EP2687631B1 - Straßenfertiger mit Messvorrichtung - Google Patents

Straßenfertiger mit Messvorrichtung Download PDF

Info

Publication number
EP2687631B1
EP2687631B1 EP13188708.5A EP13188708A EP2687631B1 EP 2687631 B1 EP2687631 B1 EP 2687631B1 EP 13188708 A EP13188708 A EP 13188708A EP 2687631 B1 EP2687631 B1 EP 2687631B1
Authority
EP
European Patent Office
Prior art keywords
measuring device
point cloud
road paver
road
paver according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13188708.5A
Other languages
English (en)
French (fr)
Other versions
EP2687631A1 (de
Inventor
Achim Eul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph Voegele AG
Original Assignee
Joseph Voegele AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joseph Voegele AG filed Critical Joseph Voegele AG
Priority to EP13188708.5A priority Critical patent/EP2687631B1/de
Priority to PL13188708T priority patent/PL2687631T3/pl
Publication of EP2687631A1 publication Critical patent/EP2687631A1/de
Application granted granted Critical
Publication of EP2687631B1 publication Critical patent/EP2687631B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/07Apparatus combining measurement of the surface configuration of paving with application of material in proportion to the measured irregularities
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • E01C19/006Devices for guiding or controlling the machines along a predetermined path by laser or ultrasound
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ

Definitions

  • the present invention relates to a road finisher according to the preamble of claim 1.
  • a road finisher essentially comprises a tractor which is movable along a working area on a level, and a screed, which is provided for applying the road surface.
  • the screed is pivotally attached to the tractor by a pulling arm which is rigidly connected to the screed.
  • the pull arm may be height controlled by the operator to raise the screed to a desired level relative to the pavement. This makes it possible, depending on the nature of the surface of the substrate to adjust the plank position so that unevenness in the ground, over which the paver travels, are compensated. This has the consequence that a level pavement layer is formed.
  • Today automated measuring systems are also used, which detect a distance to a reference, in response to which as soon as possible to create a leveling signal, which is used for determining the position of the screed.
  • mechanical sensors are used which are attached to the movable screed in such a way that they come into contact with the surface of the subgrade in front of the newly installed paving, in order to detect unevenness thereon in good time.
  • a mechanical sensor can detect unevenness only on a hard ground, because it does not respond to unevenness on a soft, for example, sandy ground.
  • the mechanical sensor which is pushed over the planum, butts against an object lying around and is damaged.
  • the mechanical sensors must be maintained regularly and are sensitive to contamination or moisture.
  • non-contact measuring systems are also used in practice in order to detect a distance from the plane.
  • Such measuring systems include, for example, an optical or acoustic sensor.
  • a guidewire is used as a reference for the distance measurement along the built-in route.
  • the distance between the measuring head and the guide wire is detected in order to be able to close unevenness on the road surface and to make a corresponding leveling of the screed.
  • attaching a guidewire along the route is extremely expensive and requires a lot of time.
  • the guidewire which is usually a normal rope, may sag through absorbed moisture over a distance such that falsified distance values are detected for leveling.
  • the screed and rotary lasers are used in practice, which are positioned as an external reference so that a laser rotational field spanned by them can be received by a receiver arranged on the paver with a corresponding height adjustment of the screed.
  • a height adjustment of the screed takes place when the receiver on the paver no longer receives the rotating laser field of the rotary laser.
  • the disadvantage of this, however, is that the rotating laser must be repositioned several times along the installation route, including additional operating personnel is needed.
  • US 2004/161299 A1 discloses a paver for applying a layer of asphalt of variable thickness.
  • the introduction of the amount of asphalt is regulated depending on the recorded topographical profile of the substrate by a built-up of single elements screed and thus laid an asphalt layer of variable thickness on the ground.
  • the control of the individual elements requires a high tax expense, the individual elements are difficult to move in the mix within the screed.
  • DE 10 2009 044 581 A1 discloses a paver that is configured to control a flow rate of asphalt based on a leveling signal.
  • DE 199 51 297 C1 discloses a paver in which movement of the screed is controlled by leveling cylinders via a leveling signal.
  • the leveling signal is determined by means of an external station, which detects the current position of the screed of the paver and compares it with a road target course to generate in this regard the leveling signal.
  • the invention relates to a paver with a tractor, which is movable along a work area on a planum, and a screed, which is provided for applying a road surface.
  • the inventive Paver comprising a measuring device configured to detect a surface and to generate a virtual point cloud representing the surface. Based on the point cloud, the detected surface can be displayed, wherein the point cloud extends relative to the measuring device in three spatial dimensions to reproduce a spatial representation of the surface.
  • the point cloud comprises several points, each of which is defined by 3D coordinates.
  • For spatial representation of the surface is provided that at least one pair of points of the point cloud is aligned in a first direction, preferably in the direction of travel and at least one other pair of points point cloud at an angle to the first direction, preferably to the direction of travel.
  • the invention has the significant technical advantage that unevenness, for example, lateral and longitudinal inclinations in the road profile, meaningful and can be detected accurately.
  • adjustment of sub-operating parameters, such as the leveling signal may be improved in response to the substrate on which the paver is moving.
  • the invention is insensitive to bad weather and offers a low-cost, low-maintenance alternative to previously known devices of this kind.
  • the measuring device is easy to use and can be attached to the paver without great effort.
  • the invention can be dispensed with an additional measuring equipment, which is designed for the detection of banks in the course of the road.
  • the point cloud defines a surface condition of a surface of the tarmac and / or the road surface.
  • the dimension of the surface may extend over a varying length and a varying width, so that the detected surface portion is different in size. It is also possible to adapt the dimension of the surface to an expected surface condition of the subgrade, so that it is possible, for example in the case of uneven installation surfaces, to select the dimension of the surface for determining the surface condition in such a way that a sufficiently large point cloud can be represented is. On the other hand, it may be expedient, in particular in the case of a curved installation run, to select the dimension of the surface for determining the surface condition to be smaller.
  • the measuring device comprises a filter unit configured to filter out extreme 3D coordinates from the point cloud. This makes it possible to neglect the detection of unwanted objects. This can be particularly advantageous if the point cloud generated detects sections of the tractor or the screed. It also makes it possible to filter out components that protrude into the point cloud. Finally, it is possible that operating personnel, which is located in the detection area of the point cloud, can be filtered out of the measurement result.
  • the measuring device comprises a 3D scanner.
  • This preferably comprises at least one optical sensor, which is provided for detecting a distance to the detected surface.
  • the 3D scanner is a laser scanner with at least one laser sensor. The laser scanner is easy to use even in bad weather and ensures accurate detection of the point cloud.
  • the 3D scanner comprises at least one movable mirror for deflecting the light beam of the at least one optical sensor.
  • the movable mirror can be controlled by a predetermined sequence of movements, so that the deflected light beam, preferably laser beam, over the predetermined area, which reproduces the point cloud runs.
  • the deflected light beam preferably laser beam
  • the movable mirror can be controlled by a predetermined sequence of movements, so that the deflected light beam, preferably laser beam, over the predetermined area, which reproduces the point cloud runs.
  • a plurality of movable mirror are present in order to deflect different laser beams such that the point cloud can be represented.
  • the area of the point cloud can be defined with at least 300 laser scanning points.
  • a meaningful area image that is to say the point cloud, can be generated in order to detect unevenness on the detected surface.
  • the 3D scanner by means of a movable mirror, it is provided to equip the measuring device with a plurality of laser sensors, which are arranged in a matrix, ie a sensor receptacle, such that they emit laser beams over the predetermined area for generating the point cloud. It may also be advantageous if the measuring device is movably arranged, so that it passes the laser beams over the surface for generating the point cloud by a predetermined movement sequence. In this case, the movement of the measuring device can ensure that the laser beams of the laser sensors linewise meet in parallel aligned sequence on the surface to be detected or the measuring device is movable so that the laser beams from outside to inside or vice versa capture the area.
  • the paver comprises a control device which is connected to the measuring device.
  • the control device is preferably configured to convert the point cloud detected by the measuring device into a corresponding signal in order thereby to control a specific operating function of the road finisher.
  • the control device is configured to convert the point cloud detected by the measuring device into at least one leveling signal.
  • the leveling signal is intended to control the leveling cylinders of the road paver, as a result of which movement of the screed is feasible.
  • the bumps spatially detected by the scatter plot affect the generation of the leveling signal to move the screed. This makes it possible to apply a flat road surface, especially on uneven roads.
  • the measuring device comprises a holding element, with which the measuring device can be fastened to the paver.
  • the holding element may be designed such that it is adjustable in height, for example telescopically extendable to arrange the measuring device at different heights. A particularly useful measure of the area of a point cloud can thus be generated if the measuring device is arranged at a distance of up to ten meters above the plane.
  • the measuring device is configured to control the point cloud and the resulting parameter setting by means of real-time detection. If the parameter setting is the generation of a leveling signal, it can react to unevenness in the ground without any time delay.
  • At least one measuring device seen in the direction of travel is arranged on the left and / or right of the paver.
  • several point clouds can be produced, through which the surface condition of the subgrade or of the road surface can be represented.
  • the measuring device is configured so that it generates the point cloud for a surface on the left and / or right of the work area.
  • the point cloud in the work area within short distance in front of the screed is detectable.
  • an average value is generated by the control device on the basis of one or more detected point clouds, in order to generate a signal for further operating functions of the road finisher on the basis of the generated mean value. This offers the technical advantage of considering several surface sections in the creation of an operating parameter.
  • the measuring device may also be configured to generate the point cloud for an area that partially overlies a portion of the work area. It does not matter whether the point cloud overshadows an area of the screed, an area of the tractor or other technical means available on the paver. As a result, the measuring device can be used particularly flexibly on the road paver.
  • the measuring device is arranged on the movable screed, in particular on the pull arm, which carries the screed.
  • the measuring device can also be arranged on the tractor of the paver.
  • the measuring device can be configured such that it generates the point cloud over a surface that surrounds the point cloud Paver surrounds. Because it is possible to hide extreme 3D coordinates, in this case the tractor and the screed, even through the surface sections of the point cloud, which are located on the left, right or in front of and behind the paver, can be represented a meaningful result, the surface texture of the workspace.
  • the measuring device is designed to detect the 3D coordinates of the surface by means of pulse transit time, phase difference in comparison to a reference or by triangulation of optical beams. This allows a precise distance measurement between the measuring device and the surface.
  • the FIG. 1 shows a paver 1 in the direction of travel F according to the invention.
  • the paver 1 comprises a tractor 2 with a chassis 3, which moves on a planum 4.
  • the paver 1 further comprises a screed 5, which is connected via a pull arm 6 movable with the tractor 2 of the paver 1.
  • a new road surface 7 is applied to the surface 4.
  • the planum 4 that is, the surface of the ground, just shown, are in fact unevenness on the planum 4 available.
  • the road surface 7 has a flat surface, even if the underlying Planum has 4 bumps. This can be achieved by a corresponding leveling of the screed 5, as will be described below.
  • a measuring device 8 is attached.
  • the measuring device 8 is configured to have a three-dimensional surface portion 9 (see FIG FIG. 2 ) of the subgrade 4.
  • the measuring device 8 is mounted at a short distance in front of the screed 5 on the traction arm 6.
  • the measuring device 8 is designed to detect unevennesses of the subgrade 4 by the detected three-dimensional surface section 9, in order to determine therefrom during operation certain operating parameters for the road finisher. For example, it is possible that a leveling signal for controlling the screed 5 can be generated on the basis of the three-dimensionally detected surface section 9 by the measuring device 8, wherein the leveling signal can result in a positional displacement of the screed 5.
  • the FIG. 2 shows the measuring device 8, as shown in the FIG. 1 is attached to the pull arm 6 of the paver 1.
  • the measuring device 8 of FIG. 2 is configured to detect the surface portion 9 of the tarmac 4.
  • the surface portion 9 defines sections of the surface texture of the subgrade 4.
  • the surface portion 9 is defined by a length a and width b.
  • the measuring device 8 is designed to vary the dimension of the surface portion 9. For this purpose, adjustments can be made to the measuring device 8, which adjust the length dimension a and / or the width dimension b.
  • dashed rays 10 which are directed by the measuring device 8 on corner points of the surface portion 9.
  • the beams 10 enclose with one another an angle ⁇ and an angle ⁇ , wherein a desired dimension for the surface section 9 can be detected relative to the plane 4 relative to the height position of the measuring device 8.
  • the angle ⁇ can be 30 ° or the angle ⁇ 40 °.
  • the measuring device 8, which is designed primarily as a laser scanner 14, is configured within the area section 9 to detect the three-dimensional propagation of the subgrade 4 in order to provide a spatial representation of the surface.
  • the height A can be varied, with the measuring device 8 being portable up to 10 meters above the ground.
  • the measuring device 8 can be positioned, for example, by a holder, not shown.
  • To simulate irregularities on the planum 4 is schematically in the FIG. 2 a cuboid object 11 is shown, which lies on the surface portion 9.
  • the measuring device 8 is configured to detect the article 11. Even if the bump in the FIG. 2 is shown as cuboid, the unevenness on the Planum 4 can take any shape. Unevenness on the surface 4 may include, for example, longitudinal or lateral inclinations of the ground on which the paver 1 moves. Also detectable are, for example potholes or elongated subsidence or soil surveys.
  • the measuring device 8 is configured to generate a virtual net-like point cloud 12 which is located in the FIG. 3 is shown.
  • the point cloud 12 represents the surface portion 9 in its three-dimensional nature.
  • the point cloud 12 extends relative to the measuring device 8 in three spatial dimensions in order to provide a spatial representation of the surface of the subgrade 4.
  • the point cloud 12 comprises a plurality of points 13, which are defined by 3D coordinates relative to the measuring device 8.
  • at least one pair of points of the point cloud 12 is aligned in any first direction, preferably in the direction of travel F and aligned at least one other pair of points of the point cloud 12 at an angle to the first direction, preferably to the direction of travel F.
  • the measuring device 8 is designed to detect unevenness, which are located within the surface portion 9, by means of the point cloud 12 in order to set specific operating parameters of the road paver 1, for example a leveling signal for controlling the position of the screed 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Road Paving Machines (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

