EP2681425B1 - Système de refroidissement réglable pour véhicule automobile, pompe de liquide de refroidissement appropriée, roue à ailettes s'utilisant dans ladite pompe de liquide de refroidissement et procédé pour réguler un flux de liquide de refroidissement dans un système de refroidissement de ce type - Google Patents
Système de refroidissement réglable pour véhicule automobile, pompe de liquide de refroidissement appropriée, roue à ailettes s'utilisant dans ladite pompe de liquide de refroidissement et procédé pour réguler un flux de liquide de refroidissement dans un système de refroidissement de ce type Download PDFInfo
- Publication number
- EP2681425B1 EP2681425B1 EP11793659.1A EP11793659A EP2681425B1 EP 2681425 B1 EP2681425 B1 EP 2681425B1 EP 11793659 A EP11793659 A EP 11793659A EP 2681425 B1 EP2681425 B1 EP 2681425B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coolant
- pump
- impeller
- coolant pump
- control slide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002826 coolant Substances 0.000 title claims description 451
- 238000001816 cooling Methods 0.000 title claims description 67
- 238000000034 method Methods 0.000 title claims description 23
- 238000002485 combustion reaction Methods 0.000 claims description 109
- 238000007789 sealing Methods 0.000 claims description 32
- 230000000694 effects Effects 0.000 claims description 8
- 238000007599 discharging Methods 0.000 claims description 7
- 230000008719 thickening Effects 0.000 claims description 7
- 230000000295 complement effect Effects 0.000 claims description 4
- 238000013459 approach Methods 0.000 claims description 2
- 230000007423 decrease Effects 0.000 claims description 2
- 230000000717 retained effect Effects 0.000 claims 1
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 230000001276 controlling effect Effects 0.000 description 11
- 239000000446 fuel Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000005338 heat storage Methods 0.000 description 5
- 238000005086 pumping Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 101150049168 Nisch gene Proteins 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P5/00—Pumping cooling-air or liquid coolants
- F01P5/10—Pumping liquid coolant; Arrangements of coolant pumps
- F01P5/12—Pump-driving arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/12—Combinations of two or more pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/0027—Varying behaviour or the very pump
- F04D15/0038—Varying behaviour or the very pump by varying the effective cross-sectional area of flow through the rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/02—Stopping of pumps, or operating valves, on occurrence of unwanted conditions
- F04D15/029—Stopping of pumps, or operating valves, on occurrence of unwanted conditions for pumps operating in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P5/00—Pumping cooling-air or liquid coolants
- F01P5/10—Pumping liquid coolant; Arrangements of coolant pumps
- F01P5/12—Pump-driving arrangements
- F01P2005/125—Driving auxiliary pumps electrically
Definitions
- the present invention relates to a controllable cooling system for a motor vehicle according to claim 1, an electrically operated, controllable coolant pump according to claim 6, a usable in the coolant pump impeller according to claim 16 and a method for controlling a flow of coolant in such a cooling system according to claim 22 ,
- coolant pumps In motor vehicles, in order to circulate coolant in a coolant circuit between the vehicle radiator and the internal combustion engine, mechanically actuated coolant pumps are generally used. Such designed as axial or radial pumps coolant pumps are arranged between the vehicle radiator and the internal combustion engine.
- the coolant pumps are driven by a belt drive by the drive power of the internal combustion engine. Examples of such pumps are in the DE 10 2005 004 315 B4 and the DE 10 2005 062 200 B3 the same applicant.
- start-stop systems which an internal combustion engine in the vehicle, for example when stopping at a red light, a railway barrier, etc., temporarily switch off.
- the stop situation for example the traffic light switches to green and the vehicle driver presses the gas pedal, the internal combustion engine is restarted.
- electrical coolant pumps have the disadvantage that they must be sufficiently large to provide the coolant performance. Such large-sized electrically operated coolant pumps then require a corresponding power supply from the electrical system of the motor vehicle.
- hybrid coolant pump An example of such a coolant pump, referred to as a hybrid coolant pump, is disclosed in MTZ, Issue 11, 2010.
- the hybrid coolant pump discussed therein is, as the main drive, driven by a belt drive via the drive power of the internal combustion engine.
- this pump includes in its pump housing a brushless electric motor which can be switched by appropriate control via clutches on the drive shaft, thereby either boosted the driving force of the belt drive, or, in the start-stop state with the internal combustion engine off, the sole circulation of the coolant takes over.
- the hybrid coolant pump disclosed in the MTZ, Issue 11, 2010, however, is not suitable for satisfactorily serving all operating states of the internal combustion engine.
- the pump disclosed in the MTZ, Issue 11, 2010 shows the disadvantage that, when the pump is operated via the belt pulley, and thus via the internal combustion engine, the electric motor arranged in the pump housing acts as a generator. The generated electrical power must therefore be discharged accordingly from the pump and fed into the electrical system. In order to avoid the generator effect of the electric pump, it is alternatively necessary to isolate selbige of the shaft when the operation of the electric pump is not needed.
- the present invention Based on the disadvantages of the above-described prior art, it is an object of the present invention to provide a cooling system which shows a simple structure, and with a simple way, a coolant flow in a coolant circuit of an internal combustion engine is ensured even when the internal combustion engine without drive is.
- the present invention is intended Furthermore, create a cooling system by means of which different cooling effects can be achieved depending on different operating conditions of the internal combustion engine.
- a controllable cooling system for a motor vehicle which has a coolant circuit for supplying and discharging coolant to and from an internal combustion engine of the vehicle.
- this cooling system are a mechanically operated, controllable main coolant pump having a supply for supplying the coolant in the main coolant pump and a discharge for discharging the coolant to the internal combustion engine, and an electrically operated, controllable secondary coolant pump, which is a supply to Supplying the coolant into the secondary coolant pump and a discharge for discharging a conveyed as bypass coolant flow in the direction of the main coolant pump, wherein the secondary coolant pump from a leading coolant in the flow direction of the coolant to the main coolant pump coolant line branching in the flow direction the main coolant pump is arranged.
- the pumped by the secondary coolant pump coolant is fed to the main coolant pump, without flowing through the main coolant pump, leading to the internal combustion engine exhaust.
- the secondary coolant pump furthermore has a pump housing with a pump chamber formed therein, wherein an electric motor is arranged on a portion of the pump housing, which provides a drive power for the secondary coolant pump by means of a drive shaft extending into the pump chamber.
- the secondary coolant pump Serving as a conveyor organ impeller is arranged in the pump chamber of the secondary coolant pump, which is arranged coaxially on the drive shaft and is drivably connected thereto, wherein the secondary coolant pump has a control valve formed on the impeller, at least in an open and closed position can be moved, for controlling the funded by the secondary coolant pump bypass coolant flow, in particular for Preventing the return flow of the coolant against the conveying direction of the secondary coolant pump.
- a cooling system can be created in a surprisingly simple and cost-effective manner, showing a simple structure, and with the simple way a coolant flow in a coolant circuit of an internal combustion engine is ensured even then, even if the internal combustion engine is de-energized and thus can not generate drive power for the mechanically operated main coolant pump.
- the proven in practice, mechanically operated coolant pump is maintained in the cooling system in an advantageous manner, whereby during operation of the cooling system with the mechanical pump, possibly supported by the electric pump, high efficiencies can be achieved.
- the achievable with the cooling system according to the invention efficiencies are significantly higher than is the case with a single-shaft hybrid pump discussed above.
- cooling system which has the two discussed controllable pumps, it is also advantageously possible to provide so-called stagnant water, in particular during cold start of the internal combustion engine, a rapid warm-up of the internal combustion engine allows, so that the vehicle within a very short time in an optimal Temperature fuel consumption range can be operated.
- a cooling system can also be realized which, with manageable development and application costs, a reliable cooling performance in modern fuel-saving engine concepts , For example, with automatic start-stop, engine shutdown in sailing or the like, ensures.
- the main coolant pump in this case has a pump housing with a pump chamber formed therein, wherein in the pump chamber serving as a conveyor organ impeller is arranged, which is driven via a reaching into the pump chamber shaft, which is preferably driven by a belt drive.
- the main coolant pump may in this case be designed as an axial or radial pump according to one embodiment.
- the use of the belt drive utilizing the driving force of the internal combustion engine has the advantage that even at low engine speed, the impeller can still be rotated in the main coolant pump, thereby ensuring coolant circulation even at low speed reliable overheating of the engine can be avoided.
