EP2681454B1 - Resonatorschalldämpfer für eine radiale strömungsmaschine, insbesondere für einen radialverdichter - Google Patents

Resonatorschalldämpfer für eine radiale strömungsmaschine, insbesondere für einen radialverdichter Download PDF

Info

Publication number
EP2681454B1
EP2681454B1 EP12704743.9A EP12704743A EP2681454B1 EP 2681454 B1 EP2681454 B1 EP 2681454B1 EP 12704743 A EP12704743 A EP 12704743A EP 2681454 B1 EP2681454 B1 EP 2681454B1
Authority
EP
European Patent Office
Prior art keywords
radial
diffuser
circumferential groove
substantially annularly
annularly encircling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12704743.9A
Other languages
English (en)
French (fr)
Other versions
EP2681454A1 (de
Inventor
Sven KÖNIG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2681454A1 publication Critical patent/EP2681454A1/de
Application granted granted Critical
Publication of EP2681454B1 publication Critical patent/EP2681454B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/06Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • F04D29/665Sound attenuation by means of resonance chambers or interference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise

Definitions

  • the invention relates to a diffuser for a radial compressor, which diffuser has a substantially annular cavity, which is delimited at least by a first radial side surface.
  • Radial compressors are known, for example from the EP 1 356 168 B1 or the EP 1 602 810 A1 ,
  • DE 601 20769 T2 and US 2009/229280 A1 Diffusers shown have a circumferential groove, which is filled or covered with a material and so does not form a resonator.
  • the DE 601 14 484 T2 shows an empty circumferential groove in the diffuser.
  • Such radial compressors consist of a compressor stage forming, rotating about a rotation axis impeller with a - with respect to the axis of rotation of the impeller - axial inlet and a radial outlet. Gas to be compressed flows axially into the impeller of the compressor stage and is then deflected outwards (radial, radial seal), leaving the impeller at high speed.
  • Kinetic energy of the high-velocity gas to be compressed is then converted into potential energy in the form of pressure in a diffuser.
  • Such a diffuser is usually formed by two non-rotating, an annular cavity or an annular space forming rings, which annular space radially adjoins the impeller outlet and which rings or annular walls / side surface radially adjoin the impeller outlet Sense and perpendicular to the axis of rotation or to this at a very obtuse angle (radial annular space walls / radial side surfaces).
  • the gas exiting the impeller is guided radially outward in this annular space between these two annular walls and reaches a collector.
  • diffusers have wings, d. H. a blading, for steering and better control of the slowing down of the flow.
  • dominant sound sources in a centrifugal compressor are typically generated at the impeller and diffuser inlet or diffuser vanes due to the high velocity of the fluids flowing through these regions, as well as the interaction of rotor and stator components.
  • radial compressors produce at an outlet from the radial compressor (pressure side), for example at local pressure nozzles, complex, unsteady, three-dimensional, rotating and / or pulsating pressure fields or sound fields whose sound waves are undisturbed in the pipes connecting to the pressure nozzles spread.
  • Mufflers in general are devices for reducing noise emissions. Different types of silencers are distinguished, which reduce a generated sound power due to different mechanisms of action. For example, a distinction is made between absorption and reflection / resonator silencers.
  • An absorption silencer as for example from the EP 1 602 810 A1 is known for a radial compressor, contains porous (absorption) material, usually rock wool, glass wool or glass fiber, which partially absorbs sound energy, ie, converts into heat. Absorption in the muffler mainly dampens upper frequencies of the sound medium.
  • DE601 20769 T2 and US 2009/229280 A1 proposed.
  • the DE 601 14 484 T2 discloses a circumferential groove whose depth is increased to more than 1.5 times the axial width of the recessed portion of the compressor wheel.
  • Absorption mufflers have the disadvantage that they are usually unsuitable for high pressures, since - connected to the high pressures - high energy inputs act on the absorbent material or high heat inputs are absorbed by the absorbent material, resulting in damage to the porous material, as can lead to a dissolution of the absorbent material.
  • Resonator silencers or reflection silencers which use the principle of sound reflection, usually contain a plurality of cavities or chambers, past which the sound medium passes, which leads to reflections.
  • the multiple passages through the chambers of the chambers through the sound medium leads to a reduction of sound pressure peaks of different frequencies.
  • These reflections are - constructively - generated by baffles, cross-sectional widening and narrowing. By reflection, any frequencies of the sound medium can be damped in the muffler.
  • Such a resonator muffler, based on a Helmholtz resonator principle, for a centrifugal compressor is known from EP 1 356 168 B1 or from the EP 1 443 217 A2 known.
  • the local diffuser has an acoustic lining in the form of a field with numerous holes, which act as Helmholtz resonators on.
  • a radial compressor In addition to such a radial compressor is known as a further form of a radial flow machine, a radial turbine.
  • Such a radial turbine such as from the DE 44 38 611 C1 is known, based on a reversal of the physical principle of a centrifugal compressor and is accordingly - in the same components - as in a radial compressor - flows in the reverse flow direction as in this.
  • a radial turbine typically at the location of the impeller or a turbine wheel (both also referred to below as impeller) and a Turbinenleitkranzes upstream of the turbine or any Leitschranzschaufeln generated.
  • the object is achieved by a diffuser for a radial flow machine, in particular a centrifugal compressor, with the features according to the independent claim.
  • This diffuser has a substantially annular cavity, an annular space, which is bounded at least by a first radial side surface. According to the invention, at least one substantially annular circumferential groove is formed in this side surface.
  • This at least one substantially annular circumferential, groove open to the annular space acts as an acoustic resonator, in particular lambda / 4 - resonator - shortly hereinafter also only resonator - so that the groove passing sound waves, the same Have frequency as an (acoustic) Eigen- or Resonant frequency of this groove, reflected in a region of Nutausgangs and thus a sound propagation across the groove or the resonator away are reduced.
  • the sound propagation in the annular space can be reduced and an effective sound attenuation in the diffuser - and the radial flow machine or the radial compressor - can be achieved.
  • the substantially annular circumferential groove in particular by a depth of the groove, by a width / height of the groove or the Nutausgangs, by a radial position of the groove in the radial side surface, eigenform (eigenmode) or Knot diameter and natural or resonance frequency of the groove determined.
  • the configuration or the (three-dimensional) geometry of the circumferential groove - in itself - are so far no limits, as formed by the circumferential groove, a cavity or a cavity, which acts as an acoustic resonator.
  • circumferential grooves with any groove shapes such as circumferential grooves with a rectangular, V-shaped or trapezoidal cross-section, circumferential grooves with outwardly slanted wall and / or circumferential grooves as dovetail and / or circumferential grooves with - have area or completely - smooth and / or curved walls and / or circumferential grooves with undercuts and / or be realized with chambers. Wavy circumferential grooves or circumferential grooves with a stepped groove bottom are also possible.
  • a sound wave passing by the groove thus has the same eigenform or a same nodule diameter as a same acoustic eigenform in the resonator or the groove on and / or has the groove passing the groove sound wave at the same natural frequency as that of the groove, the reflection is particularly effective.
  • D. h. By suitable (three-dimensional) dimensioning of the groove, the natural acoustic frequency and the natural shape of the groove on a sound wave to be reflected, d. H. be tuned to their frequency and eigenform, and thus targeted frequencies - are attenuated by the dimensioning of the groove.
  • the shape of these passing acoustic pressure patterns can be estimated, for example, via analytical correlations, such as according to a formula according to Tyler & Sofrin.
  • the geometry of a circumferential groove is easy to manufacture and, due to the smaller number of free parameters such as height, width, depth, or shape, offers the possibility of integration into an optimization process.