  • Die vorliegende Erfindung betrifft einen Straßenfertiger gemäß dem Oberbegriff des Anspruchs 1.
  • Ein Straßenfertiger, wie er in der Praxis bekannt ist, umfasst im Wesentlichen eine Zugmaschine, die entlang eines Arbeitsbereichs auf einem Planum bewegbar ist, sowie eine Einbaubohle, die zum Aufbringen des Straßenbelags vorgesehen ist. Gewöhnlicherweise ist die Einbaubohle durch einen Zugarm, der mit der Einbaubohle starr verbunden ist, an der Zugmaschine schwenkbar befestigt.
  • Der Zugarm kann durch den Bediener höhengesteuert werden, um die Einbaubohle auf ein gewünschtes Niveau relativ zum Straßenbelag zu heben. Dadurch ist es möglich, je nach Beschaffenheit der Oberfläche des Untergrunds, die Bohlenposition so einzustellen, dass Unebenheiten im Untergrund, über den der Straßenfertiger fährt, ausgeglichen werden. Dies hat zur Folge, dass eine ebene Straßenbelagschicht entsteht. Heutzutage werden auch automatisierte Meßsysteme verwendet, die einen Abstand zu einer Referenz erfassen, um in Reaktion darauf möglichst zeitnah ein Nivelliersignal zu erstellen, welches zur Positionsbestimmung der Einbaubohle verwendet wird.
  • Für solche Meßsysteme werden beispielsweise mechanische Sensoren verwendet, die so an der beweglichen Einbaubohle befestigt sind, dass sie vor dem neu eingebauten Straßenbelag mit der Oberfläche des Planums in Kontakt kommen, um darauf Unebenheiten frühzeitig zu erfassen. Nachteilig daran ist jedoch, dass ein mechanischer Sensor Unebenheiten nur auf einem harten Untergrund erfassen kann, weil er auf einem weichen, beispielsweise sandigen Untergrund, nicht auf Unebenheiten anspricht. Außerdem kann es sein, dass der mechanische Sensor, der über das Planum geschoben wird, gegen einen herumliegenden Gegenstand stößt und beschädigt wird. Ebenfalls müssen die mechanischen Sensoren regelmäßig gewartet werden und sind empfindlich gegenüber Verschmutzungen bzw. Feuchtigkeit.
  • Alternativ zu den mechanischen, kontaktierenden Meßvorrichtungen werden in der Praxis auch berührungslose Meßsysteme verwendet, um einen Abstand zum Planum zu erfaserfassen. Solche Meßsysteme umfassen beispielsweise eine optische oder akustische Sensorik.
  • Gemäß einer weiteren Technik im Straßenbau wird entlang der Einbaustrecke ein Leitdraht als Referenz für die Abstandsmessung verwendet. Dabei wird der Abstand zwischen dem Meßkopf und dem Leitdraht erfasst, um auf Unebenheiten auf der Straßenoberfläche schließen zu können und entsprechend eine Nivellierung der Einbaubohle vorzunehmen. Allerdings ist das Anbringen eines Leitdrahts entlang der Einbaustrecke extrem aufwendig und erfordert viel Zeit. Außerdem kann es sein, dass der Leitdraht, welcher für gewöhnlich ein normales Seil ist, durch aufgesogene Feuchtigkeit über eine Strecke so durchhängt, dass für die Nivellierung verfälschte Abstandswerte erfasst werden.
  • Zur Nivellierung der Einbaubohle werden in der Praxis auch Rotationslaser verwendet, welche als externe Referenz so positioniert werden, dass ein durch sie aufgespanntes Laserrotationsfeld von einem am Straßenfertiger angeordneten Empfänger bei entsprechender Höheneinstellung der Einbaubohle empfangen werden kann. Eine Höhenverstellung der Einbaubohle erfolgt dann, wenn der Empfänger am Straßenfertiger das Rotationslaserfeld des Rotationslasers nicht mehr empfängt. Nachteilig daran ist jedoch, dass das Rotationslaser mehrmals entlang der Einbaustrecke umpositioniert werden muss, wozu zusätzliches Bedienpersonal benötigt wird.
  • US 2004/161299 A1 offenbart einen Straßenfertiger zum Auftragen einer Asphaltschicht variabler Dicke. Dabei wird das Einbringen der Asphaltmenge abhängig vom erfassten topographischen Profil des Untergrund durch eine aus Einzelelementen aufgebaute Bohle reguliert und somit eine Asphaltschicht variabler Dicke auf dem Untergrund verlegt. Das Ansteuern der Einzelelemente erfordert allerdings einen hohen Steueraufwand, wobei sich die Einzelelemente nur schwer im Mischgut innerhalb der Bohle bewegen lassen.
  • DE 10 2009 044 581 A1 offenbart einen Straßenfertiger, der dazu konfiguriert ist, anhand eines Nivelliersignals eine Fördermenge an Asphalt zu steuern.
  • DE 199 51 297 C1 offenbart einen Straßenfertiger, bei dem eine Bewegung der Einbaubohle mittels Nivellierzylindern über ein Nivelliersignal gesteuert wird. Dabei wird das Nivelliersignal mittels einer externen Station ermittelt, welche die aktuelle Position der Einbaubohle des Straßenfertigers erfasst und mit einem Straßensollverlauf vergleicht, um diesbezüglich das Nivelliersignal zu generieren.
  • Mit den zuvor beschriebenen Systemen zur Abstandsmessung ist das Erfassen von Unebenheiten auf dem Planum nur in einem beschränkten Maße möglich.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Straßenfertiger zur Verfügung zu stellen, welcher gegenüber dem Stand der Technik alternative Mittel umfasst, um das Aufbringen eines ebenen Straßenbelags auf unebenen Untergründen zu ermöglichen.
  • Diese Aufgabe wird gelöst mit den technischen Merkmalen des Anspruchs 1. Verbesserte Weiterbildungen der Erfindung sind durch die technischen Merkmale der Unteransprüche gegeben.
  • Die Erfindung bezieht sich auf einen Straßenfertiger mit einer Zugmaschine, die entlang eines Arbeitsbereichs auf einem Planum bewegbar ist, sowie einer Einbaubohle, die zum Aufbringen eines Straßenbelags vorgesehen ist. Außerdem umfasst der erfindungsgemäße Straßenfertiger eine Messvorrichtung, die so konfiguriert ist, dass sie eine Oberfläche erfasst und eine die Oberfläche repräsentierende, virtuelle Punktwolke erzeugt. Anhand der Punktwolke ist die erfaßte Oberfläche darstellbar, wobei die Punktwolke sich relativ zu der Messvorrichtung in drei Raumdimensionen erstreckt, um eine räumliche Darstellung der Oberfläche wiederzugeben. Dabei umfasst die Punktwolke mehrere Punkte, die jeweils durch 3D-Koordinaten definiert sind. Zur räumlichen Darstellung der Oberfläche ist vorgesehen, dass mindestens ein Punktepaar der Punktwolke in einer ersten Richtung, vorzugsweise in Fahrtrichtung ausgerichtet ist und mindestens ein anderes Punktepaar der Punktwolke in einem Winkel zur ersten Richtung, vorzugsweise zur Fahrtrichtung liegt.
  • Durch das Erfassen der Oberflächenbeschaffenheit in Form einer Punktwolke können wertvolle Informationen gesammelt werden, die zur Generierung unterschiedlicher Betriebseinstellungen verwendbar sind. Die Erfindung bietet den wesentlichen technischen Vorteil, dass Unebenheiten, beispielsweise Quer- und Längsneigungen im Straßenprofil, aussagekräftig und genau erfassbar sind. Damit kann die Einstellung unterschledlicher Betriebsparameter, wie beispielsweise das Nivelliersignal, in Reaktion auf den Untergrund, auf welchem sich der Fertiger bewegt, verbessert werden.