- the main coolant pump also has a control slide which is arranged coaxially with the impeller and which is movable, at least in an open and closed position, preferably along the impeller mounted in the pump chamber, for controlling the control of the main coolant pump funded coolant flow.
- the slider can namely, for example, for generating stagnant water at cold start of the internal combustion engine, are moved to its closed position in which it includes the impeller and prevents the continuation of the pumped coolant from the derivative, thus interrupting the promoted by the impeller coolant flow.
- the electric motor of the secondary coolant pump is designed as a dry runner or as a wet rotor.
- the cooling system further comprises a control device which controls the main coolant pump and / or the secondary coolant pump in dependence on assigned operating states of the internal combustion engine.
- control device which is implemented for example as a software module in the vehicle control unit or is designed as an independent control unit, it is advantageously possible to control the main coolant pump and / or the secondary coolant pump in parallel or independently of each other, in this way always a desired Make coolant flow in the cooling circuit.
- the main coolant pump and / or the secondary coolant pump in such a way that they are decelerated in the warm-up mode during the cold start of the internal combustion engine, so that no coolant is circulated.
- the pumps can be controlled in parallel or separately from each other to control the coolant flow by respective displacement of the arranged in the respective pump chamber control valve.
- Another aspect of the present invention is to provide an electrically operated coolant pump suitable for such a cooling system.
- An electrically operated coolant pump which is particularly suitable for use in a cooling system discussed above, is designed as an axial pump or as a radial pump.
- the electrically operated coolant pump comprises: a pump housing; a, preferably flange-like, supply and a, preferably flange-like, discharge; a pump chamber formed in the pump housing, wherein in the pump chamber on a pump shaft, an impeller is arranged, which is driven by means of the pump shaft of an electric motor, and a slide which is movable at least in an open and closed position, for controlling one of the Coolant pump promoted bypass coolant flow.
- the electrically operated pump according to the invention is in this case activatable such that in the closed position of the control slide, a return flow of the coolant from the internal combustion engine counter to the conveying direction of the secondary coolant pump can be prevented.
- the parallel flow paths also represent bypass paths.
- the medium to be pumped always flows in the direction of the lower pressure.
- the main coolant pump builds a significantly higher delivery pressure during operation, it can be ensured by moving the control slide of the secondary coolant pump in its closed position that when the main pump is active, a return flow from the pressure side of the main pump via the secondary pump to the suction side is prevented.
- the electric coolant pump is designed as a radial pump, wherein with the, substantially conically extending supply branched off from a coolant line to be conveyed coolant in the pump housing formed in the pump chamber can be introduced, and arranged with the, substantially radially perpendicular to the supply line , Leaching the introduced into the pump chamber coolant from the pump chamber can be discharged.
- the impeller arranged in the pump chamber designed as a radial pump impeller, sucks the coolant by means of a rotational movement in the axial direction and conveys it in the radial direction into the discharge.
- the slide is designed as a coaxial with the pump shaft arranged on the impeller control slide; and the electric motor is arranged, preferably at a portion of the pump housing facing away from the supply; wherein the electric motor has a drive shaft which projects into the pump chamber, the impeller and the control slide are arranged coaxially on the drive shaft, and are preferably held by means of holding elements form-fitting manner on the drive shaft, and the control slide the impeller encompassing, cylindrical and in the axial direction the impeller is displaceable in an open and closed position.
- control slide is connected to the impeller so that vanes of the impeller penetrate the control slide.
- the electric motor is designed as a dry rotor and sealed by means of a arranged on the drive shaft shaft seal against the pump chamber.
- the electric motor is designed as a wet rotor and is cooled by means of the coolant pumped by the coolant pump.
- control slide is moved over at least one provided in the pump housing actuator in its open and / or closed position.
- This actuator can be designed as a pneumatically, magnetically and / or hydraulically operated slide or as an electric servomotor.
- the actuator may, in an exemplary embodiment, be disposed in an end region of the drive shaft and engage in a chamber-like shaped section formed on the front of the control slide to move the control slide to its open and closed positions relative to the impeller.
- the actuator may also be arranged between the impeller and the control slide.
- the actuator is a rocker arm connecting the impeller with the control slide, which is hydraulically, pneumatically or magnetically movable from its at rest on the impeller (the open position of the control slide) in a position spaced from the impeller (the closed position of the control slide).
- the actuator may also be formed in the wall of the pump housing, for example in recesses or chambers provided for this purpose.
- control slide on the drive shaft encompassing, the supply facing, a chamber-like shaped portion, on the inner circumference of a threaded portion is formed, wherein on a side remote from the electric motor portion of the drive shaft of the electric coolant pump, a threaded portion is formed, which is complementary to the threaded portion of the control slide is.
- the control slide is inventively, by mutual engagement of the threaded portions into one another, along the drive shaft slidably.
- control slide is designed such that it follows the contour of the front of the impeller and at its outer end has a radially disposed closing element arranged thereon, wherein at a side remote from the electric motor end of the closing element a radially outside of the control slide arranged first sealing element is arranged.
- a receptacle is formed in the pump chamber into which the closing element of the control slide in its open position can be introduced.
- the size of the coolant pump can advantageously be further reduced because no additional space for the closing element of the control slide must be created within the pump chamber.
- a second sealing element arranged radially inside the control slide is arranged on a radially outer end of the impeller facing the electric motor.
- the diameter of the first sealing element may be made larger than the diameter of the second sealing element according to a preferred embodiment.
- the discharge of the electric pump by means of the control slide in its closed position via the closing element, the first sealing element and the second sealing element is tightly closed.
- the assembly of impeller and control slide can be made compact.
- the provision of the sealing element on the control slide and on the impeller also advantageously allows a safe sealing of the discharge from the electric pump in the closed position of the control slide, wherein at the same time the closing element of the control slide is supported in its closed position against the impeller so that a possibly generated by the coolant back pressure can not bend or move the control slide so that a leakage flow is generated in the coolant pump.
- a brake element is further provided, by means of which the impeller can be fixed against an inner wall of the pump housing.
- the brake element is formed according to the one embodiment of the impeller, and preferably consists of a preloaded brake spring or plate-shaped brake disc, preferably at their radially outer ends, in the radial direction inwardly substantially wedge-shaped tapered, having thickenings, wherein the brake element preferably means the thickening, with the adjacent to the electric motor inner wall of the pump housing is frictionally engageable to set the impeller against the pump housing.
- the braking element in particular with its thickenings, is designed such that it dissolves with increasing, caused by the drive shaft of the electric motor, the rotational speed of the impeller from the inner wall of the pump housing to release the impeller.
- a kind of starting operation can be achieved in an advantageous manner when the control slide and the impeller are engaged with each other and the rotation of the drive shaft is transmitted by the adhesion between the impeller and control slide on the impeller. In this way, a smooth start of the pump power of the electric coolant pump can be realized.
- the invention further provides a suitable impeller and a method for controlling a flow of coolant in a cooling system according to the invention.
- the impeller comprises: a plurality of impeller blades, preferably radial pump-shaped, formed on the impeller surface facing a coolant supply; a recess for receiving a drive shaft; a control slide connected to the impeller; and a brake element disposed on the impeller.
- the impeller according to the invention is advantageous for use in a coolant pump according to the invention discussed above, and a corresponding, this coolant pump having cooling system used.
- control slide at its front end to a radially outwardly disposed first sealing element, wherein the impeller has at its radially outer end a radially disposed within the control slide second sealing element.
- control slide is, according to another embodiment, formed integrally with the impeller such that the blades of the impeller penetrate the control slide in the axial direction.
- the braking element is formed on a rear surface of the impeller.
- the brake element consists of a preloaded brake spring or plate-shaped brake disc, which is frictionally engageable with an opposite surface of the rear surface of the impeller to set the impeller against this surface.
- the braking element is designed such that its braking effect decreases with increasing rotational speed of the impeller, wherein it approaches the rear surface of the impeller to release the impeller.
- control slide is designed such that it follows the contour of the impeller and has at its outer end a radially encircling closing element.
- control slide in this case in its end region on a hollow, chamber-like portion formed on the inner peripheral wall, a threaded portion is formed.
- the current operating state of the internal combustion engine has at least a start-stop state, a warm-up state, a low-load state, a normal load state, an eco state, a high-speed state, and a residual heat storage state on.
- the start-stop state denotes a drive state in which the internal combustion engine is temporarily stopped, for example, when stopping at a red light or the like, to save fuel in this way.
- the warm-up state means a driving state in which, particularly at the cold start of the internal combustion engine, water standing in the cooling system is generated due to intermittent circulation of the coolant, so that the temperature of the internal combustion engine can be quickly brought to its optimum operating temperature.
