EP2692046B1 - Verfahren zum ansteuern eines gleichrichters - Google Patents

Verfahren zum ansteuern eines gleichrichters Download PDF

Info

Publication number
EP2692046B1
EP2692046B1 EP12700007.3A EP12700007A EP2692046B1 EP 2692046 B1 EP2692046 B1 EP 2692046B1 EP 12700007 A EP12700007 A EP 12700007A EP 2692046 B1 EP2692046 B1 EP 2692046B1
Authority
EP
European Patent Office
Prior art keywords
voltage
rectifier
mosfet transistor
mosfet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12700007.3A
Other languages
English (en)
French (fr)
Other versions
EP2692046A2 (de
Inventor
Paul Mehringer
Uwe Schiller
Holger Heinisch
Markus Baur
Jochen Kurfiss
Gerhard Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
SEG Automotive Germany GmbH
Original Assignee
Robert Bosch GmbH
SEG Automotive Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH, SEG Automotive Germany GmbH filed Critical Robert Bosch GmbH
Publication of EP2692046A2 publication Critical patent/EP2692046A2/de
Application granted granted Critical
Publication of EP2692046B1 publication Critical patent/EP2692046B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle

Definitions

  • the invention relates to a method for driving a rectifier with active switching elements in the event of a load drop, a driving circuit for driving a rectifier with active switching elements in the event of a load drop, a rectifier with active switching elements and an electrical generator.
  • Rectifiers are generally used to supply DC systems from three-phase systems, such as in the public three-phase network. These rectifiers are usually built in a bridge circuit, with diodes serving as rectifier elements. The diodes do not require any further control circuitry, since they automatically switch to the conductive or blocking state at the right time.
  • Bridge rectifiers are also used as rectifiers in three-phase generators for motor vehicles.
  • the power loss converted in diode rectifiers results from the diode design and the current to be rectified. These losses can only be reduced insignificantly by means of circuitry measures, for example by connecting diodes in parallel.
  • circuitry measures for example by connecting diodes in parallel.
  • active switches e.g. B. MOSFET transistors
  • these losses can be significantly reduced.
  • the use of active switches requires a controller that switches the switches on and off at the right time.
  • a critical operating state of an active rectifier is load shedding.
  • a load shedding occurs when the load cable falls off when the machine is energized and the power is released or consumers are suddenly switched off.
  • the generator continues to supply energy for typically 300 to 500 ms, which in the rectifier must be implemented to protect the electrical system from damage caused by overvoltage.
  • the diodes offer a sufficiently good construction and connection technology with low thermal impedances. Furthermore, the Zener diodes offer the advantage that the Zener voltage increases with increasing temperature. An almost uniform distribution of the current load of the branches is thus achieved over the individual branches. In the thermally balanced state, the Zener stresses are initially not identical due to production fluctuations. Switch branches with lower Zener voltage are loaded with more current. Due to the increase in the Zener voltage with temperature, a self-locking effect occurs, which leads to an almost uniform distribution of the current.
  • MOSFET transistors are usually used as power switches.
  • the clamp voltage is dependent on the threshold voltage of the MOSFET transistors, which is why the decrease in the threshold voltage results in a decrease in the clamp voltage. Since the threshold voltages of MOSFET transistors have negative temperature coefficients, the clamp voltage of such active rectifiers drops as the temperature rises. This causes an uneven distribution of the current with the result of an uneven distribution of the temperature, which increases the uneven distribution of the current and is shown as a positive feedback effect.
  • the clamp voltage is composed of the breakdown voltage of a zener diode or a chain of zener diodes and the threshold voltage of the MOSFET transistor. Since the Zener diodes are not thermally or only insufficiently coupled to the MOSFET transistor, their positive temperature coefficient cannot compensate for the negative temperature coefficient of the threshold voltage of the MOSFET transistor.
  • Doe disclosure DE 10 2007 060219 A1 discloses a generator assembly with a rectifier for a motor vehicle, with voltage brackets for load shedding.
  • the method presented serves to distribute the power converted during the voltage shedding during load shedding as evenly as possible over the power transistors of all switching branches in order to achieve the most homogeneous possible heating of the power transistors involved. It therefore represents a method for uniformly distributing the power loss when limiting the voltage in rectifiers.
  • FIG. 1 A generator 10, a rectifier 12, in this case a bridge rectifier, a control circuit 14 for generating control signals and a control 16 for switches (eg gate drivers) are shown.
  • the generator 10 generates three phase signals, namely phase U 20, phase V 22 and phase W 24. These three phases 20, 22 and 24 are fed into the rectifier 12, in which between a positive pole 26 and a negative pole 28 in a first branch 30 , a second branch 32 and a third branch 34 switching elements are arranged.
  • the first branch 30 comprises a first switching element 40 and a second switching element 42, the second branch 32 a third switching element 50 and a fourth switching element 52 and the third branch 34 a fifth switching element 60 and a sixth switching element 62.
  • the switching elements 40, 42, 50, 52, 60, 62 each comprise a switch with a diode connected in parallel and can be designed as MOSFET transistors, each with a source, drain and gate connection.
  • the three phases U 20, V 22 and W 24 are converted into equal quantities by the rectifier 12.
  • the circuit 14 for generating the control signals evaluates the three phases 20, 22 and 24 and generates control signals with which the control 16 for the switches of the switching elements 40, 42, 50, 52, 60, and 62 takes place.
  • the switch-on conditions of the active switches are based on an evaluation of the voltage at the diodes or inverse diodes of the MOSFET transistors. With a forward voltage of typically 0.7 V, reliable detection of the switch-on condition with a limit value of, for example, 0.35 V is possible. As soon as the control has taken place, this signal breaks in, since the diode forward voltage is bridged by the RDS_ON of the MOSFET. Therefore a voltage measurement to determine the switch-off time is problematic.
  • a control based on a voltage measurement is advantageous compared to a control based on a current measurement, since in this way the efficiency can be optimally used.
  • FIG 2 the circuit structure is similar Figure 1 represented with the resulting current paths.
  • the switches of the switching elements have the reference numerals 40a, 42a, 50a, 52a, 60a, and 62a.
  • the generator 10 is shown with three stator windings 70, 72 and 74. Furthermore, the illustration shows a controller 78, a first controller 80, a second controller 82 and a third controller 84.
  • a point in time is selected by way of example with a positive current from phases U 20 and V 22 and a negative current in phase W 24.
  • the excess current from phase V 22 now has two possible current paths in order to arrive at phase W 24 , either via the switching element 50a (high-side V) and the switching element 60a (high-side W), which corresponds to the path II, or via the switching element 52a (low-side V) and the switching element 62a (low-side W), which corresponds to the path I.
  • the negative temperature coefficient of the threshold voltage of the MOSFET transistors must be compensated for by a suitable countermeasure.
  • FIG. 3 a typical structure of a clamp circuit for handling a load shedding is shown, which is designated overall by the reference number 100. This comprises a MOSFET transistor 102, a diode 104, a zener diode 106 and a resistor 108.
  • MOSFET transistor 102 Since the MOSFET transistor 102 is operated at a working point with a very steep characteristic curve, small changes in the threshold voltage have a very marked effect on the drain current of the MOSFET transistor.
  • Figure 4 shows in a graph the dependence of the threshold voltage on the temperature for a small drain saturation current.
  • the temperature in ° C. is plotted on an abscissa 150 and the threshold voltage in V is plotted on an ordinate 152.
