US20130298944A1 - Turbine cleaning - Google Patents

Turbine cleaning Download PDF

Info

Publication number
US20130298944A1
US20130298944A1 US13/942,134 US201313942134A US2013298944A1 US 20130298944 A1 US20130298944 A1 US 20130298944A1 US 201313942134 A US201313942134 A US 201313942134A US 2013298944 A1 US2013298944 A1 US 2013298944A1
Authority
US
United States
Prior art keywords
cleaning
turbine
amount
cleaning fluid
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/942,134
Inventor
Gerd MUNDINGER
Joel Schlienger
William Gizzi
Martin Eckert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Accelleron Industries AG
Original Assignee
ABB Turbo Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Turbo Systems AG filed Critical ABB Turbo Systems AG
Assigned to ABB TURBO SYSTEMS AG reassignment ABB TURBO SYSTEMS AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ECKERT, MARTIN, GIZZI, WILLIAM, MUNDINGER, GERD, SCHLIENGER, JOEL
Publication of US20130298944A1 publication Critical patent/US20130298944A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/002Cleaning of turbomachines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Definitions

  • the present disclosure relates to the field of turbomachines impinged on by exhaust gases of internal combustion engines.
  • a cleaning method is disclosed for cleaning of an exhaust-gas turbine and a cleaning device is disclosed for cleaning of a turbine, which is impinged on by exhaust gases of an internal combustion engine.
  • Exhaust-gas turbines are used in exhaust-gas turbochargers for supercharging of internal combustion engines, or in power turbines for converting energy contained in the exhaust gases of internal combustion engines into mechanical or electrical energy.
  • fouling of the turbine blades of the rotor, of the guide blades of the nozzle ring and of the various turbine housing parts occurs sooner or later in the exhaust-gas turbine.
  • wet cleaning systems are characterized in that, during a cleaning cycle, a liquid cleaning medium, for example cold water, is injected by one or more nozzles positioned on the turbine inlet side.
  • a liquid cleaning medium for example cold water
  • the latter can be removed and surfaces can be restored to nearly their original state upon initial delivery.
  • the injection of cold cleaning fluid onto the hot turbine components however subjects the turbine components to relatively high thermal and mechanical loading.
  • the turbine wet cleaning has been used at low engine loads—with correspondingly low gas inlet temperatures at the turbocharger.
  • the cleaning cycle has therefore been configured such that the load of the engine is reduced to a level suitable for the cleaning cycle (for example to 25% of the normal engine load) and, after a waiting time, cleaning fluid is injected over a defined time period (for example 10 minutes). Subsequently, during a further time period (for example 10 minutes), any cleaning fluid still present in the turbocharger is evaporated, before the engine is subsequently returned to its normal load level.
  • the injection of cleaning fluid through one or more nozzles upstream of the turbine inlet during the cleaning cycle can take place at constant pressure and with a constant throughflow rate.
  • the injection nozzles are configured so as to realize a distribution of cleaning fluid which, per nozzle, can wet a certain surface region of the nozzle ring or of the turbine housing with cleaning fluid.
  • the impinging distribution of cleaning fluid on the surfaces can be dependent on multiple factors such as the flow state upstream of the turbine, the jet shape generated by the nozzle opening of the nozzles, the injection pressure and amount of cleaning fluid, the turbine inlet temperature, and so forth.
  • the nozzles can be configured for a defined load point, known flow variables and constant cleaning system variables.
  • the above-mentioned influential variables may deviate significantly from the variables used in the original configuration, which in turn changes and even reduces in size the surface regions wetted during real operation, which can lead to unsatisfactory cleaning results.
  • the time at which a cleaning cycle should be initiated may either be made fixedly dependent on the operating duration, for example fixed cleaning intervals after a certain number of operating hours, or fouling indicators may be detected which then can automatically trigger a cleaning cycle.
  • DE 35 15 825 A1 discloses a method and a device for cleaning of the rotor blades and of the nozzle ring of an axial turbine of an exhaust-gas turbocharger.
  • the cleaning device is composed of a plurality of nozzles arranged on the gas inlet housing of the axial turbine, which nozzles extend into the flow duct, and a feed line for cleaning fluid.
  • a cleaning demand is determined by a measurement and evaluation unit. Accordingly, cleaning fluid is injected into the flow duct via nozzles arranged upstream of the guide blades. The droplets generated are transported by the exhaust-gas flow to the guide and rotor blades of the axial turbine, and clean them by removing the adherent dirt accumulations therefrom.
  • a relatively large amount of cleaning fluid (approximately 3-5 1/min of cleaning fluid per m 3 /s of exhaust gas) is fed into the flow during a relatively short cleaning interval in order to attain the most thorough cleaning possible.
  • the engine load should be reduced early and during the entire cleaning process. This can avoid an inadmissibly large increase in exhaust-gas temperatures during the cleaning process. An excessive increase of the exhaust-gas temperatures during the cleaning process will lead to thermal overloading of the exhaust-gas turbines and of the internal combustion engine.
  • thermoshock cleaning effect can be attained. Not only the guide blades of the nozzle ring and the rotor blades of the turbine wheel but also the turbine housing parts are subjected to very high thermal loading during the thermoshock cleaning. Preventing the formation of inadmissibly high thermal stresses or even cracks in the corresponding components is structurally highly complex, involves sophisticated regulation of the cleaning, and thus entails high costs.
  • WO 2007/036059 A1 discloses a cleaning method for the wet cleaning of an exhaust-gas turbine, in which a small amount of cleaning fluid is continuously or cyclically fed into the exhaust-gas flow of an exhaust-gas turbine and conducted to the components, which are to be cleaned, of the exhaust-gas turbine.
  • the small amount of cleaning fluid can be fed in during unchanged internal combustion engine operation, such that the exhaust-gas turbine can be cleaned, or kept clean, throughout the entire internal combustion engine operating range. Fluctuations in the power output of the internal combustion engine owing to an arising desire for exhaust-gas turbine cleaning should thus not occur.
  • the formation of thermal stress cracks in the turbine housing parts at particularly high risk in this regard can be substantially prevented.
  • FI 117 804 discloses a cleaning device for the wet cleaning of an exhaust-gas turbine in which the pressure of the cleaning fluid is statically fixed at approximately 2 bar above the pressure of the exhaust gases in the flow duct. In order that the wet cleaning can take place at full load, a part of the relatively cool fresh air from the compressor outlet is fed to the exhaust-gas flow. This reduces the temperature of the exhaust-gas flow to a predetermined value optimum for the cleaning of the turbine parts.