- the low-load state means a drive state in which the internal combustion engine is operated at a low speed, for example, in idling operation.
- the normal load state means a drive state in which the internal combustion engine, preferably in the middle speed range, is operated to apply a drive power to the vehicle.
- the eco-state refers to a driving state in which the internal combustion engine is normally operated, and by means of a control intervention in the cooling system, the coolant temperature is maintained in an increased range, so that a more efficient fuel combustion and thus a more economical driving operation is possible.
- the high-speed state refers to a driving state in which the internal combustion engine is operated at high speed with increased cooling demand, for example when driving on a highway or the like.
- the residual heat storage state finally designates a drive state in which the internal combustion engine is switched off and the temperature of the coolant is to be kept high as long as possible in order to achieve a shortened warm-up phase when the internal combustion engine is restarted, whereby the internal combustion engine is faster in its optimum temperature range can be operated.
- control parameters in the refrigeration cycle map include at least a desired coolant temperature, and / or a desired engine temperature, and / or a desired coolant flow rate, and / or the like.
- the secondary coolant pump when the current operating state of the internal combustion engine is a warm-up state, the secondary coolant pump is switched to an OFF state with the control valve closed and a coolant flow through the main coolant pump is arranged by means disposed in the main coolant pump Control valve interrupted, so that a circulation of the coolant is interrupted.
- the secondary coolant pump when the current operating state of the internal combustion engine is a start-stop state in which the main coolant pump is temporarily without power during a stop phase of the internal combustion engine, the secondary coolant pump is switched to an ON state , whereby the coolant is circulated through the secondary coolant pump.
- a coolant flow through the main coolant pump is interrupted by means of a control spool disposed in the main coolant pump and the secondary coolant pump is switched to an ON state , whereby the coolant is circulated through the secondary coolant pump.
- the secondary coolant pump when the current operating state of the internal combustion engine is a normal load state, the secondary coolant pump is switched to an OFF state and its control valve is closed, whereby the coolant in the coolant circuit is circulated through the main coolant pump.
- the operation of the main coolant pump is selectively interrupted by means of an overrunning clutch provided on the belt drive of the main coolant pump or a control slide arranged in the main coolant pump is activated in such a way is that the coolant flow in the main coolant pump is interrupted, and the coolant is circulated through the secondary coolant pump to obtain a desired increased engine temperature.
- the coolant flow of the main coolant pump when the current operating state of the internal combustion engine is the high-speed state is, the coolant flow of the main coolant pump, at least partially, is passed in the bypass mode via the secondary coolant pump to the inlet side of the main coolant pump.
- both the control slide of the main coolant pump and the control slide of the secondary coolant pump are closed in order to prevent circulation of the coolant in the cooling circuit.
- Fig. 1A shows a perspective view of a controllable cooling system 1 according to an embodiment of the present invention.
- the cooling system 1 consists of a coolant circuit for supplying and discharging coolant from and to an internal combustion engine (not shown) of a vehicle, wherein the coolant via a arranged in the coolant line radiator (not shown) with the environment of the vehicle in heat exchange occurs.
- a coolant line 13 from the vehicle radiator to a formed on a main coolant pump 3 feed 17.
- This feed 17 is formed in the embodiment shown in a flange, but can also be in the form of a line, a nozzle, an opening, a screw or Bayonet connection or the like may be formed.
- the main coolant pump 3 is formed in the present embodiment as a radial pump and comprises a pump housing with a pump chamber (not shown) formed therein, in which an impeller is arranged.
- This impeller is designed as a radial pump impeller and arranged on a pump shaft in the pump housing of the main coolant pump 3.
- a pulley 57 which is connected via a (not shown) wedge or toothed belt with a pulley of the internal combustion engine.
- a rotation movement is transmitted to the pulley 57 of the main coolant pump 3 by the belt, whereby it is driven.
- the main coolant pump 3 shown in this embodiment is an axially impinged coolant pump which, by means of the impeller arranged in the pump chamber, forwards the coolant to be conveyed radially outwards to a discharge 15.
- This discharge 15 is analogous to the feed 17, formed in the embodiment shown in a flange. However, it may also be in the form of a line, a nozzle, an opening, a screw or bayonet connection or the like.
- the main coolant pump 3 also has in its pump chamber a (also not shown) concentrically on the drive shaft, the impeller encompassing arranged control slide, which surrounds the impeller in its closed position in its closed position to one through the coolant pump 3 interrupted flow of coolant to interrupt.
- Such pumps are marketed successfully by the same Applicant in the market and are for example in the document DE 10 2005 004 315 B4 .
- the main coolant pump 3 of this embodiment the discharge 15, via which the coolant is conveyed from the main coolant pump 3 to the internal combustion engine.
- a heating circuit may be provided in the cooling system, by means of which from the main coolant pump 3, a cooling medium via a heating line 19 in the heating circuit can be introduced.
- a regulator or valve may be arranged in the main coolant pump 3 which conducts the coolant flow conveyed by the pump 3 into the heating circuit.
- a secondary coolant pump 5 is arranged parallel to the main coolant pump 3, Parallel to the main coolant pump 3, a secondary coolant pump 5 is arranged.
- the feed 9 to the secondary coolant pump 5 branches off at a point in front of the feed 17 of the main pump 3 from the coolant line 13.
- the secondary coolant pump 5 is also formed in this embodiment as an axially impinged radially conveying pump, and is operated by an electric motor 7, which is arranged on a coolant supply 9 facing away portion of the secondary coolant pump 5.
- the coolant supplied from the supply line 13 is sucked by the suction effect of a arranged in the secondary coolant pump 5 impeller 25 in the secondary coolant pump 5 and from there via the arranged in a pump chamber 53 impeller 25 via the discharge 11th discharged into the discharge 15 of the main coolant pump 3, without being affected by the Main pump 3 to flow.
- the secondary coolant pump 5 thus forms a type of bypass path through which the coolant to be delivered can be circulated as a bypass coolant flow, bypassing the main coolant pump 5 in the cooling circuit coming from the radiator to the internal combustion engine
- the supply 9 and the discharge 11 of the secondary coolant pump of the embodiment shown are formed in a flange. However, they may also be in the form of a line, a nozzle, an opening, a screw or bayonet connection or the like.
- FIG. 2A A partial sectional view of the in the Characters. 1A and 1B shown, electrically operated coolant pump 5 is in Fig. 2A shown.
- coolant pump 5 is, as described above, formed as an axially impinged radial pump, and includes a pump chamber 53 which is formed in a pump housing 51.
- an electric motor 7 is arranged on an end of the secondary coolant pump 5 facing away from the feed 9.
- the electric motor of this embodiment has a power between 20W and 100W and is designed as a dry runner, whereby high engine speeds of over 12,000 U / min are possible with low power consumption.
- the drive shaft 21 is sealed in the embodiment shown here via a shaft seal 29 against the coolant to prevent ingress of coolant into the electric motor 7.
- the impeller 25 and a control slide 31 Concentric on the drive shaft 21, the impeller 25 and a control slide 31 are arranged.
- the impeller 25 is held by retaining elements 47 positively on the drive shaft.
- control slide 31 essentially follows the contour of the end face of the impeller 25, wherein the wing blades 39 penetrate the control slide top.
- a sleeve-shaped or chamber-like shaped portion 33 is formed on the inner wall circumference, a threaded portion is provided.
- a complementary threaded portion is formed on a front portion 23 of the drive shaft 21.
- the Fig. 2A shows the secondary coolant pump 5 in a state in which the control slide 31 is open.
- a sealing element 45 is arranged at a radially outer end of the impeller 25, within a closing element 35 of the control slide 31, a sealing element 45 is arranged.
- Another sealing element 43 is arranged on the radially outer end face of the control slide 31.
- a closing member 35 receiving, circular the circumferential contour of the control slide 31 following, recess 37 is formed.
- the closing element 35 formed thereon is received in this recess 37 and is rotatably held therein, so that the impeller 25 can rotate with the control slide formed thereon 31 by the driving force of the drive shaft 21.
- the Fig. 3A shows the electrically operated, controllable secondary coolant pump 5 from FIGS. 2A and 2B in the closed state of the control slide 31.
- the control slide 31 of the coolant pump 5 is, as shown schematically in the FIGS. 2A and 3A indicated, moved by slow forward or reverse rotation of the drive shaft 21 of the electric motor 7 in the respective working position.
