EP2663740A1 - Turbinenreinigung - Google Patents

Turbinenreinigung

Info

Publication number
EP2663740A1
EP2663740A1 EP12700228.5A EP12700228A EP2663740A1 EP 2663740 A1 EP2663740 A1 EP 2663740A1 EP 12700228 A EP12700228 A EP 12700228A EP 2663740 A1 EP2663740 A1 EP 2663740A1
Authority
EP
European Patent Office
Prior art keywords
cleaning
turbine
liquid
nozzle
flow channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12700228.5A
Other languages
English (en)
French (fr)
Inventor
Gerd Mundinger
Joel Schlienger
William Gizzi
Martin Eckert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Accelleron Industries AG
Original Assignee
ABB Turbo Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Turbo Systems AG filed Critical ABB Turbo Systems AG
Publication of EP2663740A1 publication Critical patent/EP2663740A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/002Cleaning of turbomachines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Definitions

  • the invention relates to the field of turbomachines subjected to exhaust gases of internal combustion engines. It relates to a cleaning method for cleaning an exhaust gas turbine and a cleaning device for cleaning a turbines acted upon by exhaust gases of an internal combustion engine by means of such a cleaning method.
  • Exhaust gas turbines are used in exhaust gas turbochargers for charging internal combustion engines or in power turbines for converting the energy contained in the exhaust gases of internal combustion engines into mechanical or electrical energy.
  • the nozzle ring, turbine blades and affected areas of the turbine housing must be regularly cleaned during operation of any adhering dirt. This is typically done through the use of dry or wet cleaning systems.
  • Wet cleaning systems are characterized in that during a cleaning cycle by means of one or more nozzles, which are positioned on the turbine inlet side, a liquid detergent, such as cold water, is injected.
  • a liquid detergent such as cold water
  • cold cleaning liquid onto hot soiling deposits they are removed and the surfaces are restored to almost their original state upon delivery.
  • the injection of cold cleaning liquid onto the hot turbine components represents a comparatively high thermomechanical load on the turbine components.
  • the turbine wet cleaning is usually only at low engine loads - with correspondingly low gas inlet temperatures at the turbocharger - allowed.
  • the cleaning cycle is therefore typically designed to reduce the load on the engine to a level suitable for the cleaning cycle (e.g., 25% of normal engine load) and to inject cleaning fluid after a hold time for a defined period of time (eg, 10 minutes). Subsequently, during a further period of time (for example 10 minutes) any cleaning fluid present in the turbocharger is evaporated before the engine is then brought back to its normal load level.
  • a level suitable for the cleaning cycle e.g., 25% of normal engine load
  • a defined period of time eg, 10 minutes
  • the injection of cleaning fluid during the cleaning cycle through one or more nozzles before turbine entry usually takes place under constant pressure and constant flow instead.
  • the injection nozzles are designed such that they produce a distribution of cleaning liquid which can wet a specific surface area of the nozzle ring or of the turbine housing with cleaning liquid per nozzle.
  • the impinging distribution of cleaning fluid on the surfaces is dependent on several factors such as the flow state in front of the turbine, the jet shape generated by the nozzle orifice of the nozzles, the injection pressure and the amount of cleaning fluid, the turbine inlet temperature, etc.
  • the design of the nozzles is carried out at a defined load point, known flow variables and constant cleaning system sizes.
  • the above-mentioned influencing variables can deviate greatly from the variables used in the original design, which in turn alters and even reduces the surface areas wetted in real operation, which can lead to unsatisfactory cleaning results.
  • the point in time at which a cleaning cycle is to be initiated can either be made permanently dependent on the operating time, for example fixed cleaning intervals after a certain number of operating hours, or contamination indicators can be detected, which then automatically trigger a cleaning cycle.
  • DE 35 15 825 A1 discloses a method and a device for cleaning the rotor blades and the nozzle ring of the axial turbine of an exhaust gas turbocharger.
  • the cleaning device consists of several arranged on the gas inlet housing of the axial turbine nozzles that extend into the flow channel and a supply line for cleaning fluid.
  • a cleaning requirement is determined via a measuring and evaluation unit. Accordingly, cleaning liquid is injected into the flow channel via the nozzles arranged upstream of the guide vanes. The resulting droplets are transported from the exhaust stream to the guide and the blades of the axial turbine and clean them of the adhering dirt.
  • a large amount of cleaning fluid (about 3-5 l / min cleaning fluid per m 3 / s of exhaust gas) is fed into the flow, in order to achieve the most thorough possible cleaning.
  • the engine load can be reduced early and throughout the cleaning process. This is necessary to avoid an unacceptably high increase in exhaust gas temperatures during the cleaning process.
  • An excessive increase in the exhaust gas temperatures during the cleaning process leads to thermal overload of the exhaust gas turbine and the internal combustion engine.
  • a cleaning method for wet cleaning an exhaust gas turbine is known in which continuously or clocked a small amount of cleaning liquid is fed into the exhaust gas flow of an exhaust gas turbine and fed to the components of the exhaust gas turbine to be cleaned.
  • the small amount of cleaning liquid can be fed with unchanged engine operation, so that the cleaning or keeping clean the exhaust gas turbine can be carried out throughout the engine operating range. Fluctuations in the power output of the internal combustion engine due to become necessary exhaust gas turbine cleaning should thus be avoided.
  • the formation of thermal stress cracks in the turbine housing parts which are particularly at risk in this respect should be able to be largely avoided.
  • Fl 1 17 804 discloses a cleaning device for wet cleaning an exhaust gas turbine, wherein the pressure of the cleaning liquid statically fixed, about 2 bar above the pressure of the exhaust gases in the flow channel is. In order for wet cleaning to be carried out at full load, part of the cooler fresh air is supplied to the exhaust gas flow from the compressor outlet. As a result, the temperature of the exhaust gas stream lowers to an optimal, for the cleaning of the turbine parts, predetermined value.
  • a cleaning method for wet cleaning of an exhaust gas turbine is known, in which operating point independent cleaning liquid is fed into the exhaust gas stream of the exhaust gas turbine and fed to the components of the exhaust gas turbine to be cleaned.
  • the injection pressure of the cleaning liquid is adapted to the conditions upstream of the exhaust gas turbine. For this purpose, in a first step, at least one measured value characterizing the conditions prevailing in front of the turbine is measured, in a second step, a value for the injection pressure of the cleaning liquid is determined from the measured quantity measured, and in a third step
  • the object of the present invention is to provide a cleaning method for wet cleaning of an exhaust gas turbine, with which a possible full-surface wetting of the dirty turbine parts can be realized.
  • this is achieved by a transient injection of cleaning liquid by the amount of cleaning liquid injected via a nozzle into the flow channel of the turbine varies over time by a certain, average amount of cleaning liquid.
  • the generation of the temporally variable amount of cleaning fluid can be effected for example by influencing the injection pressure or the amount of cleaning fluid, such as a pump with adjustable flow, a controllable valve in the supply line or oscillating flow elements in front of the nozzle , or by influencing the size of the nozzle opening, such as regulated iris diaphragms or controlled or free-oscillating nozzle opening flaps.
  • the variation of the amount of cleaning fluid is carried out by a certain mean, wherein the time-variable course can optionally be periodic, aperiodic or random.
  • the injection pressure for example, the determined, average injection pressure due to the geometrical dimensions of the exhaust gas turbine, or dynamically determined as a function of the respective operating point of the exhaust gas turbine and / or the respective operating point of the internal combustion engine.
  • the variation of the amount of cleaning liquid is advantageously realized by an automatic injection pressure control, or by a control for the nozzle opening.
