EP2661314A1 - Composition zeolitique adaptee a l'epuration d'air - Google Patents

Composition zeolitique adaptee a l'epuration d'air

Info

Publication number
EP2661314A1
EP2661314A1 EP12700625.2A EP12700625A EP2661314A1 EP 2661314 A1 EP2661314 A1 EP 2661314A1 EP 12700625 A EP12700625 A EP 12700625A EP 2661314 A1 EP2661314 A1 EP 2661314A1
Authority
EP
European Patent Office
Prior art keywords
zeolite
exchanged
cations
lsx
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12700625.2A
Other languages
German (de)
English (en)
Inventor
Christian Monereau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP2661314A1 publication Critical patent/EP2661314A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0431Beds with radial gas flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the object of the present invention is to provide a process for pretreatment or purification of a gas stream consisting of atmospheric air, prior to the cryogenic separation of said air, in particular by cryogenic distillation.
  • the atmospheric air contains compounds to be removed before the introduction of said air into the heat exchangers of the cold box of an air separation unit, in particular the carbon dioxide (C0 2 ), steam water (H 2 O), hydrocarbons (C n H m ) and nitrogen oxides.
  • this pretreatment of the air is carried out, as the case may be, by TSA (Temperature Swing Adsorption) method, that is to say a temperature variation adsorption process, or by PSA (Pressure Swing Adsorption) method. that is, a pressure swing adsorption process; PSA process is understood to mean PSA processes proper, VSA (Vacuum Swing Adsorption) processes, VPSA (Vacuum / Pressure Swing Adsorption) processes, that is to say vacuum adsorption processes during regeneration.
  • TSA Tempoture Swing Adsorption
  • PSA Pressure Swing Adsorption
  • VSA Vauum Swing Adsorption
  • VPSA Vauum / Pressure Swing Adsorption
  • the invention essentially relates to the TSA method.
  • a TSA process cycle of air purification comprises the following steps:
  • the cooling step can be skipped, the repressurization is done in moist air, the regeneration be carried out at medium pressure ...
  • the air pretreatment devices comprise two adsorbers, operating alternately, that is to say that one of the adsorbers is in the production phase, while the other is in the regeneration phase.
  • TSA methods of air purification are described in particular in US-A-3,738,084 and FR-A-7725845.
  • the removal of CO 2 and water vapor is carried out on one or more beds of adsorbents, preferably several beds of adsorbents, namely generally a first adsorbent intended to preferentially stop water, by For example, a bed of activated alumina, silica gel or zeolites, and a second adsorbent bed for preferentially stopping C0 2 , for example a zeolite.
  • a bed of activated alumina, silica gel or zeolites for preferentially stopping C0 2 , for example a zeolite.
  • zeolite 13X is deemed to be particularly effective for stopping small amounts of CO 2 and possibly water because it has a high affinity and selectivity for these polar molecules.
  • zeolite X has micropore diameters among the largest, which allows it to adsorb with good kinetics kinetic diameter molecules up to 0.8 nm.
  • zeolite 13X does not stop all the harmful molecules that may be present in a gas stream.
  • gaseous molecules adsorbed by zeolite 13X are essentially and by increasing affinity: methane, ethane, propane, nitrous oxide, ethylene, carbon dioxide, butane, propylene (C 3 H 6 ), acetylene ( C 2 H 2 ), toluene and methylcyclohexane. It follows that a strictly sized industrial unit for stopping carbon dioxide with a standard 13X zeolite only partially halts ethylene, propane and nitrous oxide.
  • zeolite LSX whose main cations are sodium cations and zeolite LSX to speak as explained above of a zeolite X with an Si / Al ratio of 1 or close to 1 and whose main cations are sodium cations and / or potassium.
  • each type of additional adsorbent results in the presence of an additional separation grid to hold in place the adsorbents, which complicates the manufacture of said adsorbers.
  • the residual C0 2 content should be reduced by an order of magnitude or more.
  • a problem is to provide an improved air purification process that is to say, to minimize the total volume of adsorbent while maintaining a minimum number of beds (1 or 2 maximum ) for stopping all impurities, water included at the level required by the process.
  • a solution of the present invention is a zeolitic adsorbent material consisting of 100% by mass:
  • a non-cation-exchanged zeolite fraction said cation-exchanged zeolite being selected from cation-exchanged X-zeolite or cation exchanged LSX zeolites.
  • exchanged by cations is meant that the cations are considered those associated with AI0 2 tetrahedral units "of zeolite (zeolite phase), which exchanged cations play a role in the mechanism of adsorption of the gaseous compounds to be eliminated.
  • exchangeable cations means cations that can be substituted or replaced by other cations by implementing an ion exchange process.
  • exchange rate of a cation x is meant the number of charges borne by the X cations present in the zeolite relative to the total number of charges of all the cations.
  • the exchange rate varies between 0% and 100%.
  • the total positive charge borne by cations is equal to the total negative charge carried by the groups AI0 2 " .
  • the stoichiometric amount corresponds to this total charge.
  • the quantities of zeolites X or LSX and of zeolites exchanged are determined as a function of the level of residual impurities required and of the composition of the air to be purified.
  • the adsorbent material according to the invention may have one or more of the following characteristics:
  • the mixture is formed of particles consisting of zeolite X or LSX crystals and zeolite crystals exchanged with cations agglomerated together;
  • the mixture is formed of zeolite X or LSX particles and zeolite particles exchanged with cations;
  • particles is meant solids of size ranging from a few hundred microns to a few millimeters and of various shapes, preferably rods, pellets or essentially spherical beads;
  • the zeolite exchanged with cations is exchanged with calcium, barium, magnesium, strontium and / or lithium cations, preferably with calcium and barium cations;
  • the cation-exchanged zeolite is exchanged from 10 to 90% by calcium cations and from 10 to 90% by barium cations, preferably from 10 to 50% by calcium cations and from 10 to 50% by barium cations; more preferably 15 to 40% by calcium cations and 15 to 40% by barium cations;
  • the X or LSX zeolites and the zeolites exchanged with cations are distributed uniformly or almost uniformly in said material;
  • the present invention also relates to an adsorber comprising an adsorbent material according to the present invention
  • the adsorber is preferably a radial adsorber.
  • the adsorbent material according to the present invention is placed in a single bed; or said adsorber comprises a first bed for removing at least partly the water of a gas stream and a second bed comprising the adsorbent material according to the invention.
  • the first bed may comprise activated alumina, silica gel or a sieve (zeolite).
  • the present invention also relates to a process for purifying or separating a gas or a gaseous mixture using a zeolitic adsorbent material consisting of a mixture of zeolite X or LSX and zeolite exchanged with cations according to the invention.
  • a zeolitic adsorbent material consisting of a mixture of zeolite X or LSX and zeolite exchanged with cations according to the invention.
  • the purification or separation process according to the invention may have one or more of the following characteristics:
  • the gas is air, preferably air intended to be fractionated by a cryogenic unit;
  • At least one first impurity selected from CO 2 , ethylene, propane and N 2 0 is removed;
  • At least one second impurity selected from water, butane and acetylene is removed;
  • said process is a TSA process
  • the adsorption pressure is between 3 and 35 bar abs, preferably between 3 and 10 bar abs
  • the adsorption temperature is between 5 and 50 ° C
  • the adsorption time is between 30 and 480 minutes, preferably between 60 and 180 minutes, and even more preferably between 90 and 150 minutes;