- control valve 31 is moved from its closed position to the open position, in which it rests against the contour of the impeller 25 at its surface, so that the impeller blades 39 can penetrate the control slide 31 and can generate the pumping action in the coolant pump 5 when the impeller rotates at operating speed.
- control slide 31 When the control slide 31 by a reverse rotation of the drive shaft 21 in the in Fig. 3A In contrast, the control slide 31, in its fully closed position, comes into contact with a wall section of the pump housing 51 facing the feed 9.
- the trained on the control slide 31 sealing element 43 is pressed against the pump housing wall and seals the pump chamber 53 against the Outlet 11 of the pump 5 from.
- the sealing element 45 formed on the rear section of the impeller 25 supports the closing element 35 formed as the outer circumferential leg of the control slide 31 from below, thus producing a sufficiently reliable sealing effect.
- the sealing element 43 formed on the control slide 31 is formed larger than the sealing element 45 formed on the impeller 25 in order to achieve a sufficiently large sealing effect against the wall surface of the pump chamber.
- the pressure acting back on the annular surface from the pressure side of the main coolant pump 3, which results from the diameter differences of the sealing elements 43, 45 due to the different sealing diameters, the pressure acting back on the annular surface from the pressure side of the main coolant pump 3, which results from the diameter differences of the sealing elements 43, 45.
- the sealing function of the sealing elements 43, 45 is thereby reinforced hydraulically, regardless of whether the electric motor 7 of the secondary coolant pump 5 is running or not.
- a brake element 27 is arranged on one of the feed 9 facing away from the end of the impeller 25, which presses against an adjacent to the electric motor 7 inner wall surface 49 in the pump housing 51.
- This brake element 27 is designed as a brake disk or prestressed plate spring and has in the embodiment shown at its radially outer ends wedge-shaped tapered thickenings 41, which come into frictional engagement with the inner wall surface 49 of the pump housing 51.
- the brake element 27 dissolves due to the increasing centrifugal force by the rotation of the drive shaft 21 of the wall 49 of the pump housing 51 and are the rotation of the impeller 25, and thus the pumping function of the coolant pump 5 free.
- Fig. 4 shows a perspective view of the in the Figures 2 and 3 shown impeller 25 of the electrically controllable coolant pump 5 with a control slide 31 arranged thereon.
- control slide 31 As shown in this view from the front, the control slide 31, the (not shown) impeller 25 completely, wherein the impeller blades 39 penetrate the control slide 31.
- the control slide 31 has in its center a drive shaft 21 of the electric motor 7 receiving, chamber-like portion 33.
- This chamber-like portion 33 has, as shown schematically in FIG Fig. 5 indicated on the inner wall a threaded portion which is complementary to in Fig. 5 not shown threaded portion 23 of the drive shaft 21 is.
- Fig. 5 shows a partial sectional view of an axially impinged, radially conveying impeller 25, as it comes in a designed as a radial pump pump 3, 5 of the embodiment discussed here used.
- a hub-like receptacle 55 for receiving the (not shown) drive shaft 21 is formed.
- Fig. 6 shows the impeller 25 from Fig. 5 with the control slide 31 arranged thereon in a complete sectional view.
- the impeller 25 and the control slide 31 are arranged concentrically to each other and run along the drive shaft 21 reaching from the electric motor 7 in the pumping chamber 51, which are not shown here for simplicity of illustration.
- control slide 31 By forward or reverse rotation of the drive shaft 21 of the electric motor 7, the control slide 31 can thereby be moved to the desired open or closed position.
- cooling system which uses the mechanically operated, controllable coolant pump 3 and the electrically operated, controllable coolant pump 5, can be advantageously in consideration of predetermined control parameters such as a desired coolant temperature, and / or a desired engine temperature, and / or a desired coolant flow rates and / or the like set different operating conditions.
- a control device is therefore additionally provided according to the embodiment discussed here, which controls the mechanically operated main coolant pump 3 and the electrically operated secondary coolant pump 5 in order to achieve the respective operating states.
- Exemplary operating states are a start-stop state, a warm-up state, a low-load state, a normal-load state, an eco state, a high-speed state, and a residual heat storage state.
- the start-stop state denotes a drive state in which the internal combustion engine is temporarily stopped, for example, when stopping at a red light or the like, to save fuel in this way.
- the secondary coolant pump 5 is switched to an ON state. State is switched, whereby the coolant is circulated through the secondary coolant pump 5.
- the warm-up state further designates a driving state in which, particularly at the cold start of the internal combustion engine, water standing in the cooling system 1 due to intermittent circulation of the coolant is generated, so that the temperature of the internal combustion engine can be quickly brought to its optimum operating temperature.
- the secondary coolant pump 5 is switched to an OFF state, and a coolant flow through the main coolant pump 3 is interrupted by means of the control spool disposed in the main coolant pump, so that circulation of the coolant is interrupted.
- the cooling system 1 of the embodiment discussed here it is possible to control the pumps 3, 5 in the warm-up phase of the internal combustion engine such that the slides of both pumps 3, 5 are closed, so that no coolant is circulated through the two pumps 3, 5 can.
- the electrically operated coolant pump 5 can also be switched off, wherein a backflow and circulation of the coolant can be prevented by the closed control slide 31.
- the pump 5 is controlled such that the control slide 31 prevents circulation of the coolant.
- the low-load state further designates a drive state in which the internal combustion engine is operated at a low speed, for example, in idling operation.
- a coolant flow through the main coolant pump 3 is interrupted by means of the control spool disposed in the main coolant pump and the secondary coolant pump 5 is switched to an ON state is, whereby the coolant is circulated through the secondary coolant pump 5.
- the secondary electric coolant pump 5 it is possible to switch on the secondary electric coolant pump 5 to carry out so-called electric boosting, in other words, the circulation of the coolant by the delivery rate of the internal combustion engine and thereby possibly insufficient circulation performance of the main coolant pump 3 electrically controlled secondary coolant pump 5 to assist.
- control slide 31 of the electrically operated coolant pump 3 is usually brought into its closed position or the pump 3 is switched off and realized the circulation of the coolant exclusively via the mechanically operated main coolant pump 3 ,
- the electric coolant pump 5 can be switched on to support the coolant delivery through the mechanical coolant pump 3.
- the normal load state means a drive state in which the internal combustion engine, preferably in the middle speed range, is operated to apply a drive power to the vehicle.
- the secondary coolant pump 5 is switched to an OFF state and its control slide 31 is usually brought into the closed position, whereby the coolant in the coolant circuit is circulated through the main coolant pump 3.
- the eco-state refers to a driving state in which the internal combustion engine is normally operated, and by means of a control intervention in the cooling system, the coolant temperature is maintained in an increased range, so that a more efficient fuel combustion and thus a more economical driving operation is possible.
- the operation of the main coolant pump 3 is selectively interrupted by means of a provided on the pulley 57 of the main coolant pump 3 overrunning clutch, and / or arranged in the main coolant pump 3 control slide controlled in such a way that the coolant flow in the main coolant pump 3 is interrupted.
- the coolant is circulated through the secondary coolant pump 5 to obtain a desired increased engine temperature.
- the high-speed state refers to a driving state in which the internal combustion engine is operated at high speed with increased cooling demand, for example when driving on a highway or the like.
- the coolant flow of the main coolant pump 3 is, at least partially, bypassed via the secondary coolant pump 5 to the intake side of the main coolant pump 5 leading to the internal combustion engine ,
- the residual heat storage state finally designates a drive state in which the internal combustion engine is switched off and the temperature of the coolant is to be kept high as long as possible in order to achieve a shortened warm-up phase when the internal combustion engine is restarted, whereby the internal combustion engine is faster in its optimum temperature range can be operated.
- the coolant flow from the engine back to the radiator is shut off by shutting off the two pumps 3, 5 by means of the slides arranged therein, whereby a heat exchange of the coolant with the environment of the vehicle can take place only very hesitant.
- the heat generated by the internal combustion engine is thus maintained over a longer period of time when the motor vehicle is at a standstill and can be used, and later restarted, to speed up the operating temperature.
- control slide 31 is displaced along the drive shaft 21 by means of a drive configured as a threaded spindle
- the control slide may be pneumatically actuated relative to the impeller rather than via the threaded spindle , magnetically and / or hydraulically operated actuator or an electric servomotor along the drive shaft 21 is moved.
- control slide 31 formed separately on the impeller 25, it is also conceivable that the control slide 31 is integrally formed in the impeller 25.
