
18 weiterer Verunreinigungssensor 20 Kontrolleinrichtung
26a - 26d Verunreinigungssensoren
28a - 28c Ionisierungseinrichtungen
30a - 30c Anoden
32a - 32c Kathoden
40 Prüfschritt
42 Steuer-/Regelschritt

Claims

P a t e n t a n s p r ü c h e Reinigungsvorrichtung
1. Reinigungsvorrichtung zum Entfernen von verunreinigenden Partikeln (4) aus einem in einer Flussrichtung (6) entlang eines Strömungskanals strömendem Medium, umfassend: eine Ionisierangseinrichtung (8), die ausgebildet ist, mittels eines sich auf unterschiedlichen Seiten des Strömungskanals gegenüberliegenden Elektrodenpaares (10, 12) ein elektrisches Feld in dem Strömungskanal zu erzeugen; zumindest einem Verunreinigungssensor (16), der ausgebildet ist, um eine Charakteristik der verunreinigenden Partikel in dem Medium zu bestimmen; und einer mit dem Veranreinigungssensor (16) und der Ionisierangseinrichtung (8) gekoppelten Kontrolleimichtung (20), die ausgebildet ist, einen Betriebsmodus der Ionisierangseimichtung (8) abhängig von der von dem Verunreinigungssensor (16) ermittelten Charakteristik der verunreinigenden Partikel (4) zu variieren.
2. Reinigungs Vorrichtung gemäß Ansprach 1 die ferner eine zweite mit der Kontrolleimichtung (20) gekoppelte Ionisierangseimichtung (28b) aufweist, die ausgebildet ist, mittels eines sich auf unterschiedlichen Seiten des Strö- mungskanals gegenüberliegenden zweiten Elektrodenpaars ein elektrisches Feld in dem Strömungskanal zu erzeugen , wobei die zweite Ionisierungseinrichtung (28b) in der Flussrichtung (6) nach der Ionisierungseinrichtung (28a) angeordnet ist.
3. Reinigungsvorrichtung gemäß Anspruch 1 oder 2, bei der der Verunreinigungssensor (26a) ausgebildet ist, die Charakteristik der verunreinigenden Partikel in dem Medium in der Flussrichtung (6) vor der ersten (28a) oder der zweiten Ionisierangseinrichtung (28b) oder in der Flussrichtung (6) nach der zweiten Ionisierangseinrichtung (28b) zu bestimmen.
4. Reinigung s Vorrichtung gemäß einem der Ansprüche 1 bis 3, bei der die Kontrolleinrichtung (20) ausgebildet ist, um bei Unterschreiten eines vorbestimmten Maximalwertes einer Konzentration der verunreinigenden Partikel (4) eine Betriebsspannung zwischen einer Anode und einer Kathode der Ionisierangseinrichtung (8; 28a) und /oder der zweiten Ionisierangseinrichtung (28b) zu verringern.
5. Reinigungsvorrichtung gemäß Ansprach 4, bei der die Kontrolleinrichtung (20) ausgebildet ist, bei Unterschreiten des vorbestimmten Maximalwertes eine Spannungsversorgung (14) für die erste und/oder die zweite Ionisierangseinrichtung (8; 28a, 28b) auszuschalten
6. Reinigung s Vorrichtung gemäß einem der vorhergehenden Ansprüche, bei der der Veranreinigungssensor einen IR-Sensor, einen Laserpartikelsensor, einen Luftpartikelzähler oder einen Ultraschallsensor umfasst.
7. Reinigungs Vorrichtung gemäß einem der vorhergehenden Ansprüche, ferner umfassend: eine erste Spannungsquelle (14), die mit der ersten Ionisierangseinrichtung (8) derart gekoppelt ist, um zwischen der Anode und der Kathode eine elektrisches Feld zu erzeugen.
8. Reinigungs Vorrichtung gemäß einem der Ansprüche 2 bis 7, bei der die Kathoden (32a, 32b) der ersten und der zweiten Ionisierangseinrichtungen (28a, 28b) kurzgeschlossen sind, um eine gemeinsame Kathode zu bilden.
9. Verfahren zum Betreiben einer Reinigungsvorrichtung zum Entfernen von verunreinigenden Partikeln aus einem in einer Flussrichtung (6) entlang eines Strömungskanals strömendem Medium, wobei die Reinigungsvorrichtung ausgebildet ist, um mittels sich auf unterschiedlichen Seiten des Strömungskanals gegenüberliegenden Elektroden (10, 12) ein elektrisches Feld in dem Strömungskanal zu erzeugen, mit folgenden Schritten: bestimmen einer Charakteristik der verunreinigenden Partikel in dem Gas; und variieren eines Betriebsmoduses der Ionisierungseinrichtung, abhän;
der bestimmten Charakteristik der verunreinigenden Partikel.
10. Verwendung einer Reinigungs Vorrichtung gemäß einem der Ansprüche 1 bis 8 zum Schutz eines Lagers , insbesondere eines Wälzlagers, vor verunreinigenden Partikeln.
EP12715656.0A 2011-04-15 2012-04-11 Reinigungsvorrichtung Not-in-force EP2696999B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110007470 DE102011007470A1 (de) 2011-04-15 2011-04-15 Reinigungsvorrichtung
PCT/EP2012/056559 WO2012140069A1 (de) 2011-04-15 2012-04-11 Reinigungsvorrichtung

Publications (2)

Publication Number Publication Date
EP2696999A1 true EP2696999A1 (de) 2014-02-19
EP2696999B1 EP2696999B1 (de) 2016-02-24