  • Ebenfalls ist die Erfindung unempfindlich gegen schlechtes Wetter und bietet eine kostengünstige, wartungsarme Alternative zu bisher bekannten Vorrichtungen dieser Art. Hinzu kommt, dass die Meßvorrichtung einfach bedienbar ist und ohne großen Aufwand am Straßenfertiger zu befestigen ist. Des Weiteren kann durch die Erfindung auf eine zusätzliche Meßausrüstung, die zur Erfassung von Querneigungen im Straßenverlauf ausgebildet ist, verzichtet werden.
  • In einer vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass die Punktwolke eine Oberflächenbeschaffenheit einer Fläche des Planums und/oder des Straßenbelags definiert. Dabei kann sich das Maß der Fläche über eine variierende Länge sowie eine variierende Breite erstrecken, sodass der erfaßte Oberflächenabschnitt unterschiedlich groß ausfällt. Möglich ist es auch, das Maß der Fläche an eine zu erwartende Oberflächenbeschaffenheit des Planums anzupassen, so dass es beispielsweise bei unebenen Einbauflächen vorab möglich ist, das Maß der Fläche zur Bestimmung der Oberflächenbeschaffenheit so zu wählen, dass dadurch eine ausreichend große Punktwolke darstellbar ist. Andererseits kann es, insbesondere bei einer kurvigen Einbaufahrt, zweckmäßig sein, das Maß der Fläche zur Bestimmung der Oberflächenbeschaffenheit kleiner zu wählen.
  • In einer weiteren Ausführungsform der Erfindung umfasst die Meßvorrichtung eine Filtereinheit, die dazu konfiguriert ist, extreme 3D-Koordinaten aus der Punktwolke herauszufiltern. Dadurch ist es möglich die Erfassung unerwünschter Gegenstände zu vernachlässigen. Dies kann insbesondere dann von Vorteil sein, wenn die erzeugte Punktwolke Abschnitte der Zugmaschine oder der Einbaubohle erfasst. Ebenfalls ist es dadurch möglich Komponenten, die in die Punktwolke ragen, herauszufiltern. Schließlich ist es möglich, dass Bedienpersonal, welches sich im Erfassungsbereich der Punktwolke befindet, aus dem Messergebnis herausgefiltert werden kann.
  • Für eine besonders zuverlässige Erfassung der Punktwolke umfasst die Messvorrichtung einen 3D-Scanner. Dieser umfasst vorzugsweise mindestens einen optischen Sensor, der zur Erfassung eines Abstands zur erfassten Oberfläche vorgesehen ist. In einer verbesserten Ausführungsform der Erfindung ist der 3D-Scanner ein Laserscanner mit mindestens einem Lasersensor. Der Laserscanner ist selbst bei schlechtem Wetter gut einsetzbar und sorgt für eine genaue Erfassung der Punktwolke.
  • Vorzugsweise umfasst der 3D-Scanner mindestens einen beweglichen Spiegel, um den Lichtstrahl des mindestens einen optischen Sensors abzulenken. Dabei ist es vorstellbar, dass der bewegliche Spiegel durch einen vorbestimmten Bewegungsablauf ansteuerbar ist, so dass sich der abgelenkte Lichtstrahl, vorzugsweise Laserstrahl, über die vorbestimmte Fläche, die die Punktwolke wiedergibt, läuft. Zur schnelleren Erfassung der Punktwolke kann vorgesehen sein, dass mehrere bewegliche Spiegel vorhanden sind, um unterschiedliche Laserstrahlen derartig abzulenken, dass sich die Punktwolke darstellen lässt.
  • Vorzugsweise ist die Fläche der Punktwolke mit mindestens 300 Laserabtastpunkten definierbar. Durch diese Anzahl an Laserabtastpunkten kann ein aussagekräftiges Flächenbild, also die Punktwolke, erzeugt werden, um Unebenheiten auf der erfassten Oberfläche festzustellen.
  • Alternativ zum 3D-Scanner mittels beweglichem Spiegel, ist es vorgesehen, die Messvorrichtung mit mehreren Lasersensoren auszustatten, welche in einer Matrix, also einer Sensoraufnahme, derartig angeordnet sind, dass sie Laserstrahlen über die vorbestimmte Fläche zur Erzeugung der Punktwolke aussenden. Ebenfalls kann es von Vorteil sein, wenn die Messvorrichtung beweglich angeordnet ist, so dass sie durch einen vorbestimmten Bewegungsablauf die Laserstrahlen über die Fläche zur Erzeugung der Punktwolke leitet. Dabei kann die Bewegung der Messvorrichtung dafür sorgen, dass die Laserstrahlen der Lasersensoren linienartig in parallel ausgerichteter Abfolge auf die zu erfassende Oberfläche treffen bzw. die Messvorrichtung so bewegbar ist, dass die Laserstrahlen von außen nach innen oder umgekehrt die Fläche erfassen.
  • Erfindungsgemäß umfasst der Straßenfertiger eine Steuervorrichtung, die mit der Messvorrichtung verbunden ist. Vorzugsweise ist die Steuervorrichtung dazu konfiguriert, die durch die Messvorrichtung erfasste Punktwolke in ein entsprechendes Signal umzuwandeln, um damit eine bestimmte Betriebsfunktion des Straßenfertigers zu steuern. Erfindungsgemäß ist die Steuervorrichtung jedoch dazu konfiguriert, die durch die Messvorrichtung erfasste Punktwolke in mindestens ein Nivelliersignal umzuwandeln. Das Nivelliersignal ist däfur vorgesehen, die Nivellierzylinder des Straßenfertigers anzusteuern, damit infolgedessen eine Bewegung der Einbaubohle durchführbar ist. Folglich beeinflussen die durch die Punktwolke räumlich erfassten Unebenheiten das Erzeugen des Nivelliersignals, um die Einbaubohle zu bewegen. Dadurch ist es möglich, insbesondere auf unebenen Straßen einen ebenen Straßenbelag aufzubringen.
  • In einer weiteren Ausführungsform ist vorgesehen, dass die Messvorrichtung ein Halteelement umfasst, mit dem die Messvorrichtung am Straßenfertiger befestigbar ist. Damit eine Erfassung durch unterschiedlich große Punktwolken möglich ist, kann das Halteelement derart ausgebildet sein, dass es höhenverstellbar ist, beispielsweise teleskopartig ausfahrbar ist, um die Messvorrichtung in unterschiedlichen Höhen anzuordnen. Ein besonders nützliches Maß für die Fläche einer Punktwolke kann damit erzeugt werden, wenn die Messvorrichtung in einem Abstand bis zu zehn Meter über dem Planum angeordnet ist.
  • In einer besonders vorteilhaften Ausführung ist die Messvorrichtung dazu konfiguriert, die Punktwolke sowie die daraus resultierende Parametereinstellung mittels Echtzeiterfassung zu regeln. Handelt es sich bei der Parametereinstellung um das Erzeugen eines Nivelliersignals, so kann dieses ohne zeitlichen Verzug auf Unebenheiten im Untergrund reagieren.
  • Außerdem ist es möglich, dass in einer Ausführungsform der Erfindung mindestens eine Messvorrichtung in Fahrtrichtung gesehen links und/oder rechts am Straßenfertiger angeordnet ist. Dadurch lassen sich mehrere Punktwolken erzeugen, durch die die Oberflächenbeschaffenheit des Planums bzw. des Straßenbelags darstellbar ist.
  • Vorteilhaft ist es jedoch, wenn die Messvorrichtung so konfiguriert ist, dass sie die Punktwolke für eine Fläche links und/oder rechts neben dem Arbeitsbereich erzeugt. Beispielsweise ist es vorteilhaft, dass die Punktwolke im Arbeitsbereich innerhalb kurzen Abstands vor der Einbaubohle erfaßbar ist.
  • Möglich ist es auch, dass anhand einer bzw. mehrerer erfassten Punktwolken ein Mittelwert durch die Steuervorrichtung erzeugbar ist, um anhand des erzeugten Mittelwerts ein Signal für weitere Betriebsfunktionen des Straßenfertigers zu erzeugen. Dies bietet den technischen Vorteil, mehrere Flächenabschnitte in der Erstellung eines Betriebsparameters zu berücksichtigen.