- integrally formed in the impeller 25 control slide 31 may be formed such that on the outer surfaces of the impeller 25 leg-like wall surfaces are formed, which are the same effect as the closing element 35 of the control slide 31.
- an impeller 25 designed in this way can be displaced along the drive axis 21, so that the thigh-like wall elements protruding toward the pump housing rear side seal the discharge 11 in a closed position of the impeller 25 thus formed close.
- the wall elements in the formed in the housing wall of the pump housing 51 receptacle 37 are rotatably mounted about the drive shaft 21.
- the impeller 25 is arranged encompassing in the pump chamber 53 and can be rotatably moved into an open and closed position. It is also possible to arrange a sleeve-shaped control slide 31 behind the impeller 25, which is then pushed over the impeller 25, for example by the above-discussed threaded spindle drive or a pneumatically, magnetically and / or hydraulically operated actuator or an electric servomotor, and the Outlet 11 of the secondary pump sealingly closes.
- the impeller discussed above with the control slide arranged thereon can also be used as a kind of check valve in a piping system.
- the slide can continue to promote on the impeller and the shaft shaft holding the oncoming medium or, at a correspondingly high flow pressure against the conveying direction, close the pipe system by moving the control slide in its closed position.
- the electric coolant pump 5 discussed here has an electric motor 7 with a power between 20W and 100W, a more powerful electric motor, for example up to 2 kW, can also be used, so that the electric coolant pump may possibly also take over the circulation of the coolant as the only pump in the cooling circuit can.
- the present invention relates to a controllable cooling system 1 for a motor vehicle with a coolant circuit which leads and discharges a coolant to an internal combustion engine, as well as a mechanically operated, controllable main coolant pump 3 and an electrically operated, controllable secondary coolant pump 5.
- the cooling system further includes a control device that controls the main coolant pump 3 and the secondary coolant pump 5 depending on operating conditions of the internal combustion engine.
- the invention further provides an electrically operated, controllable secondary coolant pump 5 for such a cooling system 1, an impeller 25 which can be used in this secondary coolant pump 5 and a method for regulating the coolant flow in such a cooling system 1.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Motor Or Generator Cooling System (AREA)
Claims (25)
- Système de refroidissement réglable (1) pour un véhicule automobile, comprenant :un circuit de fluide de refroidissement pour l'amenée et l'évacuation d'un fluide de refroidissement, vers et hors d'un moteur à combustion interne du véhicule ;une pompe à fluide de refroidissement principale (3) à fonctionnement mécanique et réglable, comportant un conduit d'amenée (17) pour la conduction du fluide de refroidissement vers la pompe à fluide de refroidissement principale (3) ainsi qu'un conduit d'évacuation (15) pour la sortie du fluide de refroidissement vers le moteur à combustion interne, etune pompe à fluide de refroidissement secondaire (5) à fonctionnement électrique et réglable, comportant un conduit d'amenée (9) pour la conduction du fluide de refroidissement vers la pompe à fluide de refroidissement secondaire (5), ainsi qu'un conduit d'évacuation (11) pour la sortie d'un fluide de refroidissement refoulé comme flux de dérivation de fluide de refroidissement dans la direction de la pompe à fluide de refroidissement principale (3), oùla pompe à fluide de refroidissement secondaire (5), dérivée d'un conduit de fluide de refroidissement (13) menant à la pompe à fluide de refroidissement principale (3) dans la direction d'écoulement du fluide de refroidissement, est disposée en amont de la pompe à fluide de refroidissement principale (3) dans la direction d'écoulement,le fluide de refroidissement refoulé par la pompe à fluide de refroidissement secondaire (5) vers la pompe à fluide de refroidissement principale (3) sans traverser la pompe à fluide de refroidissement principale (3), est amené vers le conduit d'évacuation (15) menant au moteur à combustion interne,la pompe à fluide de refroidissement secondaire (5) comporte un carter de pompe (51) avec une chambre de pompe (53) ménagée dans celui-ci, un moteur électrique (7) étant monté contre une partie du carter de pompe (51), lequel fournit une puissance d'entraînement pour la pompe à fluide de refroidissement secondaire (5) au moyen d'un arbre d'entraînement (21) pénétrant dans la chambre de pompe (53),la pompe à fluide de refroidissement secondaire (5) comprend dans la chambre de pompe (53) un rouet (25) ayant fonction d'organe de refoulement, monté coaxialement sur l'arbre d'entraînement (21) et raccordé de manière entraînable à celui-ci, et oùla pompe à fluide de refroidissement secondaire (5) comprend un tiroir de réglage (31) formé sur le rouet (25), lequel est déplaçable au moins vers une position d'ouverture et une position de fermeture pour la régulation du flux de dérivation de fluide de refroidissement refoulé par la pompe à fluide de refroidissement secondaire (5), en particulier pour empêcher un retour du fluide de refroidissement dans le sens contraire au sens de refoulement de la pompe à fluide de refroidissement secondaire (5).
- Système selon la revendication 1, où la pompe à fluide de refroidissement principale (3) comporte un carter de pompe avec une chambre de pompe ménagée dans celui-ci, un rouet ayant fonction d'organe de refoulement étant monté dans la chambre de pompe et entraîné par un arbre pénétrant dans la chambre de pompe, lequel est préférentiellement entraîné par une courroie.
- Système selon la revendication 1 ou 2, où la pompe à fluide de refroidissement principale (3) comporte en outre un tiroir de réglage formé sur le rouet et coaxial à celui-ci, lequel est déplaçable au moins vers une position d'ouverture et une position de fermeture, préférentiellement le long du rouet monté dans la chambre de pompe pour la régulation du flux de fluide de refroidissement refoulé par la pompe à fluide de refroidissement principale (3).
- Système selon la revendication 1, où le moteur électrique (7) de la pompe à fluide de refroidissement secondaire (5) est réalisé comme moteur ventilé ou comme moteur noyé.
- Système selon l'une des revendications 1 à 4, comportant en outre un dispositif de commande, lequel commande la pompe à fluide de refroidissement principale (3) et/ou la pompe à fluide de refroidissement secondaire (5) en fonction d'états de service donnés du moteur à combustion interne.
- Pompe électrique à fluide de refroidissement (5) utilisable dans un système de refroidissement (1) selon l'une des revendications 1 à 5, ladite pompe électrique à fluide de refroidissement (5) étant réalisée comme pompe radiale, et celle-ci comprenant :un carter de pompe (51) ;un conduit d'amenée (9) préférentiellement en forme de bride, et un conduit d'évacuation (11) préférentiellement en forme de bride ;une chambre de pompe (53) ménagée dans le carter de pompe (51), où une roue de pompe (25) est disposée sur un arbre de pompe (21) dans la chambre de pompe (53), laquelle est entraînable par un moteur électrique (7) au moyen de l'arbre de pompe (21), etun tiroir (31) déplaçable au moins vers une position d'ouverture et une position de fermeture pour la régulation d'un flux de dérivation de fluide de refroidissement refoulé par la pompe à fluide de refroidissement (5), en particulier en particulier pour empêcher un retour du fluide de refroidissement dans le sens contraire au sens de refoulement de la pompe à fluide de refroidissement secondaire (5), oùle fluide de refroidissement à refouler, dérivé d'un conduit de fluide de refroidissement (13), est refoulable vers la chambre de pompe (53) ménagée dans le carter de pompe (51) par le conduit d'amenée (9) sensiblement conique, et le fluide de refroidissement refoulé dans la chambre de pompe (53) est évacuable de la chambre de pompe (53) par le conduit d'évacuation (11) sensiblement radialement perpendiculaire à la conduite d'amenée (9) ; oùla roue de pompe (25) disposée dans la chambre de pompe (53), réalisée comme rouet de pompe radiale aspire le fluide de refroidissement par rotation dans la direction axiale et le refoule en direction radiale dans le conduit d'évacuation (11) ;le tiroir (31) est réalisé comme tiroir de réglage (31) disposé sur le rouet (25) coaxialement à l'arbre de pompe (21) ; etle moteur électrique (7) est préférentiellement disposé sur une partie du carter de pompe (51) distante du conduit d'amenée (9) ; oùle moteur électrique (7) comporte un arbre d'entraînement (21) pénétrant dans la chambre de pompe (53),le rouet (25) et le tiroir de réglage (31) sont disposés coaxialement sur l'arbre d'entraînement (21), et préférentiellement maintenus sur l'arbre d'entraînement (21) par correspondance de forme au moyen d'éléments de maintien (47), et oùle tiroir de réglage (31) est de forme cylindrique, entourant le rouet (25), et déplaçable au moins vers une position d'ouverture et une position de fermeture dans la direction axiale du rouet (25).