  • Figure 4 thus illustrates the dependence of the threshold voltage on the temperature. Since the threshold voltages of MOSFET transistors have negative temperature coefficients, the clamp voltage of such circuits drops as the temperature rises. This causes an uneven current load on the switching branches, with the result of an uneven temperature distribution, which manifests itself as a positive feedback effect and can result in thermal overloading of individual MOSFET transistors.
  • Figure 5 shows the dependence of the avalanche breakdown voltage on the temperature, in this case using the example of a MOSFET transistor.
  • the temperature in ° C. is plotted on an abscissa 160 and the breakdown voltage in V is plotted on an ordinate 162.
  • generators for motor vehicles require time periods of approximately 200 ms to 500 ms in order to reduce the excitation current in a load shedding event. Corresponding periods of time therefore apply to the clamp operation of the rectifiers in a load shedding event.
  • the proposed method now provides for the effect of the increasing clamp voltage to be timed in a significantly lower time scale. This takes advantage of the fact that a load shedding consists of recurring events similar to sine half-waves over time. The frequency of the sine half-waves is dependent on the number of pole pairs of the current speed of the electrical machine used. Now the clamp voltage should start at a defined level within each individual sinus half-wave and, for example, increase by 2 V within one millisecond.
  • FIG 6 shows the course of the three phase voltages in the load shedding event for a three-phase system according to the prior art.
  • the time in ms is plotted on an abscissa 170.
  • the voltage in V is plotted on an ordinate 172.
  • the illustration thus shows an example of the curves of the voltages of phases U 174, V 176 and W 178 for a load shedding event according to the prior art.
  • Figure 7 shows a desired course of a switching branch voltage for a load shedding event.
  • the time in ms is plotted on an abscissa 180 and the phase voltage in V on an ordinate 182.
  • a continuously increasing course of the clamp tension is thus specified.
  • Figure 8 shows a desired course of the switching branch voltages for a load shedding event in a three-phase system. Again, the time in ms is plotted on an abscissa 190 and the voltage on three switching branches in V on an ordinate 192. The illustration shows an example of the voltage curves at the Lowside switching branches of phases U 194, V 196 and W 198. The same voltage curve is required for the highside switching branches.
  • FIGS 7 and 8 illustrate the procedure presented. Due to the ramp-like change in the clamp voltage in each switching branch within each half-wave of the voltage clamp, the clamp voltages of each switching branch differ significantly at all times. This ensures that a high proportion of the current is always conducted via the switching branch with the currently lowest clamp voltage. With this method, there is almost a uniform distribution of the power loss over the switching branches on average over several periods of the phase current.
  • Figure 9 shows the simulated temperature profile at the MOSFET or ASIC at a spatial distance of approximately 1 cm.
  • the time in ms is plotted on an abscissa 200 and the temperature is plotted on an ordinate 202.
  • the simulated temperature of one of the six MOSFET transistors "decouples" from the other temperatures and, as a result of the positive feedback effect, the temperatures combine.
  • one of the six switching branches would be heated by - 200K, while other switching branches would only be heated by 60K after the load drop had been completed.
  • MOSFET transistors are loaded on average relatively symmetrically.
  • the temperature difference between the individual FETs is significantly smaller.
  • MOSFET transistor is heated by 90K, the coolest by 50K.
  • the algorithm presented can be recognized by a negative voltage curve at the gate of the MOSFET transistor, as shown, for example, in Figure 11 shown.
  • This figure shows the course of UGS on the MOSFET transistor.
  • the time in ms is plotted on an abscissa 220 and the voltage in V on an ordinate 222.
  • the negative voltage curve ensures that each MOSFET transistor absorbs the greatest energy at the start of a half-wave due to the high drive voltage and further constricts its channel in the course of the pulse by reducing the drive voltage and consequently causes a decreased energy consumption due to the increased resistance.
  • this effect can also be measured on the closed control device between any phase and Bat + or Bat-.
  • the time-dependent increase in clamp voltage can be measured.
  • the measurement should preferably be carried out with low currents, that is to say without any appreciable power input, in order to ensure that the measured clamp voltage is not influenced by temperature effects.
  • the measurement can be carried out on the stationary generator in the laboratory by entering an external clamp current in any switching branch.
  • the problem of uniform loss line distribution in the load shedding event can be correspondingly achieved by the monolithic integration of the Zener diode required for driving the MOSFET transistor Figure 3 be improved in a circuit breaker.
  • a layer structure 250 is shown with separate logic on DBC (direct bonded copper).
  • the illustration shows a base plate 252, a first layer 254 of a thermal paste (WLP), a second layer 256 made of copper, a third layer 258 made of Al 2 O 3 , fourth layers 260 made of copper, fifth layers 262 solder and a layer 264 silicon for the ASIC and a layer 266 of silicon for the MOSFET. Bond connections 270 are also shown.
  • WLP thermal paste
  • the Zener diode is integrated in the control circuit so that it is spatially separated from the MOSFET transistor, the temperature flow from the MOSFET transistor, which heats up significantly in the load dump case, is delayed in time until the Zener diode.
  • This delay is in a range of approx. 100 ms with the in Figure 12 DBC structure shown.
  • the negative temperature coefficient of the MOSFET transistor prevails in the load dump case. Balancing is not possible here.
  • the pulse is concentrated on three MOSFET transistors, with one MOSFET transistor absorbing the greatest energy due to its lowest threshold voltage (positive feedback effect). The maximum temperature at the MOSFET transistor reaches 330 ° C.
  • one embodiment now provides that the currents on the individual MOSFET transistors are symmetrized by means of a positive temperature coefficient, viewed from an overall perspective.
  • This is realized by implementing a zener diode in the MOSFET transistors, in which, as in FIG Figure 12 is shown, the cathode is connected to the drain of the MOSFET transistor.
  • the anode is led to a separate pad of the MOSFET transistor and is electrically connected to the control circuit. This creates a direct thermal connection between the MOSFET transistor and the zener diode, as in Figure 13 is shown.
  • Figure 13 shows a layer structure 300 with a Zener diode integrated in the MOSFET transistor.
  • the illustration shows a base plate 302, a first layer 304 of a thermal paste (WLP), a second layer 306 made of copper, a third layer 308 made of Al 2 O 3 , fourth layers 310 made of copper, fifth layers 312 solder and a layer 314 silicon for the ASIC and a layer 316 of silicon, divided into a first region 318 for the MOSFET transistor and a second region 320 for the zener diode. Bond connections 312 are also shown.
  • WLP thermal paste
  • the negative temperature coefficient of the threshold voltage of the MOSFET transistor is more than compensated for by the positive temperature coefficient of the zener diode of, for example, -14 mV / K. This creates an effect of negative feedback, which causes the approximately equal distribution of the power loss during voltage clamping in the load shedding event.
  • the maximum temperature of the MOSFET transistors is hereby after simulation, as shown in Figure 14 is shown reduced to 200 ° C.
  • the equal distribution of the power loss is thus brought about by thermal coupling of a power semiconductor and a Zener diode.
  • Figure 14 shows a simulated temperature profile of rectifier elements consisting of MOSFET transistors with integrated Zener diodes for a load shedding event.
  • the time in ms is plotted on an abscissa 350 and the temperature is plotted on an ordinate 352.
  • the leakage currents of the MOSFET transistor can be measured if the anode connection of the Zener diode is not connected directly to the gate of the MOSFET transistor. In this case, it is necessary to subsequently connect the anode connection of the zener diode to the gate connection of the MOSFET transistor via a bond connection. This connection can also be made indirectly via a separate circuit that is not integrated in the power chip, such as a controlling ASIC. Leakage current measurements on the MOSFET transistor may be necessary depending on the requirements to ensure function and reliability within the manufacturing process.