  • EP 1972758 A1 discloses a cleaning method for the wet cleaning of an exhaust-gas turbine, in which cleaning fluid is fed into the exhaust-gas flow of the exhaust-gas turbine, and conducted to the components, which are to be cleaned, of the exhaust-gas turbine, in a manner independent of the operating point.
  • the injection pressure of the cleaning fluid is adapted to the conditions upstream of the exhaust-gas turbine.
  • at least one measurement variable which characterizes the conditions prevailing upstream of the turbine is measured in a first step
  • a value for the injection pressure of the cleaning fluid is determined from the measured measurement variable in a second step
  • the cleaning fluid is injected with the determined injection pressure into the flow duct in a third step.
  • a cleaning method for cleaning a turbine which is impinged on by exhaust gases conducted in a flow duct to a rotor blade of a turbine wheel, the method comprising: injecting, in a cleaning cycle, a cleaning fluid via at least one nozzle into the flow duct; and varying an amount of the cleaning fluid injected, per nozzle, into the flow duct of the turbine over a time of the cleaning cycle and about a defined mean fluid amount, wherein through the varying of the amount of cleaning fluid, a distribution of cleaning fluid and a wetting of surfaces to be cleaned will be varied in a transient manner over an adjustable surface region.
  • a cleaning device for cleaning a turbine which will be impinged on by exhaust gases during operation, comprising: a pump for delivering a cleaning fluid; at least one nozzle for injecting the cleaning fluid into a flow duct of the turbine; and at least one adjustable element for dynamically varying a throughflow of the cleaning fluid injected, per nozzle, into the flow duct of the turbine over a time of the cleaning cycle and about a defined mean fluid amount, wherein through the varying of the amount of cleaning fluid, a distribution of cleaning fluid and a wetting of surfaces to be cleaned will be varied in a transient manner over an adjustable surface region.
  • FIG. 1 is a sectional illustration of an exemplary exhaust-gas turbocharger with an exemplary cleaning device on the turbine side;
  • FIG. 2 shows a diagram of an exemplary profile with respect to time of an amount of cleaning fluid, and a schematically illustrated effect of a variance of an amount of cleaning fluid on a wetting of turbine housing parts;
  • FIG. 3 shows two diagrams of an exemplary profile with respect to time of injection pressure and amount of cleaning fluid
  • FIG. 4 shows a diagram of an exemplary embodiment of a cleaning device for carrying out cleaning methods as disclosed herein, and illustrates, a variable pump with adjustable throughflow;
  • FIG. 5 shows a diagram of another exemplary embodiment of a cleaning device for carrying out cleaning methods as disclosed herein, and illustrates an adjustable valve in a feed line;
  • FIG. 6 shows a diagram of another exemplary embodiment of a cleaning device for carrying out methods disclosed herein, and illustrates an adjustable flow distributor
  • FIG. 7 shows a diagram of another exemplary embodiment of a cleaning device for carrying out cleaning methods disclosed herein, and illustrates individually adjustable nozzle openings
  • FIG. 8 shows an exemplary plot of an amount of cleaning fluid versus time profile.
  • a cleaning method is disclosed for wet cleaning of an exhaust-gas turbine, by which optimal wetting of fouled turbine parts can be realized (e.g., as far as possible over a full area of the parts).
  • Exemplary embodiments include means for transient injection of cleaning fluid, with an amount of cleaning fluid injected via a nozzle into the flow duct of the turbine being variable over a course of time about a defined mean amount of cleaning fluid.
  • a temporally variable amount of cleaning fluid may be realized for example through a manipulation of injection pressure or of the amount of cleaning fluid, for example by means of a pump with regulable throughflow, a regulateable valve in the feed line, or oscillating flow elements upstream of the nozzle, and/or through a manipulation of a size of the nozzle opening, for example by means of regulated iris apertures or regulated or freely oscillating nozzle opening flaps.
  • the amount of cleaning fluid can be varied about a defined mean value, wherein the temporally variable profile may for example optionally be periodic, aperiodic or random.
  • the defined mean injection pressure can be specified on the basis of, for example, the geometric dimensions of the exhaust-gas turbine, or dynamically as a function of the respective operating point of the exhaust-gas turbine and/or of the respective operating point of the internal combustion engine.
  • the variation of the amount of cleaning fluid can, for example, be realized by means for automatic injection pressure regulation, or by means for regulation for the nozzle opening.
  • the generated distribution of cleaning fluid and thus the wetting of the turbine surfaces can vary, even with otherwise constant cleaning system variables.
  • An exemplary advantage, through the variation of the amount of cleaning fluid, is that the distribution of cleaning fluid and the surface wetting can be varied in a transient manner over an adjustable surface region, and an enhanced cleaning action can be attained independently of a respective individual flow state in the turbocharger.
  • the variation of the amount of cleaning fluid may, in the case of two or more nozzles arranged so as to be distributed along the circumference, be realized differently from one another, such that, over the course of time, profiles of the amounts of cleaning fluid are generated which differ from one another, or which are offset with respect to one another in terms of time.
  • the overall injected amount of cleaning fluid may for example optionally be kept constant.
  • FIG. 1 shows a sectional illustration of an exemplary exhaust-gas turbocharger having an exhaust-gas turbine (on the right) and having a compressor.
  • the exhaust-gas turbine can include a turbine wheel 2 with rotor blades 21 , which turbine wheel is arranged in a turbine housing 20 .
  • the turbine wheel is connected to a compressor wheel 1 by means of a shaft 3 which is rotatably mounted in a bearing housing 30 .
  • the compressor wheel is arranged in the compressor housing 10 .
  • the turbine In a region of the turbine inlet, in which hot exhaust gas flows from a collecting duct, which is for example formed as an annular hollow chamber, through the narrow flow duct to the rotor blades 21 of the turbine wheel 2 , the turbine has a guide apparatus (e.g., a nozzle ring with guide blades) 22 which orients the exhaust-gas flow toward the rotor blades of the turbine wheel.
  • a guide apparatus e.g., a nozzle ring with guide blades
  • the wall parts of the turbine housing which delimit the flow duct in this region, and the guide blades of the guide apparatus, are subject to fouling by accumulation.
  • the exhaust-gas turbine has a cleaning device which has an annular duct 41 for a supply of the cleaning fluid, and one or more nozzles 42 for injection of the cleaning fluid into the collecting and flow duct of the turbine.
  • the cleaning device may vary as those skilled in the art will appreciate.
  • the nozzles are for example mounted upstream of the guide apparatus, such that the flow of the hot exhaust gas entrains the cleaning fluid and thus distributes it to the surfaces to be cleaned.