  • the regeneration temperature is between 70 ° C and 200 ° C, preferably between 100 and 160 ° C, the regeneration pressure is less than 5 bar abs, preferably close to atmospheric pressure;
  • the regeneration gas of the adsorbent is nitrogen or a mixture of nitrogen and oxygen containing a small proportion of oxygen (a few% in vol;), preferably the nitrogen / oxygen mixture used to regenerate the oxygen;
  • adsorbent is a waste gas or a waste gas from a cryogenic air separation unit;
  • the method of the invention is implemented in at least one adsorber, preferably in at least two adsorbers operating alternately.
  • the invention also relates to a first process for producing a zeolitic adsorbent material consisting of a mixture of particles consisting of zeolite X or LSX crystals and zeolite X or LSX crystals exchanged with calcium and barium cations agglomerated together, in which :
  • a zeolite X or LSX containing sodium and / or potassium cations is subjected to at least one ion exchange by contact with a solution containing calcium and / or barium ions
  • step (b) if necessary, step (a) is repeated until the desired exchange rate for each of said barium and calcium cations is reached,
  • step (c) crystals of zeolite X or LSX exchanged with calcium and barium cations are recovered; (d) the crystals of zeolite X or LSX exchanged with calcium and barium cations from step (c) and zeolite X or LSX crystals are agglomerated to form agglomerated particles, and
  • Activation essentially means removing by heating the water molecules that obscure the active sites without damaging the crystal structure of the zeolite.
  • the heating rate, the heating time, the maximum temperature depend on the nature of the zeolite
  • step (a) for carrying out the ion exchange, a solution of calcium and / or barium salts, such as a chloride solution, is preferably used at a pH below about 6.
  • the contacting between the zeolite and the saline solution takes place for example by immersion of the entire zeolite in as short a time as possible, this to ensure a homogeneous ion exchange in the zeolite.
  • the zeolite powder can be suspended in water and slowly added the calcium and / or barium salt solution, with stirring sufficient to distribute the solution throughout the suspended volume.
  • the contacting must be carried out under conditions in which the calcium salt and / or barium will be distributed throughout the volume of zeolite, before the exchange has had time to be done, this for ensure that calcium and / or barium will be evenly distributed throughout the mass of the zeolite.
  • the molarities in salt are between 1 M and 0.01 M, the temperature between 20 ° C and 100 C, and the contact time between 20 minutes and 3 hours.
  • the zeolite in the agglomeration step (d), can be mixed with a binder, such as clay, silica gel or the like.
  • a binder such as clay, silica gel or the like.
  • the invention relates to a second process for manufacturing a zeolitic adsorbent material consisting of a mixture of zeolite X or LSX particles and particles of zeolite X or LSX exchanged with calcium and barium cations, distributed uniformly or almost uniformly in said material.
  • the mixture of said particles can be done continuously or discontinuously by passing through a mixer.
  • a mixer Preferably, we will use
  • a monolitic radial adsorber that is to say that a single bed consisting of an adsorbent material of homogeneous composition is used to stop the water, the C0 2 acetylene, ethylene, propane, butane and N 2 O up to the required residual level.
  • This charge can also stop traces of other compounds such as certain acid gases or other easily adsorbable compounds possibly even accidentally present in the air (NH 3 , combustion residues, VOC ).
  • the water is adsorbed preferentially and the acetylene and butane are also completely stopped.
  • the traces of methane and ethane can be found in the dried and decarbonated gas but do not pose any particular problem in the cryogenic separation unit.
  • the choice of the adsorbent charge will therefore depend on the respective contents of C0 2 , C 2 H 4 , C 3 H 8 and N 2 O in the air and the residual contents required at the inlet of the cryogenic unit for operate it reliably and safely.
  • the fluid to be purified 1 containing the impurities mentioned above enters the lower part of the radial adsorber 10, passes through the adsorbent mass 20 and the product leaves the upper part 2.
  • the regeneration fluid 3 is counter-balanced. current through the upper part, desorbs the impurities contained in the adsorbent mass 20 and the waste gas 4 leaves at the bottom.
  • the adsorber itself 10 consists of a cylindrical shell of vertical axis AA and 2 funds.
  • the adsorbent mass 20 is held in place by means of a perforated external grid 11 and an internally perforated internal grid 12 fixed on one side to the upper bottom and on the other side to a solid plate 13 in part. lower.
  • the gas 1 circulates vertically at the periphery in the outer free zone 14 between the cylindrical shell and the external grid, passes radially through the adsorbent mass 20 and then flows vertically in the internal free zone 15 before leaving the adsorber from above. Regeneration is carried out in the opposite direction.
  • the gas to be purified during the adsorption phase circulates from the periphery to the center: it is called centripetal circulation in adsorption.
  • the corresponding regeneration is then carried out centrifugally, that is to say from the center to the outside.
  • the radial adsorbers can be used in the same way with reverse circulation directions, that is to say in adsorption, for example, the gas to be treated will go from the inside towards the outside while in regeneration, the regeneration gas will circulate from outside to inside.
  • Another possible arrangement is to add a circular sealing disc to split the adsorbent mass in two parts. It is then possible in the same radial adsorber to have in adsorption phase for example a centrifugal circulation in a first volume of adsorbent followed by a centripetal circulation in the upper volume of adsorbent.
  • the adsorbent material relating to the invention consists of a homogeneous mixture consisting of half LSX-type zeolite particles (Low Silica / Alumina ratio) and half CaBaX type zeolite. (This is 50% weight)
  • the LSX is in the form of spherical balls with a diameter of between 1.9mm and 2.15mm and packed density of between 650kg / m 3 and 665kg / m 3 .
  • CaBaX is also in the form of spherical balls with a diameter of between 2 and 2.30mm and packed density around 700kg / m 3 .
  • the exchange rate for both calcium and barium is 20% of the exchangeable cations.
  • this second adsorbent is therefore an Na60 type zeolite; Ca20; Ba20 X.
  • the barrels are thus filled to about 80% of their maximum capacity and then the mixing is carried out in an industrial drum mixer which imposes eccentric rotational movements on the drums ...
  • Small samples taken before filling and during the filling shows the stability of the mixture.
  • Particles having a maximum diameter ratio of 1, 21 and a density ratio of 1. 08 form a stable mixture as long as the transport of the drums, the filling of the adsorber and the operating conditions of the unit are carried out. according to the rules of art.
  • LSX / CaBaX The choice of the optimum distribution LSX / CaBaX can be made from laboratory tests under the operating conditions but it can also be done preferably via adsorption simulation software as commercially available or as described extensively in the literature.
  • FIG. 1 depicts the simplest radial adsorber with a single adsorbent material consisting of equal parts of LSX and CaBaX particles.
  • a double bed preferably in this case an activated alumina bed intended to stop the water and the composite zeolitic bed.
  • the zeolitic material may consist of zeolite beads agglomerating from a mixture of LSX powder and CaBaX. Such a mixture must, in principle, be carried out by the adsorbent supplier, who must preferentially produce the two species of adsorbents himself.
  • the mixture of adsorbent particles of different composition requires the additional final mixing step but offers a greater flexibility of implementation. It can be two adsorbents from different suppliers, the mixture can be made from commercial products in stock and in any proportion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Detergent Compositions (AREA)