  • the anode of the Zener diode can be connected directly to the gate of the MOSFET transistor as part of the integration.
  • Figure 15 shows alternative connection options in connection with the monolithic integration of the MOSFET transistor and the Zener diode.
  • Figure 3 describes a simple control loop that has a regulation of the clamp voltage.
  • the reference variable of this control loop is composed mainly of the breakdown voltage of the Zener diode and the threshold voltage of the MOSFET transistor.
  • the Zener diode and the MOSFET transistor are not monolithically integrated and therefore there is a comparatively low thermal coupling between these components, the negative temperature coefficient of the threshold voltage of the MOSFET transistor cannot be determined by the positive temperature coefficient the Zener diode can be compensated to suppress the positive feedback effect as described above.
  • FIG 16 shows an example of a basic circuit diagram to illustrate the improved method for regulating the clamp voltage.
  • the controller shown includes an amplifier 470 and a MOSFET transistor 472 and a summing element 476.
  • the voltage U_Soll 474 serves as a reference variable. Due to the action of the control loop, the drain-source voltage of the MOSFET transistor 472 is almost equalized to the voltage U_Soll. The higher the amplification of the amplifier 470, the smaller the deviation between the drain-source voltage of the MOSFET transistor 472 and the voltage U_Soll. The threshold voltage of the MOSFET transistor 472 hardly affects the drain-source voltage of the MOSFET transistor 472 at high amplifications.
  • the influence of the negative temperature coefficient of the MOSFET threshold voltage on the clamp voltage is suppressed.
  • the power loss converted in the voltage clamping in the MOSFET transistor 472 therefore causes almost no reduction in the clamp voltage, which largely suppresses thermal positive feedback in the case of parallel connection of voltage clamping circuits.
  • the voltage specification U_Soll 474 can either be constant here or increase over time, that is to say it has a ramp-shaped course. By using a ramp-shaped course of U_Soll, it is possible to combine this embodiment of the method with the first-mentioned embodiment of the method.
  • the implementation of this improved method for clamp voltage control and also the provision of ramp-shaped reference variables for the clamp voltage can, for example, as discrete circuits or by integrating the components in an ASIC or predominantly digitally, for. B. by using microcontrollers or FPGAs.
  • Figure 17 shows the simulated temperature profiles of the MOSFET transistors of the six switching branches of a rectifier in operation with a three-phase generator for a load shedding event.
  • the aforementioned methods for uniform distribution of the power loss are not used here, since a circuit principle according to Figure 3 is applied.
  • the time in ms is plotted on an abscissa 480 and the temperature T on an ordinate 482.
  • Figure 18 shows the simulated temperature profiles of the MOSFET transistors of the six switching branches of a rectifier in operation with a three-phase generator for a load shedding event.
  • the aforementioned method for clamping voltage regulation according to the in Figure 16 shown circuit principle applied.
  • the time in ms is plotted on an abscissa 490 and the temperature T on an ordinate 492.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Ansteuern eines Gleichrichters mit aktiven Schaltelementen bei einem Lastabfall, eine Ansteuerschaltung zum Ansteuern eines Gleichrichters mit aktiven Schaltelementen bei einem Lastabfall, einen Gleichrichter mit aktiven Schaltelementen und einen elektrischen Generator.
  • Stand der Technik
  • Zur Speisung von Gleichstromsystemen aus Drehstromsystemen, wie bspw. beim öffentlichen Drehstromnetz, werden im allgemeinen Gleichrichter verwendet. Diese Gleichrichter sind meist in Brückenschaltung aufgebaut, wobei Dioden als Gleichrichterelemente dienen. Die Dioden benötigen keine weitere Ansteuerschaltung, da sie selbstständig zum richtigen Zeitpunkt in den leitenden oder sperrenden Zustand übergehen.
  • Brückengleichrichter werden auch als Gleichrichter in Drehstromgeneratoren für Kraftfahrzeuge verwendet. Die in Diodengleichrichtern umgesetzte Verlustleistung ergibt sich aus dem Dioden-Design und dem gleichzurichtenden Strom. Durch schaltungstechnische Maßnahmen, bspw. durch Parallelschalten von Dioden, lassen sich diese Verluste nur unwesentlich verringern. Werden jedoch die Dioden durch aktive Schalter, z. B. MOSFET-Transistoren, ersetzt, lassen sich diese Verluste wesentlich verkleinern. Der Einsatz von aktiven Schaltern erfordert jedoch eine Steuerung, die die Schalter zum richtigen Zeitpunkt ein- und ausschaltet.
  • Ein kritischer Betriebszustand eines aktiven Gleichrichters ist der Lastabwurf. Ein Lastabwurf liegt vor, wenn bei erregter Maschine mit abgegebenem Strom das Lastkabel abfällt oder schlagartig Verbraucher abgeschaltet werden. Der Generator liefert für typischerweise 300 bis 500 ms weiter Energie, die im Gleichrichter umgesetzt werden muss, um das Bordnetz vor Schädigungen durch Überspannung zu schützen.
  • In herkömmlichen Diodengleichrichtern kann diese Verlustenergie in Wärme umgesetzt werden. Dabei bieten die Dioden eine ausreichend gute Aufbau- und Verbindungstechnik mit niedrigen thermischen Impedanzen. Des Weiteren bieten die Zenerdioden den Vorteil, dass die Zenerspannung mit steigender Temperatur steigt. Damit wird über den einzelnen Zweigen eine nahezu Gleichverteilung der Strombelastung der Zweige erreicht. Im thermisch ausgeglichenen Zustand sind die Zenerspannungen aufgrund von Fertigungsschwankungen zunächst nicht identisch. Schaltzweige mit niedrigerer Zenerspannung werden mit mehr Strom belastet. Durch den Anstieg der Zenerspannung mit der Temperatur tritt ein selbsthemmender Effekt ein, der zu einer nahezu Gleichverteilung des Stroms führt.
  • Bei aktiven Gleichrichtern werden üblicherweise MOSFET-Transistoren als Leistungsschalter verwendet. Bei bekannten Schaltungen zur Spannungsklammerung ist die Klammerspannung von der Schwellspannung der MOSFET-Transistoren abhängig, weshalb die Abnahme der Schwellspannung eine Abnahme der Klammerspannung zur Folge hat. Da die Schwellspannungen von MOSFET-Transistoren negative Temperaturkoeffizienten aufweisen, sinkt die Klammerspannung solcher aktiver Gleichrichter bei Zunahme der Temperatur. Dies bewirkt eine Ungleichverteilung des Stroms mit der Folge einer Ungleichverteilung der Temperatur, was die Ungleichverteilung des Stroms verstärkt und sich als Mitkopplungseffekt zeigt.
  • Bei bekannten Schaltungen zur Spannungsklammerung setzt sich die Klammerspannung aus der Durchbruchsspannung einer Zenerdiode oder einer Kette aus Zenerdioden und der Schwellspannung des MOSFET-Transistors zusammen. Da die Zenerdioden mit dem MOSFET-Transistor thermisch nicht oder nur unzureichend gekoppelt sind, kann deren positiver Temperaturkoeffizient den negativen Temperaturkoeffizienten der Schwellspannung des MOSFET-Transistors nicht kompensieren.
  • Aus der Druckschrift WO 2007/048761 A2 ist eine Vorrichtung zur Temperaturkompensation bei einer Endstufe bekannt, bei der die elektrische Leistung während der Klammerphase temperaturkompensiert gleichmäßig auf die unterschiedliche Zenerspannung aufweisenden Einzel-Endstufen verteilt wird.
  • In der Offenlegungsschrift DE 102 60 650 A1 wird eine Leistungschalteranordnung beschrieben, mit einer Klemmschaltung und einer Regelvorrichtung, die ein von der Temperatur des Leistungschalters abhängiges Stellsignal für die Klemmschaltung erzeugt, so dass beim Abschaltvorgang eine zeitlich veränderliche Klemmspannung vorgegeben wird.
  • In der Offenlegungsschrift DE 10 2008 036 114 A1 wird ein Halbleiterschalter mit Klemmschaltung beschrieben, wobei die Klemmspannung abhängig von einer Temperaturdifferenz zwischen der lokalen Temperatur des Leistungstransistors und einer Umgebungstemperatur einstellbar ist.
  • Doe Offenlegungsschrift DE 10 2007 060219 A1 offenbart eine Generatoranordnung mit Gleichrichter für ein Kraftfahrzeug, mit Spannungsklammerung bei Lastabwurf.
  • Offenbarung der Erfindung
  • Vor diesem Hintergrund werden ein Verfahren zum Ansteuern eines Gleichrichters mit den Merkmalen des Anspruchs 1, eine Ansteuerschaltung nach Anspruch 9, ein Gleichrichter gemäß Anspruch 11 und ein elektrischer Generator gemäß Anspruch 12 vorgestellt. Ausführungen ergeben sich aus den abhängigen Ansprüchen und der Beschreibung.
  • Das vorgestellte Verfahren dient dazu, die während der Spannungsklammerung beim Lastabwurf umgesetzte Leistung auf die Leistungstransistoren aller Schaltzweige möglichst gleichmäßig zu verteilen, um eine möglichst homogene Erwärmung der beteiligten Leistungstransistoren zu erreichen. Es stellt somit ein Verfahren zur Gleichverteilung der Verlustleistung bei der Spannungsbegrenzung in Gleichrichtern dar.
  • Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus den beigefügten Zeichnungen und der Beschreibung.
  • Es versteht sich, dass die voranstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder auch in Alleinstellung verwendbar sind.
  • Kurze Beschreibung der Zeichnungen
  • Figur 1
    zeigt eine Ausführungsform des vorgestellten Gleichrichters mit aktiven Schaltern.
    Figur 2
    zeigt die Strompfade bei dem vorgestellten Gleichrichter bei einem Lastabwurf.
    Figur 3
    zeigt einen Aufbau einer Klammerschaltung zur Behandlung eines Lastabwurfs.
    Figur 4
    zeigt in einem Graphen die Abhängigkeit der Schwellspannung eines Feldeffekttransistors von der Temperatur.
    Figur 5
    zeigt in einem Graphen die Abhängigkeit der Avalanche-Durchbruchspannung von der Temperatur.
    Figur 6
    zeigt in einem Graphen den Verlauf von drei Phasenspannungen im Lastabwurf gemäß dem Stand der Technik.
    Figur 7
    zeigt in einem Graphen den angestrebten Verlauf einer Phasenspannung im Lastabwurf.
    Figur 8
    zeigt in einem Graphen den angestrebten Verlauf der Phasenspannungen im Lastabwurf.
    Figur 9
    zeigt in einem Graphen den simulierten Temperaturverlauf an drei MOSFET-Transistoren gemäß Stand der Technik.
    Figur 10
    zeigt in einem Graphen den Temperaturverlauf an drei MOSFET-Transistoren nach Einführung von erfindungsgemäßen Verbesserungen.
    Figur 11
    zeigt in einem Graphen den Verlauf der Gate-Source-Spannung nach Einführung von erfindungsgemäßen Verbesserungen.
    Figur 12
    zeigt einen Schichtaufbau bei getrennter Logik.
    Figur 13
    zeigt den Schichtaufbau mit im MOSFET-Transistor integrierter Zenerdiode.
    Figur 14
    zeigt in einem Graphen den Temperaturverlauf von fünf MOSFET-Transistoren mit im MOSFET-Transistor integrierter Zenerdiode.
    Figur 15
    zeigt alternative Beschreibungen eines vierpoligen MOSFET-Transistors.
    Figur 16
    zeigt in einem Prinzipschaltbild eine Drain-Source-Regelung.
    Figur 17
    zeigt in einem Graphen die Temperaturverteilung mit Drain-Gate-Regelung.
    Figur 18
    zeigt in einem Graphen die Temperaturverteilung mit Drain-Source-Regelung.
    Ausführungsformen der Erfindung
  • Die Erfindung ist anhand von Ausführungsformen in den Zeichnungen schematisch dargestellt und wird nachfolgend unter Bezugnahme der Zeichnungen ausführlich beschrieben. Die Methode der Erfindung wird im Folgenden anhand eines 3-phasigen Systems beschrieben, ist aber ohne Weiteres auf mehrphasige Systeme übertragbar.
  • In Figur 1 ist ein Generator 10, ein Gleichrichter 12, in diesem Fall ein Brückengleichrichter, eine Ansteuerschaltung 14 zur Erzeugung von Ansteuersignalen und eine Ansteuerung 16 von Schaltern (z. B. Gatetreiber) dargestellt.
  • Der Generator 10 erzeugt drei Phasensignale, nämlich Phase U 20, Phase V 22 und Phase W 24. Diese drei Phasen 20, 22 und 24 werden in den Gleichrichter 12 eingespeist, in dem zwischen einem Pluspol 26 und einem Minuspol 28 in einem ersten Zweig 30, einem zweiten Zweig 32 und einem dritten Zweig 34 Schaltelemente angeordnet sind.
  • Dabei umfasst der erste Zweig 30 ein erstes Schaltelement 40 und ein zweites Schaltelement 42, der zweite Zweig 32 ein drittes Schaltelement 50 und ein viertes Schaltelement 52 und der dritte Zweig 34 ein fünftes Schaltelement 60 und ein sechstes Schaltelement 62. Die Schaltelemente 40, 42, 50, 52, 60, 62 umfassen jeweils einen Schalter mit parallel geschalteter Diode und können als MOSFET-Transistoren, jeweils mit Source-, Drain- und Gate-Anschluss, ausgebildet sein.
  • Die drei Phasen U 20, V 22 und W 24 werden durch den Gleichrichter 12 in Gleichgrößen gewandelt.
  • Die Schaltung 14 zur Erzeugung der Ansteuersignale wertet die drei Phasen 20, 22 und 24 aus und erzeugt Steuersignale, mit denen die Ansteuerung 16 für die Schalter der Schaltelemente 40, 42, 50, 52, 60, und 62 erfolgt.
  • Die Einschaltbedingungen der aktiven Schalter erfolgt über eine Auswertung der Spannung an den Dioden bzw. Inversdioden der MOSFET-Transistoren. Bei einer Flussspannung von typischerweise 0,7 V ist eine sichere Detektion der Einschaltbedingung mit einem Grenzwert von bspw. 0,35 V möglich. Sobald die Ansteuerung erfolgt ist, bricht dieses Signal ein, da die Diodenflussspannung durch den RDS_ON des MOSFET überbrückt wird. Daher ist eine Spannungsmessung zur Ermittlung des Ausschaltzeitpunkts problematisch.
  • Es ist zu beachten, dass ein deutlich höheres Signal durch eine verlustfreie Strommessung erreicht werden kann. Von Bedeutung ist die Verlustfreiheit der Spannungsmessung, da durch Einführung eines Shunts der Wirkungsgradgewinn zunichte gemacht werden würde.
  • Eine Ansteuerung auf Basis einer Spannungsmessung ist gegenüber einer Ansteuerung auf Basis einer Strommessung vorteilhaft, da auf diese Weise der Wirkungsgrad optimal ausgenutzt werden kann.
  • In Figur 1 ist ein prinzipieller Aufbau für einen aktiven Gleichrichter dargestellt. Die genaue Ausführung der Ansteuerschaltung 14 wird in diesem Zusammenhang nicht näher erläutert.
  • In Figur 2 ist der Schaltungsaufbau ähnlich Figur 1 mit den sich ergebenden Strompfaden dargestellt. Die Schalter der Schaltelemente tragen die Bezugszeichen 40a, 42a, 50a, 52a, 60a, und 62a. Dabei ist der Generator 10 mit drei Statorwicklungen 70, 72 und 74 dargestellt. Weiterhin zeigt die Darstellung einen Regler 78, eine erste Steuerung 80, eine zweite Steuerung 82 und eine dritte Steuerung 84.
  • Bei einem Lastabwurf ergeben sich die Strompfade gemäß Figur 2. In diesem Fall ist beispielhaft ein Zeitpunkt gewählt mit einem positiven Strom aus den Phasen U 20 und V 22 sowie einem negativen Strom in der Phase W 24. Der überschüssige Strom aus Phase V 22 hat nunmehr zwei mögliche Strompfade, um zur Phase W 24 zu gelangen, und zwar entweder über das Schaltelement 50a (High-Side V) und das Schaltelement 60a (High-Side W), das entspricht dem Pfad II, oder über das Schaltelement 52a (Low-Side V) und das Schaltelement 62a (Low-Side W), das entspricht dem Pfad I.
  • Beide Strompfade beginnen beim Phasenanschluss V und enden am Phasenanschluss W. Dies gilt auch für die Pfade III und IV mit den Phasen U und W. Damit verhalten sich die Pfade nach außen hin gleichwertig und der Strom wird den Pfad mit der niedrigeren Gegenspannung einnehmen. Da nun die mit schraffierten Pfeilen 90 markierten Klammerspannungen um eine Zehnerordnung höher sind als die mit weiteren Pfeilen 92 markierten Durchflussspannungen, werden die auftretenden Gegenspannungen durch die Zenerspannungen dominiert und der Strom wird den Pfad mit der niedrigeren Klammerspannung wählen.
  • Dieser Effekt kombiniert mit dem im folgenden beschriebenen negativen Temperaturkoeffizienten (TK) führt zu einer ungleichmäßigen Belastung der Endstufen, wobei sich die Ungleichmäßigkeit im Laufe des Lastabfalls durch einen eintretenden Mitkopplungseffekt verstärkt.
  • Um eine Gleichverteilung der Energie eines Lastabwurfs auf die im vorliegenden Beispiel beteiligten sechs Schalter im aktiven Gleichrichter zu erzeugen, muss der negative Temperaturkoeffizient der Schwellspannung der MOSFET-Transistoren durch eine geeignete Gegenmaßnahme kompensiert werden.
  • In Figur 3 ist ein typischer Aufbau einer Klammerschaltung zur Behandlung eines Lastabwurfs dargestellt, die insgesamt mit der Bezugsziffer 100 bezeichnet ist. Diese umfasst einen MOSFET-Transistor 102, eine Diode 104, eine Zenerdiode 106 und einen Widerstand 108.
  • Für den in Figur 3 gezeigten Aufbau ergibt sich zwischen Drain und Source die Klammerspannung U_DS: U _ DS = U _ Z + U _ GS
    Figure imgb0001
  • Da der MOSFET-Transistor 102 an einem Arbeitspunkt mit einer sehr steilen Kennlinie betrieben wird, wirken sich hier kleine Änderungen in der Schwellspannung sehr deutlich stark auf den Drainstrom des MOSFET-Transistors aus.
  • Figur 4 zeigt in einem Graphen die Abhängigkeit der Schwellspannung von der Temperatur für einen kleinen Drain- Sättigungsstrom. Dabei ist an einer Abszisse 150 die Temperatur in °C und an einer Ordinate 152 die Schwellspannung in V aufgetragen.
  • Figur 4 verdeutlicht somit die Abhängigkeit der Schwellspannung von der Temperatur. Da die Schwellspannungen von MOSFET-Transistoren negative Temperaturkoeffizienten aufweisen, sinkt die Klammerspannung solcher Schaltungen bei Zunahme der Temperatur. Dies bewirkt eine ungleichmäßige Strombelastung der Schaltzweige mit der Folge einer ungleichmäßigen Temperaturverteilung, was sich als Mitkopplungseffekt zeigt und die thermische Überlastung einzelner MOSFET-Transistoren zur Folge haben kann.
  • Bei Gleichrichterdioden passiver Gleichrichter dominiert im Sperrbetrieb der Avalancheeffekt, weshalb diese Dioden positive Temperaturkoeffizienten der Durchbruchsspannung aufweisen. Bei passiven Gleichrichtern verteilt sich deshalb die bei der Spannungsklammerung umgesetzte Verlustleistung nahezu gleichmäßig auf die beteiligten Zweige.