  • the invention achieves a robust maintenance-free (sound damping) solution that is not subject to wear even at high pressures and temperatures. It offers a distinct advantage over absorption material based approaches.
  • the "muffler" according to the invention near the sound source (impeller and possibly bladed diffuser / possibly bladed Leitkranz) is used, with proper dimensioning Also, the excitation of the impeller can be reduced by acoustic pressure pattern.
  • the at least one first radial side surface has a plurality of essentially annular, in particular concentric, grooves lying on one another. Through several such circumferential grooves, the efficiency of the muffler can be increased.
  • circumferential grooves can be particularly preferably designed such that they each have different dimensions, in particular different depth and / or width. For example, it may be provided here that with a growing radial distance in the annular cavity or annular space to the outside, the depth and the width of the circumferential grooves are each smaller.
  • a frequency band to be damped of 700 Hertz - 2000 Hertz, 700 Hertz - 4000 Hertz or 700 Hertz - 6000 Hertz can be realized.
  • the efficiency of the "resonator muffler" can be further increased if the annular cavity is delimited by one of the first radial side surface axially opposite, second radial side surface, which second radial side surface also a substantially annular circumferential groove or - with further increase in efficiency - more having substantially annular circumferential, in particular concentric with each other, grooves.
  • the one substantially annular circumferential groove of the first radial side surface of a substantially annular circumferential groove of the second radial side surface directly, d. H. at the same radial height, axially opposite.
  • the one substantially annular circumferential groove of the first radial side surface of a substantially annular circumferential groove of the second radial side surface radially offset, d. H. with different radial height, opposite. This may be particularly advantageous if, due to arranged in the annular cavity or annulus elements, such as a blading, a place for a "directly axially opposite arrangement" of the circumferential grooves is not available.
  • Such a directly axially opposing arrangement as well as a radially offset arrangement of circumferential grooves can also be provided in each case with a plurality of essentially annular, concentric grooves in the two radial side surfaces. Again, the space conditions in the annulus (bladed annulus) may be crucial to provide instead of a "directly axially opposite arrangement" radially offset circumferential grooves.
  • the natural frequency of the at least one substantially annular circumferential groove is tuned to a frequency to be reflected. More preferably, the frequency to be reflected may be a blade passing frequency of a radial compressor or a second harmonic or third harmonic or fourth harmonic to the impeller revolution frequency of the centrifugal compressor.
  • the eigenform of the at least one substantially annular circumferential groove is tuned to the natural shape of a sound wave to be reflected.
  • the substantially annular cavity has a blading.
  • the at least one substantially annular circumferential groove or a plurality of such circumferential grooves is or are arranged in an area of the blading in the annular space.
  • the at least one substantially annular circumferential groove or a plurality of such circumferential grooves is arranged outside the region of the Beschauflung in annular space or are.
  • the at least one substantially annular circumferential groove has interruptions. This can be provided, for example, when the annular space has a blading, which prevents a completely circumferential groove.
  • the "(resonator) silencer" - as a local diffuser - is used or realized in a radial compressor.
  • the "silencer” can be used in a radial turbine at a turbine runner upstream of a turbine runner of the radial turbine or implemented there.
  • FIGS. 1 to 3 show various embodiments of centrifugal compressors 100, each with a resonator muffler 1 realized or integrated in the diffuser.
  • Such radial compressors 100 as shown have an impeller 10 which rotates about an axis 11 at high speed.
  • the impeller 10 has a hub 12 and radially projecting blades 13th
  • the hub 12 has a first region 12a that is substantially cylindrical, a transition region 12b in which the hub radius widens, and an end region 12c that is substantially perpendicular to the axis 11.
  • the - with flow direction 3 - axially flowing gas 2 is rotated by the impeller 10 in rotation and leaves the impeller 10 in the radial flow direction 3 to the axis 11 and at an obtuse angle to the axis eleventh
  • the blades 13 are attached to a common back plate 14 of the hub 12.
  • the impeller 10 is located in a housing 15 whose wall 16 is adapted to the outer contour of the impeller.
  • the fan formed by the impeller 10 has an axial inlet 17 and a radial outlet 18 extending around the circumference of the impeller 10.
  • the diffuser 20 connects, which is fixedly connected to the housing 15 and does not rotate.
  • the diffuser 20 has a substantially radial support wall 21, to which vanes 22 (diffuser blades) are attached, which guide the flow passing through the outlet 18.
  • the radial support wall of the diffuser 20 axially spaced opposite is another substantially radial wall 23, whereby the diffuser 20 forms an annular space occupied by the blading 22, the annular space 30.
  • the wings 22 extend substantially radially to the axis 11. Between the wings 22 diffuser channels are formed, the cross-sectional area increases from the inside to the outside.
  • the purpose of the diffuser 20 is to slow down the accelerated by the impeller 10 gas, which has a high kinetic energy and convert the kinetic energy in pressure.
  • piping system 29 pressure side 27
  • centrifugal compressors 100 as shown cause high levels of noise emissions that can (noise) affect an environment of the centrifugal compressor 100, vibration, structure-related malfunction, as well as pipe vibrations in / on piping systems can cause which pipe vibrations to damage to the pipes to failure of the Run radial compressor 100.
  • Dominant sound sources of such emissions are generated at the location of the impeller 10 and the diffuser inlet 25 or any diffuser vanes 22 due to the high velocity of the fluids flowing through these regions.
  • the radial compressors 100 - as shown in FIGS. 1 to 3 - each provide a resonator muffler 1 realized or integrated in the diffuser or in the annular space 30 there.
  • one or more circumferential annular grooves 50 extending annularly about the axis 11 in the radial support wall 21 and / or in the radial Wall 23 attached, which act as acoustic resonators, in particular as lambda / 4 - resonators.
  • These circumferential grooves 50 may also be arranged only in the region of the blading 22 of the diffuser or only in the region outside the blading 22 of the diffuser 20 and also in and outside the region of the blading 22 of the diffuser 20.
  • FIG. 1 shows an embodiment of this resonator muffler 1, which has two each concentric to the axis 11 annular circumferential grooves 50.
  • One of the two circumferential grooves 50 is arranged on the radial support wall 21. Approximately at the same radial distance from the axis 11, the second of the two circumferential grooves in the radial wall 23 is arranged. Both circumferential grooves 50, which are identical in shape, width and depth and have a U-shaped cross-section, are therefore directly, d. H. at the same radial height, axially opposite.
  • FIG. 2 shows a further embodiment of a resonator muffler 1 in the diffuser 20, which has a plurality each concentric with the axis 11 annular circumferential grooves 50.
  • a first part of these circumferential grooves 50 is arranged on the radial support wall 21 in the region of the blading 22 of the diffuser 20.
  • These circumferential grooves 50 directly axially, d. H. each at the same radial height or in each case the same radial distance from the axis 11, opposite a second part of the circumferential grooves 50, also four circumferential grooves 50, on the radial wall 23 - thus also in the bladed region 22 of the diffuser 20 and annulus 30 - arranged.
  • circumferential grooves 50 are identical in each case in shape, width and depth.
  • the width and the depth of the circumferential grooves 50 decrease with increasing distance from the axis 11.
  • the circumferential grooves 50 become narrower and less deep. All circumferential grooves 50 have a U-shaped cross-section.
  • FIG. 3 shows a further embodiment of a resonator muffler 1 in the diffuser 20 with also a plurality each concentric with the axis 11 annular circumferential grooves 50th
  • FIG. 3 are all circumferential grooves 50, here four circumferential grooves 50, concentric with each other and arranged concentrically to the axis 11 on the radial wall 23 in the region of the blading 22 of the diffuser 20.
  • the width and the depth of the circumferential grooves 50 decrease.
  • the circumferential grooves 50 narrower and narrower and less deep.
  • All circumferential grooves 50 here also have a U-shaped cross-section.