  • the injection pressure is varied transiently, the generated distribution of cleaning fluid and thus the wetting of the turbine surfaces change, even with otherwise constant cleaning system sizes.
  • the advantage thus gained is that, by varying the amount of cleaning liquid, the distribution of cleaning liquid and the surface wetting can be varied transiently over an adjustable surface area and a better cleaning effect is achieved independently of the respective individual flow state in the turbocharger.
  • the variation of the quantity of cleaning liquid in the case of two or more nozzles distributed along the circumference can be realized differently from one another, such that over time different, or staggered courses of the quantities of cleaning liquid result.
  • the injected total amount of cleaning liquid can be kept constant
  • Fig. 1 is a sectional view of an exhaust gas turbocharger with a turbine side
  • Fig. 2 is a diagram showing the course of the amount of cleaning liquid over the
  • Fig. 3 shows two diagrams with the course of injection pressure and amount of
  • Fig. 4 is a diagram of a first embodiment of a cleaning device for
  • FIG. 1 a diagram of a third embodiment of a cleaning device for carrying out the inventive cleaning method with an adjustable flow divider
  • FIG. 1 a diagram of a fourth embodiment of a cleaning device for performing the inventive cleaning method with individually adjustable nozzle openings
  • Fig. 1 shows a sectional view of an exhaust gas turbocharger with an exhaust gas turbine (right) and a compressor.
  • the exhaust gas turbine comprises a turbine wheel 2 with rotor blades 21, which turbine wheel is arranged in a turbine housing 20. Via a shaft 3, which is rotatably mounted in a bearing housing 30, the turbine wheel is connected to the compressor wheel 1.
  • the compressor wheel is arranged in the compressor housing 10.
  • the turbine In the region of the turbine inlet, in which hot exhaust gas from the annular cavity-shaped collecting channel flows through the narrow flow channel onto the rotor blades 21 of the turbine wheel 2, the turbine has a nozzle (nozzle ring with vanes) 22, which aligns the exhaust gas flow to the rotor blades of the turbine wheel.
  • the flow channel in this area limiting wall parts of the turbine housing and the guide vanes of the diffuser are, as described above, exposed to pollution by deposition.
  • the exhaust gas turbine Immediately upstream of the turbine inlet, the exhaust gas turbine on a cleaning device, which has an annular channel 41 for supplying the cleaning liquid and one or more nozzles 42 for injecting the cleaning liquid into the collecting and flow channel of the turbine.
  • the exact arrangement of the cleaning device may vary.
  • the nozzles are always mounted upstream of the guide, so that the flow of the hot exhaust gas carries the cleaning liquid and distributed to the surfaces to be cleaned.
  • the nozzles 42 are advantageously distributed along the circumference of the turbine housing, wherein the number of nozzles can be matched to the number of vanes of the nozzle.
  • one nozzle may be provided for each vane or one nozzle for each two vanes.
  • additional nozzles can be provided independently of the distributor, which are directed approximately directly onto the walls of the flow channel.
  • a hot cleaning fluid is fed to the hot exhaust gas flow upstream of the guide device and the rotor blades of the turbine wheel.
  • the cleaning liquid usually water or water added with a cleaning-promoting substance, is injected into the flow channel in controlled quantities and at a certain pressure.
  • the amount and / or the injection pressure is varied transiently, so that according to FIG. 2, depending on the amount and / or injection pressure, different areas of the surfaces to be cleaned are wetted with the cleaning liquid.
  • FIG. 2 the effect of the respective injection pressure on the spray pattern of the cleaning liquid is shown schematically for three points on the indicated course of the periodically varied injection pressure p w over the time t.
  • a mean injection pressure is shown, in which the jet emitted from the nozzle into the flow is deflected by the flow onto the middle region of the guide device.
  • the jet from the nozzle extends to the far edge of the flow channel, while at lower pressure, in the right part of the figure, only the right inner edge portions of the vanes are wetted.
  • the unsteady variation of the amount of cleaning fluid and / or the injection pressure according to the invention is effected by an average value, ie by a specific, average amount of fluid or an average injection pressure, and within a one- or two-sided limited range between a minimum value and / or a maximum value.
  • average value ie by a specific, average amount of fluid or an average injection pressure
  • mean, minimum and maximum values can either be fixed due to the Turbine geometry and the intended flow conditions may be predetermined, or they can be dynamically adjusted to the flow conditions upstream of the turbine - in particular the exhaust gas pulse stream - and / or the engine load.
  • the specific mean values to be applied could be calculated on the basis of defined characteristic curves or read from a table as a function of one or more turbine or engine-specific measured variables.
  • the turbine- or engine-specific measured quantities can be determined in various ways.
  • Engine-specific measurement data such as load lever position or injection parameters, can be evaluated and the engine load derived therefrom. If the engine further units, such as a power generator, followed, the engine load can be measured directly at this downstream unit.
  • specific measurement data of the turbocharger can be evaluated, for example, the turbocharger speed.
  • the gas mass flow or the gas volume flow can be approximately determined with the aid of the TL speed from the corresponding characteristic diagrams.
  • it would be possible to measure the gas flow directly in the flow channel for example by means of a hot-wire, ultrasonic or laser Doppler anemometer.
  • Detailed information on determining the turbine- or engine-specific parameters can be found in EP1972758A1.
  • FIG. 8 shows a further example of a periodic progression of the amount of the cleaning liquid m * w injected, in which the instantaneous quantity of the cleaning liquid per nozzle temporarily assumes the value zero within a period of time.
  • a cleaning cycle usually comprises several periods of 3-120 s duration, wherein the total duration of each cleaning cycle may be fixed, or may depend on the current contamination of the components of the turbine and / or the number of operating hours since the last cleaning cycle , If the cleaning device comprises two or more nozzles distributed along the circumference, the inventive cleaning method can optionally be carried out such that the total liquid quantity of all nozzles remains constant over time within the cleaning cycle and corresponds to the determined average quantity of liquid multiplied by the number of nozzles. On the other hand, the amount of cleaning fluid injected per nozzle into the flow channel of the turbine varies over time by the specific average quantity of fluid during the cleaning cycle.
  • FIG. 4 shows a first embodiment of a cleaning device for cleaning a turbine acted upon by exhaust gases of an internal combustion engine by means of the inventive cleaning method with a pump 431 with adjustable flow.
  • the pump can be controlled via an electronic control unit 5, with or without feedback of the currently set flow rate.
  • Fig. 5 shows a second embodiment of such a cleaning device with a pump 43, which conveys a constant amount of cleaning liquid, and with a valve 44 with adjustable flow in the supply line between the pump 43 and the nozzles 42.
  • a pump 43 which conveys a constant amount of cleaning liquid
  • a valve 44 with adjustable flow in the supply line between the pump 43 and the nozzles 42.
  • Fig. 6 shows a third embodiment with a pump 43, which conveys a constant amount of cleaning liquid, and an adjustable flow distributor 45, which electronically or mechanically controlled, the amount of cleaning liquid, which is passed to the various nozzles 42 varies.
  • a pump 43 which conveys a constant amount of cleaning liquid
  • an adjustable flow distributor 45 which electronically or mechanically controlled, the amount of cleaning liquid, which is passed to the various nozzles 42 varies.
  • the individual nozzles 421 have adjustable nozzle openings, for example adjustable iris diaphragms or adjustable or freely oscillating nozzle opening flaps.
  • electronically controlled control unit and mechanical controls for example, oscillating flow elements or rotating flaps, be provided to vary the flow through a supply line or the distribution between the individual leads to the nozzles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Description

Turbinenrein igung
B E S C H R E I B U N G
Technisches Gebiet
Die Erfindung bezieht sich auf das Gebiet der mit Abgasen von Brennkraftmaschinen beaufschlagten Strömungsmaschinen. Sie betrifft ein Reinigungsverfahren zum Reinigen einer Abgasturbine sowie eine Reinigungsvorrichtung zum Reinigen einer mit Abgasen einer Brennkraftmaschine beaufschlagten Turbine mittels eines derartigen Reinigungsverfahrens.
Abgasturbinen werden in Abgasturboladern zum Aufladen von Brennkraftmaschinen oder in Nutzturbinen zum Umwandeln der in den Abgasen von Brennkraftmaschinen enthaltenen Energie in mechanische oder elektrische Energie eingesetzt.
In Abhängigkeit von der konkreten Betriebssituation und der Zusammensetzung der zum Antrieb der Brennkraftmaschine verwendeten Brennstoffe, kommt es in der Abgasturbine früher oder später zu einer Verschmutzung der Turbinenschaufeln des Laufrads, der Leitschaufeln des Düsenringes und der verschiedenen Turbinengehäuseteile. Solche Schmutzablagerungen führen im Bereich des Düsenrings zu einem schlechteren Turbinenwirkungsgrad und demzufolge zur Verringerung der Leistung der nachfolgenden Maschinen, beispielsweise des mittels Abgasturbine angetriebenen Verdichters und der aufgeladenen Brennkraftmaschine selbst. Als Folge dessen kommt es zu einer Erhöhung der Abgastemperaturen im Brennraum, wodurch sowohl die Brennkraftmaschine als auch der Turbolader thermisch überbeansprucht werden können. Bei der Brennkraftmaschine kann insbesondere eine Beschädigung oder gar Zerstörung der Auslassventile auftreten.
Lagert sich auf dem Düsenring und auf den Turbinenschaufeln eines mit einer Viertakt- Brennkraftmaschine verbundenen Turboladers eine Schmutzschicht ab, so ist ausserdem mit einem Ansteigen der Turboladerdrehzahl und folglich des Ladedrucks und des Zylinderdrucks zu rechnen. Dadurch werden sowohl Bauteile der Brennkraftmaschine als auch des Turboladers zusätzlich zur erhöhten thermischen Belastung auch mechanisch höher beansprucht, was ebenfalls bis zur Zerstörung der betroffenen Bauteile führen kann. Bei unregelmässiger Verteilung der Schmutzschicht am Umfang der Laufschaufeln des Turbinenrades kommt es zu einer Erhöhung der Unwucht des Rotors, wodurch auch die Lagerung beschädigt werden kann.
Kommt es am Turbinengehäuse zu Schmutzablagerungen an der im Bereich radial ausserhalb der Turbinenschaufeln verlaufenden Aussenkontur des Strömungskanals, können auf Grund des reduzierten Radialspiels zwischen Turbinenschaufeln und Turbinengehäuse im Betrieb Berührung auftreten, welche die Turbinenschaufeln beschädigen und im Extremfall unbrauchbar machen können.
Deshalb müssen Düsenring, Turbinenschaufeln und betroffene Bereiche des Turbinengehäuses regelmässig während des Betriebes von ihnen anhaftenden Verschmutzungen befreit werden. Dies geschieht typischerweise durch den Einsatz von Trocken- oder Nassreinigungssysteme.
Nassreinigungssysteme zeichnen sich dadurch aus, dass während eines Reinigungszyklus mittels einer oder mehrerer Düsen, die auf der Turbineneintrittsseite positioniert sind, ein flüssiges Reinigungsmittel, beispielsweise kaltes Wasser, eingedüst wird. Durch das Einbringen von kalter Reinigungsflüssigkeit auf heisse Verschmutzungsablagerungen werden diese entfernt und die Oberflächen wieder nahezu in den Originalzustand bei der Auslieferung zurückversetzt. Das Einspritzen von kalter Reinigungsflüssigkeit auf die heissen Turbinenkomponenten stellt jedoch eine vergleichsweise hohe thermomechanische Belastung der Turbinenkomponenten dar. Um daraus resultierende Schäden an den Komponenten der Turbine zu vermeiden, wird die Turbinennassreinigung in der Regel nur bei tiefen Motorlasten - mit entsprechend tiefen Gaseintrittstemperaturen am Turbolader - erlaubt. Der Reinigungszyklus wird daher typischerweise derart gestaltet, dass die Last des Motors auf ein für den Reinigungszyklus geeignetes Niveau reduziert wird (beispielsweise auf 25% der normalen Motorlast) und nach einer Haltezeit während einer definierten Zeitperiode (beispielsweise 10 Minuten) Reinigungsflüssigkeit eingespritzt wird. Anschliessend wird während einer weiteren Zeitperiode (beispielsweise 10 Minuten) allfällig noch im Turbolader vorhandene Reinigungsflüssigkeit verdampft, bevor der Motor danach wieder auf sein normales Lastniveau gebracht wird.
Die Eindüsung von Reinigungsflüssigkeit während des Reinigungszyklus durch eine oder mehrere Düsen vor dem Turbineneintritt findet gewöhnlich unter konstantem Druck und konstantem Durchfluss statt. Die Einspritzdüsen sind derart ausgelegt, dass diese eine Verteilung von Reinigungsflüssigkeit erzeugen, die pro Düse einen bestimmten Oberflächenbereich des Düsenrings oder des Turbinengehäuses mit Reinigungsflüssigkeit benetzen können. Die auftreffende Verteilung von Reinigungsflüssigkeit auf den Oberflächen ist dabei von mehreren Faktoren wie dem Strömungszustand vor der Turbine, der von der Düsenöffnung der Düsen erzeugten Strahlform, dem Einspritzdruck und der Menge von Reinigungsflüssigkeit, der Turbineneintrittstemperatur, usw. abhängig.
Die Auslegung der Düsen wird dabei bei einem definierten Lastpunkt, bekannten Strömungsgrössen und konstanten Reinigungssystemgrössen vorgenommen. Im realen Motorenbetrieb können die oben benannten Einflussgrössen von den in der Ursprungsauslegung verwendeten Grössen stark abweichen, was wiederum die im realen Betrieb benetzten Oberflächenbereiche verändert und sogar verkleinert, was zu unbefriedigenden Reinigungsergebnissen führen kann.
Zu welchem Zeitpunkt ein Reinigungszyklus initiiert werden soll, kann entweder fix von der Betriebsdauer abhängig gemacht werden, beispielsweise feste Reinigungsintervalle nach einer bestimmten Anzahl Betriebsstunden, oder es können Verschmutzungsindikatoren erfasst werden, welche dann automatisch einen Reinigungszyklus auslösen.
Stand der Technik
Aus DE 35 15 825 A1 sind ein Verfahren und eine Vorrichtung zur Reinigung der Laufschaufeln und des Düsenrings der Axialturbine eines Abgasturboladers bekannt. Die Reinigungsvorrichtung besteht aus mehreren am Gaseintrittgehäuse der Axialturbine angeordneten Düsen, die bis in den Strömungskanal reichen und einer Zuleitung für Reinigungsflüssigkeit. Bei einem bestimmten Verschmutzungsgrad der Axialturbine wird über eine Mess- und Auswerteeinheit ein Reinigungsbedarf ermittelt. Dementsprechend wird über die stromauf der Leitschaufeln angeordneten Düsen Reinigungsflüssigkeit in den Strömungskanal eingespritzt. Die dabei entstehenden Tröpfchen werden vom Abgasstrom bis zu den Leit- bzw. den Laufschaufeln der Axialturbine transportiert und reinigen diese von den anhaftenden Verschmutzungen. Während eines relativ kurzen Reinigungsintervalls wird dabei eine grosse Menge Reinigungsflüssigkeit (ca. 3-5 l/min Reinigungsflüssigkeit pro m3/s Abgas) in die Strömung eingespeist, um eine möglichst gründliche Reinigung zu erzielen. Bei diesem Reinigungsverfahren muss aufgrund der grossen Menge von Reinigungsflüssigkeit die Motorlast frühzeitig und während des gesamten Reinigungsvorgangs reduziert werden. Dies ist erforderlich, um einen unzulässig hohen Anstieg der Abgastemperaturen während des Reinigungsvorganges zu vermeiden. Ein übermässiger Anstieg der Abgastemperaturen während des Reinigungsvorganges führt zur thermischen Überbelastung der Abgasturbinen und der Brennkraftmaschine.
Ebenfalls aus dem Stand der Technik ist bekannt, dass in der Anfangsphase der Einspritzung einer kalten Reinigungsflüssigkeit in hoher Menge (vgl. oben) auf die heissen Leitschaufeln des Düsenrings und Laufschaufeln des Turbinenrads, ein zusätzlicher Thermoschock-Reinigungseffekt erzielt werden kann. Nicht nur die Leitschaufeln des Düsenrings und die Laufschaufeln des Turbinenrades, sondern auch die Turbinengehäuseteile werden bei der Thermoschock-Reinigung thermisch sehr stark beansprucht. Die Vermeidung der Bildung von unzulässig hohen Thermospannungen oder gar Rissen in den entsprechenden Bauteilen ist konstruktiv sehr aufwendig, erfordert eine ausgeklügelte Regelung der Reinigung und verursacht dadurch hohe Kosten.
Aus WO2007/036059A1 ist ein Reinigungsverfahren zum Nassreinigen einer Abgasturbine bekannt, bei welchem kontinuierlich oder getaktet eine kleine Menge Reinigungsflüssigkeit in den Abgasstrom einer Abgasturbine eingespeist und auf die zu reinigenden Komponenten der Abgasturbine geführt wird. Die kleine Menge Reinigungsflüssigkeit kann bei unverändertem Brennkraftmaschinenbetrieb eingespeist werden, so dass die Reinigung bzw. Reinhaltung der Abgasturbine im gesamten Brennkraftmaschinenbetriebsbereich erfolgen kann. Schwankungen in der Leistungsabgabe der Brennkraftmaschine aufgrund von notwendig gewordener Abgasturbinenreinigung sollen somit ausbleiben. Ferner soll die Bildung von Thermospannungsrissen in den diesbezüglich besonders gefährdeten Turbinengehäuseteilen weitgehend vermieden werden können.
Fl 1 17 804 offenbart eine Reinigungsvorrichtung zum Nassreinigen einer Abgasturbine, bei welcher der Druck der Reinigungsflüssigkeit statisch festgelegt, etwa 2 bar über dem Druck der Abgase im Strömungskanal, liegt. Damit die Nassreinigung bei Volllast erfolgen kann, wird dem Abgasstrom ein Teil der kühleren Frischluft vom Verdichterausgang zugeführt. Dadurch senkt sich die Temperatur des Abgasstromes auf einen für die Reinigung der Turbinenteile optimalen, vorbestimmten Wert. Aus EP1972758A1 ist ein Reinigungsverfahren zum Nassreinigen einer Abgasturbine bekannt, bei welchem betriebspunktunabhängig Reinigungsflüssigkeit in den Abgasstrom der Abgasturbine eingespeist und auf die zu reinigenden Komponenten der Abgasturbine geführt wird. Dabei wird der Einspritzdruck der Reinigungsflüssigkeit den Bedingungen vor der Abgasturbine angepasst wird. Hierfür wird, in einem ersten Schritt, mindestens eine, die vor der Turbine herrschenden Bedingungen charakterisierende Messgrösse gemessen, in einem zweiten Schritt, aus der gemessenen Messgrösse ein Wert für den Einspritzdruck der Reinigungsflüssigkeit bestimmt, und in einem dritten Schritt, die
Reinigungsflüssigkeit mit dem bestimmten Einspritzdruck in den Strömungskanal eingespritzt
Kurze Darstellung der Erfindung
Die Aufgabe der vorliegenden Erfindung besteht darin, ein Reinigungsverfahren zum Nassreinigen einer Abgasturbine zu schaffen, mit welchem eine möglichst gesamtflächige Benetzung der verschmutzen Turbinenteile realisiert werden kann.
Erfindungsgemäss wird dies durch eine instationäre Eindüsung von Reinigungsflüssigkeit erreicht, indem die Menge der über eine Düse in den Strömungskanal der Turbine eingespritzten Reinigungsflüssigkeit im Zeitablauf um eine bestimmte, mittlere Menge von Reinigungsflüssigkeit variiert.
Die Erzeugung der zeitlich variablen Menge von Reinigungsflüssigkeit (periodisch, aperiodisch, zufälliger Verlauf) kann beispielsweise über eine Beeinflussung des Einspritzdrucks oder der Menge von Reinigungsflüssigkeit erfolgen, etwa über eine Pumpe mit regelbarem Durchfluss, ein regelbares Ventil in der Zuleitung oder oszillierende Strömungselemente vor der Düse, oder auch durch eine Beeinflussung der Grösse der Düsenöffnung, etwa durch geregelte Irisblenden oder geregelte oder frei oszillierende Düsenöffnungsklappen. Die Variation der Menge von Reinigungsflüssigkeit erfolgt dabei um einen bestimmten Mittelwert, wobei der zeitlich variable Verlauf optional periodisch, aperiodisch oder zufällig sein kann.
Beim Variieren des Einspritzdrucks, beispielsweise, wird der bestimmte, mittlere Einspritzdruck aufgrund der geometrischen Abmessungen der Abgasturbine, oder dynamisch in Abhängigkeit des jeweiligen Betriebspunktes der Abgasturbine und/ oder des jeweiligen Betriebspunktes der Brennkraftmaschine festgelegt. Die Variation der Menge von Reinigungsflüssigkeit wird vorteilhafterweise durch eine automatische Einspritzdruckregelung, beziehungsweise durch eine Regelung für die Düsenöffnung, realisiert.
Wird der Einspritzdruck instationär variiert, verändert sich die erzeugte Verteilung von Reinigungsflüssigkeit und damit die Benetzung der Turbinenoberflächen, selbst bei sonst konstanten Reinigungssystemgrössen. Der damit gewonnene Vorteil besteht darin, dass durch die Variation der Menge von Reinigungsflüssigkeit die Verteilung von Reinigungsflüssigkeit und die Oberflächenbenetzung instationär über einen einstellbaren Oberflächenbereich variiert werden kann und eine bessere Reinigungswirkung unabhängig vom jeweiligen individuellen Strömungszustand im Turbolader erzielt wird.
