EP2681093A1 - Verfahren zur bestimmung des fahrwiderstands eines fahrzeugs - Google Patents

Verfahren zur bestimmung des fahrwiderstands eines fahrzeugs

Info

Publication number
EP2681093A1
EP2681093A1 EP11785596.5A EP11785596A EP2681093A1 EP 2681093 A1 EP2681093 A1 EP 2681093A1 EP 11785596 A EP11785596 A EP 11785596A EP 2681093 A1 EP2681093 A1 EP 2681093A1
Authority
EP
European Patent Office
Prior art keywords
driving resistance
vehicle
vehicle mass
driving
coefficients
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11785596.5A
Other languages
English (en)
French (fr)
Inventor
Jens Papajewski
Christian Wilhelm
Kostyantyn Bass
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG filed Critical Audi AG
Publication of EP2681093A1 publication Critical patent/EP2681093A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/1005Driving resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0088Adaptive recalibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/209Fuel quantity remaining in tank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18027Drive off, accelerating from standstill

Definitions

  • the invention relates to a method for determining the running resistance of a vehicle according to the preamble of patent claim 1.
  • Hybrid vehicles equipped with an electric drive and an internal combustion engine can achieve very low emission levels. Especially in hybrid vehicles, but also in other motor vehicles, it is important for the driver to know how large the remaining range, taking into account the current energy storage content or the tank contents is still. For the determination of the residual range of particular driving resistance of a vehicle is important, which is dependent on the number of occupants, the load, the tire type and other vehicle characteristics.
  • the most accurate knowledge of the driving resistance under different operating conditions of a vehicle can also be used for control tasks within the vehicle.
  • a method for determining the driving resistance of a motor vehicle in which, in conjunction with an automated manual transmission, running resistance values are determined before the start of a switching operation and at a later time. Will in this context a change in driving resistance found, if necessary, a required correction of the switching operation can be performed.
  • the invention has for its object to provide a method for determining the driving resistance of a vehicle, which at the beginning of the journey and during the further journey can provide the most accurate statement about the current driving resistance and vehicle mass.
  • the vehicle mass and driving resistance coefficients are estimated by means of an estimation method taking into account sensor signals before the start of the journey. By means of this estimate, an initial value for the driving resistance is calculated. During the journey, a correction of the driving resistance is then calculated on the basis of measured driving values measured chronologically one after the other, so that the driving resistance originally based on an estimation is determined more accurately while driving. In order to determine these measured values while driving, there is no need to wait for acceleration or coasting operations, but measurements can be carried out at different speeds at different times and used to calculate the driving resistance and the vehicle mass.
  • the estimation of the vehicle mass and the driving resistance coefficients before the start of the journey is carried out by means of a mathematical simulation model, preferably taking into account data which are in any case transmitted via a data bus to a control unit contained in the vehicle.
  • a mathematical simulation model preferably taking into account data which are in any case transmitted via a data bus to a control unit contained in the vehicle.
  • the inventive method can be implemented in a simple manner directly into the control unit.
  • information about the vehicle weight including extra equipment can be stored in the control unit, so that by means of further sensor information, for example about the current tank contents and seat occupancy, a more accurate estimate of the vehicle mass can be made before the journey.
  • load sensors and / or sensor signals which are used for headlamp leveling, be taken into account.
  • Fig. 3 is a functional block diagram for estimating the vehicle mass before driving.
  • FIG. 1 illustrates the estimation of the driving resistance coefficients F 0l Fi, F 2 and the vehicle mass m. The estimation is carried out before the start of the journey, while the calculation, not shown here, is carried out while driving through a plurality of chronologically successive measurements.
  • the estimation takes place in such a way that vehicle data and sensor information such as ambient temperature, current tank content, seat occupancy, ambient pressure, tire pressure, road gradient and the signal of a roof box sensor are taken into account in a mathematical model for the rolling resistance of the vehicle.
  • vehicle data and sensor information such as ambient temperature, current tank content, seat occupancy, ambient pressure, tire pressure, road gradient and the signal of a roof box sensor are taken into account in a mathematical model for the rolling resistance of the vehicle.
  • These data and signals can be taken from a data bus CAN and / or a control unit CPU.
  • the "X” stands for vehicle data as well as for ambient conditions, which can be, for example, influencing variables, such as the drag coefficient and the front face of the vehicle, the vehicle mass, wheel diameter, tire type and temperature specifications, etc.
  • the presence of a roof box can be detected by means of a roof box sensor SD before the start of the journey, whereby a standard evaluation of the drag coefficient c w can be made with the factor 1, 2, which is an increase of 20%. equivalent.
  • the changeover from factor 1 to factor 1, 2 is shown with a broken line.
  • an increase of the end face A L of the vehicle by 0.41 m 2 is made, which is also shown here with a broken line.
  • the estimation of the vehicle mass before the start of the journey is shown by way of example in a functional block diagram.
  • the empty weight is applied to the weight of the individually existing equipment.
  • the weight of the current tank contents is added to the empty weight.
  • the weight of the vehicle occupants is estimated via seat occupancy sensors and in the determination of the vehicle weight taken into account that each occupied seat in the illustrated embodiment, an average value of 75 kg is taken into account.
  • the presence of luggage in the trunk can be considered with a weight surcharge.
  • a weight surcharge of 50 kg is provided, so that the sum of vehicle empty weight and the further weight surcharges leads to the determination of the estimated vehicle mass m FZG SCHAETZ.
  • the estimated values ascertained by way of example according to FIGS. 1 to 3 are replaced by calculated values which result from a multiplicity of measured driving values.
  • the measurements required for this purpose are limited mainly to the driving force F A , the gradient resistance force F S T, the speed v and the acceleration a.
  • Equation 3 the following matrix equation can now be set up for N measurement points:
  • Equation 4 Equation 4 where dv / dt is specified as acceleration a and i G stands for the overall ratio.
  • RRA D is the radius of the wheels
  • J MO T is the moment of inertia of the motor
  • JRAD is the combined mass moment of inertia of the wheels, brakes and drive shafts.
  • Equation 4 can be solved with the least-squares method, resulting in the sought calculated values for the vehicle mass m and the driving resistance coefficients F 0 , F ⁇ F 2 . As soon as these calculated values are available, the values determined by estimation before the start of the journey are replaced. During the journey, a continuous calculation of the values can be carried out, whereby also changing environmental influences, such as wet or dry carriageway, can be taken into account.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Bestimmung des Fahrwiderstands (Fw) eines Fahrzeugs, wobei unter Berücksichtigung eines Wertes für die Fahrzeugmasse (m) eine Berechnung des Fahrwiderstands (Fw) erfolgt. Vor Fahrtbeginn werden in einem Schätzverfahren unter Berücksichtigung von Sensorsignalen die Fahrzeugmasse (m) und Fahrwiderstandskoeffizienten (F0, F1, F2) geschätzt und daraus wird ein Anfangswert für den Fahrwiderstand (Fw) berechnet, wobei dann während der Fahrt anhand von zeitlich nacheinander gemessenen Fahrtmesswerten ein korrigierter Wert für den Fahrtwiderstand (Fw) und die Fahrzeugmasse (m) berechnet wird.