- Pompe à fluide de refroidissement (5) selon la revendication 6, où le tiroir de réglage (31) est raccordé au rouet (25) de telle manière que les ailettes (39) du rouet (25) traversent le tiroir de réglage (31).
- Pompe à fluide de refroidissement (5) selon la revendication 6 ou 7, où le moteur électrique (7) est réalisé comme moteur ventilé et est rendu étanche par rapport à la chambre de pompe (53) au moyen d'un joint d'arbre (29) monté sur l'arbre d'entraînement (21), ou bien où le moteur électrique (7) est réalisé comme moteur noyé et refroidi au moyen du fluide de refroidissement refoulé par la pompe à fluide de refroidissement (5).
- Pompe à fluide de refroidissement (5) selon l'une des revendications 6 à 8, où le tiroir de réglage (31) est déplaçable le long de l'arbre d'entraînement (21) au moyen d'au moins un élément de réglage disposé dans la pompe à fluide de refroidissement (5), l'élément de réglage étant réalisé comme tiroir actionné pneumatiquement, magnétiquement et/ou hydrauliquement ou comme servomoteur électrique, ou le tiroir de réglage (31) présentant une partie (33) entourant l'arbre d'entraînement (21), opposée au conduit d'amenée (9), sur la périphérie intérieure de laquelle est formée une section filetée.
- Pompe à fluide de refroidissement (5) selon l'une des revendications 6 à 9, où une section filetée est formée sur une partie (23) de l'arbre d'entraînement (21) distante du moteur électrique (7), laquelle est complémentaire à la section filetée (33) du tiroir de réglage (31), et où le tiroir de réglage (31), est déplaçable le long de l'arbre d'entraînement (21) par engrènement réciproque des sections filetées (23, 33).
- Pompe à fluide de refroidissement (5) selon l'une des revendications 6 à 10, où le tiroir de réglage est formé de manière à suivre le contour de la face avant du rouet (25) et présente à son extrémité extérieure un élément de fermeture (35) radialement périphérique disposé contre celle-ci, un premier élément d'étanchéité (43) radialement extérieur au tiroir de réglage (31) étant disposé sur une extrémité de l'élément de fermeture (35) distante du moteur électrique (7), un logement (37) étant préférentiellement formé dans la chambre de pompe (53), dans lequel l'élément de fermeture (35) du tiroir de réglage (31) peut être placé dans sa position d'ouverture.
- Pompe à fluide de refroidissement (5) selon l'une des revendications 6 à 11, où un deuxième élément d'étanchéité (45) radialement intérieur au tiroir de réglage (31) est disposé sur une extrémité radialement extérieure du rouet (25) opposée au moteur électrique (7).
- Pompe à fluide de refroidissement (5) selon la revendication 11 ou 12, où le diamètre du premier élément d'étanchéité (43) est supérieur au diamètre du deuxième élément d'étanchéité (45).
- Pompe à fluide de refroidissement (5) selon l'une des revendications 11 à 13, où le conduit d'évacuation (11) peut être obturé de manière étanche par le tiroir de réglage (21) dans sa position de fermeture, au moyen de l'élément de fermeture (35), du premier élément d'étanchéité (43) et du deuxième élément d'étanchéité (45).
- Pompe à fluide de refroidissement (5) selon l'une des revendications 6 à 14, où un élément de frein (27) est en outre prévu, au moyen duquel le rouet (25) peut être fixé contre une paroi intérieure (49) du carter de pompe (51),
où ledit élément de frein (27) est préférentiellement formé sur le rouet (25), et préférentiellement constitué d'un ressort de frein précontraint ou d'un disque de frein en forme de plateau, présentant préférentiellement à ses extrémités radialement extérieures, des épaississements (41) à tracé sensiblement trapézoïdal en direction radiale vers l'intérieur, ledit élément de frein (27) pouvant être mis en contact de friction, préférentiellement au moyen des épaississements (41), avec la paroi intérieure (49) du carter de pompe (51) attenante au moteur électrique (7), pour fixer le rouet (25) contre le carter de pompe (51), et
où l'élément de frein (27) est préférentiellement formé, en particulier par ses épaississements (41), de manière à de desserrer de la paroi intérieure (49) du carter de pompe (51) pour libérer le rouet (25) à mesure qu'augmente la vitesse de rotation du rouet (25) due à l'arbre d'entraînement (21) du moteur électrique (7). - Rouet (25) utilisable dans une pompe à fluide de refroidissement (5) selon l'une des revendications 6 à 15, pour un système de refroidissement (1) selon l'une des revendications 1 à 5, comprenant :une pluralité d'ailettes (39), préférentiellement caractéristiques pour une pompe radiale, formées sur la surface du rouet opposée à un conduit d'amenée de fluide de refroidissement (9) ;une cavité (55) pour le logement d'un arbre d'entraînement (21) ;un tiroir de réglage (31) raccordé au rouet (25) ; etun élément de frein (27) disposé sur le rouet (25).
- Rouet (25) selon la revendication 16, où le tiroir de réglage (31) présente à son extrémité avant un premier élément d'étanchéité (43) radialement extérieur, et où le rouet (25) présente à son extrémité radialement extérieure un deuxième élément d'étanchéité (45) radialement intérieur au tiroir de réglage (31).
- Rouet (25) selon la revendication 16 ou 17, où le tiroir de réglage (31) est formé d'un seul tenant avec le rouet (25) de telle manière que les ailettes (39) du rouet (25) traversent le tiroir de réglage (31) dans la direction axiale.
- Rouet (25) selon la revendication 16, où l'élément de frein (27) est formé sur une surface arrière du rouet (25),
où l'élément de frein (27) est préférentiellement constitué d'un ressort de frein précontraint ou d'un disque de frein en forme de plateau pouvant être mis en contact de friction avec une face opposée à la surface arrière du rouet (25), pour fixer le rouet (25) contre ladite face, et
où l'élément de frein (27) est préférentiellement formé de telle manière que son action de freinage diminue à mesure qu'augmente la vitesse de rotation du rouet (25), en se rapprochant de la surface arrière du rouet (25) pour libérer le rouet (25). - Rouet selon l'une des revendications 16 à 18, où le tiroir de réglage (31) est formé de manière à suivre le contour du rouet (25) et présente à son extrémité extérieure un élément de fermeture (35) radialement périphérique.
- Rouet selon l'une des revendications 16 à 18 et 20, où le tiroir de réglage (31) présente dans sa région frontale une partie (33) creuse en forme de chambre, sur la périphérie intérieure de laquelle est formée une section filetée.
- Procédé de régulation d'un flux de fluide de refroidissement dans un système de refroidissement (1) d'un véhicule automobile selon l'une des revendications 1 à 5, où ledit système de refroidissement (1) comprend une pompe à fluide de refroidissement principale (3) réglable, actionnée mécaniquement par une force d'entraînement d'un moteur à combustion interne disposé dans le véhicule, ainsi qu'une pompe à fluide de refroidissement secondaire (5) réglable, actionnée électriquement par un moteur électrique séparé, ledit procédé comprenant les étapes suivantes :détermination d'un état de service actuel d'un moteur à combustion interne du véhicule ;détermination d'une température d'un fluide de refroidissement circulant dans un circuit de fluide de refroidissement du véhicule ;extraction de paramètres de commande d'un diagramme de circuit de refroidissement ;commande de la pompe à fluide de refroidissement principale (3) et de la pompe à fluide de refroidissement secondaire (5) sur la base des paramètres de commande extraits du diagramme de circuit de refroidissement ; etrégulation du flux de fluide de refroidissement par commutation sélective de la pompe à fluide de refroidissement principale (3) et/ou de la pompe à fluide de refroidissement secondaire (5).
- Procédé selon la revendication 22, où l'état de service actuel du moteur à combustion interne comprend un état de marche-arrêt, un état de chauffe, un état de faible charge, un état de charge normale, un état ECO, un état de vitesse de rotation élevée et un état d'accumulation de chaleur résiduelle.
- Procédé selon la revendication 22 ou 23, où les paramètres de commande du diagramme de circuit de refroidissement comprennent au moins une température de fluide de refroidissement souhaitée et/ou une température de moteur souhaitée et/ou un débit de fluide de refroidissement et/ou des paramètres similaires.
- Procédé selon la revendication 22, où,
si l'état de service actuel du moteur à combustion interne est l'état de chauffe, la pompe à fluide de refroidissement secondaire (5) est commutée vers un état OFF et un flux de fluide de refroidissement par la pompe à fluide de refroidissement principale (3) est interrompu au moyen d'un tiroir de réglage (31) disposé dans la pompe à fluide de refroidissement principale (3), de manière à interrompre la circulation du fluide de refroidissement,
si l'état de service actuel du moteur à combustion interne est l'état de marche-arrêt, où la pompe à fluide de refroidissement principale (3) est temporairement sans entraînement pendant une phase d'arrêt du moteur à combustion interne, la pompe à fluide de refroidissement secondaire (5) est commutée vers un état ON, où le fluide de refroidissement circule par la pompe à fluide de refroidissement secondaire (5),
si l'état de service actuel du moteur à combustion interne est l'état de faible charge, un flux de fluide de refroidissement par la pompe à fluide de refroidissement principale (3) est interrompu au moyen d'un tiroir de réglage disposé dans la pompe à fluide de refroidissement principale (3) et la pompe à fluide de refroidissement secondaire (5) est commutée vers un état ON, où le fluide de refroidissement circule par la pompe à fluide de refroidissement secondaire (5),
si l'état de service actuel du moteur à combustion interne est l'état de charge normale, la pompe à fluide de refroidissement secondaire (5) est commutée vers un état OFF et son tiroir de réglage (31) est fermé, le fluide de refroidissement circulant dans le circuit par la pompe à fluide de refroidissement principale (3),
si l'état de service actuel du moteur à combustion interne est l'état ECO, le fonctionnement de la pompe à fluide de refroidissement principale (3) est sélectivement interrompu au moyen d'un accouplement à course libre prévu sur l'entraînement à courroie de la pompe à fluide de refroidissement principale (3), ou un tiroir de réglage disposé dans la pompe à fluide de refroidissement principale (3) est commandé de manière à interrompre le flux de fluide de refroidissement dans la pompe à fluide de refroidissement principale (3), et à faire circuler le fluide de refroidissement par la pompe à fluide de refroidissement secondaire (5) pour obtenir une température de moteur supérieure souhaitée,
si l'état de service actuel du moteur à combustion interne est l'état de vitesse de rotation élevée, le flux de fluide de refroidissement de la pompe à fluide de refroidissement principale (3) est au moins partiellement conduit en mode de dérivation par la pompe à fluide de refroidissement secondaire (5) vers le côté d'admission de la pompe à fluide de refroidissement principale (5), ou
si l'état de service actuel du moteur à combustion interne est l'état d'accumulation de chaleur résiduelle, le moteur à combustion interne étant à l'arrêt, le tiroir de réglage de la pompe à fluide de refroidissement principale (3) ainsi que le tiroir de réglage (31) de la pompe à fluide de refroidissement secondaire (5) sont fermés pour empêcher une circulation du fluide de refroidissement dans le circuit.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011001090A DE102011001090A1 (de) | 2011-03-04 | 2011-03-04 | Regelbares Kühlsystem für ein Kraftfahrzeug, Kühlmittelpumpe hierfür, in der Kühlmittelpumpe verwendbares Flügelrad sowie Verfahren zum Regeln eines Kühlmittelflusses in einem derartigen Kühlsystem |
PCT/EP2011/005982 WO2012119622A2 (fr) | 2011-03-04 | 2011-11-29 | Système de refroidissement réglable pour véhicule automobile, pompe de liquide de refroidissement appropriée, roue à ailettes s'utilisant dans ladite pompe de liquide de refroidissement et procédé pour réguler un flux de liquide de refroidissement dans un système de refroidissement de ce type |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2681425A2 EP2681425A2 (fr) | 2014-01-08 |
EP2681425B1 true EP2681425B1 (fr) | 2016-07-06 |
Family
ID=45218633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11793659.1A Active EP2681425B1 (fr) | 2011-03-04 | 2011-11-29 | Système de refroidissement réglable pour véhicule automobile, pompe de liquide de refroidissement appropriée, roue à ailettes s'utilisant dans ladite pompe de liquide de refroidissement et procédé pour réguler un flux de liquide de refroidissement dans un système de refroidissement de ce type |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130333863A1 (fr) |
EP (1) | EP2681425B1 (fr) |
CN (1) | CN103459798B (fr) |
DE (1) | DE102011001090A1 (fr) |
ES (1) | ES2587598T3 (fr) |
WO (1) | WO2012119622A2 (fr) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160061092A1 (en) * | 2014-09-03 | 2016-03-03 | Borgwarner Inc. | Vehicle cooling system control |
CN104454113B (zh) * | 2014-09-30 | 2017-02-15 | 长城汽车股份有限公司 | 发动机水泵冷却装置和发动机冷却系统及其控制方法 |
US10655528B2 (en) * | 2015-11-04 | 2020-05-19 | Volvo Truck Corporation | Method of operating an internal combustion engine |
DE102015119097B4 (de) * | 2015-11-06 | 2019-03-21 | Pierburg Gmbh | Kühlmittelpumpe für eine Verbrennungskraftmaschine |
DE102015119092B4 (de) | 2015-11-06 | 2019-03-21 | Pierburg Gmbh | Verfahren zur Regelung einer mechanisch regelbaren Kühlmittelpumpe für eine Verbrennungskraftmaschine |
US10227987B2 (en) * | 2016-12-16 | 2019-03-12 | Borgwarner Emissions Systems Llc | Valve assembly integrated into a coolant pump and method for controlling the same |
US20180297466A1 (en) * | 2017-04-17 | 2018-10-18 | Autonomous Tractor Corporation | Electric and hydraulic drive system and methods |
DE102018130647A1 (de) | 2017-06-06 | 2019-08-14 | Denso Corporation | Wärmetauschgerät |
US10508587B2 (en) * | 2017-07-28 | 2019-12-17 | GM Global Technology Operations LLC | Controlling coolant fluid in a vehicle cooling system using a secondary coolant pump |
DE102017120191B3 (de) | 2017-09-01 | 2018-12-06 | Nidec Gpm Gmbh | Regelbare Kühlmittelpumpe für Haupt- und Nebenförderkreislauf |
DE102018104409A1 (de) * | 2018-02-27 | 2019-08-29 | Volkswagen Aktiengesellschaft | Kühlsystem und Brennkraftmaschine |
DE102018107776B4 (de) | 2018-04-03 | 2020-01-23 | Nidec Gpm Gmbh | Hybridangetriebene Doppelpumpe |
DE102018130472A1 (de) * | 2018-11-30 | 2020-06-04 | Nidec Gpm Gmbh | Schraubenspindelpumpe |
KR20200116676A (ko) * | 2019-04-02 | 2020-10-13 | 현대자동차주식회사 | 차량용 워터펌프 |
DE102019122718A1 (de) * | 2019-08-23 | 2021-02-25 | Nidec Gpm Gmbh | Kolbenstangenabdichtung |
DE102020130486A1 (de) * | 2019-12-16 | 2021-06-17 | ECO Holding 1 GmbH | Vorrichtung zur Handhabung von Fluid innerhalb eines zumindest teilweise elektrisch angetriebenen Fahrzeugs |
DE102020130553B3 (de) * | 2020-11-19 | 2022-01-05 | Nidec Gpm Gmbh | Pumpenvorrichtung für einen Kühlkreislauf eines Verbrennungsmotors eines Nutz- oder Kraftfahrzeuges |
DE102023002980B3 (de) | 2023-07-21 | 2024-10-10 | Mercedes-Benz Group AG | Pumpe für ein Kraftfahrzeug sowie Kraftfahrzeug |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1763554A1 (de) * | 1968-06-22 | 1971-11-11 | Loewe Pumpenfabrik Gmbh | Motorpumpe |
DE3006386C2 (de) * | 1980-02-21 | 1985-10-17 | Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co. KG, 7000 Stuttgart | Drehzahlabhängig steuerbares Rotations-Ventil |
FR2519694A1 (fr) * | 1982-01-08 | 1983-07-18 | Valeo | Circuit hydraulique economique pour le refroidissement d'un moteur a combustion interne de vehicule automobile |
US4828455A (en) * | 1982-12-21 | 1989-05-09 | Aisin Seiki Kabushiki Kaisha | Temperature responsive blade shroud-disk for thermostatic water pump |
GB9021164D0 (en) * | 1990-09-28 | 1990-11-14 | Componenta International Limit | Pumps |
DE29618558U1 (de) * | 1996-10-24 | 1996-12-19 | Wilo Gmbh, 44263 Dortmund | Kraftfahrzeug-Kühlwasserpumpe |
DE69927327T3 (de) * | 1998-07-28 | 2009-09-17 | Aisin Seiki K.K., Kariya | Kühlungseinrichtung für Brennkraftmaschinen |
AUPP724198A0 (en) * | 1998-11-23 | 1998-12-17 | Craig Davies Pty. Ltd. | Vehicle engine coolant pump housing |