Optional kann die Variation der Menge von Reinigungsflüssigkeit bei zwei oder mehreren, entlang dem Umfang verteilt angeordneten Düsen unterschiedlich voneinander realisiert werden, so dass sich im Zeitablauf voneinander verschiedene, oder zeitlich versetzte Verläufe der Mengen von Reinigungsflüssigkeit ergeben. Optional kann dabei die eingespritzte Gesamtmenge von Reinigungsflüssigkeit konstant gehalten werden
Kurze Beschreibung der Zeichnungen
Anschliessend ist anhand von Figuren das erfindungsgemässe Reinigungsverfahren näher beschrieben. Hierbei zeigt
Fig. 1 ein Schnittbild eines Abgasturboladers mit einer turbinenseitigen
Reinigungsvorrichtung,
Fig. 2 ein Diagramm mit dem Verlauf der Menge von Reinigungsflüssigkeit über der
Zeit, sowie die schematisch dargestellte Auswirkung der Varianz der Menge von Reinigungsflüssigkeit auf die Benetzung der Turbinengehäuseteile,
Fig. 3 zwei Diagramme mit dem Verlauf von Einspritzdruck und Menge von
Reinigungsflüssigkeit über der Zeit,
Fig. 4 ein Schema einer ersten Ausführungsform einer Reinigungsvorrichtung zum
Durchführen des erfindungsgemässen Reinigungsverfahrens mit einer variablen Pumpe mit einstellbarem Durchfluss, ein Schema einer zweiten Ausführungsform einer Reinigungsvorrichtung zum Durchführen des erfindungsgemässen Reinigungsverfahrens mit einem einstellbaren Ventil in der Zuleitung,
ein Schema einer dritten Ausführungsform einer Reinigungsvorrichtung zum Durchführen des erfindungsgemässen Reinigungsverfahrens mit einem einstellbaren Strömungsteiler,
ein Schema einer vierten Ausführungsform einer Reinigungsvorrichtung zum Durchführen des erfindungsgemässen Reinigungsverfahrens mit individuell einstellbaren Düsenöffnungen, und
ein weiteres Diagramm mit dem Verlauf von Menge von Reinigungsflüssigkeit über der Zeit.
Weg zur Ausführung der Erfindung
Fig. 1 zeigt ein Schnittbild eines Abgasturboladers mit einer Abgasturbine (rechts) und einem Verdichter. Die Abgasturbine umfasst ein Turbinenrad 2 mit Laufschaufeln 21 , welches Turbinenrad in einem Turbinengehäuse 20 angeordnet ist. Über eine Welle 3, welche in einem Lagergehäuse 30 drehbar gelagert ist, ist das Turbinenrad mit dem Verdichterrad 1 verbunden. Das Verdichterrad ist im Verdichtergehäuse 10 angeordnet.
Im Bereich des Turbineneintritts, in welchem heisses Abgas aus dem ringhohlraumförmigen Sammelkanal durch den engen Strömungskanal auf die Laufschaufeln 21 des Turbinenrades 2 strömt, weist die Turbine einen Leitapparat (Düsenring mit Leitschaufeln) 22 auf, welcher die Abgasströmung auf die Laufschaufeln des Turbinenrades ausrichtet. Die den Strömungskanal in diesem Bereich begrenzenden Wandteile des Turbinengehäuses sowie die Leitschaufeln des Leitapparates sind, wie eingangs beschrieben, der Verschmutzung durch Ablagerung ausgesetzt.
Unmittelbar stromauf des Turbineneintritts weist die Abgasturbine eine Reinigungsvorrichtung auf, welche einen ringförmigen Kanal 41 zur Zuführung der Reinigungsflüssigkeit sowie eine oder mehrere Düsen 42 zum Einspritzen der Reinigungsflüssigkeit in den Sammel- und Strömungskanal der Turbine aufweist.
Je nach dem Typ der Turbine (Axial-, Mixed Flow- oder Radialturbine) und/ oder der Ausführung der Turbine kann die genaue Anordnung der Reinigungsvorrichtung variieren. Typischerweise sind die Düsen jedoch stets stromauf der Leitvorrichtung angebracht, so dass die Strömung des heissen Abgases die Reinigungsflüssigkeit mitführt und auf die zu reinigenden Oberflächen verteilt. Die Düsen 42 sind vorteilhafterweise entlang dem Umfang des Turbinengehäuses verteilt angeordnet, wobei die Anzahl der Düsen auf die Anzahl der Leitschaufeln des Leitapparates abgestimmt sein kann. So können beispielsweise für jede Leitschaufel eine Düse oder pro zwei Leitschaufeln eine Düse vorgesehen sein. Optional können unabhängig vom Leitapparat zusätzliche Düsen vorgesehen sein, welche etwa direkt auf die Wände des Strömungskanals gerichtet sind.
Soll aufgrund des Erreichens einer bestimmten Anzahl Betriebsstunden oder, da ein Verschmutzungsindikator die Notwendigkeit einer Reinigung anzeigt, ein Reinigungszyklus initiiert werden, wird der heissen Abgasströmung stromauf der Leitvorrichtung und der Laufschaufeln des Turbinenrades eine Reinigungsflüssigkeit zugeführt. Die Reinigungsflüssigkeit, in der Regel Wasser oder mit einer reinigungsfördernden Substanz versetztes Wasser, wird dabei in kontrollierten Mengen und mit bestimmtem Druck in den Strömungskanal eingespritzt. Erfindungsgemäss wird die Menge und/oder der Einspritzdruck instationär variiert, so dass gemäss Fig. 2 je nach Menge und/ oder Einspritzdruck unterschiedliche Bereiche der zu reinigenden Oberflächen mit der Reinigungsflüssigkeit benetzt werden.
In der Fig. 2 sind für drei Punkte auf dem aufgezeigten Verlauf des periodisch variierten Einspritzdrucks pw über der Zeit t die Auswirkung des jeweiligen Einspritzdrucks auf den Spritzverlauf der Reinigungsflüssigkeit schematisch dargestellt. Im linken Teilbild ist ein mittlerer Einspritzdruck dargestellt, bei welchem der aus der Düse in die Strömung abgegebene Strahl durch die Strömung auf den mittleren Bereich der Leitvorrichtung abgelenkt wird. Bei höherem Druck, in der mittleren Teilfigur dargestellt, reicht der Strahl aus der Düse bis an den entfernten Rand des Strömungskanals, während bei tieferem Druck, in der rechten Teilfigur, lediglich die rechten, inneren Randbereiche der Leitschaufeln benetzt werden.
Die erfindungsgemässe instationäre Variation der Menge der Reinigungsflüssigkeit und/ oder des Einspritzdrucks erfolgt um einen Mittelwert, also um eine bestimmte, mittlere Flüssigkeitsmenge oder einen mittleren Einspritzdruck, sowie innerhalb eines ein- oder zweiseitig begrenzten Bereichs zwischen einem Minimalwert und/ oder einem Maximalwert. Diese Mittel-, Minimal und Maximalwerte können entweder fest aufgrund der Turbinengeometrie und der vorgesehenen Strömungsverhältnisse vorgegeben sein, oder sie können dynamisch den Strömungsbedingungen vor der Turbine - insbesondere dem Abgas-Impulsstrom - und/ oder der Motorlast angepasst werden. Im zweiten Fall könnten etwa zu Beginn eines Reinigungsintervalls die anzuwendenden, bestimmten Mittelwerte in Abhängigkeit einer oder mehreren turbinen- oder motorspezifischen Messgrössen auf Basis von definierten Kennkurven berechnet oder aus einer Tabelle ausgelesen werden. Die turbinen- oder motorspezifischen Messgrössen können auf verschiedene Arten bestimmt werden. So können motorspezifische Messdaten, wie Lasthebelstellung oder Einspritzparameter, ausgewertet und daraus die Motorlast abgeleitet werden. Sind dem Motor weitere Aggregate, etwa ein Stromgenerator, nachgeschaltet, kann die Motorlast an diesem nachgeschalteten Aggregat direkt gemessen werden. Auch können spezifische Messdaten des Turboladers ausgewertet werden, beispielsweise die Turboladerdrehzahl. Da die Auslegung des Turboladers üblicherweise bekannt ist, kann mit Hilfe der TL- Drehzahl aus den entsprechenden Kennfeldern der Gasmassen- oder der Gasvolumenstrom, und somit der Zustand vor Turbine, näherungsweise ermittelt werden. Weiter wäre es möglich, die Gasströmung direkt im Strömungskanal zu messen, etwa mittels Hitzdraht-, Ultraschall- oder Laser-Doppler-Anemometer. Detaillierte Angaben zum Bestimmen der turbinen- oder motorspezifischen Messgrössen sind der EP1972758A1 zu entnehmen.
Die Variation der Menge der Reinigungsflüssigkeit m* w und/ oder des Einspritzdrucks pw kann, wie in den Diagrammen der Fig. 3 schematisch angedeutet, periodisch (Kurve b, gepunktet), aperiodisch oder ganz zufällig (Kurve c, durchgezogen) um den mittleren Einspritzdruck (Kurve a, gestrichelt) bzw. die mittlere Einspritzmenge erfolgen. Bei sich änderndem Einspritzdruck (oberes Diagramm) und sonst gleichbleibenden Bedingungen, folgt die Menge der eingespritzten Reinigungsflüssigkeit m* w (unteres Diagramm) dem Verlauf des Einspritzdrucks pw. Fig. 8 zeigt ein weiteres Beispiel eines periodischen Verlaufs der Menge der eingespritzten Reinigungsflüssigkeit m* w, bei welchem die momentane Menge der Reinigungsflüssigkeit pro Düse innerhalb einer Periodendauer zeitweise den Wert Null einnimmt. Ein Reinigungszyklus umfasst in der Regel mehrere Perioden von jeweils 3-120 s Dauer, wobei die Gesamtdauer eines jeweiligen Reinigungszyklus fest vorgegeben sein kann, oder aber von der aktuellen Verschmutzung der Bauteile der Turbine und/ oder von der Anzahl Betriebsstunden seit dem letzten Reinigungszyklus abhängen kann. Umfasst die Reinigungsvorrichtung zwei oder mehrere, entlang dem Umfang verteilt angeordnete Düsen, kann das erfindungsgemässe Reinigungsverfahren optional derart ausgeführt werden, dass die Gesamtflüssigkeitsmenge aller Düsen im Zeitablauf innerhalb des Reinigungszyklus konstant bleibt und der mit der Anzahl der Düsen multiplizierten bestimmten, mittleren Flüssigkeitsmenge entspricht. Die Menge der pro Düse in den Strömungskanal der Turbine eingespritzten Reinigungsflüssigkeit variiert im Zeitablauf innerhalb des Reinigungszyklus dagegen um die bestimmte, mittlere Flüssigkeitsmenge.
Wie die zeitlich variable Menge von Reinigungsflüssigkeit pro Düse gesteuert wird, ist in den Figuren 4 bis 7 beispielhaft und schematisch anhand von verschiedenen Ausführungsformen von Reinigungsvorrichtungen dargestellt:
Fig. 4 zeigt eine erste Ausführungsform einer Reinigungsvorrichtung zum Reinigen einer mit Abgasen einer Brennkraftmaschine beaufschlagten Turbine mittels des erfindungsgemässen Reinigungsverfahrens mit einer Pumpe 431 mit einstellbarem Durchfluss. Die Pumpe kann über eine Steuerelektronik 5 angesteuert werden, mit oder ohne Rückmeldung der jeweils aktuell eingestellten Durchflussmenge.
Fig. 5 zeigt eine zweite Ausführungsform einer solchen Reinigungsvorrichtung mit einer Pumpe 43, welche eine konstante Menge Reinigungsflüssigkeit befördert, und dafür mit einem Ventil 44 mit einstellbarem Durchfluss in der Zuleitung zwischen der Pumpe 43 und den Düsen 42. Mit diesen ersten beiden, einfachen Ausführungsformen lassen sich mehrere Düsen 42 nicht individuell ansteuern, es sei denn, Pumpe und/ oder Ventil würden zwei- oder mehrfach nebeneinander geführt.
Fig. 6 zeigt eine dritte Ausführungsform mit einer Pumpe 43, welche eine konstante Menge Reinigungsflüssigkeit befördert, und einem einstellbaren Strömungsverteiler 45, welcher elektronisch oder mechanisch gesteuert, die Menge Reinigungsflüssigkeit, welche auf die verschiedenen Düsen 42 geleitet wird variiert. In dieser Ausführungsform ist es möglich, die Menge Reinigungsflüssigkeit von Düse zu Düse individuell zu variieren, und dabei die Gesamtmenge von Reinigungsflüssigkeit konstant zu halten. Ebenso ist dies möglich mit der vierten Ausführungsform gemäss Fig. 7, bei welcher die einzelnen Düsen 421 einstellbare Düsenöffnungen, beispielsweise einstellbare Irisblenden oder einstellbare oder frei oszillierende Düsenöffnungsklappen aufweisen. Diese vier vorgestellten Ausführungsformen lassen sich untereinander kombinieren und/ oder mit weiteren Elementen zur Einstellung von Einspritzdruck und/ oder Durchflussmenge kombinieren.
Anstelle der beschriebenen, elektronisch gesteuerten Kontrolleinheit können auch mechanische Steuerungen, beispielsweise oszillierende Strömungselemente oder rotierende Klappen, vorgesehen sein, um den Durchfluss durch eine Zuleitung oder die Verteilung zwischen den einzelnen Zuleitungen zu den Düsen zu variieren.
Bezugszeichenliste
1 Verdichterrad
10 Verdichtergehäuse
2 Turbinenrad
20 Turbinengehäuse
21 Laufschaufeln des Turbinenrades
22 Leitapparat (Düsenring mit Leitschaufeln)
3 Welle des Turboladers
30 Lagergehäuse
41 Kanal zum Zuführen der Reinigungsflüssigkeit
42 Düsen zum Einspritzen der Reinigungsflüssigkeit
421 Düsen mit einstellbaren Düsenöffnungen
43 Pumpe für die einzuspritzende Reinigungsflüssigkeit
431 Variable Pumpe mit einstellbarem Durchfluss
44 Einstellbares Ventil in der Zuleitung der Reinigungsflüssigkeit
45 Einstellbarer Strömungsteiler in der Zuleitung der Reinigungsflüssigkeit 5 Kontrolleinheit
pw Einspritzdruck der Reinigungsflüssigkeit
m*w Menge der eingespritzten Reinigungsflüssigkeit
a Kurvenverlauf der Einspritzung mit konstantem Einspritzdruck b Kurvenverlauf der Einspritzung mit periodisch änderndem Einspritzdruck c Kurvenverlauf der Einspritzung mit zufällig änderndem Einspritzdruck t Zeit