  • FIG. 4 shows an example of an acoustic eigenmode 60 in such acting as a resonator annular groove 50th
  • FIG. 4 shows 24 pressure maxima 61. Further, this eigen- or acoustic mode 60 is characterized by 12 so-called knot diameter 62 and a specific natural frequency. At the circumferential groove 50 passing sound waves, which are characterized by this natural frequency are reflected and the sound propagation over or past the circumferential groove 50 over.
  • the reflection process is particularly effective.
  • Such resonator silencers 1 as described have an extremely efficient effect, in particular because they are used close to the sound source, impeller 10 and (optionally bladed 22) diffuser 20, so that further elaborate soundproofing measures, in particular for the entire piping system 29 of the radial compressor 100, are dispensed with can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft einen Diffusor für einen Radialverdichter, welcher Diffusor einen im Wesentlichen ringförmigen Hohlraum aufweist, welcher zumindest durch eine erste radiale Seitenfläche begrenzt wird.
  • Radialverdichter sind bekannt, beispielsweise aus der EP 1 356 168 B1 oder der EP 1 602 810 A1 .
  • Die in den EP 1 602 810 A1 , DE 603 10 663 T2 , DE 601 20769 T2 und US 2009/229280 A1 gezeigten Diffusoren weisen eine Umfangsnut auf, die mit einem Material gefüllt bzw. abgedeckt ist und so keinen Resonator ausbildet.
  • Die DE 601 14 484 T2 zeigt eine leere Umfangsnut bei dem Diffusor.
  • Solche Radialverdichter bestehen aus einem eine Verdichterstufe bildenden, um eine Drehachse rotierenden Lauf- bzw. Flügelrad mit einem - bezüglich der Drehachse des Laufrades - axialem Eintritt und einem radialen Austritt. Zu verdichtendes Gas strömt axial in das Laufrad der Verdichterstufe und wird dann nach außen (radial, Radialdichtung) abgelenkt, wobei es aus dem Laufrad mit hoher Geschwindigkeit austritt.
  • Kinetische Energie des mit hoher Geschwindigkeit austretenden und zu verdichtenden Gases wird dann in einem Diffusor in potenzielle Energie in Form von Druck umgewandelt.
  • Ein solcher Diffusor wird meist durch zwei nichtrotierende, einen ringförmigen Hohlraum bzw. einen Ringraum ausbildende Ringe gebildet, welcher Ringraum sich an den Laufradaustritt radial anschließt bzw. welche Ringe bzw. ringförmige Wände/Seitenfläche sich an den Laufradaustritt radial anschlie ßen und senkrecht zur Drehachse oder zu dieser in einem sehr stumpfen Winkel stehen (radiale Ringraumwände/radiale Seitenflächen).
  • Das aus dem Laufrad austretende Gas wird in diesem Ringraum zwischen diesen beiden ringförmigen Wänden radial nach außen geführt und gelangt zu einem Sammler.
  • Häufig haben Diffusoren Flügel, d. h. eine Beschaufelung, zur Lenkung und besseren Steuerung der Verlangsamung der Strömung.
  • Ferner ist bekannt, dass solche Radialverdichter relativ hohe Schallemissionen bzw. Geräuschpegel verursachen, die eine (Lärm-)Beeinträchtigung einer Umgebung des Radialverdichters darstellen. Diese Schallemissionen können darüber hinaus auch Vibrationen und strukturrelevante Fehlfunktionen auslösen.
  • Beispielsweise werden dominante Schallquellen in einem Radialverdichter typischerweise am Ort des Flügelrades und des Diffusoreingangs oder etwaiger Diffusorschaufeln bedingt durch die hohe Geschwindigkeit der durch diese Regionen hindurchströmenden Fluide sowie durch eine Interaktion von Rotor- und Statorkomponenten erzeugt.
  • Insbesondere ist es hier bekannt, dass Radialverdichter an einem Austritt aus dem Radialverdichter (Druckseite), beispielsweise an dortigen Druckstutzen, komplexe, instationäre, dreidimensionale, rotierende und/oder pulsierende Druckfelder bzw. Schallfelder erzeugen, deren Schallwellen sich ungestört in an die Druckstutzen anschließende Rohrleitungen ausbreiten.
  • Hierbei kann es - neben den erwähnten Lärmbelastungen, Vibrationen und strukturrelevanten Fehlfunktionen - auch zu Rohrleitungsschwingungen kommen, welche zu Schäden an den Rohrleitungen bis hin zu einem Ausfall des Radialverdichters bzw. des übergeordneten, den Radialverdichter aufweisenden Systems führen können.
  • Die Dämpfung solcher komplexer, instationärer, dreidimensionaler, rotierender und/oder pulsierender Druckfelder bzw. Schallfelder ist technisch schwierig.
  • Ausgehend davon sind effiziente Schalldämpfungsmaßnahmen für solche schallemissionserzeugende Radialverdichter nötig.
  • Verschiedene schallemissionsbegrenzende, "externe" Maßnahmen, wie Gehäuse oder Umhüllungen sind bekannt. Diese Geräuschreduktionstechniken können relativ teuer sein, insbesondere wenn sie als "späteres" Zusatzprodukt angeboten werden.
  • Weiterhin sind "interne" Schalldämpfer zur Begrenzung von Schallemissionen bei Radialverdichtern bekannt.
  • Schalldämpfer im Allgemeinen sind Vorrichtungen zur Verminderung von Schallemissionen. Es werden verschiedene Bauarten von Schalldämpfern unterschieden, die aufgrund verschiedener Wirkungsmechanismen eine erzeugte Schallleistung verringern. Man unterscheidet beispielsweise Absorptions- und Reflektions-/Resonatorschalldämpfer.
  • Ein Absorptionsschalldämpfer, wie er beispielsweise aus der EP 1 602 810 A1 für einen Radialverdichter bekannt ist, enthält poröses (Absorptions-) Material, im Regelfall Steinwolle, Glaswolle oder Glasfaser, das Schallenergie teilweise absorbiert, d. h., in Wärme umwandelt. Durch Absorption werden im Schalldämpfer hauptsächlich obere Frequenzen des Schallmediums gedämpft.
  • Ebensolche Verfüllungen eines entsprechenden Hohlraumes werden auch in den DE 603 10 663 T2 , DE601 20769 T2 und US 2009/229280 A1 vorgeschlagen.
    Die DE 601 14 484 T2 offenbart eine Umfangsnut, deren Tiefe auf mehr als das 1,5-fache der axialen Breite des ausgesparten Abschnitts des Verdichter-Rads vergrößert ist.
  • Absorptionsschalldämpfer weisen den Nachteil auf, dass sie in der Regel für hohe Drücke ungeeignet sind, da - verbunden mit den hohen Drücken - hohe Energieeinträge auf das Absorptionsmaterial einwirken bzw. hohe Wärmeeinträge von dem Absorptionsmaterial aufzunehmen sind, was zu Schäden am porösen Material, wie zu einer Auflösung des Absorptionsmaterials, führen kann.
  • Resonatorschalldämpfer bzw. Reflektionsschalldämpfer, welche das Prinzip einer Schallreflektion nutzen, enthalten dazu in der Regel mehrere Hohlräume bzw. Kammern, an denen das Schallmedium vorbeiläuft, wobei es zu Reflektionen kommt. Beim mehrfachen Vorbeilaufen an Innenräumen der Kammern durch das Schallmedium kommt es zu einer Reduzierung von Schalldruckspitzen verschiedener Frequenzen. Diese Reflektionen werden - konstruktiv - durch Prallwände, Querschnittserweiterungen und -verengungen erzeugt. Durch Reflektion können im Schalldämpfer beliebige Frequenzen des Schallmediums gedämpft werden.
  • Ein solcher Resonatorschalldämpfer, basierend auf einem Helmholtz-Resonatorprinzip, für einen Radialverdichter ist aus der EP 1 356 168 B1 oder aus der EP 1 443 217 A2 bekannt. Bei diesem Radialverdichter weist der dortige Diffusor eine akustische Auskleidung in Form eines Feldes mit zahlreichen Bohrungen, welche als Helmholtz-Resonatoren wirken, auf.
  • Neben einem solchen Radialverdichter ist als weitere Form einer radialen Strömungsmaschine eine Radialturbine bekannt.
  • Eine solche Radialturbine, wie beispielsweise aus der DE 44 38 611 C1 bekannt, beruht auf einer Umkehrung des physikalischen Prinzips eines Radialverdichters und wird dementsprechend - bei entsprechenden Komponenten wie bei einem Radialverdichter - in umgekehrter Strömungsrichtung wie bei diesem durchströmt.
  • Auch bei Radialturbinen treten die beschriebenen Emissionsprobleme in entsprechender Weise auf.
  • Beispielsweise werden dominante Schallquellen in einer Radialturbine typischerweise am Ort des Flügelrades bzw. eines Turbinenrades (beides im Folgenden auch kurz als Laufrad benannt) und eines dem Turbinenrad vorgeschalteten Turbinenleitkranzes oder etwaiger Leitkranzschaufeln erzeugt.
  • Auch hier können an einer Saugseite, d. h. an einem Eintritt in die Radialturbine, beispielsweise an einem dortigen Saugstutzen, komplexe, instationäre, dreidimensionale, rotierende und/oder pulsierende Druckfelder bzw. Schallfelder erzeugt werden, deren Schallwellen sich ungestört in an die Saugstutzen vorgeschalteten Rohrleitungen ausbreiten.
  • Ausgehend davon sind auch hier effiziente Schalldämpfungsmaßnahmen für solche schallemissionserzeugende Radialturbinen nötig.
  • Es liegt der Erfindung die Aufgabe zugrunde, einen Schalldämpfer anzugeben, welcher die Nachteile aus dem Stand der Technik verbessert, einfach zu realisieren und auch einfach - in eine schallemittierende Anlage bzw. Vorrichtung, wie eine radiale Strömungsmaschine, - einzubauen ist sowie welcher insbesondere für eine Dämpfung von Schallemissionen bei einem Radialverdichter oder einer Radialturbine geeignet ist.
  • Die Aufgabe wird durch einen Diffusor für eine radiale Strömungsmaschine, insbesondere einen Radialverdichter, mit den Merkmalen gemäß dem unabhängigen Patentanspruch gelöst.
  • Dieser Diffusor weist einen im Wesentlichen ringförmigen Hohlraum, einen Ringraum, auf, welcher zumindest durch eine erste radiale Seitenfläche begrenzt wird. Erfindungsgemäß ist in dieser Seitenfläche mindestens eine im Wesentlichen ringförmig umlaufende Nut ausgebildet.