Description

Beschreibung Verfahren zur Bestimmung des Fahrwiderstands eines Fahrzeugs
Die Erfindung betrifft ein Verfahren zur Bestimmung des Fahrwiderstands eines Fahrzeugs nach dem Oberbegriff des Patentanspruchs 1.
Aufgrund knapper werdender Ressourcen und dem gleichzeitig steigenden Umweltbewusstein wird es immer wichtiger, möglichst umweltschonende Kraftfahrzeuge zu entwickeln. Mit Hybridfahrzeugen, die mit einem Elektroantrieb und einem Verbrennungsmotor ausgestattet sind, können sehr geringe Emissionswerte erzielt werden. Gerade bei Hybridfahrzeugen, aber auch bei anderen Kraftfahrzeugen, ist es für den Fahrer wichtig zu wissen, wie groß die Restreichweite unter Berücksichtigung des aktuellen Energiespeicherinhalts bzw. des Tankinhalts noch ist. Für die Bestimmung der Restreichweite ist insbesondere der Fahrwiderstand eines Fahrzeugs von Bedeutung, der von der Anzahl der Insassen, von der Beladung, vom Reifentyp und weiteren Fahrzeugmerkmalen abhängig ist.
Die möglichst genaue Kenntnis des Fahrwiderstands bei unterschiedlichen Betriebsbedingungen eines Fahrzeugs kann auch für Steuerungsaufgaben innerhalb des Fahrzeugs verwendet werden. Aus der DE 10 2006 022 170 A1 ist zum Beispiel, ein Verfahren zur Ermittlung des Fahrwiderstand eines Kraftfahrzeugs bekannt, bei dem in Verbindung mit einem automatisierten Schaltgetriebe Fahrwiderstandswerte vor Beginn eines Schaltvorgangs und zu einem späteren Zeitpunkt ermittelt werden. Wird in diesem Zusammenhang eine Fahrwiderstandsänderung festgestellt, kann ggf. eine erforderliche Korrektur des Schaltvorgangs durchgeführt werden.
Aus der DE 601 13 226 T2 ist ein Verfahren zur Bestimmung des Fahrwiderstands eines Fahrzeugs bekannt, bei dem von konstanten Fahrwiderstandskoeffizienten und von einer vorgegebenen Fahrzeugmasse ausgegangen wird. Während der Fahrt wird ein Grenzwertvergleich durchgeführt, mit dessen Hilfe während der Fahrt Fahrwiderstandskoeffizienten und die Fahrzeugmasse iterativ genauer bestimmt werden. Zu Beginn der Fahrt werden bei diesen bekannten Verfahren ausschließlich abgespeicherte Konstanten zur Berechnung des Fahrwiderstands herangezogen.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Bestimmung des Fahrwiderstands eines Fahrzeugs anzugeben, welches zu Fahrtbeginn und während der weiteren Fahrt eine möglichst genaue Aussage über die aktuellen Fahrwiderstände und die Fahrzeugmasse liefern kann.
Gemäß dem kennzeichnenden Teil des Patentanspruchs 1 werden vor Fahrtbeginn die Fahrzeugmasse und Fahrwiderstandskoeffizienten mittels eines Schätzverfahrens unter Berücksichtigung von Sensorsignalen geschätzt. Mittels dieser Schätzung wird ein Anfangswert für den Fahrwiderstand berechnet. Während der Fahrt wird dann anhand von zeitlich nacheinander gemessenen Fahrtmesswerten eine Korrektur des Fahrwiderstandes berechnet, so dass der ursprünglich auf einer Schätzung basierende Fahrwiderstand während der Fahrt genauer bestimmt wird. Um diese Messwerte während der Fahrt zu ermitteln, müssen keine Beschleunigungsfahrten oder Ausrollvorgänge abgewartet werden, sondern es können in zeitlichen Abständen bei unterschiedlichen Fahrgeschwindigkeiten Messungen durchgeführt und zur Berechnung des Fahrwiderstands und der Fahrzeugmasse herangezogen werden. Die Abschätzung der Fahrzeugmasse und der Fahrwiderstandskoeffizienten vor Fahrtbeginn erfolgt mittels eines mathematischen Simulationsmodells vorzugsweise unter Berücksichtigung von Daten, die ohnehin über einen Datenbus einem im Fahrzeug enthaltenen Steuergerät übermittelt