Claims

P AT E N TA N S P R Ü C H E
1. Reinigungsverfahren zum Reinigen einer mit Abgasen einer Brennkraftmaschine
beaufschlagten Turbine, wobei die Abgase in einem Strömungskanal auf die
Laufschaufeln eines Turbinenrades geführt werden,
bei welchem Reinigungsverfahren in einem Reinigungszyklus über mindestens eine Düse eine Reinigungsflüssigkeit in den Strömungskanal eingespritzt wird,
dadurch gekennzeichnet,
dass die Menge der pro Düse in den Strömungskanal der Turbine eingespritzten Reinigungsflüssigkeit im Zeitablauf innerhalb des Reinigungszyklus um eine
bestimmte, mittlere Flüssigkeitsmenge variiert wird.
2. Reinigungsverfahren nach Anspruch 1 , bei welchem die bestimmte, mittlere
Flüssigkeitsmenge aufgrund der geometrischen Abmessungen der Turbine festgelegt wird.
3. Reinigungsverfahren nach Anspruch 1 , bei welchem die bestimmte, mittlere
Flüssigkeitsmenge in Abhängigkeit der im Strömungskanal vor der Turbine
herrschenden Bedingungen festgelegt wird, wobei hierfür in einem erste Schritt mindestens eine, die vor der Turbine herrschenden Bedingungen charakterisierende Messgrösse gemessen wird, in einem zweiten Schritt aus der gemessenen
Messgrösse ein Wert für die bestimmte, mittlere Flüssigkeitsmenge bestimmt wird, und in einem dritten Schritt die Reinigungsflüssigkeit im Zeitablauf innerhalb des
Reinigungszyklus um die bestimmte, mittlere Flüssigkeitsmenge variierend
eingespritzt wird.
4. Reinigungsverfahren nach Anspruch 3, bei welchem zur Bestimmung der im
Strömungskanal vor der Turbine herrschenden Bedingungen, Messgrössen der Brennkraftmaschine gemessen werden.
5. Reinigungsverfahren nach Anspruch 3, bei welchem zur Bestimmung der im
Strömungskanal vor der Turbine herrschenden Bedingungen, Messgrössen des Abgasturboladers gemessen werden.
6. Reinigungsverfahren nach Anspruch 1 , bei welchem über zwei oder mehrere, entlang dem Umfang verteilt angeordnete Düsen eine Reinigungsflüssigkeit in den
Strömungskanal eingespritzt wird, wobei die Menge der pro einzelner Düse in den Strömungskanal der Turbine eingespritzten Reinigungsflüssigkeit im Zeitablauf innerhalb des Reinigungszyklus um eine bestimmte, mittlere Flüssigkeitsmenge variiert wird, die Gesamtflüssigkeitsmenge aller Düsen im Zeitablauf innerhalb des
Reinigungszyklus jedoch konstant bleibt und der mit der Anzahl der Düsen
multiplizierten bestimmten, mittleren Flüssigkeitsmenge entspricht.
7. Reinigungsverfahren nach einem der Ansprüche 1 bis 6, wobei die Menge der pro
Düse in den Strömungskanal eingespritzten Reinigungsflüssigkeit über den
Einspritzdruck der Reinigungsflüssigkeit gesteuert wird.
8. Reinigungsverfahren nach einem der Ansprüche 1 bis 6, wobei die Menge der pro
Düse in den Strömungskanal eingespritzten Reinigungsflüssigkeit über die
Düsengeometrie gesteuert wird.
9. Reinigungsverfahren nach einem der Ansprüche 1 bis 8, wobei die Menge der pro
Düse in den Strömungskanal eingespritzten Reinigungsflüssigkeit periodisch verändert wird.
10. Reinigungsverfahren nach Anspruch 9, wobei die Periodendauer zwischen 3 und 120 s beträgt.
1 1 . Reinigungsverfahren nach einem der Ansprüche 9 oder 10, wobei die momentane
Menge der Reinigungsflüssigkeit pro Düse innerhalb einer Periodendauer zeitweise den Wert Null einnimmt.
12. Reinigungsvornchtung zum Reinigen einer mit Abgasen einer Brennkraftmaschine beaufschlagten Turbine mittels eines Reinigungsverfahrens nach einem der Ansprüche 1 bis 1 1 , umfassend eine Pumpe (43, 431 ) zum Befördern einer Reinigungsflüssigkeit, mindestens eine Düse (42, 421 ) zum Einspritzen der Reinigungsflüssigkeit in den Strömungskanal der Turbine, sowie mindestens ein einstellbares Element (421 , 431 , 44, 45) zum dynamischen Variieren des Durchflusses der Reinigungsflüssigkeit.
13. Reinigungsvorrichtung nach Anspruch 12, wobei als einstellbares Element eine Pumpe (431 ) zur Beförderung der Reinigungsflüssigkeit mit einstellbarer Durchflussmenge vorgesehen ist.
14. Reinigungsvorrichtung nach Anspruch 12, wobei als einstellbares Element ein
einstellbares Ventil (44) in der Zuleitung der Reinigungsflüssigkeit zu den Düsen (42) vorgesehen ist.
15. Reinigungsvorrichtung nach Anspruch 12, umfassend zwei oder mehrere Düsen (42), wobei als einstellbares Element ein einstellbarer Strömungsteiler (45) in der Zuleitung der Reinigungsflüssigkeit zu den Düsen (42) vorgesehen ist.
16. Reinigungsvorrichtung nach Anspruch 12, wobei als einstellbares Element die
mindestens eine Düse (421 ) mit einer einstellbarer Düsenöffnungen oder einer geregelten Irisblende oder einer oszillierenden Düsenöffnungsklappe versehen ist.
17. Reinigungsvorrichtung nach Anspruch 12, wobei als einstellbares Element ein
oszillierendes Strömungselement in der Zuleitung zu der mindestens einen Düse (42) vorgesehen ist.
EP12700228.5A 2011-01-14 2012-01-11 Turbinenreinigung Withdrawn EP2663740A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011008649A DE102011008649A1 (de) 2011-01-14 2011-01-14 Turbinenreinigung
PCT/EP2012/050325 WO2012095434A1 (de) 2011-01-14 2012-01-11 Turbinenreinigung

Publications (1)

Publication Number Publication Date
EP2663740A1 true EP2663740A1 (de) 2013-11-20

Family

ID=45476520

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12700228.5A Withdrawn EP2663740A1 (de) 2011-01-14 2012-01-11 Turbinenreinigung

Country Status (7)