  • Außerdem kann die Messvorrichtung auch so konfiguriert sein, dass sie die Punktwolke für eine Fläche erzeugt, die teilweise einen Abschnitt des Arbeitsbereichs überlagert. Dabei spielt es keine Rolle, ob die Punktwolke einen Bereich der Einbaubohle, einen Bereich der Zugmaschine bzw. andere am Straßenfertiger vorhandenen technischen Mittel überlagert. Dadurch ist die Messvorrichtung besonders flexibel am Straßenfertiger einsetzbar.
  • Vorzugsweise ist die Messvorrichtung jedoch an der beweglichen Einbaubohle, insbesondere am Zugarm, der die Einbaubohle trägt, angeordnet. Andererseits kann die Messvorrichtung jedoch auch an der Zugmaschine des Straßenfertigers angeordnet sein.
  • Um Unebenheiten auf einer besonders großen Fläche zu erfassen, kann die Messvorrichtung derart konfiguriert sein, dass sie die Punktwolke über eine Fläche erzeugt, die den Straßenfertiger umgibt. Weil es möglich ist, extreme 3D-Koordinaten, also hier die Zugmaschine und die Einbaubohle auszublenden, kann selbst durch die Flächenabschnitte der Punktwolke, die sich links, rechts bzw. vor und hinter dem Straßenfertiger befinden, ein aussagekräftiges Ergebnis dargestellt werden, welches die Oberflächenbeschaffenheit des Arbeitsbereichs repräsentiert.
  • Gemäß einer vorteilhaften Ausführungsform der Erfindung ist die Messvorrichtung dazu ausgebildet, die 3D-Koordinaten der Oberfläche mittels Pulslaufzeit, Phasendifferenz im Vergleich zu einer Referenz oder mittels Triangulation von optischen Strahlen zu erfassen. Dadurch wird eine präzise Abstandsmessung zwischen der Messvorrichtung und der Oberfläche ermöglicht.
  • Erfindungsgemäße Ausführungsformen werden anhand der Zeichnungen beschrieben. Es zeigen:
  • Figur 1
    einen erfindungsgemäßen Straßenfertiger mit einer Messvorrichtung,
    Figur 2
    die Messvorrichtung, wie sie für den erfindungsgemäßen Straßenfertiger verwendet wird, und
    Figur 3
    eine die Oberflächenbeschaffenheit beschreibende Punktwolke.
  • Die Figur 1 zeigt einen Straßenfertiger 1 in Fahrtrichtung F gemäß der Erfindung. Der Straßenfertiger 1 umfasst eine Zugmaschine 2 mit einem Fahrwerk 3, welches sich auf einem Planum 4 bewegt. Der Straßenfertiger 1 umfasst des Weiteren eine Einbaubohle 5, die über einen Zugarm 6 beweglich mit der Zugmaschine 2 des Straßenfertigers 1 verbunden ist. Durch die Einbaubohle 5 wird ein neuer Straßenbelag 7 auf das Planum 4 aufgebracht. Selbst wenn in der Figur 1 das Planum 4, sprich die Oberfläche des Untergrunds, eben dargestellt ist, sind in Wirklichkeit Unebenheiten auf dem Planum 4 vorhanden. Der Straßenbelag 7 hat eine ebene Oberfläche, selbst wenn das darunter liegende Planum 4 Unebenheiten aufweist. Dies kann durch eine entsprechende Nivellierung der Einbaubohle 5 errecht werden, wie es im Folgenden beschrieben wird.
  • Am Zugarm 6 des Straßenfertigers 1 ist eine Messvorrichtung 8 befestigt. Die Messvorrichtung 8 ist dazu konfiguriert, einen dreidimensionalen Flächenabschnitt 9 (siehe Figur 2) des Planums 4 zu erfassen. Die Messvorrichtung 8 ist in kurzem Abstand vor der Einbaubohle 5 am Zugarm 6 angebracht. Die Messvorrichtung 8 ist dazu ausgebildet, durch den erfassten dreidimensionalen Flächenabschnitt 9 Unebenheiten des Planums 4 zu erfassen, um daraus während des Einbaus bestimmte Betriebsparameter für den Straßenfertiger festzulegen. Beispielsweise ist es möglich, dass anhand des dreidimensional erfaßten Flächenabschnitt 9 durch die Messvorrichtung 8 ein Nivelliersignal zur Steuerung der Einbaubohle 5 generierbar ist, wobei das Nivelliersignal eine Positionsverlagerung der Einbaubohle 5 zur Folge haben kann.
  • Die Figur 2 zeigt die Messvorrichtung 8, wie sie in der Figur 1 an dem Zugarm 6 des Straßenfertigers 1 befestigt ist. Die Messvorrichtung 8 der Figur 2 ist dazu konfiguriert, den Flächenabschnitt 9 des Planums 4 zu erfassen. Der Flächenabschnitt 9 definiert abschnittsweise die Oberflächenbeschaffenheit des Planums 4. Der Flächenabschnitt 9 ist durch eine Länge a und Breite b definiert. Die Messvorrichtung 8 ist dazu ausgebildet, das Maß des Flächenabschnitts 9 zu variieren. Dazu können an der Messvorrichtung 8 Einstellungen vorgenommen werden, die das Längenmaß a und/oder das Breitenmaß b einstellen. Schematisch sind in der Figur 2 außerdem gestrichelte Strahlen 10 gezeigt, die von der Messvorrichtung 8 auf Eckpunkte des Flächenabschnitts 9 gerichtet sind. Die Strahlen 10 schließen untereinander einen Winkel α sowie einen Winkel β ein, wobei in Abhängigkeit der Höhenposition der Messvorrichtung 8 relativ zum Planum 4 ein gewünschtes Maß für den Flächenabschnitt 9 erfaßbar ist. Wie in der Figur 2 gezeigt wird, kann der Winkel α 30° beziehungsweise der Winkel β 40° sein. Die Messvorrichtung 8, die vornehmlich als Laserscanner 14 ausgebildet ist, ist dazu konfiguriert innerhalb des Flächenabschnitts 9 die dreidimensionale Ausbreitung des Planums 4 zu erfassen, um für eine räumliche Darstellung der Oberfläche zu sorgen.
  • Des Weiteren zeigt die Figur 2, dass die Messvorrichtung 8 in einer Höhe A über dem Planum 4 angeordnet ist. Die Höhe A ist variierbar, wobei die Messvorrichtung 8 bis zu 10 Meter über dem Untergrund tragbar ist. In einer Höhe von 10 Meter kann die Messvorrichtung 8 beispielsweise durch eine nicht gezeigte Halterung positionierbar sein. Um Unebenheiten auf dem Planum 4 schematisch nachzubilden, ist in der Figur 2 ein quaderförmigen Gegenstand 11 gezeigt, der auf dem Flächenabschnitt 9 liegt. Die Messvorrichtung 8 ist dazu konfiguriert den Gegenstand 11 zu erfassen. Selbst wenn die Unebenheit in der Figur 2 quaderförmig dargestellt ist, kann die Unebenheit auf dem Planum 4 jegliche Form annehmen. Unebenheiten auf dem Planum 4 können beispielsweise Längsbeziehungsweise Querneigungen des Untergrunds umfassen, auf welchem sich der Straßenfertiger 1 bewegt. Ebenfalls erfassbar sind beispielsweise Schlaglöcher beziehungsweise langgezogene Bodensenkungen beziehungsweise Bodenerhebungen.
  • Die Messvorrichtung 8 ist dazu konfiguriert, eine virtuelle netzartige Punktwolke 12 zu erzeugen, die in der Figur 3 dargestellt ist. Die Punktwolke 12 stellt den Flächenabschnitt 9 in seiner dreidimensionalen Beschaffenheit dar. Die Punktwolke 12 erstreckt sich relativ zu der Messvorrichtung 8 in drei Raumdimensionen, um für eine räumliche Darstellung der Oberfläche des Planums 4 zu sorgen. Dazu umfasst die Punktwolke 12 mehrere Punkte 13, die durch 3D-Koordinaten relativ zur Messvorrichtung 8 definiert sind. Um für die räumliche Darstellung der Oberfläche zu sorgen, ist mindestens ein Punktepaar der Punktwolke 12 in einer beliebigen ersten Richtung, vorzugsweise in Fahrtrichtung F ausgerichtet und mindestens ein anderes Punktepaar der Punktwolke 12 in einem Winkel zur ersten Richtung, vorzugsweise zur Fahrtrichtung F ausgerichtet. Die Messvorrichtung 8 ist dazu ausgebildet, Unebenheiten, die sich innerhalb des Flächenabschnitts 9 befinden, mittels der Punktwolke 12 zu erfassen, um damit spezifische Betriebsparameter des Straßenfertigers 1 einzustellen, beispielsweise ein Nivelliersignal zur Steuerung der Position der Einbaubohle 5.