  • Diese mindestens eine im Wesentlichen ringförmig umlaufende, zum Ringraum über einen Nutausgang offene (Nutausgangsöffnung) Nut wirkt dabei als akustischer Resonator, insbesondere Lambda/4 - Resonator, - kurz im Folgenden auch nur Resonator - , sodass an der Nut vorbeilaufende Schallwellen, die eine gleiche Frequenz aufweisen wie eine (akustische) Eigen- bzw. Resonanzfrequenz dieser Nut, in einem Bereich eines Nutausgangs reflektiert und damit eine Schallausbreitung über die Nut bzw. den Resonator hinweg reduziert werden.
  • Dadurch kann die Schallausbreitung im Ringraum reduziert und eine effektive Schalldämpfung im Diffusor - und der radialen Strömungsmaschine bzw. des Radialverdichters - erreicht werden.
  • Durch eine gewählte Geometrie bzw. Dimensionierung der im Wesentlichen ringförmig umlaufenden Nut, insbesondere durch eine Tiefe der Nut, durch eine Breite/Höhe der Nut bzw. des Nutausgangs, durch eine radiale Position der Nut in der radialen Seitenfläche, werden Eigenform (Eigenmode) bzw. Knotendurchmesser und Eigen- bzw. Resonanzfrequenz der Nut bestimmt.
  • Der Ausgestaltung bzw. der (dreidimensionale) Geometrie der Umfangsnut - an sich - sind soweit keine Grenzen gesetzt, als sich durch die umlaufende Nut eine Kavität bzw. ein Hohlraum ausbildet, welcher als akustischer Resonator wirkt.
  • So können beispielweise Umfangsnuten mit beliebige Nutformen, wie Umfangsnuten mit rechteckigem, V-förmigen oder trapezförmigem Querschnitt, Umfangsnuten mit nach außen geschrägter Wand und/oder Umfangsnuten als Schwalbenschwanz und/oder Umfangsnuten mit - Bereichs weisen oder vollständig - glatten und/oder gekrümmten Wänden und/oder Umfangsnuten mit Hinterschnitten und/oder mit Kammern realisiert sein. Auch wellenförmige Umfangsnuten oder Umfangsnuten mit gestuftem Nutengrund sind möglich.
  • Weist eine an der Nut vorbeilaufende Schallwelle somit die gleiche Eigenform bzw. einen gleichen Knotendurchmesser wie eine gleiche akustische Eigenform im Resonators bzw. der Nut auf und/oder weist die an der Nut vorbeilaufende Schallwelle die gleiche Eigenfrequenz wie die der Nut auf, so ist die Reflektion besonders effektiv.
  • D. h., durch geeignete (dreidimensionale) Dimensionierung der Nut kann die akustische Eigenfrequenz sowie die Eigenform der Nut auf eine zu reflektierende Schallwelle, d. h. auf deren Frequenz und Eigenform, abgestimmt werden - und damit gezielt Frequenzen - über die Dimensionierung der Nut - gedämpft werden.
  • Anders ausgedrückt, aufgrund der Dreidimensionalität der im Wesentlichen ringförmig umlaufende Nut (auch nur Umfangsnut) kann deren Eigenformen über einfache geometrische Parameter so eingestellt werden, dass an der Nut vorbeilaufende akustische Druckmuster mit einer bestimmten Form besonders effektiv reflektiert werden.
  • Die Form dieser vorbeilaufenden akustischen Druckmuster kann beispielsweise über analytische Zusammenhänge, wie nach einer Formel nach Tyler & Sofrin, abgeschätzt werden.
  • Die Geometrie einer Umfangsnut ist einfach zu fertigen und bietet aufgrund der geringeren Anzahl freier Parameter, wie Höhe, Breite, Tiefe, oder Form die Möglichkeit einer Einbindung in einen Optimierungsprozess.
  • Weiterhin erzielt die Erfindung eine robuste wartungsfreie (Schalldämpfungs-)Lösung, die auch unter hohen Drücken und Temperaturen keinem Verschleiß ausgesetzt ist. Sie bietet dadurch einen deutlichen Vorteil gegenüber auf Absorptionsmaterial beruhenden Ansätzen.
  • Da der erfindungsgemäße "Schalldämpfer" nahe der Schallquelle (Laufrad und ggf. beschaufelter Diffusor / ggf. beschaufelter Leitkranz) eingesetzt wird, kann bei richtiger Dimensionierung auch die Anregung des Laufrades durch akustische Druckmuster verringert werden.
  • Bei Einsatz der Umfangsnut im Ringraum sind keine weiteren Schallschutzmaßnahmen, insbesondere im Rohrleitungssystem, erforderlich. Sowohl eine Lärmabstrahlung, als auch die Anregung von Rohrleitungsschwingungen kann deutlich reduziert werden. Es ergibt sich ein deutlicher Kostenvorteil gegenüber externen Schalldämpferlösungen.
  • Zu erwartende Druckverluste sind gering, was sowohl numerische Berechnung als auch Experimente zeigen.
  • Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
  • In einer bevorzugten Ausgestaltung weist die zumindest eine erste radiale Seitenfläche mehrere im Wesentlichen ringförmig umlaufende, insbesondere konzentrische zueinander liegende, Nuten auf. Durch mehrere solche Umfangsnuten lässt sich die Effizienz des Schalldämpfers erhöhen.
  • Diese Umfangsnuten können besonders bevorzugt derart ausgebildet sein, dass diese jeweils unterschiedliche Dimensionierungen, insbesondere unterschiedliche Tiefe und/oder Breite, aufweisen. Beispielsweise kann hier vorgesehen sein, dass mit einer wachsenden radialen Entfernung im ringförmigen Hohlraum bzw. Ringraum nach außen die Tiefe und die Breite der Umfangsnuten jeweils kleiner werden.
  • Hierdurch, d. h. durch mehrere Umfangsnuten, lassen sich gezielt mehrere Frequenzen bis hin zu einer breitbandigen Schalldämpfung von Schallemissionen in der radialen Strömungsmaschine dämpfen. Beispielsweise kann ein zu dämpfendes Frequenzband von 700 Hertz - 2000 Hertz, 700 Hertz - 4000 Hertz oder 700 Hertz - 6000 Hertz realisiert werden.
  • Die Effizienz des "Resonatorschalldämpfers" kann weiter gesteigert werden, wenn der ringförmige Hohlraum durch eine der ersten radialen Seitenfläche axial gegenüberliegende, zweite radiale Seitenfläche begrenzt wird, welche zweite radiale Seitenfläche ebenfalls eine im Wesentlichen ringförmig umlaufende Nut oder - bei weiter Steigerung der Effizienz - mehrere im Wesentlichen ringförmig umlaufende, insbesondere konzentrisch zueinander liegende, Nuten aufweist.
  • Davon ausgehend kann nach einer weiteren bevorzugten Weiterbildung vorgesehen sein, dass die eine im Wesentlichen ringförmig umlaufende Nut der ersten radialen Seitenfläche der einen im Wesentlichen ringförmig umlaufenden Nut der zweiten radialen Seitenfläche unmittelbar, d. h. auf gleicher radialer Höhe, axial gegenüberliegt.
  • Alternativ kann aber auch vorgesehen sein, dass die eine im Wesentlichen ringförmig umlaufende Nut der ersten radialen Seitenfläche der einen im Wesentlichen ringförmig umlaufenden Nut der zweiten radialen Seitenfläche radial versetzt, d. h. mit unterschiedlicher radialer Höhe, gegenüberliegt. Dies mag insbesondere dann von Vorteil sein, wenn auf Grund von in dem ringförmigen Hohlraum bzw. Ringraum angeordneten Elementen, beispielsweise eine Beschaufelung, ein Platz für eine "unmittelbar axial gegenüberliegende Anordnung" der Umfangsnuten nicht zur Verfügung steht.
  • Eine solche unmittelbar axial gegenüberliegende Anordnung wie auch eine radial versetzte Anordnung von Umfangsnuten lässt sich auch bei jeweils mehreren im Wesentlichen ringförmig umlaufenden, konzentrisch zueinander liegenden Nuten in den beiden radialen Seitenfläche vorsehen. Auch hier mögen die Platzgegebenheiten im Ringraum (beschaufelter Ringraum) ausschlaggebend sein, um anstelle einer "unmittelbar axial gegenüberliegende Anordnung" radial versetzte Umfangnuten vorzusehen.
  • In einer weiteren bevorzugten Weiterbildung ist die Eigenfrequenz der mindestens einen im Wesentlichen ringförmig umlaufenden Nut auf eine zu reflektierende Frequenz abgestimmt. Besonders bevorzugt kann die zu reflektierende Frequenz eine Flügelradumlauffrequenz ("blade passing frequency") eines Radialverdichters oder eine zweite Harmonische oder dritte Harmonische oder vierte Harmonische zu der Flügelradumlauffrequenz des Radialverdichters sein. Bevorzugt ist auch die Eigenform der mindestens einen im Wesentlichen ringförmig umlaufenden Nut auf die Eigenform einer zu reflektierenden Schallwelle abzustimmen.
  • In einer weiteren bevorzugten Ausgestaltung weist der im Wesentlichen ringförmige Hohlraum eine Beschaufelung auf.
  • Hierdurch kann sich ergeben, dass die mindestens eine im Wesentlichen ringförmig umlaufende Nut oder mehrere solcher Umfangsnuten in einem Bereich der Beschaufelung im Ringraum angeordnet ist bzw. sind.
  • Auch kann vorgesehen sein, dass die mindestens eine im Wesentlichen ringförmig umlaufende Nut oder mehrere solcher Umfangsnuten außerhalb des Bereichs der Beschauflung in Ringraum angeordnet ist bzw. sind.
  • Auch kann vorgesehen sein, dass die mindestens eine im Wesentlichen ringförmig umlaufende Nut Unterbrechungen aufweist. Dieses kann beispielsweise dann vorgesehen sein, wenn der Ringraum eine Beschaufelung aufweist, welche eine vollständig umlaufende Nut verhindert.
  • Nach einer weiteren bevorzugten Weiterbildung ist vorgesehen, dass der "(Resonator-)Schalldämpfer" - als dortiger Diffusor - in einem Radialverdichter eingesetzt bzw. realisiert ist. Auch kann der "Schalldämpfer" in einer Radialturbine bei einem einem Turbinenlaufrad der Radialturbine vorgeschalteten Turbinenleitkranz einsetzt bzw. dort realisiert sein.
  • Auch kann vorgesehen sein, dass - im Falle mehrerer im Wesentlichen ringförmigen umlaufenden Nuten - diese derart ausgebildet sind, dass eine Dämpfung für einen großen Drehzahlbereich von z. B. 50% bis 105% einer Nenndrehzahl der radialen Strömungsmaschine bzw. des Radialverdichters ausgelegt sind.
  • In Figuren sind Ausführungsbeispiele der Erfindung dargestellt, welche im Weiteren näher erläutert werden.