  • the nozzles 42 can be arranged in a distributed manner along a circumference of the turbine housing, wherein the number of nozzles may for example be coordinated with the number of guide blades of the guide apparatus. For example, one nozzle may be provided for each guide blade, or one nozzle may be provided for every two guide blades. Optionally, independently of the guide apparatus, additional nozzles may be provided which are for example oriented directly toward the walls of the flow duct.
  • a cleaning fluid can be supplied to the hot exhaust-gas flow upstream of the guide device and of the rotor blades of the turbine wheel.
  • the cleaning fluid such as water or water containing a cleaning-promoting substance, can be injected in controlled amounts and with a defined pressure into the flow ducts.
  • an amount and/or the injection pressure can be varied in a transient manner, such that, as per FIG. 2 , depending on the amount and/or injection pressure, different regions of the surfaces to be cleaned are wetted with the cleaning fluid.
  • FIG. 2 schematically illustrates, for three points on an exemplary plotted profile with respect to time “t” of the periodically varied injection pressure “p w” , an effect of the respective injection pressure on the spray profile of the cleaning fluid. Illustrated in the left-hand side of the Figure is a mean injection pressure at which the jet discharged from the nozzle into the flow is diverted by the flow toward a central region of the guide apparatus. In the ease of higher pressure, illustrated in a middle portion of the Figure, the jet from the nozzle reaches a remote edge of the flow duct, whereas in the case of lower pressure, in the right-hand figure part, only the right-hand, inner edge regions of the guide blades are wetted.
  • a transient variation of an amount of cleaning fluid and/or of the injection pressure can take place about a mean value, that is to say about a defined mean fluid amount or a mean injection pressure, and within a range, delimited at one side or two sides, between a minimum value and/or a maximum value.
  • the mean, minimum and/or maximum values may for example be fixedly predefined on the basis of turbine geometry and the provided flow conditions, or may be adapted dynamically to the flow conditions upstream of the turbine—for example, to a pulsing exhaust-gas flow—and/or to engine load.
  • the defined mean values may be calculated on the basis of defined characteristic curves, or read out from a table, as a function of one or more turbine-specific or engine-specific measurement variables.
  • the turbine-specific or engine-specific measurement variables may be determined in various ways. For example, engine-specific measurement data such as load lever position or injection parameters may be evaluated, and the engine load derived therefrom. If further assemblies, for example an electrical generator, are positioned downstream of the engine, the engine load may be measured directly at the downstream assembly.
  • Specific measurement data of the turbocharger for example the turbocharger rotational speed, may also be evaluated. Since the configuration of the turbocharger is normally known, it is possible, by way of the turbocharger rotational speed and from the corresponding characteristic maps, to approximately determine the gas mass flow or the gas volume flow and thus the state upstream of the turbine. It would furthermore be possible to measure the gas flow directly in the flow duct, for example by means of, for example, a heating wire anemometer, ultrasound anemometer or laser Doppler anemometer. More details regarding determination of turbine-specific or engine-specific measurement variables are readily known to those skilled in the art and are described, for example, in EP 1972758 A1.
  • a exemplary variation of an amount of cleaning fluid m* w , and/or of an injection pressure p w may, as schematically indicated in the diagrams of FIG. 3 , take place in a periodic (curve b, dotted), aperiodic or entirely random (curve c, solid) manner about the mean injection pressure (curve a, dashed) or the mean injection amount.
  • the injected amount of cleaning fluid m* w (lower diagram) follows the profile of the injection pressure p w .
  • FIG. 8 shows a further example of a periodic profile of the injected amount of cleaning fluid m* w , in which the instantaneous amount of cleaning fluid per nozzle temporarily assumes the value zero within a period duration.
  • An exemplary cleaning cycle can include multiple periods of in each case 3-120 s duration, wherein the overall duration of a respective cleaning cycle may be fixedly predefined, or may be dependent on the present fouling of the components of the turbine and/or on the number of operating hours since a previous cleaning cycle.
  • an exemplary cleaning method as disclosed herein can optionally be designed such that an overall fluid amount from all of the nozzles over the course of time within the cleaning cycle remains constant and corresponds to the defined mean fluid amount multiplied by the number of nozzles.
  • the amount of cleaning fluid injected, per nozzle, into the flow duct of the turbine can be varied over the course of time within the cleaning cycle about the defined mean fluid amount.
  • FIGS. 4 to 7 An exemplary manner by which the temporally variable amount of cleaning fluid per nozzle is controlled is illustrated in FIGS. 4 to 7 by way of example and schematically on the basis of various exemplary embodiments of cleaning devices:
  • FIG. 4 shows an exemplary embodiment of a cleaning device for cleaning a turbine, which is impinged on by exhaust gases of an internal combustion engine, by way of a cleaning method as disclosed herein, the cleaning device having a pump 431 with adjustable throughflow.
  • the pump may be activated by means of control electronics 5 , with or without feedback of the respectively presently set throughflow rate.
  • FIG. 5 shows another exemplary embodiment of a cleaning device, having a pump 43 which delivers a constant amount of cleaning fluid, and having, for this purpose, a valve 44 with adjustable throughflow in the feed line between the pump 43 and the nozzles 42 .
  • a valve 44 with adjustable throughflow in the feed line between the pump 43 and the nozzles 42 .
  • multiple nozzles 42 can he configured such that they cannot be activated individually unless the pump and/or valve are guided adjacent one another in duplex or multiplex configuration.
  • FIG. 6 shows another exemplary embodiment having a pump 43 which delivers a constant amount of cleaning fluid, and an adjustable flow distributor 45 which, in an electronically or mechanically controlled manner, varies the amount of cleaning fluid conducted to the various nozzles 42 .
  • a pump 43 which delivers a constant amount of cleaning fluid
  • an adjustable flow distributor 45 which, in an electronically or mechanically controlled manner, varies the amount of cleaning fluid conducted to the various nozzles 42 .
  • the amount of cleaning fluid it is possible for the amount of cleaning fluid to vary individually from nozzle to nozzle, and for the overall amount of cleaning fluid to thus be kept constant.
  • the individual nozzles 421 have adjustable nozzle openings, for example adjustable iris apertures or adjustable or freely oscillating nozzle opening flaps.
  • mechanical control means for example oscillating flow elements or rotating flaps, to be provided in order to vary the throughflow through a feed line or the distribution between the individual feed lines to the nozzles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