  • In Figur 5 ist die Abhängigkeit der Avalanche-Durchbruchspannung von der Temperatur, in diesem Fall am Beispiel eines MOSFET-Transistors, wiedergegeben. Dabei ist an einer Abszisse 160 die Temperatur in °C und an einer Ordinate 162 die Durchbruchspannung in V aufgetragen.
  • Es ist zu beachten, dass bei Generatoren für Kraftfahrzeuge Zeitdauern von ca. 200 ms bis 500 ms benötigt werden, um in einem Lastabwurf-Ereignis den Erregerstrom abzubauen. Entsprechende Zeitdauern gelten deshalb für den Klammerbetrieb der Gleichrichter in einem Lastabwurf-Ereignis.
  • Bei dem vorgestellten Verfahren ist nunmehr vorgesehen, den Effekt der ansteigenden Klammerspannung in einer deutlich niedrigeren Zeitskala zeitgesteuert ablaufen zu lassen. Dabei wird ausgenutzt, dass ein Lastabwurf aus wiederkehrenden Ereignissen ähnlich Sinushalbwellen im Zeitverlauf besteht. Die Frequenz der Sinushalbwellen ist dabei abhängig von der Polpaarzahl der aktuellen Drehzahl der verwendeten elektrischen Maschine. Nun soll innerhalb jeder einzelnen Sinushalbwelle die Klammerspannung auf einem festgelegten Niveau starten und bspw. innerhalb einer Millisekunde um 2 V ansteigen.
  • In Figur 6 ist der Verlauf der drei Phasenspannungen im Lastabwurf-Ereignis für ein dreiphasiges System gemäß dem Stand der Technik dargestellt. Dabei ist an einer Abszisse 170 die Zeit in ms aufgetragen. An einer Ordinate 172 ist die Spannung in V aufgetragen. Die Darstellung zeigt somit beispielhaft die Verläufe der Spannungen der Phasen U 174, V 176 und W 178 für ein Lastabwurf-Ereignis gemäß dem Stand der Technik.
  • Figur 7 zeigt einen angestrebten Verlauf einer Schaltzweigspannung für ein Lastabwurf-Ereignis. An einer Abszisse 180 ist dabei die Zeit in ms und an einer Ordinate 182 die Phasenspannung in V aufgetragen. Es wird somit ein kontinuierlich steigender Verlauf der Klammerspannung vorgegeben.
  • Figur 8 zeigt einen angestrebten Verlauf der Schaltzweigspannungen für ein Lastabwurf-Ereignis in einem dreiphasigen System. Wiederum ist an einer Abszisse 190 die Zeit in ms und an einer Ordinate 192 die Spannung an drei Schaltzweigen in V aufgetragen. Die Darstellung zeigt beispielhaft die Verläufe der Spannungen an den Lowside Schaltzweigen der Phasen U 194, V 196 und W 198. Für die Highside Schaltzweige wird der gleiche Spannungsverlauf benötigt.
  • Figuren 7 und 8 verdeutlichen das vorgestellte Verfahren. Durch die rampenförmige Änderung der Klammerspannung in jedem Schaltzweig innerhalb jeder Halbwelle der Spannungsklammerung unterscheiden sich die Klammerspannungen jedes Schaltzweiges zu jedem Zeitpunkt deutlich. Damit wird erreicht, dass ein hoher Anteil des Stromes immer über den Schaltzweig mit der momentan niedrigsten Klammerspannung geführt wird. Mit diesem Verfahren ergibt sich im zeitlichen Mittel über mehrere Perioden des Phasenstromes nahezu eine Gleichverteilung der Verlustleistung über die Schaltzweige hinweg.
  • Es ist darauf zu achten, dass der Anstieg der Klammerspannung hoch genug gewählt wird, um den Abfall der Schwellspannung über der Temperatur kompensieren zu können.
  • Vorteile gegenüber dem Stand der Technik sind:
    • die weitgehende Gleichverteilung der Verlustleistung während der Spannungsklammerung in einem Lastabwurf-Ereignis,
    • die Vermeidung des Avalanche-Betriebs von MOSFET-Transistoren im Lastabwurf-Ereignis,
    • die Aufrechterhaltung der Spannungsversorgung im Lastabwurf-Ereignis,
    • der Verzicht auf komplexe Leistungshalbleitertechnologien mit thermisch gekoppelten, integrierten Zenerdioden oder integrierten Temperatursensoren,
    • die Vermeidung eines Anstiegs der Klammerspannung innerhalb eines Lastabwurf-Ereignisses.
  • Bei der Darstellung einer Schaltung zur Spannungsklammerung aus einem MOSFET und Zenerdioden entsprechend der Figur 3, besteht beispielsweise die Möglichkeit, die Zenerdioden als Bestandteil eines ASICs zusammen mit dem MOSFET auf einem Baugruppenträger zu platzieren. Bei der Platzierung des ASICs im Abstand von ca. 1 cm zum MOSFET auf einem Direct Bonded Copper (DBC) Baugruppenträger ergibt sich während eines Load Dump Lastabwurf-Ereignisses dynamisch eine relativ hohe Temperaturdifferenz zwischen MOSFET und ASIC. Auf Grund dieser Temperaturdifferenz ist es unter den genannten Bedingungen nicht möglich, den negativen Temperaturkoeffizienten der MOSFET-Schwellspannung durch den positiven Temperaturkoeffizienten der im ASIC integrierten Zenerdioden zu kompensieren.
  • Figur 9 zeigt dazu den simulierten Temperaturverlauf am MOSFET bzw. ASIC bei räumlicher Entfernung von in etwa 1 cm. Dabei ist an einer Abszisse 200 die Zeit in ms und an einer Ordinate 202 die Temperatur aufgetragen. Man erkennt, dass die simulierte Temperatur von einem der sechs MOSFET-Transistoren sich gegenüber den anderen Temperaturen ,abkoppelt' und infolge des Mitkopplungseffektes die Temperaturen auf sich vereinigt. In der vorliegenden Simulation würde einer der sechs Schaltzweige eine Erwärmung um - 200K erfahren, während andere Schaltzweige erst nach Abschluss des Lastabfalls durch Temperaturausgleich um 60K erwärmt werden.
  • Implementiert man nun die vorstehend erläuterte Algorithmik in den ASIC, so werden im Mittel gesehen die MOSFET-Transistoren relativ symmetrisch belastet. Die Temperaturdifferenz der einzelnen FETs ist deutlich geringer. Der heißeste MOSFET-Transistor erfährt gemäß Simulation eine Erwärmung um 90K der kühlste eine Erwärmung um 50K. Folglich kommt es zu keiner extremen Überlastung von einzelnen Schaltzweigen wie bei Figur 9.
  • In Figur 10 ist der Temperaturverlauf im MOSFET-Transistor bei der vorstehenden Algorithmik dargestellt. Dabei ist an einer Abszisse 210 die Zeit in ms und an einer Ordinate 212 die Temperatur aufgetragen.
  • Die vorgestellte Algorithmik ist durch einen negativen Spannungsverlauf am Gate des MOSFET-Transistors zu erkennen, wie dies bspw. in Figur 11 dargestellt. Diese Figur zeigt den Verlauf von UGS am MOSFET-Transistor. Dabei ist an einer Abszisse 220 die Zeit in ms und an einer Ordinate 222 die Spannung in V aufgetragen.
  • Durch den negativen Spannungsverlauf wird erreicht, dass jeder MOSFET-Transistor zu Beginn einer Halbwelle durch die hohe Ansteuerspannung die größte Energie aufnimmt und im Verlauf des Pulses durch Reduzieren der Ansteuerspannung seinen Kanal weiter abschnürt und folglich durch den erhöhten Widerstand eine sinkende Energieaufnahme bewirkt.
  • Dieser Effekt lässt sich alternativ auch am geschlossenen Steuergerät zwischen einer beliebigen Phase und Bat+ oder Bat- messen. Im Klammerbetrieb mit konstantem Klammerstrom ist der zeitabhängige Anstieg der Klammerspannung messbar. Die Messung sollte vorzugsweise mit niedrigen Strömen, also ohne nennenswerten Leistungseintrag, erfolgen, um sicherzustellen, dass die gemessene Klammerspannung nicht durch Temperatureffekte beeinflusst wird. Die Messung kann am stehenden Generator im Labor erfolgen durch Eintrag eines externen Klammerstroms in einen beliebigen Schaltzweig.
  • Das zu erwartende Ergebnis ist in Figur 7 gezeigt.
  • Alternativ oder additiv zu dem vorstehend vorgestellten Verfahren kann das Problem der gleichmäßigen Verlustleitungsverteilung im Lastabwurf-Ereignis durch die monolithische Integration der für die Ansteuerung des MOSFET-Transistors erforderlichen Zenerdiode entsprechend Figur 3 in einen Leistungsschalter verbessert werden.
  • In Figur 12 ist ein Schichtaufbau 250 bei getrennter Logik auf DBC (direct bonded copper) wiedergegeben. Die Darstellung zeigt eine Grundplatte 252, eine erste Schicht 254 einer Wärmeleitpaste (WLP), eine zweite Schicht 256 aus Kupfer, eine dritte Schicht 258 aus Al2O3, vierte Schichten 260 aus Kupfer, fünfte Schichten 262 Lot und eine Schicht 264 Silizium für den ASIC und eine Schicht 266 Silizium für den MOSFET. Weiterhin sind Bond-Verbindungen 270 dargestellt.
  • Integriert man die Zenerdiode in die Ansteuerschaltung, so dass sie von dem MOSFET-Transistor eine räumliche Trennung aufweist, so ist der Temperaturfluss vom MOSFET-Transistor, der sich im Load Dump-Fall deutlich erwärmt, bis zur Zenerdiode zeitlich verzögert. Diese Verzögerung liegt in einem Bereich von ca. 100 ms bei dem in Figur 12 gezeigten DBC-Aufbau. Dadurch überwiegt im Load Dump-Fall der negative Temperaturkoeffizient des MOSFET-Transistors. Eine Symmetrierung ist hier nicht möglich. Der Puls wird auf drei MOSFET-Transistoren konzentriert, wobei ein MOSFET-Transistor die größte Energie aufgrund seiner geringsten Schwellenspannung (Mitkopplungseffekt) aufnimmt. Die maximale Temperatur am MOSFET-Transistor erreicht 330 °C. Bei dem vorgestellten Verfahren ist nunmehr in Ausgestaltung vorgesehen, eine Symmetrierung der Ströme auf die einzelnen MOSFET-Transistoren durch einen, auf Gesamtsicht betrachtet, positiven Temperaturkoeffizienten zu erhalten. Dies wird dadurch realisiert, dass in den MOSFET-Transistoren eine Zenerdiode implementiert wird, bei der, wie in Figur 12 dargestellt ist, die Kathode mit Drain des MOSFET-Transistors verbunden ist. Die Anode wird auf ein separates Pad des MOSFET-Transistors geführt und wird elektrisch mit der Ansteuerschaltung verbunden. Dadurch besteht eine direkte thermische Verbindung zwischen dem MOSFET-Transistor und der Zenerdiode, wie in Figur 13 dargestellt ist.