  • Es zeigen
  • FIG 1
    Skizze einer Schnittdarstellung einer radialen Strömungsmaschine, eines Radialverdichters, mit einem Resonatorschalldämpfer gemäß einer Ausführungsform;
    FIG 2
    Skizze einer Schnittdarstellung einer radialen Strömungsmaschine, eines Radialverdichters, mit einem Resonatorschalldämpfer gemäß einer weiteren Ausführungsform;
    FIG 3
    Skizze einer Schnittdarstellung einer radialen Strömungsmaschine, eines Radialverdichters, mit einem Resonatorschalldämpfer gemäß einer weiteren Ausführungsform;
    FIG 4
    exemplarisch einen akustischen Eigenmode in einer Ringnut bei einem Radialverdichter gemäß einer Ausführungsform.
    Ausführungsbeispiele: Resonatorschalldämpfer für Radialverdichter
  • In den FIGen 1 bis 3 sind verschiedene Ausgestaltungen von Radialverdichtern 100 mit jeweils einem im Diffusor realisierten bzw. integrierten Resonatorschalldämpfer 1 dargestellt.
  • Solche Radialverdichter 100 wie dargestellt weisen ein Laufrad 10 auf, das um eine Achse 11 mit hoher Drehzahl rotiert. Das Laufrad 10 besitzt eine Nabe 12 und davon radial abstehende Schaufeln 13.
  • Die Nabe 12 hat einen ersten Bereich 12a, der im Wesentlichen zylindrisch ist, einen Übergangsbereich 12b, in dem sich der Nabenradius erweitert, und einen Endbereich 12c, der im Wesentlichen senkrecht zu der Achse 11 verläuft.
  • Das - mit Strömungsrichtung 3 - axial einströmende Gas 2 wird durch das Laufrad 10 in Rotation versetzt und verlässt das Laufrad 10 in radialer Strömungsrichtung 3 zur Achse 11 und in einem stumpfen Winkel zu der Achse 11.
  • Die Schaufeln 13 sind an einer gemeinsamen Rückenplatte 14 der Nabe 12 befestigt. Das Laufrad 10 befindet sich in einem Gehäuse 15, dessen Wand 16 der Außenkontur des Laufrades angepasst ist. Das von dem Laufrad 10 gebildete Gebläse weist einen axialen Einlass 17 und eine sich um den Umfang des Laufrades 10 erstreckenden radialen Auslass 18 auf.
  • An den Auslass 18 schließt sich der Diffusor 20 an, der mit dem Gehäuse 15 fest verbunden ist und nicht rotiert. Der Diffusor 20 weist eine im Wesentlichen radiale Tragwand 21 auf, an die Flügel 22 (Diffusorbeschaufelung) angebracht sind, welche die den Auslass 18 passierende Strömung leiten.
  • Der radialen Tragwand des Diffusors 20 axial mit Abstand gegenüberliegend befindet sich eine weitere im Wesentlichen radiale Wand 23, wodurch der Diffusor 20 einen ringförmigen, mit der Beschaufelung 22 besetzten Raum, den Ringraum 30, ausbildet.
  • Die Flügel 22 verlaufen im Wesentlichen radial zur Achse 11. Zwischen den Flügeln 22 sind Diffusorkanäle gebildet, deren Querschnittsfläche von innen nach außen zunimmt.
  • Die Aufgabe des Diffusors 20 besteht darin, das von dem Laufrad 10 beschleunigte Gas, das eine hohe kinetische Energie hat, zu verlangsamen und die kinetische Energie in Druck umzusetzen.
  • An einem Auslass 26 des Diffusors 20 schließt sich - weiter stromabwärts - ein (nicht näher dargestelltes) Rohrleitungssystem 29 an (Druckseite 27), welches über einen Druckstutzen 28 mit dem Diffusor 20 verbunden ist.
  • Solche Radialverdichter 100 wie dargestellt verursachen hohe Schallemissionen, die eine (Lärm-)Beeinträchtigung einer Umgebung des Radialverdichters 100 darstellen, Vibrationen, strukturrelevante Fehlfunktionen sowie auch Rohrleitungsschwingungen in/an Rohrleitungssystemen auslösen können, welche Rohrleitungsschwingungen zu Schäden an den Rohrleitungen bis hin zu einem Ausfall des Radialverdichters 100 führen.
  • Dominante Schallquellen solcher Emissionen werden am Ort des Flügel-/Laufrades 10 und des Diffusoreingangs 25 oder etwaiger Diffusorschaufeln 22 bedingt durch die hohe Geschwindigkeit der durch diese Regionen hindurchströmenden Fluide erzeugt.
  • Insbesondere an der Druckseite 27 bzw. an dem dortigen Druckstutzen 28 des Radialverdichters 100 werden komplexe, instationäre, dreidimensionale, rotierende und/oder pulsierende Druckfelder bzw. Schallfelder erzeugt, deren Schallwellen sich ungestört in die an den Druckstutzen 28 anschließende Rohrleitungen 29 ausbreiten und dort beschriebene Schäden bedingen können.
  • Zur Vermeidung solcher Schäden bzw. als effektiven Schallschutz sehen die Radialverdichter 100 - wie in FIGen 1 bis 3 gezeigt - jeweils einen im Diffusor bzw. im dortigen Ringraum 30 realisierten bzw. integrierten Resonatorschalldämpfer 1 vor.
  • Zur Verminderung der Ausbreitung der Schallwellen im Ringraum 30 des Diffusors 20 werden wie FIGen 1 bis 3 zeigen eine oder mehrere, ringförmig um die Achse 11 verlaufende Umfangs-/Ringnuten 50 in der radialen Tragwand 21 und/oder in der radialen Wand 23 angebracht, die als akustische Resonatoren, insbesondere als Lambda/4 - Resonatoren, wirken.
  • Dabei können diese - ringförmigen und konzentrisch zur Achse 11 verlaufenden - Umfangsnuten 50 sowohl einseitig im Ringraum 30, beispielsweise an der radialen Tragwand 21 oder an der radialen Wand 23, als auch beidseitig, d. h. sowohl an der radialen Tragwand 21 als auch an der radialen Wand 23, angebracht sein.
  • Auch können diese Umfangsnuten 50 sowohl nur im Bereich der Beschaufelung 22 des Diffusors oder nur im Bereich außerhalb der Beschaufelung 22 des Diffusors 20 als auch im und außerhalb des Bereichs der Beschaufelung 22 des Diffusors 20 angeordnet sein.
  • Durch den Ringraum 30 bzw. an den Umfangs-/Ringnuten 50 vorbeilaufende Schallwellen, die die gleiche Frequenz aufweisen, wie eine der Resonanzfrequenzen einer solchen Umfangs-/Ringnut 50 werden im Bereich des Resonatoraustritts 51, d. h. der Nutöffnung bzw. des Nuteingangs 51, reflektiert und damit gedämpft.
  • FIG 1 zeigt eine Ausgestaltung dieses Resonatorschalldämpfers 1, welcher zwei jeweils konzentrisch zur Achse 11 ringförmig umlaufende Umfangsnuten 50 aufweist.
  • Die eine der beiden Umfangsnuten 50 ist an der radialen Tragwand 21 angeordnet. Etwa in gleichem radialem Abstand zur Achse 11 ist die zweite der beiden Umfangsnuten in der radialen Wand 23 angeordnet. Beide Umfangsnuten 50, welche in Form, Breite und Tiefe identisch sind und einen U-förmigen Querschnitt aufweisen, liegen sich demnach unmittelbar, d. h. auf gleicher radialer Höhe, axial gegenüber.
  • Ihr radialer Abstand von der Achse 11 bzw. ihre radiale Position im Ringraum 30 ist derart bemessen, dass beide Umfangsnuten 50 (radial) außerhalb des beschaufelten Bereichs 22 des Diffusors 20 bzw. Ringraums 30 liegen.
  • FIG 2 zeigt eine weitere Ausgestaltung eines Resonatorschalldämpfers 1 im Diffusor 20, welcher eine Vielzahl jeweils konzentrisch zur Achse 11 ringförmig umlaufende Umfangsnuten 50 aufweist.
  • Ein erster Teil dieser Umfangsnuten 50, hier vier Umfangsnuten 50, ist an der radialen Tragwand 21 im Bereich der Beschaufelung 22 des Diffusors 20 angeordnet. Diesen Umfangsnuten 50 unmittelbar axial, d. h. jeweils auf gleicher radialer Höhe bzw. in jeweils gleichem radialen Abstand zur Achse 11, gegenüberliegend ist ein zweiter Teil der Umfangsnuten 50, ebenfalls vier Umfangsnuten 50, an der radialen Wand 23 - damit ebenfalls im beschaufelten Bereich 22 des Diffusors 20 bzw. Ringraums 30 - angeordnet.
  • Einander unmittelbar gegenüberliegende Umfangsnuten 50 sind dabei jeweils in Form, Breite und Tiefe identisch. Dabei nehmen die Breite sowie die Tiefe der Umfangsnuten 50 mit wachsendem Abstand von der Achse 11 ab. Anders ausgedrückt, mit wachsendem radialen Abstand zur Achse 11 werden die Umfangsnuten 50 schmäler bzw. enger und weniger tief. Alle Umfangsnuten 50 weisen einen U-förmigen Querschnitt auf.
  • FIG 3 zeigt eine weitere Ausgestaltung eines Resonatorschalldämpfers 1 im Diffusor 20 mit ebenfalls einer Vielzahl jeweils konzentrisch zur Achse 11 ringförmig umlaufende Umfangsnuten 50.
  • Gemäß dieser Ausgestaltung nach FIG 3 sind alle Umfangsnuten 50, hier vier Umfangsnuten 50, konzentrisch zueinander und konzentrisch zur Achse 11 an der radialen Wand 23 im Bereich der Beschaufelung 22 des Diffusors 20 angeordnet. Mit wachsendem radialem Abstand von der Achse 11 nehmen die Breite sowie die Tiefe der Umfangsnuten 50 ab. Anders ausgedrückt, mit wachsendem radialen Abstand zur Achse 11 werden die Umfangsnuten 50 schmäler bzw. enger und weniger tief. Alle Umfangsnuten 50 weisen auch hier einen U-förmigen Querschnitt auf.
  • FIG 4 zeigt exemplarisch einen akustischen Eigenmode 60 in einer solchen als Resonator wirkenden Ringnut 50.
  • FIG 4 zeigt 24 Druckmaxima 61. Weiter ist dieser Eigen- bzw. Akustikmode 60 durch 12 sogenannte Knotendurchmesser 62 und eine bestimmte Eigenfrequenz charakterisiert. An der Umfangsnut 50 vorbeilaufende Schallwellen, die durch diese Eigenfrequenz charakterisiert sind, werden reflektiert und die Schallausbreitung über bzw. an Umfangsnut 50 vorbei reduziert.
  • Weist die vorbeilaufende Schallwelle den gleichen Knotendurchmesser 62 wie die akustische Eigenform 60 in der Umfangsnut 50 (Resonator) auf, ist der Reflektionsprozess besonders effektiv.
  • Solche Resonatorschalldämpfer 1 wie beschrieben wirken äußerst effizient, insbesondere da sie nahe der Schallquelle, Laufrad 10 und (ggfl. beschaufelter 22) Diffusor 20 eingesetzt werden, so dass auf weitere, aufwendige Schallschutzmaßnahmen, insbesondere für das gesamte Rohrleitungssystem 29 des Radialverdichters 100, verzichtet werden kann.