werden. Somit lässt sich auf einfache Weise das erfindungsgemäße Verfahren direkt in das Steuergerät implementieren. Dabei können im Steuergerät auch Informationen über das Fahrzeuggewicht einschließlich Extraausstattungen abgespeichert sein, so dass mittels weiterer Sensorinformationen, beispielsweise über den aktuellen Tankinhalt und die Sitzbelegung, eine genauere Abschätzung der Fahrzeugmasse vor Fahrtbeginn erfolgen kann. Hierfür können auch Beladungssensoren und/oder Sensorsignale, die zur Leuchtweitenregulierung verwendet werden, mit berücksichtigt werden. Wesentlich ist dabei, dass bei Fahrtbeginn nicht von einem konstant im Speicher vorgegebenen Wert für die Fahrzeugmasse ausgegangen wird, sondern dass die Fahrzeugmasse eben anhand von unterschiedlichen, über den CAN-Bus (Datenbus des Fahrzeugs) übertragenen Signalen abgeschätzt wird. Die Abschätzung der Fahrzeugmasse ist deshalb auch besonders wichtig, weil die Fahrzeugmasse wesentlichen Einfluss auf die Fahrwiderstandskoeffizienten hat.
Eine allgemein gültige Gleichung für den Fahrwiderstand, der auch als Fahrwiderstandskraft bezeichnet werden kann, lautet Fw = F0 + F^v + F2V2, wobei v die Geschwindigkeit des Fahrzeugs ist und F0, F-ι und F2 Fahrwiderstandskoeffizienten sind, die auch als Ausrollkoeffizienten bezeichnet werden können. Dieses Polynom 2. Grades ist geeignet die auf ein Fahrzeug wirkenden Fahrwiderstandskräfte zu approximieren. Nun können während der Fahrt die Fahrzeugmasse und die Fahrwiderstandskoeffizienten Fo, FL F2 unter Verwendung folgender Messwerte berechnet werden: Antriebskraft FA) Steigungswiderstandskraft FST, Geschwindigkeit
Beschleunigung a.
Die Erfindung wird nachfolgend anhand der Zeichnung näher erläutert. Es zeigen: eine Ablaufübersicht über die einzelnen Schritte zur Abschätzung der Fahrzeugmasse und der Fahrwiderstandskoeffizienten, ein Funktionsblockdiagramm zur Anpassung der Luftwiderstandkoeffizienten bei Vorhandensein einer Dachbox und
Fig. 3 ein Funktionsblockdiagramm zur Schätzung der Fahrzeugmasse vor Fahrtbeginn.
In Fig. 1 ist die Abschätzung der Fahrwiderstandskoeffizienten F0l Fi, F2 und der Fahrzeugmasse m veranschaulicht. Die Abschätzung erfolgt vor Fahrtbeginn, während die hier nicht dargestellte Kalkulation während der Fahrt durch eine Vielzahl von zeitlich aufeinander folgenden Messungen durchgeführt wird.
Die Abschätzung erfolgt in der Weise, dass Fahrzeugdaten und Sensorinformationen, wie Umgebungstemperatur, aktueller Tankinhalt, Sitzbelegung, Umgebungsdruck, Reifendruck, Straßenneigung und das Signal eines Dachboxsensors, in einem mathematischen Modell für den Fahrwiderstand des Fahrzeugs Berücksichtigung finden. Diese Daten und Signale können einem Datenbus CAN und/oder einem Steuergerät CPU entnommen werden. Das mathematische Modell basiert dabei auf der allgemeinen Gleichung für den Fahrwiderstand Fw = F0 + Fi · v · F2 2, wobei die Fahrwiderstandskoeffizienten F0, F^ F2 von der Fahrzeugmasse und von weiteren Betriebsparametern des Fahrzeugs abhängen, beispielsweise vom Luftwiderstandsbeiwert cw und von der Stirnfläche AL des Fahrzeugs.
Mit Hilfe eines mathematischen Modells kann nun eine Simulation SIM für unterschiedliche Geschwindigkeiten durchgeführt werden, die einen Verlauf für den Fahrwiderstand Fw in Abhängigkeit von der Geschwindigkeit ergibt und eine Berechnung der Fahrwiderstandskoeffizienten F0, Fi , F2 ermöglicht.
Als mathematisches Modell wird für den Fahrwiderstand FW mod nachfolgende Gleichung angenommen: Fw,mod = F0(Xo)+F1(X1)v+F2(X2)v2 (Gleichung 1)