  • Figur 13 zeigt einen Schichtaufbau 300 mit im MOSFET-Transistor integrierter Zenerdiode. Die Darstellung zeigt eine Grundplatte 302, eine erste Schicht 304 einer Wärmeleitpaste (WLP), eine zweite Schicht 306 aus Kupfer, eine dritte Schicht 308 aus Al2O3, vierte Schichten 310 aus Kupfer, fünfte Schichten 312 Lot und eine Schicht 314 Silizium für den ASIC und eine Schicht 316 Silizium, eingeteilt in einen ersten Bereich 318 für den MOSFET-Transistor und einen zweiten Bereich 320 für die Zenerdiode. Weiterhin sind Bond-Verbindungen 312 dargestellt.
  • Der negative Temperaturkoeffizient der Schwellspannung des MOSFET-Transistors wird durch den positiven Temperaturkoeffizienten der Zenerdiode von beispielsweise -14 mV/K überkompensiert. Dadurch entsteht ein Effekt der Gegenkopplung, was die annähernde Gleichverteilung der Verlustleistung während Spannungsklammerung im Lastabwurf-Ereignis bewirkt. Die Maximaltemperatur der MOSFET-Transistoren wird hierdurch nach Simulation, wie dies in Figur 14 dargestellt ist, auf 200 °C reduziert.
  • Grundsätzlich wird die Gleichverteilung der Verlustleistung somit durch thermische Kopplung eines Leistungshalbleiters und einer Zenerdiode bewirkt.
  • Figur 14 zeigt einen simulierten Temperaturverlauf von Gleichrichterelementen bestehend aus MOSFET-Transistoren mit integrierten Zenerdioden für ein Lastabwurf-Ereignis. Dabei ist an einer Abszisse 350 die Zeit in ms und an einer Ordinate 352 die Temperatur aufgetragen.
  • Im Vergleich zu Figur 9 ist hier wiederum eine deutlich bessere Gleichverteilung der Verlustleistung und infolge dessen eine homogenere Erwärmung der Schaltzweige erkennbar.
  • Die Vorteile gegenüber passiven Diodengleichrichtern sind dadurch gegeben, dass die Klammerspannung nicht über der gesamten Load Dump-Zeit nach oben weg driftet, dass die Klammerspannung enger tolerierbar als bei passiven Gleichrichtern ist, da in der beteiligten Zenerdiode kaum Strom fließt, und dass im Gleichrichterbetrieb eine geringere Verlustleistung besteht.
  • Vorteile gegenüber dem Stand der Technik sind:
    • die weitgehende Gleichverteilung der Verlustleistung während der Spannungsklammerung in einem Lastabwurf-Ereignis allgemein und speziell auch für die Parallelschaltung von Gleichrichterelementen,
    • die Vermeidung des Avalanche-Betriebs von MOSFET-Transistoren im Lastabwurf-Ereignis,
    • die Aufrechterhaltung der Spannungsversorgung im Lastabwurf-Ereignis.
  • Bei der Darstellung einer Schaltung zur Spannungsklammerung aus einem MOSFET-Transistor und einer Zenerdiode entsprechend der Figur 3, mit monolithischer Integration des MOSFET-Transistors und der Zenerdiode, sind die Leckströme des MOSFET-Transistors messbar, falls der Anodenanschluss der Zenerdiode nicht direkt mit dem Gate des MOSFET-Transistors verbunden wird. In diesem Fall ist es erforderlich, den Anodenanschluss der Zenerdiode nachträglich über eine Bondverbindung mit dem Gateanschluss des MOSFET-Transistors zu verbinden. Diese Verbindung kann auch indirekt über eine separate, nicht im Leistungschip integrierte Schaltung wie beispielsweise einem steuernden ASIC erfolgen. Leckstrommessungen am MOSFET-Transistor können je nach Anforderungen zur Sicherstellung von Funktion und Zuverlässigkeit innerhalb des Herstellungsablaufs notwendig sein.
  • In einer weiteren Ausführungsform bei der monolithischen Integration des MOSFET-Transistor und der Zenerdiode kann die Anode der Zenerdiode direkt als Bestandteil der Integration mit dem Gate des MOSFET-Transistor verbunden werden.
  • Figur 15 zeigt in Zusammenhang mit der monolithischen Integration des MOSFET-Transistors und der Zenerdiode alternative Verschaltungsmöglichkeiten.
  • Es wurden vorstehend zwei Verfahren beschrieben, mit deren Anwendung es möglich ist, eine näherungsweise Gleichverteilung in den Gleichrichterelementen während der Spannungsklammerung umgesetzten Verlustleistungen zu erreichen. Nachfolgend ist ein weiteres Verfahren aufgezeigt, das alternativ oder in Kombination angewendet werden kann.
  • In Figur 3 ist ein einfacher Regelkreis beschrieben, der eine Regelung der Klammerspannung aufweist. Die Führungsgröße dieses Regelkreises setzt sich überwiegend aus der Durchbruchsspannung der Zenerdiode und der Schwellspannung des MOSFET-Transistors zusammen. Für den Fall, dass die Zenerdiode und der MOSFET-Transistor nicht monolithisch integriert sind und deswegen eine vergleichsweise geringe thermische Kopplung zwischen diesen Komponenten existiert, kann der negative Temperaturkoeffizient der Schwellspannung des MOSFET-Transistors nicht durch den positiven Temperaturkoeffizienten der Zenerdiode kompensiert werden, um wie vorausgehend beschrieben den Mitkoppeleffekt zu unterdrücken.
  • Es wird nachfolgend ein verbessertes Verfahren zur Regelung der Klammerspannung beschrieben, welches den Einfluss des negativen Temperaturkoeffizienten der Schwellspannüng des MOSFET-Transistors deutlich unterdrückt.
  • Figur 16 zeigt beispielhaft ein Prinzipschaltbild zur Veranschaulichung des verbesserten Verfahrens zur Regelung der Klammerspannung. Der dargestellte Regler beinhaltet einen Verstärker 470 und einen MOSFET-Transistor 472 sowie ein Summierglied 476. Die Spannung U_Soll 474 dient als Führungsgröße. Durch die Wirkung des Regelkreises wird die Drain-Source-Spannung des MOSFET-Transistors 472 nahezu auf die Spannung U_Soll ausgeregelt. Die Abweichung zwischen der Drain-Source-Spannung des MOSFET-Transistors 472 und der Spannung U_Soll ist umso geringer, je höher die Verstärkung des Verstärkers 470 ist. Die Schwellspannung des MOSFET-Transistors 472 wirkt sich bei hohen Verstärkungen kaum auf die Drain-Source-Spannung des MOSFET-Transistor 472 aus. Bei der Anwendung als Schaltung zur Spannungsklammerung wird damit der Einfluss des negativen Temperaturkoeffizienten der MOSFET-Schwellspannung auf die Klammerspannung unterdrückt. Die bei der Spannungsklammerung im MOSFET-Transistor 472 umgesetzte Verlustleistung bewirkt deshalb nahezu keine Reduktion der Klammerspannung, was im Falle einer Parallelschaltung von Schaltungen zur Spannungsklammerung eine thermische Mitkopplung weitgehend unterdrückt.
  • Die Spannungsvorgabe U_Soll 474 kann hier entweder konstant sein oder mit der Zeit zunehmen, also einen rampenförmigen Verlauf aufweisen. Durch die Anwendung eines rampenförmigen Verlaufs von U_Soll ist es möglich diese Ausführungsform des Verfahrens mit der erstgenannten Ausführungsform des Verfahrens zu kombinieren. Die Umsetzung dieses verbesserten Verfahrens zur Klammerspannungsregelung und auch die Bereitstellung rampenförmiger Führungsgrößen für die Klammerspannung kann beispielsweise als diskrete Schaltungen oder durch die Integration der Komponenten in einen ASIC oder auch überwiegend Digital z. B. durch die Anwendung von Mikrocontrollern oder FPGAs erfolgen.
  • Vorteile gegenüber dem Stand der Technik sind:
    • die weitgehende Gleichverteilung der Verlustleistung während der Spannungsklammerung in einem Lastabwurf-Ereignis,
    • die Vermeidung des Avalanche-Betriebs von MOSFET-Transistoren im Lastabwurf-Ereignis,
    • die Aufrechterhaltung der Spannungsversorgung im Lastabwurf-Ereignis,
    • der Verzicht auf komplexe Leistungshalbleitertechnologien mit thermisch gekoppelten, integrierten Zenerdioden oder integrierten Temperatursensoren.
  • Die Wirksamkeit der beschriebenen Maßnahme kann anhand von Simulationen nachgewiesen werden.
  • Figur 17 zeigt die simulierten Temperaturverläufe der MOSFET-Transistoren der sechs Schaltzweige eines Gleichrichters im Betrieb mit einem dreiphasigen Generator für ein Lastabwurf-Ereignis. Die vorgenannten Verfahren zur Gleichverteilung der Verlustleistung sind hierbei nicht angewendet, da ein Schaltungsprinzip gemäß Figur 3 angewendet wird. In Figur 17 ist an einer Abszisse 480 die Zeit in ms und an einer Ordinate 482 die Temperatur T aufgetragen.
  • Figur 18 zeigt die simulierten Temperaturverläufe der MOSFET-Transistoren der sechs Schaltzweige eines Gleichrichters im Betrieb mit einem dreiphasigen Generator für ein Lastabwurf-Ereignis. Hierbei wird das vorgenannte Verfahren zur Klammerspannungsregelung gemäß dem in Figur 16 dargestellten Schaltungsprinzip angewendet. In Figur 18 ist an einer Abszisse 490 die Zeit in ms und an einer Ordinate 492 die Temperatur T aufgetragen.
  • An Figur 18 ist deutlich zu erkennen, dass aufgrund der Anwendung des vorgenannten Verfahrens zur Klammerspannungsregelung bei ansonsten gleichen Randbedingungen die Bandbreite der Endstufentemperaturen deutlich enger ist. Damit ergibt sich für die einzelnen MOSFET-Transistoren eine geringere Maximaltemperatur.