Claims (10)

  1. Diffusor (20) für einen Radialverdichter (100), welcher Diffusor (20) einen im Wesentlichen ringförmigen Hohlraum (30) aufweist, welcher zumindest durch eine erste radiale Seitenfläche (21, 23) begrenzt wird
    dadurch gekennzeichnet, dass
    die zumindest eine erste radiale Seitenfläche (21, 23) mindestens eine im Wesentlichen ringförmig umlaufende, leere Umfangsnut (50) aufweist, welche einen akustischen Resonator ausbildet, wobei eine Dimensionierung der mindestens einen im Wesentlichen ringförmig umlaufenden, leeren Umfangsnut (50) eine Eigenfrequenz und/oder eine Eigenform (60) der im Wesentlichen ringförmig umlaufenden, leeren Umfangsnut (50) bestimmt und die Eigenfrequenz und/oder die Eigenform (60) der mindestens einen im Wesentlichen ringförmig umlaufenden, leeren Umfangsnut (50) auf eine zu reflektierende Frequenz und/oder auf eine zu reflektierende Schallwelle abgestimmt ist.
  2. Diffusor (20) nach mindestens einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die zumindest eine erste radiale Seitenfläche (21, 23) mehrere im Wesentlichen ringförmig umlaufende, insbesondere konzentrisch zueinander liegende, leere Umfangsnuten (50) aufweist, welche insbesondere jeweils unterschiedliche Dimensionierungen, insbesondere unterschiedliche Tiefe und/oder Breite, aufweisen.
  3. Diffusor (20) nach mindestens einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der ringförmige Hohlraum (30) durch eine der ersten radialen Seitenfläche (21, 23) axial gegenüberliegende, zweite radiale Seitenfläche (21, 23) begrenzt wird, welche zweite radiale Seitenfläche (21, 23) eine im Wesentlichen ringförmig umlaufende, leere Umfangsnut (50) oder mehrere im Wesentlichen ringförmig umlaufende, konzentrisch zueinander liegende, leere Umfangsnuten (50) aufweist.
  4. Diffusor (20) nach mindestens dem voranstehenden Anspruch,
    dadurch gekennzeichnet, dass
    die eine im Wesentlichen ringförmig umlaufende, leere Umfangsnut (50) der ersten radialen Seitenfläche (21, 23) der einen im Wesentlichen ringförmig umlaufenden, leeren Umfangsnut (50) der zweiten radialen Seitenfläche (21, 23) axial oder radial versetzt gegenüberliegt oder dass die mehreren im Wesentlichen ringförmig umlaufenden, konzentrisch zueinander liegenden, leeren Umfangsnuten (50) der ersten radialen Seitenfläche (21, 23) und die mehreren im Wesentlichen ringförmig umlaufenden, konzentrisch zueinander liegenden, leeren Umfangsnuten (50) der zweiten radialen Seitenfläche (21, 23) axial oder radial versetzt gegenüberliegend angeordnet sind.
  5. Diffusor (20) nach mindestens einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die die Eigenfrequenz und/oder die Eigenform bestimmende Dimensionierung eine Breite und/oder Tiefe und/oder radiale Position der im Wesentlichen ringförmig umlaufenden, leeren Umfangsnut (50) ist.
  6. Diffusor (20) nach mindestens dem voranstehenden Anspruch,
    dadurch gekennzeichnet, dass
    die Eigenfrequenz und/oder die Eigenform (60) der mindestens einen im Wesentlichen ringförmig umlaufenden, leeren Umfangsnut (50) auf eine Flügelradumlauffrequenz ("blade passing frequency") des Radialverdichters oder eine zweite Harmonische oder dritte Harmonische oder vierte Harmonische zu der Flügelradumlauffrequenz des Radialverdichters (100) abgestimmt ist.
  7. Diffusor (20) nach mindestens einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der im Wesentlichen ringförmige Hohlraum (30) eine Beschaufelung (22) aufweist.
  8. Diffusor (20) nach mindestens dem voranstehenden Anspruch,
    dadurch gekennzeichnet, dass
    die mindestens eine im Wesentlichen ringförmig umlaufende, leere Umfangsnut (50) oder jede im Wesentlichen ringförmig umlaufende, leere Umfangsnut (50) in einem Bereich der Beschaufelung (22) angeordnet ist oder dass die mindestens eine im Wesentlichen ringförmig umlaufende, leere Umfangsnut (50) oder jede im Wesentlichen ringförmig umlaufende, leere Umfangsnut (50) außerhalb des Bereichs der Beschaufelung (22) angeordnet ist.
  9. Diffusor (20) nach mindestens einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die mindestens eine im Wesentlichen ringförmig umlaufende, leere Umfangsnut (50) Unterbrechungen aufweist.
  10. Diffusor (20) nach mindestens einem der voranstehenden Ansprüche eingesetzt in einem Radialverdichter (100) oder eingesetzt in einer Radialturbine bei einem einem Turbinenlaufrad der Radialturbine vorgeschalteten Turbinenleitkranz.
EP12704743.9A 2011-03-03 2012-02-09 Resonatorschalldämpfer für eine radiale strömungsmaschine, insbesondere für einen radialverdichter Not-in-force EP2681454B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011005025A DE102011005025A1 (de) 2011-03-03 2011-03-03 Resonatorschalldämpfer für eine radiale Strömungsmaschine, insbesondere für einen Radialverdichter
PCT/EP2012/052160 WO2012116880A1 (de) 2011-03-03 2012-02-09 Resonatorschalldämpfer für eine radiale strömungsmaschine, insbesondere für einen radialverdichter