Claims (13)

  1. Straßenfertiger (1) mit einer Zugmaschine (2), die entlang eines Arbeitsbereichs auf einem Planum (4) bewegbar ist, einer Einbaubohle (5), die zum Aufbringen eines Straßenbelags (7) vorgesehen ist, sowie mit mindestens einer Messvorrichtung (8), die dazu konfiguriert ist, eine Oberfläche zu erfassen, und mit einer Steuervorrichtung (16), die mit der Messvorrichtung (8) verbunden ist, wobei die Oberfläche mittels der Messvorrichtung (8) als Punktwolke (12) darstellbar ist, die sich relativ zu der Messvorrichtung (8) in drei Raumdimensionen erstreckt, um für eine räumliche Darstellung der Oberfläche zu sorgen, sowie mehrere Punkte (13) umfasst, die jeweils durch 3D-Koordinaten definiert sind, wobei mindestens ein Punktepaar der Punktwolke (12) in einer ersten Richtung ausgerichtet ist und mindestens ein anderes Punktepaar der Punktwolke (12) in einem Winkel zur ersten Richtung liegt, wobei die Steuervorrichtung (16) dazu konfiguriert ist, die durch die Messvorrichtung (8) erzeugte Punktwolke (12) in mindestens ein Nivelliersignal umzuwandeln,
    dadurch gekennzeichnet, dass
    das Nivelliersignal zur Ansteuerung von Nivellierzylindern des Straßenfertigers (1) verwendet wird, damit infolgedessen eine Bewegung der Einbaubohle (5) durchgeführt wird.
  2. Straßenfertiger nach Anspruch 1, dadurch gekennzeichnet, dass die Punktwolke (12) eine Oberflächenbeschaffenheit einer Fläche des Planums (4) und/oder des Straßenbelags (7) definiert.
  3. Straßenfertiger nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die Messvorrichtung (8) dazu konfiguriert ist, extreme 3D-Koordinaten aus der Punktwolke (12) herauszufiltern.
  4. Straßenfertiger nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die Messvorrichtung (8) zum Erfassen der Punktwolke (12) einen 3D-Scanner (14) umfasst.
  5. Straßenfertiger nach Anspruch 4, dadurch gekennzeichnet, dass der 3D-Scanner (14) mindestens einen optischen Sensor (15) umfasst.
  6. Straßenfertiger nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der 3D-Scanner (14) ein Laserscanner mit mindestens einem Lasersensor ist.
  7. Straßenfertiger nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der 3D-Scanner (14) mindestens einen beweglichen Spiegel umfasst.
  8. Straßenfertiger nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Messvorrichtung (8) mehrere in einer Matrix angeordnete Lasersensoren umfasst.
  9. Straßenfertiger nach Anspruch 8, dadurch gekennzeichnet, dass die Messvorrichtung (8) beweglich am Straßenfertiger befestigt ist.
  10. Straßenfertiger nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass jeweils eine Messvorrichtung (8) in Fahrtrichtung (F) gesehen links und/oder rechts am Straßenfertiger (1) angeordnet ist.
  11. Straßenfertiger nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die Messvorrichtung (8) so konfiguriert ist, dass sie eine Punktwolke (12) für eine Fläche (9) links und/oder rechts neben dem Arbeitsbereich erzeugt.
  12. Straßenfertiger nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die Messvorrichtung (8) so konfiguriert ist, dass sie die Punktwolke (12) für eine Fläche (9) erzeugt, die teilweise einen Abschnitt des Arbeitsbereichs überlagert.
  13. Straßenfertiger nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die Messvorrichtung (8) dazu ausgebildet ist, die 3D-Koordinaten der Oberfläche mittels Pulslaufzeit, Phasendifferenz im Vergleich zu einer Referenz oder mittels Triangulation von optischen Strahlen zu erfassen.
EP13188708.5A 2011-08-22 2011-08-22 Straßenfertiger mit Messvorrichtung Active EP2687631B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13188708.5A EP2687631B1 (de) 2011-08-22 2011-08-22 Straßenfertiger mit Messvorrichtung
PL13188708T PL2687631T3 (pl) 2011-08-22 2011-08-22 Wykańczarka z urządzeniem pomiarowym