Claims (10)

  1. Verfahren zum Ansteuern eines Brückengleichrichters (10) mit aktiven Schaltelementen (40, 42, 50, 52, 60, 62), dadurch gekennzeichnet, dass die aktiven Schaltelemente (40, 42, 50, 52, 60, 62) während der Spannungsklammerung bei Lastabwurf so angesteuert werden, dass sich die Klammerspannung in jedem Schaltzweig (30, 32, 34) innerhalb jeder Halbperiode des gleichzurichtenden Stromes gemäß einer zeitabhängig vorgegebenen rampenförmigen Änderung einer Signalform verhält.
  2. Verfahren nach Anspruch 1, bei dem die Klammerspannung in jedem Schaltzweig (30, 32, 34) mit jeweils einem Regler auf die vorgegebene Signalform geregelt wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2, bei dem eine thermische Kopplung zwischen einem Leistungsschalter und mindestens einer Zenerdiode vorgenommen wird.
  4. Verfahren nach den Ansprüchen 1 bis 3, bei dem jedes Schaltelement aus mindestens einem MOSFET-Transistor (102, 472) besteht.
  5. Verfahren nach den Ansprüchen 3 und 4, bei dem jeder MOSFET-Transistor (102, 472) zusammen mit mindestens einer Zenerdiode monolithisch integriert ist.
  6. Verfahren nach Anspruch 4 oder 5, bei dem jeder MOSFET-Transistor (102, 472) als Vierpol angesteuert wird.
  7. Ansteuerschaltung zum Ansteuern der aktiven Schaltelemente (40, 42, 50, 52, 60, 62) eines Gleichrichter, die zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 6 ausgebildet ist.
  8. Ansteuerschaltung nach Anspruch 7, die einen Regler zur Regelung von Steuersignalen für die aktiven Schaltelemente (40, 42, 50, 52, 60, 62) umfasst.
  9. Gleichrichter mit aktiven Schaltelementen (40, 42, 50, 52, 60, 62), die jeweils mit einem Steuersignal zu beaufschlagen sind, insbesondere zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 6, mit einer Ansteuerschaltung (14) nach Anspruch 7 oder 8.
  10. Elektrischer Generator mit einem Gleichrichter (12) nach Anspruch 9.
EP12700007.3A 2011-03-29 2012-01-02 Verfahren zum ansteuern eines gleichrichters Active EP2692046B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011006316A DE102011006316A1 (de) 2011-03-29 2011-03-29 Verfahren zum Ansteuern eines Gleichrichters
PCT/EP2012/050010 WO2012130479A2 (de) 2011-03-29 2012-01-02 Verfahren zum ansteuern eines gleichrichters

Publications (2)

Publication Number Publication Date
EP2692046A2 EP2692046A2 (de) 2014-02-05
EP2692046B1 true EP2692046B1 (de) 2020-05-27

Family

ID=45440559

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12700007.3A Active EP2692046B1 (de) 2011-03-29 2012-01-02 Verfahren zum ansteuern eines gleichrichters

Country Status (5)

Country Link
US (1) US9496800B2 (de)
EP (1) EP2692046B1 (de)
JP (1) JP6021890B2 (de)
DE (1) DE102011006316A1 (de)
WO (1) WO2012130479A2 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9509227B2 (en) * 2014-01-09 2016-11-29 Fairchild Semiconductor Corporation MOSFET bridge circuit
DE102014200503A1 (de) * 2014-01-09 2015-07-09 Robert Bosch Gmbh Verfahren zum Betreiben eines aktiven Gleichrichters, Schaltungsanordnung und Computerprogramm
DE102014202030A1 (de) 2014-02-05 2015-08-06 Robert Bosch Gmbh Gleichrichterschaltung, elektronisches Bauelement, Generator und Verfahren zum Betreiben einer Gleichrichterschaltung
DE102014221714A1 (de) * 2014-10-24 2016-04-28 Robert Bosch Gmbh Überspannungsschutz für Kraftfahrzeugbordnetz bei Lastabwurf
JP6511769B2 (ja) 2014-10-27 2019-05-15 株式会社デンソー 発電機
DE102015202437A1 (de) 2015-02-11 2016-08-11 Robert Bosch Gmbh Verfahren zum Betreiben eines an eine elektrische Maschine angeschlossenen aktiven Umrichters und Mittel zu dessen Implementierung
DE102015202440A1 (de) 2015-02-11 2016-08-11 Robert Bosch Gmbh Verfahren zum Betreiben eines an eine elektrische Maschine angeschlossenen aktiven Umrichters und Mittel zu dessen Implementierung
US9896912B2 (en) 2015-05-13 2018-02-20 Baker Hughes, A Ge Company, Llc Active rectifier for downhole applications
DE102016202159A1 (de) 2016-02-12 2017-08-17 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung einer elektrischen Spannung über einer durch Pulsweitenmodulation angesteuerten Last
US10196921B2 (en) 2016-06-20 2019-02-05 Baker Hughes, A Ge Company, Llc Modular downhole generator
KR101837469B1 (ko) 2016-11-04 2018-03-12 (주)성진아이엘 순차 별 스위칭 제어를 통해 과부하의 방지가 가능한 정류기
DE102017202184A1 (de) * 2017-02-13 2018-08-16 Robert Bosch Gmbh Schaltungsanordnung zum Erhöhen der Freilaufspannung einer induktiven Last und Endstufe
DE102018214579A1 (de) * 2018-08-29 2020-03-05 Robert Bosch Gmbh Stromrichter mit Klammerdiode
TWI746215B (zh) 2020-10-20 2021-11-11 朋程科技股份有限公司 交流發電機及其整流裝置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008036114A1 (de) * 2007-09-13 2009-03-19 Infineon Technologies Ag Halbleiterschalter mit Klemmschaltung
DE102007060219A1 (de) * 2007-12-14 2009-06-18 Robert Bosch Gmbh Gleichrichterschaltung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3491797B2 (ja) 1995-12-05 2004-01-26 株式会社デンソー 車両用発電装置
FR2833776B1 (fr) * 2001-10-09 2005-09-09 Valeo Equip Electr Moteur Alternateur a pont de redressement, notamment pour vehicule automobile
JP3677541B2 (ja) * 2002-02-20 2005-08-03 株式会社日立製作所 充電装置
DE10260650B4 (de) * 2002-12-23 2006-06-08 Infineon Technologies Ag Leistungsschalteranordnung und Abschaltverfahren dafür
DE10339689B4 (de) * 2003-08-28 2005-07-28 Infineon Technologies Ag Schaltungsanordnung mit einem Lasttransistor und einer Spannungsbegrenzungsschaltung und Verfahren zur Ansteuerung eines Lasttransistors
WO2006114362A1 (fr) 2005-04-27 2006-11-02 France Telecom Procédé d'appariement et de désappariement d'appareils, procédé de mise en réseau, programmes d'ordinateur et appareils correspondants
DE102005019709A1 (de) 2005-04-28 2006-11-02 Robert Bosch Gmbh Endstufe mit Zenerspannungs-Symmetrierung
DE102005051004A1 (de) * 2005-10-25 2007-04-26 Robert Bosch Gmbh Temperaturkompensation bei Endstufen
FR2914784B1 (fr) * 2007-04-05 2009-08-14 St Microelectronics Sa Composant dipolaire unidirectionnel a protection en surintensite.
US7852639B2 (en) * 2007-05-22 2010-12-14 Harris Corporation Low-loss rectifier with optically coupled gate shunting
JP2009207077A (ja) * 2008-02-29 2009-09-10 Denso Corp 半導体集積回路装置
DE102010001713A1 (de) * 2010-02-09 2011-08-11 Robert Bosch GmbH, 70469 Verfahren zum Erkennen eines Lastabfalls

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008036114A1 (de) * 2007-09-13 2009-03-19 Infineon Technologies Ag Halbleiterschalter mit Klemmschaltung
DE102007060219A1 (de) * 2007-12-14 2009-06-18 Robert Bosch Gmbh Gleichrichterschaltung

Also Published As

Publication number Publication date
WO2012130479A3 (de) 2013-07-18
JP6021890B2 (ja) 2016-11-09
JP2014509827A (ja) 2014-04-21
WO2012130479A2 (de) 2012-10-04
DE102011006316A1 (de) 2012-10-04
EP2692046A2 (de) 2014-02-05
US9496800B2 (en) 2016-11-15
US20140104908A1 (en) 2014-04-17

Similar Documents

Publication Publication Date Title
EP2692046B1 (de) Verfahren zum ansteuern eines gleichrichters
DE102015108410A1 (de) Strom- oder spannungsmessung
DE102011009672A1 (de) Elektrische Heizung, Fahrzeug mit elektrischer Heizung sowie Verfahren zum Steuern einer elektrischen Heizung
DE102006047243A1 (de) Bordnetz mit mindestens einem Leistungstransistor und Verfahren zum Schutz eines Bordnetzes
DE102005027442B4 (de) Schaltungsanordnung zum Schalten einer Last
DE112013007659T5 (de) Leistungs-Umrichter
DE102012224336A1 (de) Verfahren zum Betreiben eines elektrischen Stromrichters sowie elektrischer Stromrichter
DE102013106801B4 (de) Leistungshalbleiterschaltung
DE19829837A1 (de) Steuervorrichtung zum Schalten eines elektrischen Verbrauchers
DE102008010467A1 (de) Schaltungsanordnung und Verfahren zum verlustarmen Schalten einer Schaltungsanordnung
DE102021201363A1 (de) Leistungsmodul zum Betreiben eines Elektrofahrzeugantriebs mit einer verbesserten Temperaturbestimmung der Leistungshalbleiter
DE102017120399A1 (de) Schaltvorrichtung
DE102012200234B4 (de) Verfahren und Steuereinrichtung zur Steuerung der Ausschaltgeschwindigkeit eines Halbleiterschalters
DE19734045C2 (de) Leistungsverstärker und Kernspintomograph
WO2015039733A1 (de) Verbesserte ansteuerung zum einschalten von igbt
AT515848B1 (de) Schaltungsanordnung und Verfahren zum Ansteuern eines Halbleiterschaltelements
DE102021105185A1 (de) Umrichter, Kraftfahrzeug und Verfahren zur Steuerung einer Halbbrückenschaltung
EP2338227B1 (de) Verfahren und vorrichtung zur reduzierung elektromagnetischer emissionen beim einschaltvorgang eines leistungshalbleiters
DE10035388C2 (de) Stromschaltanordnung
DE102010042050A1 (de) Verfahren zum Betreiben einer elektrischen Maschine
DE102018123903A1 (de) Temperaturmessung eines Halbleiterleistungsschaltelementes
DE19740697C1 (de) Verfahren und Vorrichtung zum Ansteuern einer integrierten Leistungsendstufe
DE102012210261A1 (de) Leistungshalbleitermodul und Verfahren zum Betrieb eines Leistungshalbleitermoduls
DE102012201860A1 (de) Verfahren zur Verlustleistungsreduktion bei der Spannungsklammerung von aktiven Gleichrichterschaltungen
DE102022211580A1 (de) Verfahren zur Ansteuerung von topologischen Schaltern einer Halbbrücke in einem Leistungsmodul eines Inverters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140120

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SEG AUTOMOTIVE GERMANY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

Owner name: SEG AUTOMOTIVE GERMANY GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181115

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H02M 1/32 20070101AFI20200124BHEP

Ipc: H02M 7/219 20060101ALI20200124BHEP

Ipc: H02P 9/48 20060101ALI20200124BHEP

INTG Intention to grant announced

Effective date: 20200228

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SEG AUTOMOTIVE GERMANY GMBH

Owner name: ROBERT BOSCH GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1275599

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012016097

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200927

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200928

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200828

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200827

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200827

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012016097

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210102

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210102

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210102

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1275599

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230123

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120102

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230131

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240322

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527