Publications (2)

Publication Number Publication Date
EP2681454A1 EP2681454A1 (de) 2014-01-08
EP2681454B1 true EP2681454B1 (de) 2015-09-30

Family

ID=45688456

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12704743.9A Not-in-force EP2681454B1 (de) 2011-03-03 2012-02-09 Resonatorschalldämpfer für eine radiale strömungsmaschine, insbesondere für einen radialverdichter

Country Status (5)

Country Link
US (1) US9086002B2 (de)
EP (1) EP2681454B1 (de)
CN (1) CN103403359B (de)
DE (1) DE102011005025A1 (de)
WO (1) WO2012116880A1 (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102927052B (zh) * 2012-11-12 2015-03-04 西安交通大学 径向槽机匣处理方法
JP6349645B2 (ja) * 2013-08-06 2018-07-04 株式会社Ihi 遠心圧縮機及び多段圧縮装置
US9644639B2 (en) * 2014-01-27 2017-05-09 Pratt & Whitney Canada Corp. Shroud treatment for a centrifugal compressor
US10260643B2 (en) 2014-12-02 2019-04-16 United Technologies Corporation Bleed valve resonator drain
DE102014119558A1 (de) 2014-12-23 2016-06-23 Abb Turbo Systems Ag Diffusor für einen Radialverdichter
DE102014119562A1 (de) 2014-12-23 2016-06-23 Abb Turbo Systems Ag Diffusor für einen Radialverdichter
JP7105563B2 (ja) 2014-12-23 2022-07-25 エービービー スウィッツァーランド リミテッド 遠心圧縮機用のディフューザ
DE102016102924A1 (de) * 2016-02-19 2017-08-24 Abb Turbo Systems Ag Diffusor eines Radialverdichters
DE102016112333B4 (de) * 2016-07-06 2023-05-25 Man Energy Solutions Se Turbolader
DE102016213296A1 (de) * 2016-07-20 2018-01-25 Man Diesel & Turbo Se Strömungsmaschine und Verfahren zum Herstellen desselben
CN108087340A (zh) * 2016-11-21 2018-05-29 英业达科技有限公司 离心式风扇结构
US11255345B2 (en) * 2017-03-03 2022-02-22 Elliott Company Method and arrangement to minimize noise and excitation of structures due to cavity acoustic modes
US10473120B2 (en) * 2017-03-09 2019-11-12 Denso International America, Inc. Blower assembly having resonators and resonator assembly
JP6763815B2 (ja) * 2017-03-31 2020-09-30 三菱重工コンプレッサ株式会社 遠心圧縮機及びターボ冷凍機
US10309417B2 (en) 2017-05-12 2019-06-04 Borgwarner Inc. Turbocharger having improved ported shroud compressor housing
US10316859B2 (en) 2017-05-12 2019-06-11 Borgwarner Inc. Turbocharger having improved ported shroud compressor housing
DE102017114007A1 (de) 2017-06-23 2018-12-27 Abb Turbo Systems Ag Diffusor für einen Radialverdichter
DE102017118950A1 (de) 2017-08-18 2019-02-21 Abb Turbo Systems Ag Diffusor für einen Radialverdichter
DE102017122524A1 (de) 2017-09-28 2019-03-28 Abb Turbo Systems Ag Diffusor für einen Verdichter
DE102017127758A1 (de) * 2017-11-24 2019-05-29 Man Diesel & Turbo Se Radialverdichter und Turbolader
US11067098B2 (en) 2018-02-02 2021-07-20 Carrier Corporation Silencer for a centrifugal compressor assembly
CN108506231B (zh) * 2018-03-22 2020-06-12 英业达科技有限公司 风扇装置
US20220372915A1 (en) * 2021-05-18 2022-11-24 General Electric Company Passive fuel coupled dynamic mitigation device
US20230093314A1 (en) * 2021-09-17 2023-03-23 Carrier Corporation Passive flow reversal reduction in compressor assembly
CN113815889A (zh) * 2021-10-15 2021-12-21 北京海航通达航空设备有限公司 一种百叶窗型飞机发动机尾流防护特种设备
WO2024049593A1 (en) * 2022-08-31 2024-03-07 Danfoss A/S Refrigerant compressor including diffuser with one or more quarter wave tubes