Dabei steht das "X" sowohl für Fahrzeugdaten als auch für Umgebungsbedingungen, wobei es sich zum Beispiel um Einflussgrößen, wie den Luftwiderstandsbeiwert und die Stirnfläche des Fahrzeugs, die Fahrzeugmasse, Raddurchmesser, Reifentyp und Temperaturangaben, etc. handeln kann.
Mit einem solchen mathematischen Modell können für N unterschiedliche Fahrgeschwindigkeiten v1-N Wertepaare (Vj,FWii) ermittelt werden, die in folgende Matrizengleichung eingetragen werden:
(Gleichung 2)
Durch das Lösen dieser Matrizengleichung können dann für F0, F2 mit diesem Abschätzverfahren die gesuchten, wenigstens teilweise auf Schätzwerten basierenden Koeffizienten F0)SCHAETZ F1 )SCHAETZ F2ISCHAETZ bestimmt werden.
Zur genaueren Bestimmung des für das Abschätzverfahren verwendeten Luftwiderstands kann vor Fahrtbeginn gemäß Fig. 2 mittels eines Dachboxsensors SD das Vorhandensein einer Dachbox erkannt werden, wodurch eine pauschale Bewertung des Luftwiderstandsbeiwerts cw mit dem Faktor 1 ,2 erfolgen kann, was einer Erhöhung um 20 % entspricht. Im Funktionsblock FB1 ist die Umschaltung vom Faktor 1 auf den Faktor 1 ,2 mit unterbrochener Linie dargestellt. Außerdem wird bei Erkennung einer Dachbox gemäß Funktionsblock FB2 eine Erhöhung der Stirnfläche AL des Fahrzeugs um 0,41 m2 vorgenommen, was hier ebenfalls mit einer unterbrochenen Linie dargestellt ist.
In Fig. 3 ist nun beispielhaft die Abschätzung der Fahrzeugmasse vor Fahrtbeginn in einem Funktionsblockdiagramm dargestellt. Das Leergewicht wird mit dem Gewicht der individuell vorhandenen Ausstattung beaufschlagt. Außerdem wird das Gewicht des aktuellen Tankinhalts zum Leergewicht addiert. Weiterhin wird über Sitzbelegungssensoren das Gewicht der Fahrzeuginsassen abgeschätzt und bei der Ermittlung des Fahrzeugsgewichts in der Weise berücksichtigt, dass pro belegtem Sitz im dargestellten Ausführungsbeispiel ein Mittelwert von 75 Kg berücksichtigt wird. Außerdem kann das Vorhandensein von Gepäck im Kofferraum mit einem Gewichtszuschlag berücksichtigt werden. Schließlich ist noch bei Benutzung einer Dachbox ein Gewichtszuschlag von 50 Kg vorgesehen, so dass die Summe von Fahrzeugleergewicht und der weiteren Gewichtszuschläge zur Ermittlung der geschätzten Fahrzeugmasse m FZG SCHAETZ führt.
Nach Fahrtbeginn werden die beispielhaft gemäß Fig. 1 bis Fig. 3 ermittelten Schätzwerte durch berechnete Werte ersetzt, die sich aus einer Vielzahl von Fahrtmesswerten ergeben. Die hierfür benötigten Messungen beschränken sich hauptsächlich auf die Antriebskraft FA, die Steigungswiderstandskraft FST, die Geschwindi keit v und die Beschleunigung a. Mit der Bewegungsgleichung
(Gleichung 3) kann nun für N Messpunkte die nachfolgende Matrizengleichung aufgestellt werden:
(Gleichung 4) dabei ist dv/dt als Beschleunigung a angegeben und iG steht für die Gesamtübersetzung. RRAD ist der Radius der Räder, JMOT das Motorträgheitsmoment und JRAD ist das zusammengefasste Massenträgheitsmoment der Räder, Bremsen und Gelenkwellen.
Bei einer Anzahl von N Messpunkten kann die Gleichung 4 mit dem Least- Squares-Verfahren gelöst werden, woraus sich die gesuchten kalkulierten Werte für die Fahrzeugmasse m und die Fahrwiderstandskoeffizienten F0, F^ F2 ergeben. Sobald diese kalkulierten Werte vorliegen, werden die vor Fahrtbeginn durch Schätzung ermittelten Werte ersetzt. Während der Fahrt kann dann eine fortlaufende Kalkulation der Werte durchgeführt werden, wobei auch sich ändernde Umgebungseinflüsse, wie nasse oder trockene Fahrbahn, Berücksichtigung finden können.