A cleaning method is disclosed for wet cleaning of an exhaust-gas turbine. An amount of cleaning fluid injected via a nozzle into the flow duct of the turbine can be variable over a course of time about a defined mean amount of cleaning fluid.

Description

    RELATED APPLICATION(S)
  • This application claims priority as a continuation application under 35 U.S.C. §120 to PCT/EP2012/050325, which was filed as an International Application on Jan. 11, 2012 designating the U.S., and which claims priority to German Application 102011008649.8 filed in Germany on Jan. 14, 2011. The entire contents of these applications are hereby incorporated by reference in their entireties.
  • FIELD
  • The present disclosure relates to the field of turbomachines impinged on by exhaust gases of internal combustion engines. A cleaning method is disclosed for cleaning of an exhaust-gas turbine and a cleaning device is disclosed for cleaning of a turbine, which is impinged on by exhaust gases of an internal combustion engine.
  • BACKGROUND INFORMATION
  • Exhaust-gas turbines are used in exhaust-gas turbochargers for supercharging of internal combustion engines, or in power turbines for converting energy contained in the exhaust gases of internal combustion engines into mechanical or electrical energy.
  • Depending on the specific operating situation and the composition of the fuels used for driving the internal combustion engine, fouling of the turbine blades of the rotor, of the guide blades of the nozzle ring and of the various turbine housing parts occurs sooner or later in the exhaust-gas turbine.
  • Such dirt accumulations can lead, in the region of the nozzle ring, to decreased turbine efficiency, and accordingly to a reduction in the performance of the downstream machines, for example of the compressor driven by the exhaust-gas turbine, and of the supercharged internal combustion engine itself. As a result, there is an increase in the exhaust-gas temperatures in the combustion chamber, by which both the internal combustion engine and also the turbocharger may be thermally overloaded. In the internal combustion engine, it may be the case for example that the outlet valves are damaged or even destroyed.
  • If a layer of dirt accumulates on the nozzle ring and on the turbine blades of a turbocharger connected to a four-stroke internal combustion engine, an increase of the turbocharger rotational speed and consequently of the charge pressure and of the cylinder pressure should be expected. This can result in components of both the internal combustion engine and also of the turbocharger being subjected not only to the increased thermal loading but also to increased mechanical loading, which may likewise lead to destruction of the components concerned.
  • In the case of an irregular distribution of a layer of dirt on a circumference of rotor blades of a turbine wheel, an imbalance of the rotor increases, whereby a bearing arrangement may also be damaged.
  • If, on the turbine housing, dirt accumulations occur on the outer contour of a flow duct running in the region radially outside the turbine blades, contact can occur during operation owing to reduced radial clearance between the turbine blades and turbine housing, which contact can damage the turbine blades and, in an extreme case, render them unusable.
  • It is therefore desireable for dirt adhering to the nozzle ring, turbine blades and affected regions of the turbine housing to be regularly removed during operation. This has been addressed through use of dry or wet cleaning systems.
  • Wet cleaning systems are characterized in that, during a cleaning cycle, a liquid cleaning medium, for example cold water, is injected by one or more nozzles positioned on the turbine inlet side. As a result of the introduction of cold cleaning fluid onto hot dirt accumulations, the latter can be removed and surfaces can be restored to nearly their original state upon initial delivery. The injection of cold cleaning fluid onto the hot turbine components however subjects the turbine components to relatively high thermal and mechanical loading.
  • To address resulting damage to the components of the turbine, the turbine wet cleaning has been used at low engine loads—with correspondingly low gas inlet temperatures at the turbocharger. The cleaning cycle has therefore been configured such that the load of the engine is reduced to a level suitable for the cleaning cycle (for example to 25% of the normal engine load) and, after a waiting time, cleaning fluid is injected over a defined time period (for example 10 minutes). Subsequently, during a further time period (for example 10 minutes), any cleaning fluid still present in the turbocharger is evaporated, before the engine is subsequently returned to its normal load level.
  • The injection of cleaning fluid through one or more nozzles upstream of the turbine inlet during the cleaning cycle can take place at constant pressure and with a constant throughflow rate. The injection nozzles are configured so as to realize a distribution of cleaning fluid which, per nozzle, can wet a certain surface region of the nozzle ring or of the turbine housing with cleaning fluid. The impinging distribution of cleaning fluid on the surfaces can be dependent on multiple factors such as the flow state upstream of the turbine, the jet shape generated by the nozzle opening of the nozzles, the injection pressure and amount of cleaning fluid, the turbine inlet temperature, and so forth.
  • The nozzles can be configured for a defined load point, known flow variables and constant cleaning system variables. During real engine operation, the above-mentioned influential variables may deviate significantly from the variables used in the original configuration, which in turn changes and even reduces in size the surface regions wetted during real operation, which can lead to unsatisfactory cleaning results.
  • The time at which a cleaning cycle should be initiated may either be made fixedly dependent on the operating duration, for example fixed cleaning intervals after a certain number of operating hours, or fouling indicators may be detected which then can automatically trigger a cleaning cycle.
  • DE 35 15 825 A1 discloses a method and a device for cleaning of the rotor blades and of the nozzle ring of an axial turbine of an exhaust-gas turbocharger. The cleaning device is composed of a plurality of nozzles arranged on the gas inlet housing of the axial turbine, which nozzles extend into the flow duct, and a feed line for cleaning fluid.
  • When a certain level of fouling of the axial turbine is reached, a cleaning demand is determined by a measurement and evaluation unit. Accordingly, cleaning fluid is injected into the flow duct via nozzles arranged upstream of the guide blades. The droplets generated are transported by the exhaust-gas flow to the guide and rotor blades of the axial turbine, and clean them by removing the adherent dirt accumulations therefrom.
  • A relatively large amount of cleaning fluid (approximately 3-5 1/min of cleaning fluid per m3/s of exhaust gas) is fed into the flow during a relatively short cleaning interval in order to attain the most thorough cleaning possible. In the cleaning method, owing to the large amount of cleaning fluid, the engine load should be reduced early and during the entire cleaning process. This can avoid an inadmissibly large increase in exhaust-gas temperatures during the cleaning process. An excessive increase of the exhaust-gas temperatures during the cleaning process will lead to thermal overloading of the exhaust-gas turbines and of the internal combustion engine.
  • It is also known that, in the initial phase of the injection of a cold cleaning fluid in large amounts (cf. above) onto the hot guide blades of the nozzle ring and rotor blades of the turbine wheel, an additional thermoshock cleaning effect can be attained. Not only the guide blades of the nozzle ring and the rotor blades of the turbine wheel but also the turbine housing parts are subjected to very high thermal loading during the thermoshock cleaning. Preventing the formation of inadmissibly high thermal stresses or even cracks in the corresponding components is structurally highly complex, involves sophisticated regulation of the cleaning, and thus entails high costs.
  • WO 2007/036059 A1 discloses a cleaning method for the wet cleaning of an exhaust-gas turbine, in which a small amount of cleaning fluid is continuously or cyclically fed into the exhaust-gas flow of an exhaust-gas turbine and conducted to the components, which are to be cleaned, of the exhaust-gas turbine. The small amount of cleaning fluid can be fed in during unchanged internal combustion engine operation, such that the exhaust-gas turbine can be cleaned, or kept clean, throughout the entire internal combustion engine operating range. Fluctuations in the power output of the internal combustion engine owing to an arising desire for exhaust-gas turbine cleaning should thus not occur. Furthermore, the formation of thermal stress cracks in the turbine housing parts at particularly high risk in this regard can be substantially prevented.