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13188708.5A EP2687631B1 (de) 2011-08-22 2011-08-22 Straßenfertiger mit Messvorrichtung
EP11006864.0A EP2562309B1 (de) 2011-08-22 2011-08-22 Straßenfertiger mit Messvorrichtung

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP11006864.0A Division EP2562309B1 (de) 2011-08-22 2011-08-22 Straßenfertiger mit Messvorrichtung
EP11006864.0A Division-Into EP2562309B1 (de) 2011-08-22 2011-08-22 Straßenfertiger mit Messvorrichtung

Publications (2)

Publication Number Publication Date
EP2687631A1 EP2687631A1 (de) 2014-01-22
EP2687631B1 true EP2687631B1 (de) 2015-08-19

Family

ID=44650837

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13188708.5A Active EP2687631B1 (de) 2011-08-22 2011-08-22 Straßenfertiger mit Messvorrichtung
EP11006864.0A Active EP2562309B1 (de) 2011-08-22 2011-08-22 Straßenfertiger mit Messvorrichtung

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11006864.0A Active EP2562309B1 (de) 2011-08-22 2011-08-22 Straßenfertiger mit Messvorrichtung

Country Status (5)

Country Link
US (1) US9290894B2 (de)
EP (2) EP2687631B1 (de)
JP (1) JP6124240B2 (de)
CN (2) CN102953312A (de)
PL (2) PL2687631T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4183922A1 (de) 2021-11-18 2023-05-24 Joseph Vögele AG Nivellierregleradaption durch bodenprofilanalyse

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2415934B1 (de) * 2010-08-06 2015-10-07 Joseph Vögele AG Sensoranordnung für eine Baumaschine
EP2535456B1 (de) * 2011-06-15 2013-12-18 Joseph Vögele AG Straßenfertiger mit Schichtdickenmessvorrichtung
EP2918725B1 (de) * 2012-11-08 2019-06-26 Sumitomo Heavy Industries, Ltd. Bilderzeugungsvorrichtung für eine strassenpflasterungsmaschine und betriebshilfssystem für die strassenpflasterungsmaschine
US11338505B2 (en) 2013-06-23 2022-05-24 Robert A. Flitsch Methods and apparatus for mobile additive manufacturing of advanced roadway systems
US11707882B2 (en) 2013-06-23 2023-07-25 Robert A. Flitsch Methods and apparatus for mobile additive manufacturing of advanced roadway systems
US9724877B2 (en) 2013-06-23 2017-08-08 Robert A. Flitsch Methods and apparatus for mobile additive manufacturing of advanced structures and roadways
US9988772B2 (en) 2013-06-23 2018-06-05 Robert A. Flitsch Methods and apparatus for mobile additive manufacturing of advanced structures and roadways
US11194306B2 (en) * 2013-06-23 2021-12-07 Addibots, Llc Methods and apparatus for mobile additive manufacturing with additive manufacturing arrays
CN103821070B (zh) * 2014-03-04 2015-12-30 扬州大学 一种3d成型机械
CN103869831B (zh) * 2014-03-24 2016-09-14 常州华达科捷光电仪器有限公司 一种平地机控制系统及其控制方法
US11505902B2 (en) 2015-04-15 2022-11-22 Robert A. Flitsch Methods, materials and apparatus for mobile additive manufacturing of advanced structures and roadways
WO2020036594A1 (en) 2018-08-14 2020-02-20 Flitsch Robert Methods and apparatus for mobile additive manufacturing
EP3106562A1 (de) * 2015-06-19 2016-12-21 TF-Technologies A/S Korrektureinheit
US10066346B2 (en) * 2015-08-12 2018-09-04 Topcon Positioning Systems, Inc. Point cloud based surface construction
EP3130939A1 (de) * 2015-08-13 2017-02-15 Joseph Vögele AG Strassenfertiger mit einer radarbasierten nivelliereinrichtung und steuerverfahren
JP2017115387A (ja) * 2015-12-24 2017-06-29 株式会社Nippo 建設機械自動制御システム
US10190269B2 (en) 2016-01-15 2019-01-29 Fugro Roadware Inc. High speed stereoscopic pavement surface scanning system and method
US20170314918A1 (en) 2016-01-15 2017-11-02 Fugro Roadware Inc. High speed stereoscopic pavement surface scanning system and method
US9903078B2 (en) 2016-02-08 2018-02-27 The Florida International University Board Of Trustees Three dimensional paving
US10975529B2 (en) 2016-02-17 2021-04-13 Robert A. Flitsch Methods, materials and apparatus for mobile additive manufacturing of advanced structures and roadways
US10384438B2 (en) 2016-03-04 2019-08-20 Caterpillar Inc. Construction system
CN105908609A (zh) * 2016-04-21 2016-08-31 东南大学 一种路面3d打印设备及其应用
GB2554872B (en) * 2016-10-07 2019-12-04 Kelly Anthony A compaction compensation system
JP6864500B2 (ja) * 2017-03-01 2021-04-28 株式会社トプコン 測定素子の補正方法、路面性状の評価方法、及び路面性状の評価装置
US11245888B2 (en) * 2018-03-19 2022-02-08 Ricoh Company, Ltd. Information processing apparatus, image capture apparatus, image processing system, and method of processing a plurality of captured images of a traveling surface where a moveable apparatus travels
EP3832017B1 (de) 2018-08-01 2023-10-11 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. Asphaltfertiger
US10961666B2 (en) * 2018-10-29 2021-03-30 Caterpillar Paving Products Inc. Determine sonic sensor angle using laser shape
US11536827B2 (en) * 2019-02-08 2022-12-27 Geophysical Survey Systems, Inc. Method for assessing the amount of rolling required to achieve optimal compaction of pre-rolled asphalt pavement
DE102019104850A1 (de) 2019-02-26 2020-08-27 Wirtgen Gmbh Fertiger
JP7165082B2 (ja) * 2019-03-18 2022-11-02 太平洋セメント株式会社 評価方法および評価システム
US11313086B2 (en) 2019-12-16 2022-04-26 Caterpillar Paving Products Inc. Material density measurement for paver application
US11834797B2 (en) 2021-09-08 2023-12-05 Caterpillar Paving Products Inc. Automatic smoothness control for asphalt paver
EP4253901A1 (de) * 2022-03-29 2023-10-04 Volvo Construction Equipment AB Detektionssystem und verfahren zum überwachen von unebenheiten eines planums