Family

ID=45992222

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12715656.0A Not-in-force EP2696999B1 (de) 2011-04-15 2012-04-11 Reinigungsvorrichtung

Country Status (3)

Country Link
EP (1) EP2696999B1 (de)
DE (1) DE102011007470A1 (de)
WO (1) WO2012140069A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107427839B (zh) * 2015-03-19 2020-11-17 沃克工业技术有限公司 用于分离污染物的设备和方法
DE102017100574A1 (de) 2017-01-13 2018-07-19 Schaeffler Technologies AG & Co. KG Modul zur Verhinderung von Stromdurchgangsschäden bei einem Wälzlager sowie Wälzlageranordnung
AT18030U1 (de) * 2021-08-02 2023-11-15 Villinger Markus Reinigungsvorrichtung zum Reinigen eines Gases
DE102022125024A1 (de) * 2022-09-28 2024-03-28 Woco Gmbh & Co. Kg Raumluftreiniger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1276001B (de) * 1965-04-10 1968-08-29 Metallgesellschaft Ag Verfahren zur Spannungsreglung von elektrostatischen Staubabscheidern
DD239350A1 (de) * 1985-07-17 1986-09-24 Entstaubungstech Edgar Andre Schaltungsanordnung zur steuerung der hochspannungsanlagen fuer elektroabscheider
DE29615980U1 (de) * 1996-09-13 1997-02-13 Maxs Ag, Sachseln Vorrichtung zum elektrostatischen Abscheiden von Verunreinigungen
DE10045369A1 (de) * 2000-09-14 2002-03-28 Salzgitter Ag Verfahren und Vorrichtung zum Reinigen von Prozessgasen
US6785114B2 (en) * 2001-03-29 2004-08-31 Illinois Tool Works Inc. Foraminous filter for use in air ionizer
DE102007048557B3 (de) * 2007-10-09 2009-06-04 Ab Skf Anordnung zum Abdichten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012140069A1 *

Also Published As

Publication number Publication date
EP2696999B1 (de) 2016-02-24
DE102011007470A1 (de) 2012-10-18
WO2012140069A1 (de) 2012-10-18

Similar Documents

Publication Publication Date Title
EP2696999B1 (de) Reinigungsvorrichtung
DD257590A5 (de) Anordnung zur erzeugung einer elektrischen koronaentladung in der luft
EP4025839B1 (de) Einrichtung zur luftbehandlung mit ionisationsmodul
DE2727973A1 (de) Verfahren zum abscheiden hochohmiger staeube aus gas
EP1679123A1 (de) Verfahren und Vorrichtung zur elektrostatischen Aufladung und Abscheidung schwierig abzuscheidender Partikel
WO2013023644A1 (de) Elektrostatischer feinstaubabscheider
DE102011110805B4 (de) Elektronischer Feinstaubabscheider
DE102005028024A1 (de) Verfahren und Vorrichtung zur Erzeugung großflächiger Atmosphärendruck-Plasmen
EP2169793B1 (de) Ionisationsvorrichtung
DE2734133A1 (de) Vorrichtung und verfahren zum abscheiden von teilchenfoermigem material aus einem gasstrom
EP4200058A2 (de) Luftreinigungseinheit und verfahren zur beschichtung einer elektrode einer luftreinigungseinheit
DE2658510A1 (de) Luftreinigungsgeraet
WO2022117730A1 (de) Luftreinigungseinrichtung und luftreinigungssystem sowie verfahren zur reinigung einer luftreinigungseinrichtung und eines luftreinigungssystems
DE102006033945B4 (de) Steuern der Hochspannung einer Elektroluftfiltervorrichtung
EP3396352B1 (de) Verfahren und einrichtung zur extraktiven bestimmung der konzentration von ein oder mehreren stoffen
DE3611947A1 (de) Elektrostatisch unterstuetztes, mechanisches faltenfoermiges filterelement
DE102005024472A1 (de) Vorrichtung und Verfahren zur Behandlung von Aerosolen, Schad- und Geruchsstoffen im Ionenwind
DE202005008309U1 (de) Vorrichtung zur Behandlung von Aerosolen, Schad- und Geruchsstoffen im Ionenwind
DE102007056704B3 (de) Elektrostatischer Abscheider und Verfahren zur Bestimmung eines Zustandes eines mit elektrischer Energie betriebenen elektrostatischen Abscheiders
DE102022102247B3 (de) Elektroabscheider mit wenigstens einer näherungsweise punktförmigen Sprühelektrode sowie Sprühionisationsquelle
DE102019219888B4 (de) Luftreinigungsvorrichtung mit elektrostatischer aufladung
DE202004011666U1 (de) Gasentladungslaser, insbesondere Excimerlaser und F2-Laser, mit Staubentfernung und Gasreinigung
DE102012222059B4 (de) Vorrichtung zur Luftbehandlung mit Ionen
EP1990097A2 (de) Wall-Flow-Filter mit unbegrenzter Zeitstandsfestigkeit
EP2772309B1 (de) Vorrichtung zum Abscheiden von Partikeln aus einem mit Partikeln beladenen Gasstrom und Verfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131007

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012006051

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B08B0006000000

Ipc: B03C0003410000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150923

RIC1 Information provided on ipc code assigned before grant

Ipc: B08B 6/00 20060101ALI20150911BHEP

Ipc: B03C 3/47 20060101ALI20150911BHEP

Ipc: B03C 3/41 20060101AFI20150911BHEP

Ipc: B03C 3/68 20060101ALI20150911BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 776392

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012006051

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160524

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160624

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012006051

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160411

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160524

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

26N No opposition filed

Effective date: 20161125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160524

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160524

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120411

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 776392

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224