  • FI 117 804 discloses a cleaning device for the wet cleaning of an exhaust-gas turbine in which the pressure of the cleaning fluid is statically fixed at approximately 2 bar above the pressure of the exhaust gases in the flow duct. In order that the wet cleaning can take place at full load, a part of the relatively cool fresh air from the compressor outlet is fed to the exhaust-gas flow. This reduces the temperature of the exhaust-gas flow to a predetermined value optimum for the cleaning of the turbine parts.
  • EP 1972758 A1 discloses a cleaning method for the wet cleaning of an exhaust-gas turbine, in which cleaning fluid is fed into the exhaust-gas flow of the exhaust-gas turbine, and conducted to the components, which are to be cleaned, of the exhaust-gas turbine, in a manner independent of the operating point.
  • Here, the injection pressure of the cleaning fluid is adapted to the conditions upstream of the exhaust-gas turbine. For this purpose, at least one measurement variable which characterizes the conditions prevailing upstream of the turbine is measured in a first step, a value for the injection pressure of the cleaning fluid is determined from the measured measurement variable in a second step, and the cleaning fluid is injected with the determined injection pressure into the flow duct in a third step.
  • SUMMARY
  • A cleaning method is disclosed for cleaning a turbine which is impinged on by exhaust gases conducted in a flow duct to a rotor blade of a turbine wheel, the method comprising: injecting, in a cleaning cycle, a cleaning fluid via at least one nozzle into the flow duct; and varying an amount of the cleaning fluid injected, per nozzle, into the flow duct of the turbine over a time of the cleaning cycle and about a defined mean fluid amount, wherein through the varying of the amount of cleaning fluid, a distribution of cleaning fluid and a wetting of surfaces to be cleaned will be varied in a transient manner over an adjustable surface region.
  • A cleaning device is also disclosed for cleaning a turbine which will be impinged on by exhaust gases during operation, comprising: a pump for delivering a cleaning fluid; at least one nozzle for injecting the cleaning fluid into a flow duct of the turbine; and at least one adjustable element for dynamically varying a throughflow of the cleaning fluid injected, per nozzle, into the flow duct of the turbine over a time of the cleaning cycle and about a defined mean fluid amount, wherein through the varying of the amount of cleaning fluid, a distribution of cleaning fluid and a wetting of surfaces to be cleaned will be varied in a transient manner over an adjustable surface region.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Exemplary cleaning methods as disclosed herein will be described in more detail below on the basis of the Figures, in which:
  • FIG. 1 is a sectional illustration of an exemplary exhaust-gas turbocharger with an exemplary cleaning device on the turbine side;
  • FIG. 2 shows a diagram of an exemplary profile with respect to time of an amount of cleaning fluid, and a schematically illustrated effect of a variance of an amount of cleaning fluid on a wetting of turbine housing parts;
  • FIG. 3 shows two diagrams of an exemplary profile with respect to time of injection pressure and amount of cleaning fluid;
  • FIG. 4 shows a diagram of an exemplary embodiment of a cleaning device for carrying out cleaning methods as disclosed herein, and illustrates, a variable pump with adjustable throughflow;
  • FIG. 5 shows a diagram of another exemplary embodiment of a cleaning device for carrying out cleaning methods as disclosed herein, and illustrates an adjustable valve in a feed line;
  • FIG. 6 shows a diagram of another exemplary embodiment of a cleaning device for carrying out methods disclosed herein, and illustrates an adjustable flow distributor;
  • FIG. 7 shows a diagram of another exemplary embodiment of a cleaning device for carrying out cleaning methods disclosed herein, and illustrates individually adjustable nozzle openings; and
  • FIG. 8 shows an exemplary plot of an amount of cleaning fluid versus time profile.
  • DETAILED DESCRIPTION
  • A cleaning method is disclosed for wet cleaning of an exhaust-gas turbine, by which optimal wetting of fouled turbine parts can be realized (e.g., as far as possible over a full area of the parts).
  • Exemplary embodiments include means for transient injection of cleaning fluid, with an amount of cleaning fluid injected via a nozzle into the flow duct of the turbine being variable over a course of time about a defined mean amount of cleaning fluid.
  • Generation of a temporally variable amount of cleaning fluid (e.g., periodic, aperiodic, random profile) may be realized for example through a manipulation of injection pressure or of the amount of cleaning fluid, for example by means of a pump with regulable throughflow, a regulateable valve in the feed line, or oscillating flow elements upstream of the nozzle, and/or through a manipulation of a size of the nozzle opening, for example by means of regulated iris apertures or regulated or freely oscillating nozzle opening flaps. The amount of cleaning fluid can be varied about a defined mean value, wherein the temporally variable profile may for example optionally be periodic, aperiodic or random.
  • In the case of the variation of the injection pressure, for example, the defined mean injection pressure can be specified on the basis of, for example, the geometric dimensions of the exhaust-gas turbine, or dynamically as a function of the respective operating point of the exhaust-gas turbine and/or of the respective operating point of the internal combustion engine.
  • The variation of the amount of cleaning fluid can, for example, be realized by means for automatic injection pressure regulation, or by means for regulation for the nozzle opening.
  • Where the injection pressure is varied in a transient manner, the generated distribution of cleaning fluid and thus the wetting of the turbine surfaces can vary, even with otherwise constant cleaning system variables. An exemplary advantage, through the variation of the amount of cleaning fluid, is that the distribution of cleaning fluid and the surface wetting can be varied in a transient manner over an adjustable surface region, and an enhanced cleaning action can be attained independently of a respective individual flow state in the turbocharger.
  • Optionally, the variation of the amount of cleaning fluid may, in the case of two or more nozzles arranged so as to be distributed along the circumference, be realized differently from one another, such that, over the course of time, profiles of the amounts of cleaning fluid are generated which differ from one another, or which are offset with respect to one another in terms of time. Here, the overall injected amount of cleaning fluid may for example optionally be kept constant.
  • FIG. 1 shows a sectional illustration of an exemplary exhaust-gas turbocharger having an exhaust-gas turbine (on the right) and having a compressor. The exhaust-gas turbine can include a turbine wheel 2 with rotor blades 21, which turbine wheel is arranged in a turbine housing 20. The turbine wheel is connected to a compressor wheel 1 by means of a shaft 3 which is rotatably mounted in a bearing housing 30. The compressor wheel is arranged in the compressor housing 10.
  • In a region of the turbine inlet, in which hot exhaust gas flows from a collecting duct, which is for example formed as an annular hollow chamber, through the narrow flow duct to the rotor blades 21 of the turbine wheel 2, the turbine has a guide apparatus (e.g., a nozzle ring with guide blades) 22 which orients the exhaust-gas flow toward the rotor blades of the turbine wheel. The wall parts of the turbine housing which delimit the flow duct in this region, and the guide blades of the guide apparatus, are subject to fouling by accumulation.
  • Directly upstream of the turbine inlet, the exhaust-gas turbine has a cleaning device which has an annular duct 41 for a supply of the cleaning fluid, and one or more nozzles 42 for injection of the cleaning fluid into the collecting and flow duct of the turbine.
  • Depending on the type of turbine (emg., axial, mixed flow or radial turbine) and/or on a design of the turbine, an exact arrangement of the cleaning device may vary as those skilled in the art will appreciate. However, the nozzles are for example mounted upstream of the guide apparatus, such that the flow of the hot exhaust gas entrains the cleaning fluid and thus distributes it to the surfaces to be cleaned.
  • The nozzles 42 can be arranged in a distributed manner along a circumference of the turbine housing, wherein the number of nozzles may for example be coordinated with the number of guide blades of the guide apparatus. For example, one nozzle may be provided for each guide blade, or one nozzle may be provided for every two guide blades. Optionally, independently of the guide apparatus, additional nozzles may be provided which are for example oriented directly toward the walls of the flow duct.