Country Link
US (1) US20130298944A1 (de)
EP (1) EP2663740A1 (de)
JP (1) JP5840701B2 (de)
KR (1) KR20130117851A (de)
CN (1) CN103314186B (de)
DE (1) DE102011008649A1 (de)
WO (1) WO2012095434A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5991296B2 (ja) * 2013-09-25 2016-09-14 トヨタ自動車株式会社 排気ターボチャージャ
CN104100378B (zh) * 2014-08-01 2016-06-01 安徽江淮汽车股份有限公司 一种增压器喷嘴叶片的积碳清除方法及装置
US20170204739A1 (en) 2016-01-20 2017-07-20 General Electric Company System and Method for Cleaning a Gas Turbine Engine and Related Wash Stand
US10323539B2 (en) * 2016-03-01 2019-06-18 General Electric Company System and method for cleaning gas turbine engine components
US20190093505A1 (en) * 2017-09-22 2019-03-28 General Electric Company Engine Wash Analytics
US11268449B2 (en) 2017-09-22 2022-03-08 General Electric Company Contamination accumulation modeling
CN112065580B (zh) * 2020-09-21 2022-03-01 潍柴动力股份有限公司 发动机、增压器压气机的清洗系统
EP3985230A1 (de) * 2020-10-13 2022-04-20 ABB Switzerland Ltd. Radialturbine mit einer reinigungsvorrichtung zur reinigung eines leitschaufelrings und verfahren zur montage und demontage der reinigungsvorrichtung
FI4123140T3 (fi) * 2021-05-13 2024-04-25 Mitsubishi Heavy Ind Marine Machinery & Equipment Co Ltd Pakokaasuturbiini, turboahdin sekä menetelmä pakokaasuturbiinin puhdistamiseksi

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2234796A5 (de) * 1973-06-19 1975-01-17 Semt
US4548040A (en) 1984-05-11 1985-10-22 Elliott Turbomachinery Company, Inc. Method and apparatus for determining when to initiate cleaning of turbocharger turbine blades
US6176437B1 (en) * 1993-10-15 2001-01-23 Mona Skannerup Blast gun for compressed air
DE19549142A1 (de) * 1995-12-29 1997-07-03 Asea Brown Boveri Verfahren und Vorrichtung zur Nassreinigung des Düsenrings einer Abgasturbolader-Turbine
EP1754862A1 (de) * 2005-08-17 2007-02-21 ABB Turbo Systems AG Verdichter, Verdichterrad, Reinigungsaufsatz und Abgasturbolader
FI117804B (fi) * 2005-09-16 2007-02-28 Waertsilae Finland Oy Järjestely ja menetelmä turbokompressorilla varustetun mäntämoottorin yhteydessä
CN101300406B (zh) 2005-09-30 2012-12-12 Abb涡轮系统有限公司 涡轮的清洁
US8444068B2 (en) * 2005-10-26 2013-05-21 Techtronic Outdoor Products Technology Limited Dual flow pressure washer
GB0614874D0 (en) * 2006-07-27 2006-09-06 Rolls Royce Plc Aeroengine washing system and method
US7712301B1 (en) * 2006-09-11 2010-05-11 Gas Turbine Efficiency Sweden Ab System and method for augmenting turbine power output
US7703272B2 (en) * 2006-09-11 2010-04-27 Gas Turbine Efficiency Sweden Ab System and method for augmenting turbine power output
EP1972758A1 (de) 2007-03-19 2008-09-24 ABB Turbo Systems AG Turbinenreinigung
JP2008248726A (ja) * 2007-03-29 2008-10-16 Osaka Gas Co Ltd 過給式エンジン
EP2113638A1 (de) * 2008-04-30 2009-11-04 ABB Turbo Systems AG Einspritzvorrichtung
US9080460B2 (en) * 2009-03-30 2015-07-14 Ecoservices, Llc Turbine cleaning system
US9016293B2 (en) * 2009-08-21 2015-04-28 Gas Turbine Efficiency Sweden Ab Staged compressor water wash system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012095434A1 *

Also Published As

Publication number Publication date
CN103314186A (zh) 2013-09-18
WO2012095434A1 (de) 2012-07-19
JP2014503046A (ja) 2014-02-06
KR20130117851A (ko) 2013-10-28
US20130298944A1 (en) 2013-11-14
JP5840701B2 (ja) 2016-01-06
CN103314186B (zh) 2015-11-25
DE102011008649A1 (de) 2012-07-19

Similar Documents

Publication Publication Date Title
EP2663740A1 (de) Turbinenreinigung
DE69933362T2 (de) Wassereinspritzdüsen für eine gasturbine
WO2007036059A1 (de) Turbinenreinigung
EP1090208B1 (de) Verfahren und vorrichtung zur kühlung einer niederdruckstufe einer dampfturbine
DE202004021476U1 (de) Apparat zur Reinigung eines Turbofan-Gasturbinentriebwerks
DE102009059223A1 (de) Steuerungssystem für ein landgestütztes Einfachzyklus-PDC-Hybridtriebwerk zur Energieerzeugung
CH701015A2 (de) Verfahren und Systeme zur Erzeugung von dynamischen Verbrennungsvorgängen um Ablagerungen in einem Gasturbinentriebwerk zu entfernen.
DE102012019354A1 (de) Verfahren zum Betrieb eines Gasturbinenkraftwerks mit Abgasrezirkulation
CH705323A1 (de) Verfahren zum Einspritzen von Wasser in einen mehrstufigen Axialverdichter einer Gasturbine.
EP2867681A2 (de) Verfahren zur bestimmung einer drehzahl eines verdichters
WO1998010185A1 (de) ANTRIEBSEINRICHTUNG UND VERFAHREN ZUR REDUKTION DER MENGE NOx IN DEN ABGASEN EINES VERBRENNUNGSMOTORS
EP1972758A1 (de) Turbinenreinigung
EP3011144A2 (de) Verfahren und vorrichtung zur regelung der eindüsung von wasser in den rauchgaskanal einer gas- und dampfturbinenanlage
CH708576A2 (de) Verfahren zur Kühlung einer Gasturbine.
EP1557539A1 (de) Verfahren und Anordnung zur Leistungs- und Wirkungsgraderhöhung in einer Gasturbinenanlage, sowie Gasturbinenanlage
EP1462633B1 (de) Verfahren zur Regelung der Heissgastemperatur einer Gasturbine
AU2004287974C1 (en) Method for operating an atomiser in a gas turbine group
DE10254721A1 (de) Vorrichtung zur Flüssigkeitseinspritzung in einen Strömungskanal
EP1518039A1 (de) Verfahren zum betreiben einer gasturbinenanlage und gasturbinenanlage
CH250742A (de) Wärmekraftanlage mit mindestens zwei in Reihe geschalteten und mit voneinander unabhängigen Drehgeschwindigkeiten laufenden Verbrennungsturbinen.
DE102014100480A1 (de) System zur Verbesserung der Gasturbinenausgangsleistung und Heißgaspfadkomponentenlebensdauer durch Nutzung feuchter Luft zur Düsenunterkühlung
WO2015121035A1 (de) Verfahren zum betreiben eines verdichterstrangs und derselbe
EP3194729B1 (de) Verfahren und system zum abkühlen einer gasturbine
DE102004040925A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine mit mindestens zwei Zylinderbänken
EP4077899A1 (de) Kühlvorrichtung, verfahren zur kühlung, gasturbine, verfahren zum betreiben einer gasturbine sowie verfahren zur veränderung einer gasturbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150213

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160802