Abstract

Matériau adsorbant zéolitique constitué pour 100% massique : - d'une proportion non nulle d'une zéolite choisie parmi les zéolites X ou les zéolites LSX; et - le complément à 100% massique d'une proportion non d'une zéolite échangée par des cations, ladite zéolite échangée par des cations étant choisie parmi les zéolites X échangées par des cations ou les zéolites LSX échangées par des cations.

Description

Composition zéolitique adaptée à l'épuration d'air
Le but de la présente invention est de proposer un procédé de prétraitement ou purification d'un flux gazeux constitué d'air atmosphérique, préalablement à la séparation cryogénique dudit air, en particulier par distillation cryogénique.
Il est connu que l'air atmosphérique contient des composés devant être éliminés avant l'introduction dudit air dans les échangeurs thermiques de la boîte froide d'une unité de séparation d'air, notamment les composés dioxyde de carbone (C02), vapeur d'eau (H20), hydrocarbures (CnHm) et oxydes d'azote.
En effet, en l'absence d'un tel prétraitement de l'air pour en éliminer ses impuretés C02 et vapeur d'eau, on assiste à une condensation et à une solidification en glace de ces impuretés lors du refroidissement de l'air à température cryogénique, d'où il peut résulter des problèmes de colmatage de l'équipement, notamment les échangeurs thermiques, des colonnes de distillation...
En outre, il est également d'usage d'éliminer les impuretés hydrocarbures susceptibles d'être présentes dans l'air afin d'éviter tout risque de détérioration de l'équipement, en particulier de la ou des colonnes de distillation situées en aval de la boîte froide.
Actuellement, ce prétraitement de l'air est effectué, selon le cas, par procédé TSA (Température Swing Adsorption), c'est-à-dire un procédé d'adsorption à variation de température, ou par procédé PSA (Pressure Swing Adsorption), c'est-à-dire un procédé d'adsorption à variation de pression ; par procédé PSA, on entend les procédés PSA proprement-dits, les procédés VSA (Vacuum Swing Adsorption), les procédés VPSA (Vacuum/Pressure Swing Adsorption), c'est-à-dire les procédés d'adsorption avec mise sous vide lors de la régénération.
L'invention concerne essentiellement le procédé TSA.
Classiquement, un cycle de procédé TSA de purification d'air comporte les étapes suivantes :
a) purification d'air par adsorption des impuretés à pression super-atmosphérique (3x105Pa à 35 x105Pa (3bar à 15bars abs) et à température ambiante (de 5°C à 50°C),
b) dépressurisation de l'adsorbeur jusqu'à la pression atmosphérique (voire en dessous de la pression atmosphérique),
c) régénération de l'adsorbant à pression atmosphérique, notamment par les gaz résiduaires ou gaz déchets, typiquement de l'azote impur provenant d'une unité de séparation d'air et réchauffé jusqu'à une température supérieure à 70°C au moyen d'un ou plusieurs échangeurs thermiques,
d) refroidissement à température ambiante ou sub-ambiante de l'adsorbant, notamment en continuant à y introduire ledit gaz résiduaire issu de l'unité de séparation d'air, mais non réchauffé,
e) repressurisation de l'adsorbeur avec de l'air purifié issu, par exemple, d'un autre adsorbeur se trouvant en phase de production.
De nombreuses variantes peuvent exister en fonction du procédé aval et/ou des conditions opératoires ; par exemple, l'étape de refroidissement peut être sautée, la repressurisation se faire à l'air humide, la régénération être effectuée en moyenne pression...
Généralement, les dispositifs de prétraitement d'air comprennent deux adsorbeurs, fonctionnant de manière alternée, c'est-à-dire que l'un des adsorbeurs est en phase de production, pendant que l'autre est en phase de régénération.
De tels procédés TSA de purification d'air sont notamment décrits dans les documents US-A-3,738,084 et FR-A-7725845.
En général, l'élimination du C02 et de la vapeur d'eau est effectuée sur un ou plusieurs lits d'adsorbants, de préférence plusieurs lits d'adsorbants, à savoir généralement un premier adsorbant destiné à arrêter préférentiellement l'eau, par exemple un lit d'alumine activée, de gel de silice ou de zéolites, et un deuxième lit d'adsorbant pour arrêter préférentiellement le C02, par exemple une zéolite. A ce titre, on peut citer notamment les documents US-A- 5,531 ,808, US-A-5,587,003 et US-A-4,233,038.
Ainsi, il est usuel d'utiliser une zéolite de type 13X pour éliminer le C02 puisque la zéolite 13X est réputée être particulièrement efficace pour arrêter de faibles quantités de C02 et éventuellement d'eau, car elle présente une forte affinité et sélectivité pour ces molécules polaires. De plus, la zéolite X présente des diamètres de micropores parmi les plus larges, ce qui lui permet d'adsorber avec une bonne cinétique des molécules de diamètre cinétique jusqu'à 0,8 nm.
Cependant, la zéolite 13X ne permet pas d'arrêter toutes les molécules néfastes susceptibles d'être présentes dans un flux gazeux.
En effet, les molécules gazeuses adsorbées par la zéolite 13X sont pour l'essentiel et par affinité croissante : méthane, éthane, propane, protoxyde d'azote, éthylène, dioxyde de carbone, butane, propylène (C3H6), acétylène (C2H2), toluène et méthylcyclohexane. Il s'en suit qu'une unité industrielle strictement dimensionnée pour l'arrêt du dioxyde de carbone avec une zéolite 13X standard n'arrête que partiellement l'éthylène, le propane et le protoxyde d'azote.
La commercialisation de LSX avec un ratio Si/AI de 1 a permis d'améliorer sensiblement l'arrêt du C02 mais beaucoup moins l'arrêt des autres impuretés citées ci- dessus.
L'utilisation de zéolite échangée au calcium et/ou au baryum a, quant à elle, permis d'améliorer l'arrêt de l'éthylène et/ou du propane et/ou protoxyde d'azote mais au détriment de l'arrêt du C02.
Par la suite on utilisera le terme de zéolite X (ou NaX ou 13X) pour parler d'une zéolite
X dont l'essentiel des cations sont des cations sodium et de zéolite LSX pour parler comme explicité plus haut d'une zéolite X avec un ratio Si/AI de 1 ou proche de 1 et dont l'essentiel des cations sont des cations sodium et/ou potassium.
Trois types de solution sont utilisés aujourd'hui pour atteindre les niveaux d'impuretés résiduels recherchés :
- Utilisation d'un lit de NaX (13X standard) ou de LSX surdimensionné par rapport à l'arrêt du C02
- Utilisation d'un double lit de NaX ou de LSX suivi d'un lit de zéolite échangée au calcium ou au baryum
- Utilisation d'un lit de zéolite partiellement échangée au calcium et/ou baryum destiné à arrêter jusqu'aux seuils requis le C02, le C2H4, le N20 et le C3H8.
Ce dernier procédé est illustré par WO 03/041858.
L'intérêt principal d'utiliser un lit unique au lieu de multi lits est lié en grande partie à l'utilisation d'adsorbeur radial.
En effet, chaque type d'adsorbant supplémentaire entraîne la présence d'une grille de séparation supplémentaire pour maintenir en place les adsorbants, ce qui complexifie la fabrication des dits adsorbeurs.
De la sorte, il est possible d'obtenir une teneur résiduelle en C02 de l'ordre de 500ppb à 100ppb avec des taux d'arrêt d'éthylène de 75% à 99%, de propane de 50% à 99% et de N20 de 65 à 97%-98% environ suivant le type de solution retenu.
Compte tenu des teneurs dans l'air des impuretés secondaires, de quelques dizaines à quelques centaines de ppb, la quantité résiduelle de ces impuretés est en absolu très faible, de l'ordre du ppb. De nouveaux procédés cryogéniques basse pression ou la prise en compte de niveau de sécurité ou de fiabilité plus élevés conduisent à vouloir limiter la quantité totale d'impuretés introduites dans l'unité cryogénique.
La teneur résiduelle en eau étant de son côté très faible, il convient donc de baisser sensiblement la teneur résiduelle du C02, d'un ordre de grandeur, voire plus.
Les 3 solutions répertoriées plus haut peuvent être adaptées à cette nouvelle donne :
- Surdimensionnement du lit de NaX ou LSX pour obtenir mettons 10 ppb de C02,
- Surdimensionnement du premier lit de NaX ou LSX
- Surdimensionnement du lit de zéolite échangée
Ces 3 solutions ont leur inconvénient : volume important pour les première et troisième solutions avec des teneurs résiduelles en impuretés secondaires (C2H4, C3H8, N20) plus basses que nécessaires car le dimensionnement est effectué pour le C02 ; double lit pour l'arrêt du C02 et des impuretés secondaires dans la deuxième solution avec la complexité correspondante dans le cas d'adsorbeur radial.
Partant de là, un problème qui se pose est de fournir un procédé d'épuration d'air amélioré c'est-à-dire permettant de minimiser le volume total d'adsorbant tout en conservant un nombre minimum de lits (1 ou 2 maximum) pour l'arrêt de toutes les impuretés, eau comprise au niveau requis par le procédé.
Une solution de la présente invention est un matériau adsorbant zéolitique constitué pour 100% massique :
- D'une proportion non nulle d'une zéolite choisie parmi les zéolites X ou les zéolites LSX ; et
- le complément à 100% massique d'une proportion non d'une zéolite échangée par des cations, ladite zéolite échangée par des cations étant choisie parmi les zéolites X échangées par des cations ou les zéolites LSX échangées par des cations.
Dans le cadre de l'invention, par échangé par des cations, on entend que les cations considérés sont ceux associés à des motifs tétraédriques AI02 " de la zéolite (phase zéolitique), lesquels cations échangés jouent un rôle dans le mécanisme de l'adsorption des composés gazeux à éliminer.
De même, par cations échangeables, on entend des cations pouvant être substitués ou remplacés par d'autres cations par mise en œuvre d'un procédé d'échange d'ions.
Par taux d'échange d'un cation x, on entend le nombre de charges portées par les cations X présents dans la zéolithe rapporté au nombre total de charges de l'ensemble des cations. Le taux d'échange varie entre 0% et 100%. La charge totale positive portée par les cations est égale à la charge négative totale portée par les groupes AI02 ". La quantité stœchiométrique correspond à cette charge totale.
Notons que les quantités de zéolites X ou LSX et de zéolites échangées sont déterminés en fonction du taux d'impuretés résiduels requis et de la composition de l'air à purifier.
Selon le cas, le matériau adsorbant selon l'invention peut présenter une ou plusieurs des caractéristiques ci-dessous :
- le mélange est formé de particules constituées de cristaux de zéolite X ou LSX et de cristaux de zéolite échangée par des cations agglomérés ensemble ;
- le mélange est formé de particules de zéolite X ou LSX et de particules de zéolite échangée par des cations ; Par particules, on entend des solides de dimension allant de quelques centaines de microns à quelques millimètres et de formes variées, préférentiellement des bâtonnets, des pastilles ou des billes essentiellement sphériques ;
- la zéolite échangée par des cations est échangée par des cations calcium, baryum, magnésium, strontium et/ou lithium, préférentiellement par des cations calcium et baryum ;
- la zéolite échangée par des cations est échangée de 10 à 90% par des cations calcium et de 10 à 90% par des cations baryum, de préférence de 10 à 50% par des cations calcium et de 10 à 50% par des cations baryum, encore plus préférentiellement de 15 à 40% par des cations calcium et de 15 à 40% par des cations baryum ;
- les zéolites X ou LSX et les zéolites échangées par des cations sont réparties uniformément ou quasiment uniformément dans ledit matériau ;
La présente invention a également pour objet un adsorbeur comprenant un matériau adsorbant selon la présente invention ;
L'adsorbeur est de préférence un adsorbeur radial.
Par ailleurs, soit le matériau adsorbant selon la présente invention est placé dans un lit unique ; soit ledit adsorbeur comprend un premier lit permettant d'éliminer au moins en partie l'eau d'un flux gazeux et un second lit comprenant le matériau adsorbant selon l'invention. Si la deuxième alternative est choisie, le premier lit peut comprendre de l'alumine activée, du gel de silice ou un tamis (zéolite).
La présente invention a également pour objet un procédé de purification ou de séparation d'un gaz ou d'un mélange gazeux utilisant un matériau adsorbant zéolitique constitué par un mélange de zéolite X ou LSX et de zéolite échangée par des cations selon l'invention. Selon le cas, le procédé de purification ou de séparation selon l'invention peut présenter une ou plusieurs des caractéristiques suivantes :
- le gaz est de l'air, de préférence de l'air destiné à être fractionné par une unité cryogénique ;
- on élimine au moins une première impureté choisie parmi le C02, l'éthylène, le propane et le N20 ;
- on élimine au moins une seconde impureté choisie parmi l'eau, le butane et l'acétylène ;
- ledit procédé est un procédé TSA ;
- la pression d'adsorption est comprise entre 3 et 35 bar abs, préférentiellement entre 3 et 10 bar abs, la température d'adsorption est comprise entre 5 et 50°C, la durée d'adsorption est comprise entre 30 et 480 minutes, préférentiellement entre 60 et 180 minutes, et encore plus préférentiellement entre 90 et 150 minutes ;
- la température de régénération est comprise entre 70°C et 200°C, préférentiellement entre 100 et 160 °C, la pression de régénération est inférieure à 5 bar abs, préférentiellement voisine de la pression atmosphérique ;
- le gaz de régénération de l'adsorbant est de l'azote ou un mélange d'azote et d'oxygène contenant une faible proportion d'oxygène (quelques % en vol ;), de préférence le mélange azote/oxygène utilisé pour régénérer l'adsorbant est un gaz résiduaire ou un gaz déchet issu d'une unité de séparation cryogénique de l'air;
- le procédé de l'invention est mis en œuvre dans au moins un adsorbeur, de préférence dans au moins deux adsorbeurs fonctionnant de manière alternée.
L'invention porte aussi sur un premier procédé de fabrication d'un matériau adsorbant zéolitique constitué par un mélange formé de particules constituées de cristaux de zéolite X ou LSX et de cristaux de zéolite X ou LSX échangée par des cations calcium et baryum agglomérés ensemble, dans lequel :
(a) on soumet une zéolite X ou LSX contenant des cations sodium et/ou potassium à au moins un échange d'ions par mise en contact avec une solution contenant des ions calcium et/ou baryum,
(b) si nécessaire, on répète l'étape (a) jusqu'à atteindre le taux d'échange souhaité pour chacun desdits cations baryum et calcium,
(c) on récupère des cristaux de zéolite X ou LSX échangée par des cations calcium et baryum ; (d) on agglomère les cristaux de zéolite X ou LSX échangée par des cations calcium et baryum issus de l'étape (c) et des cristaux de zéolite X ou LSX pour former des particules agglomérées, et
(e) on opère un traitement thermique pour sécher et activer les dites particules
Par activation, on entend essentiellement enlever par chauffage les molécules d'eau qui occultent les sites actifs sans endommager la structure cristalline de la zéolite. La vitesse de chauffage, le temps de chauffage, la température maximale sont fonction de la nature de la zéolite
A l'étape (a), pour réaliser les échanges d'ions, on utilise de préférence une solution de sels de calcium et/ou baryum, telle qu'une solution de chlorure, à un pH inférieur à environ 6.
La mise en contact entre la zéolite et la solution saline a lieu par exemple par immersion de l'ensemble de la zéolite dans un temps aussi court que possible, ceci pour assurer un échange d'ions homogène dans la zéolite.
En variante, on peut mettre la zéolite en poudre en suspension agitée dans l'eau, puis ajouter lentement la solution de sels de calcium et/ou baryum, en réalisant une agitation suffisant pour répartir la solution dans tout le volume en suspension. Dans tous tes cas, il faut réaliser la mise en contact dans des conditions où le sel de calcium et/ou baryum se répartira dans J'ensemble du volume de zéolite, avant que l'échange ait eu le temps de se faire, ceci pour assurer que le calcium et/ou baryum sera réparti de manière homogène dans toute la masse de la zéolite.
Les molarités en sel sont comprises entre 1 M et 0,01 M, la température entre 20°C et 100 C, et le temps de contact entre 20 minutes et 3 heures.
A l'étape (d) d'agglomération, on peut mélanger la zéolite avec un liant, tel de l'argile, du gel de silice ou similaires.
Enfin, l'invention porte sur un second procédé de fabrication d'un matériau adsorbant zéolitique constitué par un mélange formé de particules de zéolite X ou LSX et de particules de zéolite X ou LSX échangée par des cations calcium et baryum, réparties uniformément ou quasiment uniformément dans ledit matériau.
Le mélange des dites particules peut être fait de façon continue ou discontinue par passage dans un mélangeur. Préférentiellement, on utilisera
- Soit un procédé discontinu, dans lequel :
(a) on place les particules de zéolite X ou LSX et les particules de zéolite X ou LSX échangée par des cations calcium et baryum dans un récipient comprenant un vide résiduel d'au moins 15%, et (b) on soumet le récipient à des mouvements de rotation suivant un axe différent de l'axe de symétrie du récipient.
- Soit un procédé continu, dans lequel les quantités respectives de particules de zéolite X ou LSX et les particules de zéolite X ou LSX échangée par des cations calcium et baryum sont introduites simultanément dans un mélangeur en ligne et le mélange ensuite envoyé vers un stockage intermédiaire (silo) ou vers les emballages de livraison (fûts, « big bags »).
On va à présent décrire l'invention dans le cas d'un adsorbeur radial monolit, c'est-à- dire qu'un lit unique constitué d'un matériau adsorbant de composition homogène est utilisé pour arrêter l'eau, le C02, l'acétylène, l'éthylène, le propane, le butane et le N20 jusqu'au taux résiduel requis. Cette charge pourra arrêter également des traces d'autres composés comme certains gaz acides ou autres composés facilement adsorbables éventuellement présents même accidentellement- dans l'air (NH3, résidus de combustion, COV... ). Sur une telle charge, parmi les impuretés normales citées, l'eau est adsorbée préférentiellement et l'acétylène et le butane sont également totalement arrêtés.
Les traces de méthane et d'éthane peuvent se retrouver dans le gaz séché et décarbonaté mais ne posent pas de problème particulier dans l'unité de séparation cryogénique.
Le choix de la charge d'adsorbant va donc dépendre des teneurs respectives de C02, C2H4, C3H8 et N20 dans l'air et des teneurs résiduelles requises à l'entrée de l'unité cryogénique pour opérer cette dernière en toute fiabilité et sécurité.
Le fonctionnement d'un adsorbeur radial comprenant une telle charge adsorbante est représenté sur la figure 1.
Le fluide à épurer 1 contenant les impuretés citées plus haut rentre en partie basse de l'adsorbeur radial 10, traverse la masse adsorbante 20 et le produit sort en partie supérieure 2. Lors de la régénération, le fluide de régénération 3 rentre à contre-courant par la partie haute, désorbe les impuretés contenues dans la masse adsorbante 20 et le gaz résiduaire 4 sort en partie basse.
L'adsorbeur lui-même 10 est constitué d'une virole cylindrique d'axe vertical AA et de 2 fonds. La masse adsorbante 20 est maintenue en place au moyen d'une grille externe perforée 1 1 et d'une grille interne également perforée 12 fixées d'un côté sur le fond supérieur et de l'autre côté, sur une tôle pleine 13 en partie inférieure. Le gaz 1 circule verticalement à la périphérie dans la zone libre externe 14 entre la virole cylindrique et la grille externe, traverse radialement la masse adsorbante 20 puis circule verticalement dans la zone libre interne 15 avant de quitter l'adsorbeur par le haut. La régénération s'effectue en sens inverse. Dans la description ci-dessus, le gaz à épurer pendant la phase d'adsorption circule de la périphérie vers le centre : on parle alors de circulation centripète en adsorption. La régénération correspondante s'effectue alors de façon centrifuge, c'est-à-dire du centre vers l'extérieur. Ceci est la configuration la plus générale mais on peut utiliser de la même façon les adsorbeurs radiaux avec des sens de circulation inverses, c'est-à-dire qu'en adsorption par exemple le gaz à traiter ira de l'intérieur vers l'extérieur alors qu'en régénération, le gaz de régénération circulera de l'extérieur vers l'intérieur. Un autre arrangement possible consiste à rajouter un disque circulaire d'étanchéité pour fractionner en 2 parties la masse adsorbante. Il est alors possible dans un même adsorbeur radial d'avoir en phase d'adsorption par exemple une circulation centrifuge dans un premier volume d'adsorbant suivie d'une circulation centripète dans le volume supérieur d'adsorbant.
Le matériau adsorbant relatif à l'invention 20 est constitué d'un mélange homogène constitué par moitié de particules de zéolithe de type LSX (Low Silica/ Alumina ratio) et par moitié de zéolite de type CaBaX. (Il s'agit de 50 %poids)
Plus précisément, la LSX est sous forme de billes sphériques de diamètre compris entre 1 ,9mm et 2, 15mm et de densité tassée comprise entre 650kg/m3 et 665kg/m3.
La CaBaX est également sous forme de billes sphériques de diamètre compris entre 2 et 2,30mm et de densité tassée autour de 700kg/m3. Le taux d'échange à la fois en calcium et en baryum est de 20% des cations échangeables. Aux composés secondaires près, ce second adsorbant est donc une zéolite du type Na60 ; Ca20 ; Ba20 X. Ces caractéristiques ont été mesurées sur 5 échantillons pris dans 5 lots de fabrication différents pour chacun des adsorbants. La couleur des deux adsorbants s est légèrement différente permettant visuellement de repérer chacun des produits. Le mélange a été effectué avant remplissage dans des fûts remplis successivement de 50% de LSX puis de 50% de CaBaX.
Les fûts sont ainsi remplis à environ 80% de leur contenance maximale puis le mélange est effectué dans un mélangeur de fûts industriel qui impose aux fûts des mouvements de rotation excentrés... De petits échantillons prélevés avant remplissage et au cours du remplissage montre la stabilité du mélange. Visuellement, il n'est mis en évidence aucune ségrégation. Cela confirme les résultats de tests effectués en laboratoire. Des particules pouvant avoir au maximum un ratio de diamètre de 1 ,21 et un ratio de densité 1 ,08 forment un mélange stable dès lors que le transport des fûts, le remplissage de l'adsorbeur et les conditions opératoires de l'unité sont effectuées suivant les règles de l'art.
L'utilisation d'un mélange 50/50 permet de viser un taux résiduel en C02 très faible, inférieur à 10ppb et des taux d'arrêt de l'ordre de 95% pour les autres impuretés. L'utilisation d'un seul de ces adsorbants permettrait d'obtenir les spécifications requises mais au prix d'un investissement plus élevé : volume d'adsorbant supérieur, adsorbeur plus gros.
L'utilisation d'un double lit permettrait également d'optimiser l'unité d'épuration mais au prix d'une complexification de l'adsorbeur. L'adjonction d'une grille supplémentaire entraîne en particulier pour les adsorbeurs radiaux les plus grands des problèmes cruciaux de réalisation, en particulier d'enfilage successif des grilles maintenant les adsorbants.
Le choix de la répartition optimale LSX/CaBaX peut se faire à partir d'essais en laboratoire dans les conditions opératoires mais il peut également se faire préférentiellement via un logiciel de simulation d'adsorption comme disponible commercialement ou comme décrit abondamment dans la littérature.
La figure 1 décrit l'adsorbeur radial le plus simple avec un matériau adsorbant unique constitué à part massique égale de particules de LSX et de CaBaX. Avec le même mélange zéolitique, il est possible d'utiliser un double lit, préférentiellement dans ce cas un lit d'alumine activée destiné à arrêter l'eau et le lit zéolitique composite. En variante du cas de base ou du cas double lit, le matériau zéolitique peut consister en des billes de zéolite agglomérer à partir d'un mélange de poudre de LSX et de CaBaX. Un tel mélange doit à priori être effectué chez le fournisseur d'adsorbant, qui doit préférentiellement produire lui-même les deux espèces d'adsorbants.
Le mélange de particules d'adsorbants de composition différentes nécessite l'étape de mélange final supplémentaire mais offre une souplesse de réalisation plus grande. Il peut s'agir de deux adsorbants provenant de fournisseurs différents, le mélange peut être effectué à partir de produits commerciaux en stock et ce en toute proportion.

Claims

Revendications
1. Matériau adsorbant zéolitique constitué pour 100% massique :
- D'une proportion non nulle d'une zéolite choisie parmi les zéolites X ou les zéolites LSX ; et
- Le complément à 100% massique d'une proportion non d'une zéolite échangée par des cations, ladite zéolite échangée par des cations étant choisie parmi les zéolites X échangées par des cations ou les zéolites LSX échangées par des cations.
2. Matériau tel que défini à la revendication 1 , caractérisé en ce que la zéolite échangée par des cations est échangée par des cations calcium, baryum, magnésium, strontium et/ou lithium, préférentiellement par des cations calcium et baryum.
3. Matériau adsorbant selon la revendication 2, caractérisé en ce que ladite zéolite échangée par des cations, est échangée de 10 à 90% par des cations calcium et de 10 à 90% par des cations baryum, de préférence de 10 à 50% par des cations calcium et de 10 à 50% par des cations baryum.
4. Matériau adsorbant selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les zéolites X ou LSX et les zéolites échangées par des cations sont réparties uniformément ou quasiment uniformément dans ledit matériau.
5. Adsorbeur comprenant un matériau adsorbant tel que défini à l'une quelconque des revendications 1 à 4.
6. Adsorbeur selon la revendication 5, caractérisé en ce que ledit adsorbeur est un adsorbeur radial.
7. Adsorbeur selon l'une quelconque des revendications 5 ou 6, caractérisé en ce que ledit adsorbeur comprend un lit unique de matériau adsorbant.
8. Adsorbeur, caractérisé en ce que ledit adsorbeur comprend un premier lit permettant d'éliminer au moins en partie l'eau d'un flux gazeux et un second lit comprenant le matériau adsorbant selon l'une des revendications 1 à 4.
9. Procédé de purification ou de séparation d'un gaz ou d'un mélange gazeux utilisant un matériau adsorbant zéolitique tel que défini à l'une quelconque des revendications 1 à 4.
10. Procédé selon la revendication 9, dans lequel le gaz est de l'air.
1 1. Procédé selon l'une quelconque des revendications 9 ou 10, dans lequel on élimine au moins une impureté choisie parmi le C02, l'éthylène, le propane et le N20.
12. Procédé selon l'une quelconque des revendications 9 à 1 1 , caractérisé en ce que ledit procédé est un procédé TSA.
13. Procédé de préparation d'un matériau adsorbant zéolitique tel que défini à l'une quelconque des revendications 2 ou 3, dans lequel :
(a) - On soumet une zéolite X ou LSX contenant des cations sodium et/ou potassium à au moins un échange d'ions par mise en contact avec une solution contenant des ions calcium et/ou baryum,
(b) - Si nécessaire, on répète l'étape (a) jusqu'à atteindre le taux d'échange souhaité pour chacun desdits cations baryum et calcium,
(c) - On récupère des cristaux de zéolite X ou LSX échangée par des cations calcium et baryum ;
(d) - On agglomère les cristaux de zéolite X ou LSX échangée par des cations calcium et baryum issus de l'étape (c) et des cristaux de zéolite X ou LSX pour former des particules agglomérées, et
(e) - On opère un traitement thermique pour sécher et activer les dites particules
14. Procédé de fabrication d'un matériau adsorbant zéolitique tel que défini à l'une quelconque des revendications 2 ou 3, dans lequel :
(a) - On place les particules de zéolite X ou LSX et les particules de zéolite X ou LSX échangée par des cations calcium et baryum dans un récipient comprenant un vide résiduel d'au moins 15%, et
(b) - On soumet le récipient à des mouvements de rotation suivant un axe différent de l'axe de symétrie du récipient.
15. Procédé de fabrication d'un matériau adsorbant zéolitique quel de défini à la revendication 4, dans lequel :
(a) - Les particules de zéolite X ou LSX et les particules de zéolite X ou LSX échangée par des cations calcium et baryum sont introduites simultanément dans un mélangeur en ligne, et
(b) - Ledit mélange est ensuite envoyé vers un stockage intermédiaire ou vers les emballages de livraison.
EP12700625.2A 2011-01-07 2012-01-04 Composition zeolitique adaptee a l'epuration d'air Withdrawn EP2661314A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1150122A FR2970184B1 (fr) 2011-01-07 2011-01-07 Composition zeolitique adaptee a l'epuration d'air
PCT/EP2012/050090 WO2012093141A1 (fr) 2011-01-07 2012-01-04 Composition zeolitique adaptee a l'epuration d'air

Publications (1)

Publication Number Publication Date
EP2661314A1 true EP2661314A1 (fr) 2013-11-13

Family

ID=44342879

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12700625.2A Withdrawn EP2661314A1 (fr) 2011-01-07 2012-01-04 Composition zeolitique adaptee a l'epuration d'air

Country Status (5)

Country Link
US (1) US9242237B2 (fr)
EP (1) EP2661314A1 (fr)
CN (1) CN103313769B (fr)
FR (1) FR2970184B1 (fr)
WO (1) WO2012093141A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872799B (zh) * 2012-10-24 2015-01-14 涿鹿恩泽催化材料有限公司 一种吸附和分解室内有害气体的吸附剂的制备方法
FR3013608A1 (fr) * 2013-11-27 2015-05-29 Air Liquide Materiau adsorbant zeolitique de type x ou lsx
FR3038529B1 (fr) * 2015-07-09 2020-10-23 Ceca Sa Adsorbants zeolithiques, leur procede de preparation et leurs utilisations
FR3038528B1 (fr) 2015-07-09 2020-10-23 Ifp Energies Now Adsorbants zeolithiques, leur procede de preparation et leurs utilisations
EP3318321B1 (fr) * 2016-11-08 2019-07-03 Linde Aktiengesellschaft Procédé de fabrication d'un dispositif d'adsorption
CN107486146B (zh) * 2017-09-06 2020-10-23 洛阳建龙微纳新材料股份有限公司 一种混合阳离子LiCa-LSX分子筛制法及应用
CN112742171B (zh) * 2019-10-31 2023-07-04 中国石油化工股份有限公司 一种径向吸附塔及吸附工艺
CN111560277A (zh) * 2019-12-11 2020-08-21 江苏京泓生态环保有限公司 一种合流式脱碳器
CN111578252A (zh) * 2019-12-11 2020-08-25 江苏京泓生态环保有限公司 一种有关提纯厌氧罐设备的余热利用系统
CN111578253A (zh) * 2019-12-19 2020-08-25 江苏京泓生态环保有限公司 一种有关提油厌氧罐设备的余热利用系统
FR3120316B1 (fr) * 2021-03-05 2024-03-01 Air Liquide Adsorbeur radial à circulation radiale d'un gaz
CN117085459B (zh) * 2023-10-20 2024-02-13 中国华能集团清洁能源技术研究院有限公司 低温吸附净化装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19528188C1 (de) * 1995-08-01 1996-12-05 Bayer Ag Verfahren zur Adsorption von Stickstoff aus Gasgemischen mittels Druckwechseladsorption mit Zeolithen
EP0992274A1 (fr) * 1998-10-08 2000-04-12 Air Products And Chemicals, Inc. Purification d'air
US6432171B1 (en) * 2000-08-28 2002-08-13 The Boc Group, Inc. Thermal swing adsorption process

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR719845A (fr) 1931-07-08 1932-02-10 Dispositif de purification de gaz
FR2127112A5 (fr) 1971-02-24 1972-10-13 Air Liquide
GB1586961A (en) 1976-08-24 1981-03-25 Boc Ltd Separation of gaseous mixtures
US4233038A (en) 1979-08-06 1980-11-11 Air Products And Chemicals, Inc. Reactivation system for water-carbon dioxide adsorbers
US4957514A (en) * 1989-02-07 1990-09-18 Air Products And Chemicals, Inc. Hydrogen purification
JP3411942B2 (ja) * 1993-09-30 2003-06-03 マツダ株式会社 排気ガス浄化用のhc吸着剤、排気ガス浄化用触媒及び排気ガス浄化装置
US5531808A (en) 1994-12-23 1996-07-02 The Boc Group, Inc. Removal of carbon dioxide from gas streams
US5587003A (en) 1995-03-21 1996-12-24 The Boc Group, Inc. Removal of carbon dioxide from gas streams
US5604169A (en) * 1996-03-04 1997-02-18 Praxair Technology, Inc. Process for producing mixed-cation zeolites
US6027548A (en) * 1996-12-12 2000-02-22 Praxair Technology, Inc. PSA apparatus and process using adsorbent mixtures
FR2800995B1 (fr) * 1999-10-05 2002-01-04 Ceca Sa Adsorbants zeolitiques, leur procede d'obtention et leur utilisation pour la decarbonation de flux gazeux
US6358302B1 (en) * 1999-11-18 2002-03-19 The Boc Group, Inc. Purification of gases using multi-composite adsorbent
US6409800B1 (en) * 2000-08-28 2002-06-25 The Boc Group, Inc. Temperature swing adsorption process
US6468328B2 (en) * 2000-12-18 2002-10-22 Air Products And Chemicals, Inc. Oxygen production by adsorption
FR2832077B1 (fr) 2001-11-12 2004-08-27 Air Liquide Adsorbant zeolitique au baryum et calcium pour la purification de gaz, en particulier de l'air
FR2856607B1 (fr) * 2003-06-27 2006-08-18 Air Liquide Procede de purification d'air par cycle tsa accelere
US7780846B2 (en) * 2004-09-01 2010-08-24 Sud-Chemie Inc. Sulfur adsorbent, desulfurization system and method for desulfurizing
US7381244B2 (en) * 2005-08-03 2008-06-03 Air Products And Chemicals, Inc. Apparatus and process for air cleaning
FR2925367B1 (fr) * 2007-12-20 2010-01-15 Ceca Sa Adsorbants zeolitiques agglomeres, leur procede de preparation et leurs utilisations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19528188C1 (de) * 1995-08-01 1996-12-05 Bayer Ag Verfahren zur Adsorption von Stickstoff aus Gasgemischen mittels Druckwechseladsorption mit Zeolithen
EP0992274A1 (fr) * 1998-10-08 2000-04-12 Air Products And Chemicals, Inc. Purification d'air
US6432171B1 (en) * 2000-08-28 2002-08-13 The Boc Group, Inc. Thermal swing adsorption process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2012093141A1 *

Also Published As

Publication number Publication date
US20130269524A1 (en) 2013-10-17
FR2970184B1 (fr) 2013-08-02
CN103313769A (zh) 2013-09-18
US9242237B2 (en) 2016-01-26
FR2970184A1 (fr) 2012-07-13
WO2012093141A1 (fr) 2012-07-12
CN103313769B (zh) 2016-12-28

Similar Documents

Publication Publication Date Title
WO2012093141A1 (fr) Composition zeolitique adaptee a l'epuration d'air
EP0840708B1 (fr) Procede pour la purification de melanges gazeux a base d'hydroge ne utilisant une zeolite x echangee au lithium
FR2863909A1 (fr) Methode de purification de flux gazeux pollue par co2 et hydrocarbure(s) et/ou oxyde(s) d'azote par adsorbant zeolitique agglomere
RU2401799C2 (ru) Способ очистки газов
EP1446223B1 (fr) Un procede de purification de l'air utilisant un adsorbant zeolitique au barium et calcium
EP1062022B1 (fr) Decarbonatation de flux gazeux au moyen d'adsorbants zeolitiques
EP0938920A1 (fr) Procédé et dispositif de purification de gaz par adsorption a lits horizontaux fixes
WO2005000447A1 (fr) Procede de prepurification d'air par cycle tsa accelere
KR102278991B1 (ko) 액체상 극저온 흡착을 통한 아르곤의 정제
WO2002004096A1 (fr) Procede pour la purification de melanges gazeux a base d'hydrogene utilisant une zeolite x au calcium
EP1120149A1 (fr) Procédé de purification d'un gaz par adsorption des impuretés sur plusieurs charbons actifs
EP0922482B1 (fr) Procédé de purification d'air par adsorption sur alumine calcinée des impuretés CO2 et H2O
EP1064978B1 (fr) Procédé de purification d'air par adsorption sur zeolite échangée au baryum
FR2800995A1 (fr) Adsorbants zeolitiques, leur procede d'obtention et leur utilisation pour la decarbonation de flux gazeux
CA2743951A1 (fr) Adsorbeurs radiaux monolits en serie
EP2139807A2 (fr) Ecretement des pics d'impurete
US7524359B2 (en) Methods for purifying gases having organic impurities using granulated porous glass
WO2013004932A1 (fr) Procédé de purification d'un flux gazeux avec contrôle de la pureté
EP0421875B1 (fr) Procédé d'activation thermique de zéolites par percolation de gaz chaud
FR2711323A1 (fr) Procédé d'élimination par adsorption d'hydrocarbures contenus dans l'air.
EP2759328A1 (fr) Procédé de captage du CO2 par adsorption
FR2977506A1 (fr) Procede de purification d'un flux gazeux avec controle de la purete
FR3024375A1 (fr) (v) psa o2 traitant un flux gazeux sec enrichi en o2
FR2969009A1 (fr) Procede de sechage d'un flux gazeux
FR3013608A1 (fr) Materiau adsorbant zeolitique de type x ou lsx

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130807

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140703

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141114