DE10037823A1 (de) * | 2000-08-03 | 2002-02-14 | Daimler Chrysler Ag | Vorrichtung und Verfahren zur Regelung des Kühlwasserkreislaufes in einer Brennkraftmaschine |
DE10047387B4 (de) * | 2000-09-25 | 2013-09-12 | GPM Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt, Merbelsrod | Elektrisch angetriebene Kühlmittelpumpe |
JP2003063237A (ja) * | 2001-08-22 | 2003-03-05 | Denso Corp | 車両用空調装置 |
US6616059B2 (en) * | 2002-01-04 | 2003-09-09 | Visteon Global Technologies, Inc. | Hybrid vehicle powertrain thermal management system and method for cabin heating and engine warm up |
DE10214637A1 (de) * | 2002-04-02 | 2003-10-23 | Woco Franz Josef Wolf & Co Gmbh | Hybridantrieb und diesen verwendende Hybridpumpe, insbesondere für ein Kraftfahrzeug |
DE102005003881A1 (de) * | 2005-01-24 | 2006-07-27 | Volkswagen Ag | Verfahren zur Kühlung einer elektrischen Maschine und/oder dieser zugeordneten elektronischen Bauelementen in einem Kraftfahrzeug, insbesondere Hybridfahrzeug |
DE102005004315B4 (de) | 2005-01-31 | 2007-04-26 | Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt | Regelbare Kühlmittelpumpe |
DE102005024827A1 (de) * | 2005-05-27 | 2006-11-30 | Fev Motorentechnik Gmbh | Mechatronische Kühlmittelpumpen-Antriebsverbindung |
DE102005062200B3 (de) | 2005-12-23 | 2007-02-22 | Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt | Regelbare Kühlmittelpumpe |
DE102006036186A1 (de) * | 2006-08-01 | 2007-10-11 | Voith Turbo Gmbh & Co. Kg | Fahrzeugkühlkreislauf zur Kühlung eines Antriebsmotors und einer hydrodynamischen Bremse |
WO2009014382A2 (fr) | 2007-07-23 | 2009-01-29 | Postech Academy-Industry Foundation | Compositions d'adjuvant cxcl11 et utilisations de ces dernières |
JP2009041450A (ja) * | 2007-08-09 | 2009-02-26 | Hitachi Ltd | 内燃機関の冷却用電動ポンプ及びこれを用いた冷却装置 |
AT505644B1 (de) * | 2007-09-06 | 2011-09-15 | Tcg Unitech Systemtechnik Gmbh | Kühlmittelpumpe |
AT506107B1 (de) * | 2007-12-03 | 2009-11-15 | Tcg Unitech Systemtechnik Gmbh | Radialpumpe |
EP2235392A1 (fr) * | 2007-12-14 | 2010-10-06 | Reell Precision Manufacturing Corporation | Dispositif à ressort enveloppant immergé |
DE102008046424A1 (de) * | 2008-09-09 | 2010-03-11 | Schaeffler Kg | Regelbare Kühlmittelpumpe |
DE102008049204A1 (de) * | 2008-09-27 | 2010-04-01 | Man Nutzfahrzeuge Ag | Kühlsystem für Fahrzeuge mit flüssigkeitsgekühlter Brennkraftmaschine |
-
2011
- 2011-03-04 DE DE102011001090A patent/DE102011001090A1/de not_active Withdrawn
- 2011-11-29 CN CN201180068966.3A patent/CN103459798B/zh not_active Expired - Fee Related
- 2011-11-29 US US14/002,158 patent/US20130333863A1/en not_active Abandoned
- 2011-11-29 WO PCT/EP2011/005982 patent/WO2012119622A2/fr active Application Filing
- 2011-11-29 ES ES11793659.1T patent/ES2587598T3/es active Active
- 2011-11-29 EP EP11793659.1A patent/EP2681425B1/fr active Active
Also Published As
Publication number | Publication date |
---|---|
CN103459798A (zh) | 2013-12-18 |
WO2012119622A3 (fr) | 2012-10-26 |
US20130333863A1 (en) | 2013-12-19 |
DE102011001090A1 (de) | 2012-09-06 |
ES2587598T3 (es) | 2016-10-25 |
CN103459798B (zh) | 2016-03-16 |
WO2012119622A2 (fr) | 2012-09-13 |
EP2681425A2 (fr) | 2014-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2681425B1 (fr) | Système de refroidissement réglable pour véhicule automobile, pompe de liquide de refroidissement appropriée, roue à ailettes s'utilisant dans ladite pompe de liquide de refroidissement et procédé pour réguler un flux de liquide de refroidissement dans un système de refroidissement de ce type | |
DE102005046366B4 (de) | Verbrennungsmotor mit zwei Ladern | |
EP3207231B1 (fr) | Dispositif de suralimentation pour un moteur à combustion interne et procédé de fonctionnement de dispositif de suralimentation | |
DE69921913T2 (de) | Verfahren und Vorrichtung zum Steuern der Kraftstoffeinspritzung in einer Brenkraftmaschine | |
WO2019219701A1 (fr) | Moteur à combustion interne pour véhicule automobile, en particulier pour véhicule utilitaire, et procédé de fonctionnement d'un tel moteur à combustion interne | |
DE102017220855A1 (de) | Turbokompressor, insbesondere für ein Brennstoffzellensystem | |
EP1657446A2 (fr) | Pompe à eau à débit variable | |
EP1316699A2 (fr) | Turbocompresseur pour moteur à combustion interne et méthode de fonctionnement d'un moteur à combustion interne turbocompressé | |
DE102012200585A1 (de) | Regeneratives unterstütztes Turboladersystem | |
WO2016087125A1 (fr) | Dispositif de suralimentation pour moteur à combustion interne et procédé de fonctionnement du dispositif de suralimentation | |
EP1654443B1 (fr) | Procede de freinage d'un rotor d'une turbomachine et vireur permettant d'entrainer le rotor d'une turbomachine | |
DE102017108185A1 (de) | Steuerung des Motorabgasgegendrucks nach einem Motorkaltstart | |
EP3371464B1 (fr) | Procédé de réglage d'une pompe à liquide de refroidissement réglable mécaniquement pour un moteur à combustion interne | |
EP2406498B1 (fr) | Pompe de liquide de refroidissement à régulation | |
DE19938624C2 (de) | Abgasturbolader | |
DE102007023529A1 (de) | Viskosekupplung mit geregelter Rückführung | |
WO2016045829A1 (fr) | Système de suralimentation pour un moteur à combustion interne et procédé associé | |
DE202015103035U1 (de) | Brennkraftmaschine mit elektrisch antreibbarem Abgasturbolader | |
DE10306036B4 (de) | Turbolader | |
EP2486282A2 (fr) | Pompe de fluide de refroidissement | |
DE102007039209A1 (de) | Verfahren zum Betreiben einer Brennkraftmaschine | |
DE102015208991A1 (de) | Brennkraftmaschine mit elektrisch antreibbarem Abgasturbolader und Verfahren zum Betreiben einer derartigen Brennkraftmaschine | |
DE19650918A1 (de) | Kraftfahrzeug mit einer flüssigkeitsgekühlten Antriebsmaschine und einer hydraulischen Servolenkung | |
EP1079082B1 (fr) | Procédé de commande d'un moteur suralimenté | |
DE102021001363A1 (de) | Verfahren zum Betreiben einer Verbrennungskraftmaschine eines Kraftfahrzeugs, insbesondere eines Kraftwagens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130826 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150609 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NIDEC GPM GMBH |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
INTG | Intention to grant announced |
Effective date: 20160203 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 810900 Country of ref document: AT Kind code of ref document: T Effective date: 20160715 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011010129 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2587598 Country of ref document: ES Kind code of ref document: T3 Effective date: 20161025 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160706 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161106 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161006 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161107 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161007 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011010129 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161006 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 |
|
26N | No opposition filed |
Effective date: 20170407 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20161129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161129 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161129 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 810900 Country of ref document: AT Kind code of ref document: T Effective date: 20161129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161129 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171130 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20111129 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20191128 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20201029 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211130 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231107 Year of fee payment: 13 |