  • If a cleaning cycle is to be initiated, owing to a certain number of operating hours being reached or because a fouling indicator indicates cleaning should be initiated, a cleaning fluid can be supplied to the hot exhaust-gas flow upstream of the guide device and of the rotor blades of the turbine wheel. Here, the cleaning fluid, such as water or water containing a cleaning-promoting substance, can be injected in controlled amounts and with a defined pressure into the flow ducts.
  • According to exemplary embodiments, an amount and/or the injection pressure can be varied in a transient manner, such that, as per FIG. 2, depending on the amount and/or injection pressure, different regions of the surfaces to be cleaned are wetted with the cleaning fluid.
  • FIG. 2 schematically illustrates, for three points on an exemplary plotted profile with respect to time “t” of the periodically varied injection pressure “pw”, an effect of the respective injection pressure on the spray profile of the cleaning fluid. Illustrated in the left-hand side of the Figure is a mean injection pressure at which the jet discharged from the nozzle into the flow is diverted by the flow toward a central region of the guide apparatus. In the ease of higher pressure, illustrated in a middle portion of the Figure, the jet from the nozzle reaches a remote edge of the flow duct, whereas in the case of lower pressure, in the right-hand figure part, only the right-hand, inner edge regions of the guide blades are wetted.
  • A transient variation of an amount of cleaning fluid and/or of the injection pressure can take place about a mean value, that is to say about a defined mean fluid amount or a mean injection pressure, and within a range, delimited at one side or two sides, between a minimum value and/or a maximum value. The mean, minimum and/or maximum values may for example be fixedly predefined on the basis of turbine geometry and the provided flow conditions, or may be adapted dynamically to the flow conditions upstream of the turbine—for example, to a pulsing exhaust-gas flow—and/or to engine load.
  • In the second case, it would be possible, for example at the start of a cleaning interval, for the defined mean values to be calculated on the basis of defined characteristic curves, or read out from a table, as a function of one or more turbine-specific or engine-specific measurement variables. The turbine-specific or engine-specific measurement variables may be determined in various ways. For example, engine-specific measurement data such as load lever position or injection parameters may be evaluated, and the engine load derived therefrom. If further assemblies, for example an electrical generator, are positioned downstream of the engine, the engine load may be measured directly at the downstream assembly.
  • Specific measurement data of the turbocharger, for example the turbocharger rotational speed, may also be evaluated. Since the configuration of the turbocharger is normally known, it is possible, by way of the turbocharger rotational speed and from the corresponding characteristic maps, to approximately determine the gas mass flow or the gas volume flow and thus the state upstream of the turbine. It would furthermore be possible to measure the gas flow directly in the flow duct, for example by means of, for example, a heating wire anemometer, ultrasound anemometer or laser Doppler anemometer. More details regarding determination of turbine-specific or engine-specific measurement variables are readily known to those skilled in the art and are described, for example, in EP 1972758 A1.
  • A exemplary variation of an amount of cleaning fluid m*w, and/or of an injection pressure pw may, as schematically indicated in the diagrams of FIG. 3, take place in a periodic (curve b, dotted), aperiodic or entirely random (curve c, solid) manner about the mean injection pressure (curve a, dashed) or the mean injection amount. In the case of a changing injection pressure (upper diagram) and otherwise constant conditions, the injected amount of cleaning fluid m*w (lower diagram) follows the profile of the injection pressure pw.
  • FIG. 8 shows a further example of a periodic profile of the injected amount of cleaning fluid m*w, in which the instantaneous amount of cleaning fluid per nozzle temporarily assumes the value zero within a period duration.
  • An exemplary cleaning cycle can include multiple periods of in each case 3-120 s duration, wherein the overall duration of a respective cleaning cycle may be fixedly predefined, or may be dependent on the present fouling of the components of the turbine and/or on the number of operating hours since a previous cleaning cycle.
  • If the cleaning device includes two or more nozzles arranged in a manner distributed along a circumference, an exemplary cleaning method as disclosed herein can optionally be designed such that an overall fluid amount from all of the nozzles over the course of time within the cleaning cycle remains constant and corresponds to the defined mean fluid amount multiplied by the number of nozzles. By contrast, the amount of cleaning fluid injected, per nozzle, into the flow duct of the turbine can be varied over the course of time within the cleaning cycle about the defined mean fluid amount.
  • An exemplary manner by which the temporally variable amount of cleaning fluid per nozzle is controlled is illustrated in FIGS. 4 to 7 by way of example and schematically on the basis of various exemplary embodiments of cleaning devices:
  • FIG. 4 shows an exemplary embodiment of a cleaning device for cleaning a turbine, which is impinged on by exhaust gases of an internal combustion engine, by way of a cleaning method as disclosed herein, the cleaning device having a pump 431 with adjustable throughflow. The pump may be activated by means of control electronics 5, with or without feedback of the respectively presently set throughflow rate.
  • FIG. 5 shows another exemplary embodiment of a cleaning device, having a pump 43 which delivers a constant amount of cleaning fluid, and having, for this purpose, a valve 44 with adjustable throughflow in the feed line between the pump 43 and the nozzles 42. With the FIG. 4 and FIG. 5 embodiments, multiple nozzles 42 can he configured such that they cannot be activated individually unless the pump and/or valve are guided adjacent one another in duplex or multiplex configuration.
  • FIG. 6 shows another exemplary embodiment having a pump 43 which delivers a constant amount of cleaning fluid, and an adjustable flow distributor 45 which, in an electronically or mechanically controlled manner, varies the amount of cleaning fluid conducted to the various nozzles 42. In this embodiment, it is possible for the amount of cleaning fluid to vary individually from nozzle to nozzle, and for the overall amount of cleaning fluid to thus be kept constant.
  • This is likewise possible with an exemplary embodiment according to FIG. 7, in which the individual nozzles 421 have adjustable nozzle openings, for example adjustable iris apertures or adjustable or freely oscillating nozzle opening flaps.
  • Those skilled in the art will appreciate that any or all of the various features described with respect to the exemplary embodiments discussed herein may be combined with one another and/or with further elements for adjusting injection pressure and/or throughflow rate.
  • As an alternate to the described electronically controlled control unit, it is also possible for mechanical control means, for example oscillating flow elements or rotating flaps, to be provided in order to vary the throughflow through a feed line or the distribution between the individual feed lines to the nozzles.
  • It will thus be appreciated by those skilled in the art that the present invention can be embodied in other specific forms without departing from the spirit or essential characteristics thereof The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restricted. The scope of the invention is indicated by the appended claims rather than the foregoing description and all changes that come within the meaning and range and equivalence thereof are intended to be embraced therein.
  • LIST OF REFERENCE SIGNS
    • 1 Compressor wheel
    • 10 Compressor housing
    • 2 Turbine wheel
    • 20 Turbine housing
    • 21 Rotor blades of the turbine wheel
    • 22 Guide apparatus (nozzle ring with guide blades)
    • 3 Shaft of the turbocharger
    • 30 Bearing housing
    • 41 Duct for the supply of the cleaning fluid
    • 42 Nozzles for the injection of the cleaning fluid
    • 421 Nozzles with adjustable nozzle openings
    • 43 Pump for the cleaning fluid to be injected
    • 431 Variable pump with adjustable throughflow
    • 44 Adjustable valve in the feed line for the cleaning fluid
    • 45 Adjustable flow distributor in the feed line for the cleaning fluid
    • 5 Control unit
    • Pw Injection pressure of the cleaning fluid
    • m*w Amount of cleaning fluid injected
    • a Curve profile of the injection with constant injection pressure
    • b Curve profile of the injection with periodically changing injection pressure
    • c Curve profile of the injection with randomly changing injection pressure
    • t Time