Claims

Patentansprüche
Verfahren zur Bestimmung des Fahrwiderstands (Fw) eines Fahrzeugs, wobei unter Berücksichtigung eines Wertes für die Fahrzeugmasse (m) eine Berechnung des Fahrwiderstands (Fw) erfolgt, dadurch gekennzeichnet, dass vor Fahrtbeginn in einem Schätzverfahren unter Berücksichtigung von Sensorsignalen die Fahrzeugmasse (m) und Fahrwiderstandskoeffizienten (F^F^) geschätzt werden und daraus ein Anfangswert für den Fahrwiderstand (Fw) berechnet wird, und dass dann während der Fahrt anhand von zeitlich nacheinander gemessenen Fahrtmeßwerten ein korrigierter Wert für den Fahrwiderstand (Fw) und die Fahrzeugmasse (m) berechnet wird.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Abschätzung der Fahrzeugmasse (m) und der Fahrwiderstandskoeffizienten (F0,F1,F2) vor Fahrtbeginn mittels eines mathematischen Simulationsmodells unter Berücksichtigung von Daten erfolgt, die einem im Fahrzeug enthaltenen Steuergerät über einen Datenbus übermittelt werden und/oder in einem Steuergerät abgelegt sind.
Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass Sensorsignale von Beladungssensoren und/oder Temperatursensoren und/oder Sitzbelegungssensoren und/oder Drucksensoren und/oder Feuchtigkeitssensoren und/oder Radsensoren für die Abschätzung herangezogen werden.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass für das Abschätzverfahren fahrzeugspezifische Vorgabewerte und aus Sensorsignalen abgeleitete Korrekturwerte zur Bestimmung der Fahrzeugmasse (m) und der Fahrwiderstands- koeffizienten (F0, F ( F2) verwendet werden.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass während der Fahrt die Fahrzeugmasse m und die Fahrwiderstandskoeffizienten F0, F1 f F2 unter Verwendung der Messwerte, wie Antriebskraft FA, Steigungswiderstandskraft FST) Geschwindigkeit v und Beschleunigung a = dv/dt berechnet werden.
Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Berechnung der Fahrzeugmasse m und der Fahrwiderstandskoeffizienten F0, F-i , F2 anhand der Messwerte unter Verwendung fol ender Bewegungsgleichung erfolgt: dabei ist RRAD der Radius der Räder, JMOT das Motorträgheitsmoment und JRAD das zusammengefasste Massenträgheitsmoment der Räder, Bremsen und Gelenkwellen und iG die Gesamtübersetzung.
7. Verfahren nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass eine Anzahl von N Messungen bei unterschiedlichen Geschwindigkeiten die Messwerte für die Matrizengleichung
liefert, wobei durch Lösung der Matrizengleichung nach dem Least- Squares-Verfahren die Werte für die Fahrwiderstandskoeffizienten (F0, F^ F2) und die Fahrzeugmasse (m) erhalten werden.
EP11785596.5A 2011-03-04 2011-11-17 Verfahren zur bestimmung des fahrwiderstands eines fahrzeugs Withdrawn EP2681093A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011013022A DE102011013022B3 (de) 2011-03-04 2011-03-04 Verfahren zur Bestimmung des Fahrwiderstands eines Fahrzeugs
PCT/EP2011/005798 WO2012119621A1 (de) 2011-03-04 2011-11-17 Verfahren zur bestimmung des fahrwiderstands eines fahrzeugs

Publications (1)

Publication Number Publication Date
EP2681093A1 true EP2681093A1 (de) 2014-01-08

Family

ID=45002897

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11785596.5A Withdrawn EP2681093A1 (de) 2011-03-04 2011-11-17 Verfahren zur bestimmung des fahrwiderstands eines fahrzeugs

Country Status (5)

Country Link
US (1) US8768536B2 (de)
EP (1) EP2681093A1 (de)
CN (1) CN103402847B (de)
DE (1) DE102011013022B3 (de)
WO (1) WO2012119621A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8849528B2 (en) * 2011-12-28 2014-09-30 Caterpillar Inc. System and method for controlling a transmission
SE537431C2 (sv) * 2013-02-14 2015-04-28 Scania Cv Ab Hantering av förändringar hos körmotståndspåverkande parametrar
SE537429C2 (sv) * 2013-02-14 2015-04-28 Scania Cv Ab Samtidig skattning av åtminstone massa och rullmotstånd förett fordon
GB2517430B (en) * 2013-08-19 2016-02-10 Jaguar Land Rover Ltd Selection of launch ratio in a multi-speed automatic transmission
DE102014203751A1 (de) * 2014-02-28 2015-09-03 Siemens Aktiengesellschaft Fahrzeug, insbesondere Schienenfahrzeug, mit Bremsvermögensberechnungsmöglichkeit und Verfahren zu dessen Betrieb
US9482550B2 (en) * 2014-10-30 2016-11-01 Inrix Inc. Linear route progress interface
CN104554271B (zh) * 2014-12-08 2017-09-12 昆明理工大学 一种基于参数估计误差的路面坡度和汽车状态参数联合估计方法
JP6582484B2 (ja) * 2015-03-26 2019-10-02 いすゞ自動車株式会社 走行制御装置、及び、走行制御方法
JP6502181B2 (ja) * 2015-06-01 2019-04-17 公益財団法人鉄道総合技術研究所 プログラム及び走行抵抗曲線算出装置
CN105890915B (zh) * 2016-06-27 2019-01-01 北京新能源汽车股份有限公司 电动汽车续航里程测试方法及装置
CN106198044B (zh) * 2016-06-27 2019-01-01 北京新能源汽车股份有限公司 电动汽车续航里程测试方法及装置
CN107139929B (zh) * 2017-05-15 2019-04-02 北理慧动(常熟)车辆科技有限公司 一种重型自动变速车辆广义阻力系数的估计及修正方法
CN107478437B (zh) * 2017-07-21 2020-09-29 北京新能源汽车股份有限公司 一种道路阻力与车速关系的测试方法、装置及设备
CN107901916B (zh) * 2017-11-15 2019-07-09 康明斯天远(河北)科技有限公司 一种无需增装传感器的车辆载重获取方法
CN108437998B (zh) * 2018-01-09 2019-09-13 南京理工大学 基于纵向动力学的纯电动汽车坡度识别方法
CN108287076B (zh) * 2018-01-23 2020-07-28 北京新能源汽车股份有限公司 一种阻力曲线的测试方法及装置
CN110321588B (zh) * 2019-05-10 2023-04-07 中车青岛四方车辆研究所有限公司 基于数值模拟的轨道车辆空气阻力计算方法
FR3097830B1 (fr) * 2019-06-28 2021-08-20 Valeo Systemes De Controle Moteur Procédé d’évaluation d’une loi de décélération et procédé d’assistance à la conduite
WO2021227086A1 (zh) * 2020-05-15 2021-11-18 华为技术有限公司 获取车辆滚动阻力系数的方法及装置
CN113335290B (zh) * 2021-07-22 2023-01-10 中国第一汽车股份有限公司 一种车辆滚动阻力获取方法、获取模块及存储介质
US12036998B2 (en) 2022-10-04 2024-07-16 Geotab Inc. Systems and methods for determining an estimated weight of a vehicle

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19728867A1 (de) * 1997-07-05 1999-01-07 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ermittlung der Fahrzeugmasse
DE19743059A1 (de) 1997-09-30 1999-04-22 Bosch Gmbh Robert Verfahren und Vorrichtung zur Bestimmung einer den Fahrwiderstand bei einem Kraftfahrzeug repräsentierenden Größe
CN1218179A (zh) * 1998-09-28 1999-06-02 华南理工大学 公路车辆滚动阻力系数的测试方法
DE19847205B4 (de) 1998-10-13 2006-10-12 Zf Friedrichshafen Ag Verfahren zur Ermittlung eines Schnittmomentes in einem Antriebsstrang eines Kraftfahrzeuges mit einem Automatgetriebe
JP3723028B2 (ja) * 1999-12-28 2005-12-07 本田技研工業株式会社 路面勾配検出装置及び発進クラッチの制御装置
LU90706B1 (en) * 2000-12-18 2002-06-19 Delphi Tech Inc Method for estimating a road load force encountered by a vehicle
DE10148096A1 (de) 2001-09-28 2003-04-17 Bayerische Motoren Werke Ag Verfahren zur Ermittlung der Masse eines Kraftfahrzeugs unter Berücksichtigung unterschiedlicher Fahrsituationen
DE10148091A1 (de) * 2001-09-28 2003-04-17 Bayerische Motoren Werke Ag Verfahren zur Ermittlung der Masse eines Kraftfahrzeugs unter Berücksichtigung unterschiedlicher Fahrsituationen
DE10229036A1 (de) * 2002-06-28 2004-01-22 Robert Bosch Gmbh Verfahren zur Ermittlung der Masse eines Fahrzeugs
DE10235563A1 (de) 2002-08-03 2004-02-19 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung der Fahrzeugmasse
DE10331754A1 (de) 2003-07-14 2005-02-10 Robert Bosch Gmbh Verfahren und Vorrichtung zur Einstellung der auf ein Fahrpedal einer Fahrpedaleinrichtung eines Kraftfahrzeugs wirkenden Rückstellkraft
DE102004015966A1 (de) 2004-04-01 2005-10-20 Zahnradfabrik Friedrichshafen Verfahren zur Anfahrgangbestimmung eines automatisierten Stufenwechselgetriebes
DE102004023580A1 (de) 2004-05-13 2005-12-08 Adam Opel Ag Laststeuerverfahren und -gerät für ein Kraftfahrzeug
CN100405037C (zh) * 2005-02-18 2008-07-23 吴明 汽车空档滑行路试和台试系统阻力统计法
DE102006022170A1 (de) 2006-05-12 2008-01-31 Zf Friedrichshafen Ag Verfahren zur Ermittlung des Fahrwiderstands eines Kraftfahrzeugs
DE102006029366B4 (de) * 2006-06-27 2022-09-29 Robert Bosch Gmbh Verfahren zur Ermittlung eines Fahrwiderstandes
DE102006037704A1 (de) * 2006-08-11 2008-02-14 Zf Friedrichshafen Ag Verfahren zur fahrwiderstandsabhängigen Einstellung des Kupplungsmomentes eines Kraftfahrzeuges
US7499784B2 (en) 2007-04-09 2009-03-03 General Motors Corporation Method of selecting a transmission shift schedule
DE102007019729A1 (de) * 2007-04-26 2008-10-30 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Antriebsstrangs
US8103414B2 (en) * 2008-10-30 2012-01-24 International Business Machines Corporation Adaptive vehicle configuration
JP5353211B2 (ja) 2008-12-02 2013-11-27 株式会社アドヴィックス 走行制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012119621A1 *

Also Published As

Publication number Publication date
US20130345902A1 (en) 2013-12-26
WO2012119621A1 (de) 2012-09-13
US8768536B2 (en) 2014-07-01
CN103402847A (zh) 2013-11-20
CN103402847B (zh) 2017-02-15
DE102011013022B3 (de) 2012-08-30

Similar Documents

Publication Publication Date Title
DE102011013022B3 (de) Verfahren zur Bestimmung des Fahrwiderstands eines Fahrzeugs
DE102014118414A1 (de) Geschwindigkeitsbegrenzungsschwelleerfassungsvorrichtung und Navigationsdatenaktualisierungsvorrichtung und Verfahren, welches diese verwendet
EP2010419B1 (de) Verfahren zur kalibrierung einer gierratenmessung
EP3134301B1 (de) Verfahren zur ermittlung eines offsets eines inertialsensors
EP2978643A1 (de) Fahrzeugreferenzgeschwindigkeitsbestimmungsverfahren und fahrzeugsteuergerät mit einem solchen verfahren
DE102014103843A1 (de) Verfahren und Vorrichtung zur Reibwertermittlung in einem Fahrzeug
DE102006018978A1 (de) Verfahren zur Bestimmung des Wankwinkels
DE102013219662B3 (de) Verfahren, Steuergerät und System zum Ermitteln einer Profiltiefe eines Profils zumindest eines Reifens
DE102004019320A1 (de) System zum Reproduzieren des dynamischen Verhaltens eines Fahrzeugs
DE102012224341A1 (de) System und Verfahren zum automatischen Steuern der Fahrzeuggeschwindigkeit
DE102007029870A1 (de) Verfahren und Vorrichtung zur Reifenzustandsüberwachung
DE69729250T2 (de) Gerät zur feststellung eines druckverlustes in einem reifen
DE102016012465B4 (de) Verfahren zur Bestimmung einer Änderung im auf ein Kraftfahrzeug wirkenden Luftwiderstand
DE102012202828A1 (de) Verfahren zur Straßensteigungsabschätzung zum Verbessern der Kraftstoffverbrauchsindex-Berechnung
DE102018132911A1 (de) Verfahren zur Echtzeit-Massenschätzung eines Fahrzeugsystems
DE102007045998A1 (de) Technik zur Verbesserung der Fahrstabilität eines Kraftfahrzeugs auf Basis einer Massebestimmung
DE102014200987A1 (de) Verfahren zur Ermittlung der Lage des Schwerpunkts eines Fahrzeugs
DE102016211745A1 (de) Fehlerbestimmungssystem für Fahrzeuggeschwindigkeit-Erfassungsvorrichtung
EP3027436B1 (de) Verfahren und system zur bestimmung eines druckverhältnisses zwischen einem sollreifendruck und einem aktuellen reifendruck für einen reifen eines fahrzeugs
DE102016220692A1 (de) Verfahren zur Reibwertermittlung und zum Betreiben eines Kraftfahrzeugs
DE102017103132A1 (de) Verfahren zum Reduzieren von Latenzzeiten beim Beschleunigen eines Kraftfahrzeugs, Fahrerassistenzsystem und Kraftfahrzeug
DE102013220882A1 (de) Verfahren, Steuergerät und System zum Ermitteln einer Profiltiefe eines Profils zumindest eines Reifens
DE102009054460A1 (de) Verfahren zur Steuerung eines Fahrwerksystems eines Kraftfahrzeuges
DE112016005072B4 (de) Verfahren und System zur Erleichterung des Lenkens eines Fahrzeugs beim Fahren entlang einer Strasse
DE102012221006B4 (de) Verfahren zur Anpassung einer Fahrdynamikregelung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131004

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140429