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3362629A (en) * 1965-12-21 1968-01-09 Carrier Corp Centrifugal compressor
SE326279B (de) * 1967-12-13 1970-07-20 T Abrahamsson
US4411592A (en) * 1977-07-13 1983-10-25 Carrier Corporation Pressure variation absorber
US4504188A (en) * 1979-02-23 1985-03-12 Carrier Corporation Pressure variation absorber
DD273300A1 (de) * 1988-06-22 1989-11-08 Meissen Turbowerke Reaktiver schalldaempfer fuer axiale stroemungsmaschinen
DE4438611C2 (de) 1994-10-28 1998-02-19 Bmw Rolls Royce Gmbh Radialverdichter oder Radialturbine mit einem Leitschaufeln aufweisenden Diffusor oder Turbinenleitkranz
GB0004140D0 (en) 2000-02-23 2000-04-12 Holset Engineering Co Compressor
US6575696B1 (en) * 2000-09-21 2003-06-10 Fasco Industries, Inc. Method of sound attenuation in centrifugal blowers
US6623239B2 (en) * 2000-12-13 2003-09-23 Honeywell International Inc. Turbocharger noise deflector
US6550574B2 (en) 2000-12-21 2003-04-22 Dresser-Rand Company Acoustic liner and a fluid pressurizing device and method utilizing same
EP1356169B1 (de) 2000-12-21 2006-06-14 Dresser-Rand Company Zweischichtiger akustischer überzug und fluiddruckbeaufschlagungsvorrichtung
KR20030018545A (ko) * 2001-08-30 2003-03-06 삼성광주전자 주식회사 압축기의 고효율 밸브조립체
GB2381834B (en) * 2001-09-07 2004-08-25 Avon Polymer Prod Ltd Noise and vibration suppressors
US6669436B2 (en) * 2002-02-28 2003-12-30 Dresser-Rand Company Gas compression apparatus and method with noise attenuation
DE10247550A1 (de) * 2002-10-11 2004-04-22 Werner, Jürgen Radialgebläse für Laub- und Abfallsauger, Laubbläser oder Laubladegeräte
GB0223756D0 (en) 2002-10-14 2002-11-20 Holset Engineering Co Compressor
US20040094360A1 (en) * 2002-11-06 2004-05-20 Calsonic Kansei Corporation Acoustic dumper for exhaust system
US6918740B2 (en) * 2003-01-28 2005-07-19 Dresser-Rand Company Gas compression apparatus and method with noise attenuation
EP1602810A1 (de) 2004-06-04 2005-12-07 ABB Turbo Systems AG Absorberschalldämpfer für Verdichter
US8272834B2 (en) * 2004-06-15 2012-09-25 Honeywell International Inc. Acoustic damper integrated to a compressor housing
DE602006019382D1 (de) * 2005-02-23 2011-02-17 Cummins Turbo Tech Ltd Verdichter
US7722316B2 (en) * 2005-09-13 2010-05-25 Rolls-Royce Power Engineering Plc Acoustic viscous damper for centrifugal gas compressor
EP2063130A1 (de) * 2007-11-20 2009-05-27 Siemens Aktiengesellschaft Rauschunterdrückungsvorrichtung eines Zentrifugalkompressors
JP5136096B2 (ja) * 2008-02-06 2013-02-06 株式会社Ihi ターボ圧縮機及び冷凍機
JP5632297B2 (ja) 2008-03-13 2014-11-26 エーエーエフ−マックウェイ インク. チラーシステム及びチラーシステムの作動方法
GB0907580D0 (en) * 2009-05-05 2009-06-10 Rolls Royce Plc A duct wall for a fan or a gas turbine engine
DE102009051104A1 (de) * 2009-10-28 2011-05-05 Mann + Hummel Gmbh Radialverdichter
US8596413B2 (en) * 2011-07-25 2013-12-03 Dresser-Rand Company Acoustic array of polymer material

Also Published As

Publication number Publication date
US9086002B2 (en) 2015-07-21
WO2012116880A1 (de) 2012-09-07
RU2013144381A (ru) 2015-04-10
CN103403359A (zh) 2013-11-20
EP2681454A1 (de) 2014-01-08
DE102011005025A1 (de) 2012-09-06
US20140020975A1 (en) 2014-01-23
CN103403359B (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
EP2681454B1 (de) Resonatorschalldämpfer für eine radiale strömungsmaschine, insbesondere für einen radialverdichter
DE60122779T2 (de) Fluiddruckbeaufschlagungsvorrichtung
DE102011054589B4 (de) Rotationsmaschine mit Abstandhaltern zur Steuerung der Fluiddynamik
DE60120769T2 (de) Zweischichtiger akustischer überzug und fluiddruckbeaufschlagungsvorrichtung
EP2995557B1 (de) Schalldämpfende anordnung für eine triebwerksgondel und triebwerksgondel mit einer solchen anordnung
DE60300589T2 (de) Gasverdichter mit akustischen Resonatoren
EP2167796B1 (de) Vorrichtung und verfahren zur verbesserung der dämpfung von akustischen wellen
DE112015006211B4 (de) Dämpfungsvorrichtung, brennkammer und gasturbine
DE602004002411T2 (de) Vorrichtung und Verfahren zur Gasverdichtung mit Geräuschdämpfung
EP2551507B1 (de) Abgasturbinenkonus mit dreidimensional profilierter Trennwand sowie plattenartiges Wandelement
EP2140119B1 (de) Verdichter für einen abgasturbolader
WO2011157398A2 (de) Turbomaschine mit geräuschreduzierung
DE102012202707B3 (de) Laufradseitenräume mit Resonatoren bei radialen Strömungsmaschinen
DE102011002869B4 (de) Reflektionsschalldämpfer
DE2844287A1 (de) Mehrflutige gasdynamische druckwellenmaschine
DE102004010620B4 (de) Brennkammer zur wirksamen Nutzung von Kühlluft zur akustischen Dämpfung von Brennkammerpulsation
EP2620628B1 (de) Triebwerksgehäuse einer Fluggasturbine mit Schalldämpfungselementen im Fan-Einströmbereich
DE112017001100B4 (de) Akustische vorrichtung und gasturbine
EP3572627A1 (de) Dichtungsträger und strömungsmaschine
DE102013207220B3 (de) Turbomaschine
WO2018178385A1 (de) Verdichter eines abgasturboladers
EP2631429B1 (de) Beschaufelung
DE102019001798A1 (de) Turbolader und Turbinengehäuse hierfür
DE102016200519A1 (de) Strömungsmaschine
DE102016015296A1 (de) Turbine für einen Abgasturbolader

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130820

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/44 20060101ALI20150326BHEP

Ipc: F01N 1/02 20060101ALI20150326BHEP

Ipc: F04D 29/66 20060101ALI20150326BHEP

Ipc: F01D 9/02 20060101ALI20150326BHEP

Ipc: F01D 1/06 20060101ALI20150326BHEP

Ipc: F04D 29/42 20060101AFI20150326BHEP

INTG Intention to grant announced

Effective date: 20150422

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 752583

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012004741

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151231

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160130

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160201

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012004741

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

26N No opposition filed

Effective date: 20160701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160209

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160209

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160209

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180212

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 752583

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170209

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120209

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180226

Year of fee payment: 7

Ref country code: FR

Payment date: 20180221

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180516

Year of fee payment: 7

Ref country code: DE

Payment date: 20180419

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012004741

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190903

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190209