Claims (20)

1. A cleaning method for cleaning a turbine which is impinged on by exhaust gases conducted in a flow duct to a rotor blade of a turbine wheel, the method comprising:
injecting, in a cleaning cycle, a cleaning fluid via at least one nozzle into the flow duct; and
varying an amount of the cleaning fluid injected, per nozzle, into the flow duct of the turbine over a time of the cleaning cycle and about a defined mean fluid amount, wherein through the varying of the amount of cleaning fluid, a distribution of cleaning fluid and a wetting of surfaces to be cleaned will be varied in a transient manner over an adjustable surface region.
2. The cleaning method as claimed in claim 1, comprising:
specifying the defined mean fluid amount based on geometric dimensions of the turbine.
3. The cleaning method as claimed in claim 1, comprising:
specifying the defined mean fluid amount as a function of conditions prevailing in the flow duct upstream of the turbine by: measuring at least one measurement variable which characterizes conditions prevailing upstream of the turbine, determining a value for the defined mean fluid amount from the measured measurement variable, and varying injection of the cleaning fluid about the defined mean fluid amount over the time of the cleaning cycle.
4. The cleaning method as claimed in claim 3, comprising:
measuring measurement variables of an associated internal combustion engine to determine the conditions prevailing in the flow duct upstream of the turbine.
5. The cleaning method as claimed in claim 3, comprising:
measuring measurement variables of the exhaust-gas turbocharger to determine the conditions prevailing in the flow duct upstream of the turbine.
6. The cleaning method as claimed in claim 1, comprising:
injecting a cleaning fluid into the flow duct via two or more nozzles arranged in a manner distributed along a circumference, wherein an amount of cleaning fluid injected, per individual nozzle, into the flow ducts of the turbine is varied over a time of the cleaning cycle about a defined mean fluid amount, such that an overall fluid amount from all the nozzles over the time of the cleaning cycle remains constant and corresponds to the defined mean fluid amount multiplied by the number of nozzles.
7. The cleaning method as claimed in claim 1, comprising:
controlling an amount of cleaning fluid injected, per nozzle, into the flow duct by varying an injection pressure of the cleaning fluid.
8. The cleaning method as claimed in claim 1, comprising:
controlling an amount of cleaning fluid injected, per nozzle, into the flow duct by way of nozzle geometry.
9. The cleaning method as claimed in claim 1, comprising:
varying an amount of cleaning fluid injected, per nozzle, into the flow duct periodically.
10. The cleaning method as claimed in claim 9, wherein a period duration is between 3 and 120 seconds.
11. A cleaning device for cleaning a turbine which will be impinged on by exhaust gases during operation, comprising:
a pump for delivering a cleaning fluid;
at least one nozzle for injecting the cleaning fluid into a flow duct of a turbine; and
at least one adjustable element for dynamically varying a throughflow of the cleaning fluid injected, per nozzle, into the flow duct of a turbine over a time of the cleaning cycle and about a defined mean fluid amount, wherein through the varying of the amount of cleaning fluid, a distribution of cleaning fluid and a wetting of surfaces to be cleaned will be varied in a transient manner over an adjustable surface region.
12. The cleaning device as claimed in claim 11, wherein the adjustable element comprises:
a pump for delivering cleaning fluid with an adjustable throughflow rate.
13. The cleaning device as claimed in claim 11, wherein the adjustable element comprises:
an adjustable valve in the feed line for providing cleaning fluid to the nozzles.
14. The cleaning device as claimed in claim 11, comprising:
two or more nozzles , wherein the adjustable element includes an adjustable flow distributor in the feed line for providing cleaning fluid to the nozzles.
15. The cleaning device as claimed in claim 11, wherein the adjustable element includes at least one nozzle with at least one of: an adjustable nozzle opening, a regulated iris aperture, or an oscillating nozzle opening flap.
16. The cleaning device as claimed in claim 11, wherein the adjustable element includes an oscillating flow element in the feed line to the at least one nozzle.
17. The cleaning method as claimed in claim 3, comprising:
controlling an amount of cleaning fluid injected, per nozzle, into the flow duct by varying an injection pressure of the cleaning fluid.
18. The cleaning method as claimed in claim 3, comprising:
controlling an amount of cleaning fluid injected, per nozzle, into the flow duct by way of nozzle geometry.
19. The cleaning method as claimed in claim 3, comprising:
varying an amount of cleaning fluid injected, per nozzle, into the flow duct periodically.
20. A cleaning device as claimed in claim 11 for cleaning a turbine, in combination with the turbine and an internal combustion engine configured such that the turbine will be impinged on by exhaust gases of the internal combustion engine during operation, the combination comprising:
means for measuring measurement variables of the internal combustion engine to determine conditions prevailing in the flow duct upstream of the turbine.
US13/942,134 2011-01-14 2013-07-15 Turbine cleaning Abandoned US20130298944A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011008649.8 2011-01-14
DE102011008649A DE102011008649A1 (en) 2011-01-14 2011-01-14 turbine cleaning
PCT/EP2012/050325 WO2012095434A1 (en) 2011-01-14 2012-01-11 Turbine cleaning

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/050325 Continuation WO2012095434A1 (en) 2011-01-14 2012-01-11 Turbine cleaning

Publications (1)

Publication Number Publication Date
US20130298944A1 true US20130298944A1 (en) 2013-11-14

Family

ID=45476520

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/942,134 Abandoned US20130298944A1 (en) 2011-01-14 2013-07-15 Turbine cleaning