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU591994B2 (en) * 1986-05-21 1989-12-21 Kabushiki Kaisha Komatsu Seisakusho Apparatus for measuring position of moving body
JPH0749645B2 (ja) * 1990-11-14 1995-05-31 株式会社新潟鐵工所 敷均し機械における舗装厚制御方法
DE9114281U1 (de) * 1991-11-15 1992-01-09 Moba-Electronic Gesellschaft Fuer Mobil-Automation Mbh, 6254 Elz, De
US5471391A (en) * 1993-12-08 1995-11-28 Caterpillar Inc. Method and apparatus for operating compacting machinery relative to a work site
US5964298A (en) * 1994-06-13 1999-10-12 Giganet, Inc. Integrated civil engineering and earthmoving system
US5631732A (en) * 1995-06-20 1997-05-20 Schrum, Jr.; Paul T. Surveyor device
JP3897191B2 (ja) * 1997-04-16 2007-03-22 コマツエンジニアリング株式会社 平面の段差計測装置
DE19951296C2 (de) * 1999-10-25 2003-09-25 Moba Mobile Automation Gmbh Vorrichtung und Verfahren zum Steuern eines Strassenfertigers
DE19951297C1 (de) * 1999-10-25 2001-04-12 Moba Mobile Automation Gmbh Vorrichtung zum Steuern eines Strassenfertigers und Verfahren zum Einbauen einer Strassenschicht
DE10060903C2 (de) * 2000-12-07 2002-10-31 Moba Mobile Automation Gmbh Laser-Höhenregeleinrichtung für eine Baumaschine
US7044680B2 (en) * 2002-03-15 2006-05-16 Gomaco Corporation Method and apparatus for calculating and using the profile of a surface
SE526913C2 (sv) * 2003-01-02 2005-11-15 Arnex Navigation Systems Ab Förfarande i form av intelligenta funktioner för fordon och automatiska lastmaskiner gällande kartläggning av terräng och materialvolymer, hinderdetektering och styrning av fordon och arbetsredskap
AU2003217559A1 (en) * 2003-02-13 2004-09-09 John Paul Smith Asphalt delivery and compaction system
EP1600564A1 (de) * 2004-05-24 2005-11-30 Leica Geosystems AG Verfahren zur Steuerung einer oberflächenverändernden Maschine
US7172363B2 (en) * 2004-08-31 2007-02-06 Caterpillar Paving Products Inc Paving machine output monitoring system
JP4760358B2 (ja) * 2005-12-19 2011-08-31 横浜ゴム株式会社 路面形状測定方法および測定システム
US7856302B2 (en) * 2005-12-23 2010-12-21 Caterpillar Inc Work machine with transition region control system
US7821513B2 (en) * 2006-05-09 2010-10-26 Inus Technology, Inc. System and method for analyzing modeling accuracy while performing reverse engineering with 3D scan data
JP4344869B2 (ja) * 2007-02-16 2009-10-14 三菱電機株式会社 計測装置
US8070385B2 (en) * 2008-07-21 2011-12-06 Caterpillar Trimble Control Technologies, Llc Paving machine control and method
JP4923214B2 (ja) * 2008-09-09 2012-04-25 ブリテッシュ ヴァージン アイランズ シューウィー グループ リミテッド プレイヤー身体画像を感知可能な電子ゲームコントローラ及びその方法
US20100129152A1 (en) 2008-11-25 2010-05-27 Trimble Navigation Limited Method of covering an area with a layer of compressible material
AT508562B1 (de) * 2009-09-02 2011-02-15 Riegl Laser Measurement Sys 3-d vermessungseinrichtung
CN101671999B (zh) * 2009-09-29 2011-04-13 长安大学 一种水泥混凝土路面平均断面深度测试方法
JP2011075336A (ja) * 2009-09-29 2011-04-14 Panasonic Electric Works Co Ltd 3次元形状計測装置、3次元形状計測方法
US8371769B2 (en) * 2010-04-14 2013-02-12 Caterpillar Trimble Control Technologies Llc Paving machine control and method
US9043129B2 (en) * 2010-10-05 2015-05-26 Deere & Company Method for governing a speed of an autonomous vehicle
US8589012B2 (en) * 2011-06-14 2013-11-19 Crown Equipment Limited Method and apparatus for facilitating map data processing for industrial vehicle navigation
US8600589B2 (en) * 2012-04-24 2013-12-03 Exelis, Inc. Point cloud visualization of acceptable helicopter landing zones based on 4D LIDAR

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4183922A1 (de) 2021-11-18 2023-05-24 Joseph Vögele AG Nivellierregleradaption durch bodenprofilanalyse

Also Published As

Publication number Publication date
JP2013047454A (ja) 2013-03-07
EP2562309A1 (de) 2013-02-27
US20130051913A1 (en) 2013-02-28
EP2687631A1 (de) 2014-01-22
CN109537412A (zh) 2019-03-29
EP2562309B1 (de) 2014-04-02
PL2562309T3 (pl) 2014-09-30
US9290894B2 (en) 2016-03-22
PL2687631T3 (pl) 2016-01-29
JP6124240B2 (ja) 2017-05-10
CN102953312A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
EP2687631B1 (de) Straßenfertiger mit Messvorrichtung
EP3048199B2 (de) Strassenfertiger mit schichtdickenerfassungsvorrichtung und verfahren zum erfassen der dicke einer eingebauten materialschicht
EP3741914B1 (de) Maschinenzug aus einer strassenfräsmaschine und einem strassenfertiger und verfahren zum betreiben einer strassenfräsmaschine und eines strassenfertigers
EP1825064B1 (de) Verfahren und vorrichtung zum kontrollieren einer strassenbearbeitungsmaschine
EP3018254B1 (de) Vorrichtung zur bestimmung der temperatur eines durch eine baumaschine in einer einbaubreite aufgebrachten strassenbaumaterials
DE112009001767B4 (de) Straßenfertigungsmaschinen-Steuerung und Verfahren
EP1118713B1 (de) Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger
EP2535456B1 (de) Straßenfertiger mit Schichtdickenmessvorrichtung
EP2535457B1 (de) Straßenfertiger mit Schichtdickenmessvorrichtung
EP3124698B1 (de) Strassenfertiger mit walzhinweisanzeigeeinrichtung
EP2535458B2 (de) Straßenfertiger mit Schichtdickenmessvorrichtung
DE102010022467B4 (de) Straßenbaumaschine, sowie Verfahren zum Steuern des Abstandes einer auf einer Bodenoberfläche bewegten Straßenbaumaschine
EP3739122B1 (de) Strassenfertiger und verfahren zum bestimmen einer schichtdicke einer hergestellten einbauschicht
EP2982951A1 (de) Thermografiemodul für Straßenfertiger
EP3130939A1 (de) Strassenfertiger mit einer radarbasierten nivelliereinrichtung und steuerverfahren
DE102016207841B4 (de) Schichtdickenmessvorrichtung und Verfahren zur Schichtdickenmessung
EP3147406B1 (de) Messsystem und verfahren zur verdichtungskontrolle eines belages und computerprogramm mit einem programmcode zur durchführung des verfahrens
DE102016225502B4 (de) Messsystem zur Schichtdickenerfassung
EP4056758A1 (de) Verfahren zum fertigen eines strassenbelags und asphaltiersystem
EP3835485B1 (de) Messsystem für eine baumaschine
EP3872260B1 (de) Strassenfertiger mit einem projektor
DE102012017337A1 (de) Baumaschine mit einer Geschwindigkeitsmesseinrichtung und Verfahren zur Bestimmung der Fortbewegungsgeschwindigkeit einer Baumaschine
EP4183922A1 (de) Nivellierregleradaption durch bodenprofilanalyse
EP3841380B1 (de) System zur verdichtungsmessung
DE202018006746U1 (de) Sensorsystem für einen Straßenfertiger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2562309

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140722

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150205

INTG Intention to grant announced

Effective date: 20150304

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 2562309

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 743918

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011007662

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151119

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151120

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151221

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151219

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011007662

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150822

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 743918

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230829

Year of fee payment: 13

Ref country code: GB

Payment date: 20230824

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230731

Year of fee payment: 13

Ref country code: FR

Payment date: 20230824

Year of fee payment: 13

Ref country code: DE

Payment date: 20230830

Year of fee payment: 13