Country Status (7)

Country Link
US (1) US20130298944A1 (en)
EP (1) EP2663740A1 (en)
JP (1) JP5840701B2 (en)
KR (1) KR20130117851A (en)
CN (1) CN103314186B (en)
DE (1) DE102011008649A1 (en)
WO (1) WO2012095434A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3460197A1 (en) * 2017-09-22 2019-03-27 General Electric Company Engine wash identifier method and engine wash analytics
EP3460198A1 (en) * 2017-09-22 2019-03-27 General Electric Company Engine wash identifier method using contamination accumulation modeling
US11441446B2 (en) 2016-01-20 2022-09-13 General Electric Company System and method for cleaning a gas turbine engine and related wash stand

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5991296B2 (en) * 2013-09-25 2016-09-14 トヨタ自動車株式会社 Exhaust turbocharger
CN104100378B (en) * 2014-08-01 2016-06-01 安徽江淮汽车股份有限公司 The long-pending carbon removing method of a kind of supercharging blower nozzle blade and device
US10323539B2 (en) 2016-03-01 2019-06-18 General Electric Company System and method for cleaning gas turbine engine components
CN112065580B (en) * 2020-09-21 2022-03-01 潍柴动力股份有限公司 Cleaning system for engine and supercharger air compressor
EP3985230A1 (en) * 2020-10-13 2022-04-20 ABB Switzerland Ltd. Radial turbine with a cleaning device for cleaning a nozzle vane ring and method for assembling and disassembling the cleaning device
CN115623869A (en) * 2021-05-13 2023-01-17 三菱重工船用机械株式会社 Exhaust turbine, supercharger, and method for cleaning exhaust turbine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2234796A5 (en) * 1973-06-19 1975-01-17 Semt
US4548040A (en) 1984-05-11 1985-10-22 Elliott Turbomachinery Company, Inc. Method and apparatus for determining when to initiate cleaning of turbocharger turbine blades
US6176437B1 (en) * 1993-10-15 2001-01-23 Mona Skannerup Blast gun for compressed air
DE19549142A1 (en) * 1995-12-29 1997-07-03 Asea Brown Boveri Method and device for wet cleaning the nozzle ring of an exhaust gas turbocharger turbine
EP1754862A1 (en) * 2005-08-17 2007-02-21 ABB Turbo Systems AG Compressor, compressor wheel, washing attachment and exhaust turbocharger
FI117804B (en) * 2005-09-16 2007-02-28 Waertsilae Finland Oy Arrangement and method in connection with a turbocharged piston engine
CN101300406B (en) 2005-09-30 2012-12-12 Abb涡轮系统有限公司 Turbine cleaning
US8444068B2 (en) * 2005-10-26 2013-05-21 Techtronic Outdoor Products Technology Limited Dual flow pressure washer
GB0614874D0 (en) * 2006-07-27 2006-09-06 Rolls Royce Plc Aeroengine washing system and method
US7703272B2 (en) * 2006-09-11 2010-04-27 Gas Turbine Efficiency Sweden Ab System and method for augmenting turbine power output
US7712301B1 (en) * 2006-09-11 2010-05-11 Gas Turbine Efficiency Sweden Ab System and method for augmenting turbine power output
EP1972758A1 (en) 2007-03-19 2008-09-24 ABB Turbo Systems AG Turbine cleaning
JP2008248726A (en) * 2007-03-29 2008-10-16 Osaka Gas Co Ltd Supercharged engine
EP2113638A1 (en) * 2008-04-30 2009-11-04 ABB Turbo Systems AG Spraying device
US9080460B2 (en) * 2009-03-30 2015-07-14 Ecoservices, Llc Turbine cleaning system
US9016293B2 (en) * 2009-08-21 2015-04-28 Gas Turbine Efficiency Sweden Ab Staged compressor water wash system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441446B2 (en) 2016-01-20 2022-09-13 General Electric Company System and method for cleaning a gas turbine engine and related wash stand
EP3460197A1 (en) * 2017-09-22 2019-03-27 General Electric Company Engine wash identifier method and engine wash analytics
EP3460198A1 (en) * 2017-09-22 2019-03-27 General Electric Company Engine wash identifier method using contamination accumulation modeling
US11268449B2 (en) 2017-09-22 2022-03-08 General Electric Company Contamination accumulation modeling
CN115013085A (en) * 2017-09-22 2022-09-06 通用电气公司 Pollution accumulation model
EP4254364A3 (en) * 2017-09-22 2024-01-03 General Electric Company Engine wash identifier method using contamination accumulation modeling

Also Published As

Publication number Publication date
EP2663740A1 (en) 2013-11-20
DE102011008649A1 (en) 2012-07-19
CN103314186B (en) 2015-11-25
JP2014503046A (en) 2014-02-06
JP5840701B2 (en) 2016-01-06
KR20130117851A (en) 2013-10-28
CN103314186A (en) 2013-09-18
WO2012095434A1 (en) 2012-07-19

Similar Documents

Publication Publication Date Title
US20130298944A1 (en) Turbine cleaning
US7828906B2 (en) Turbine cleaning method
JP3749546B2 (en) Method and apparatus for achieving increased power in a gas turbine via wet compression
EP2275648B1 (en) System and method for augmenting turbine power output
US6467252B1 (en) Nozzles for water injection in a turbine engine
US6470667B1 (en) Methods and apparatus for water injection in a turbine engine
US4548040A (en) Method and apparatus for determining when to initiate cleaning of turbocharger turbine blades
EP2225445B1 (en) Method for cleaning turbine blades under operation conditions, corresponding turbocharger and turbine
EP2876263B1 (en) Automated water wash system for a gas turbine engine and method of operation
JP2005511947A5 (en)
US10851710B2 (en) Automated engine cleaning system and method
CN103899419A (en) Axial compressor and operation method of the same
WO2000050739A1 (en) Apparatus for monitoring wet compression gas turbine power augmentation-related casing distortions
Jolly Wet Compression—A Powerful Means of Enhancing Combustion Turbine Capacity
EP2271829B1 (en) Method for cleaning a component of a turbocharger under operation conditions and turbocharger
EP3938638B1 (en) Method for regulating the temperature of the exhaust gases of a turbomachine
JP2014145357A (en) System to improve gas turbine output and hot gas path component life utilizing humid air for nozzle overcooling
CN114993638A (en) Rotating turbine blade cooling test system and method
FR3122693A1 (en) METHOD AND CONTROL UNIT FOR CONTROLLING THE GAME OF A HIGH PRESSURE TURBINE FOR REDUCING THE IMPACT OF ICING

Legal Events

Date Code Title Description
AS Assignment

Owner name: ABB TURBO SYSTEMS AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUNDINGER, GERD;SCHLIENGER, JOEL;GIZZI, WILLIAM;AND OTHERS;REEL/FRAME:030827/0399

Effective date: 20130717

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION