EP2641037A1 - Boucle de climatisation munie d'électrovanne et fonctionnant comme pompe à chaleur. - Google Patents

Boucle de climatisation munie d'électrovanne et fonctionnant comme pompe à chaleur.

Info

Publication number
EP2641037A1
EP2641037A1 EP11781823.7A EP11781823A EP2641037A1 EP 2641037 A1 EP2641037 A1 EP 2641037A1 EP 11781823 A EP11781823 A EP 11781823A EP 2641037 A1 EP2641037 A1 EP 2641037A1
Authority
EP
European Patent Office
Prior art keywords
solenoid valve
heat exchanger
air conditioning
refrigerant
conditioning loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11781823.7A
Other languages
German (de)
English (en)
Inventor
Laurent Delaforge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP2641037A1 publication Critical patent/EP2641037A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel

Definitions

  • Air conditioning loop with solenoid valve and functioning as a heat pump The invention relates to air conditioning loops for a motor vehicle and in particular to air conditioning loops functioning as a heat pump.
  • the air conditioning loop In electric motor vehicles, the main source of calories for heating the air of the passenger compartment, namely an internal combustion engine, no longer exists. Indeed, the electric motors of electric vehicles provide only very few calories.
  • the air conditioning loop usually used to cool the air in the cabin, is used as a heat pump.
  • the calories needed to heat the cabin air are provided by the refrigerant circulating inside the air conditioning loop.
  • the compression of the refrigerant fluid by the compressor of the air conditioning loop makes it possible to increase its temperature and to provide calories to the air passing through a radiator located inside a ventilation, heating and / or air conditioning system.
  • the use of the air conditioning loop for operation as a heat pump requires modifying the refrigerant circulation circuit, adding components such as an outdoor heat exchanger and distribution valves.
  • the present invention overcomes these disadvantages by providing an air conditioning loop for a motor vehicle in which a refrigerant circulates, the air conditioning loop being able to function as a heat pump and comprising a compressor, a first solenoid valve connected to the compressor, a radiator and an external heat exchanger, the radiator being connected to the external heat exchanger via a first expansion device and connected to an evaporator via a second expansion device, the evaporator being connected to the compressor , the external heat exchanger being connected to the compressor and the evaporator via a second solenoid valve, characterized in that the external heat exchanger, the first solenoid valve and the second solenoid valve form a unitary piece.
  • the unitary nature of the external heat exchanger and the two solenoid valves has the advantage of reducing the number of pipes of the air conditioning loop and thus reducing its cost as well as its bulk.
  • the unitary part formed by the external heat exchanger and the two solenoid valves ensures a simplification of the refrigerant circulation circuit inside the air conditioning loop and thus reduces the pressure drop of the refrigerant fluid.
  • the pipe connecting the fluid outlet of this exchanger with the fluid inlet of a valve is removed. Since the air-conditioning loop operates either in heat pump mode or cooling mode, this line receives from the external heat exchanger either low-pressure coolant and gaseous state (heat pump mode). , either refrigerant fluid at high pressure and in the liquid state (cooling mode). Consequently, this pipe must be structural adapted to receive fluid at high pressure and low pressure, which implies an additional cost compared to the invention where all pipes are only suitable for a single fluid state. Finally, by eliminating pipes and simplifying the refrigerant circulation circuit, the refrigerant flow is reduced inside the air conditioning loop.
  • the first expansion device is integrated with the first solenoid valve.
  • the evaporator and the second expansion device form a unitary unit.
  • the first and second expansion devices are electronic expansion valves.
  • FIG. 1 is a diagram of the air conditioning loop according to the invention.
  • FIG. 2 is a diagram of an alternative embodiment of the air conditioning loop according to the invention.
  • FIG. 1 shows an air conditioning loop 1 according to the invention comprising a compressor 2 connected to a first solenoid valve 4 via a high pressure line 6. More specifically, an outlet 2a of the compressor 2 is connected to a high pressure inlet 4a of the first solenoid valve 4.
  • High pressure means that the refrigerant fluid is in a high pressure state following compression by the compressor 2.
  • the first solenoid valve 4 is connected to a radiator 8, to a first expansion device 12 and to an external heat exchanger 10.
  • the first expansion device 12 is an electronic expansion valve.
  • the term “electronic expander” means a pressure regulator provided with an expansion orifice whose variation of the passage section is controlled electronically.
  • such a regulator also allows to completely close its expansion orifice so as to prohibit any passage of refrigerant through the expander.
  • the electronic expansion valve is controlled according to a control law specific to the heat pump mode or the cooling mode.
  • a high pressure line 6 connects a high pressure outlet 4b of the first solenoid valve 4 to a high pressure inlet 8a of the radiator 8.
  • the radiator 8 Located inside a ventilation system, heating and / or air conditioning 100, the radiator 8 provides the heating the air F towards the passenger compartment of the vehicle not shown.
  • the refrigerant leaving the radiator 8 via a high pressure outlet 8b then reaches a high pressure pipe 6 and a second expansion device 20. Allowing the refrigerant to lower its pressure, the second expansion device 20 is an electronic expansion valve.
  • the term "electronic expander” means a pressure regulator provided with an expansion orifice whose variation of the passage section is controlled electronically. In addition, such a regulator also allows to completely close its expansion orifice so as to prohibit any passage of refrigerant through the expander.
  • the second expansion device 20 is connected to an evaporator 14 cooling the air F and located inside the ventilation system, heating and / or air conditioning 100. To reduce the number of pipes of the air conditioning loop 1, the second expansion device 20 forms with the evaporator 14 a unitary block.
  • the refrigerant flowing through the second expansion device 20 reaches the evaporator 14 without circulating through a pipe.
  • the second expansion device 20 is directly connected to the evaporator 14. More precisely, a low output pressure of the second expansion device 20 is directly connected to the low pressure inlet of the evaporator 14.
  • the evaporator 14 is connected to an accumulator 16, itself connected to an inlet 2b of the compressor 2.
  • the fluid connection between the evaporator 14, the accumulator 16 and the compressor 2 is carried out via low pressure lines 18.
  • Low pressure means that the fluid passing through these pipes is in a low pressure state due to its expansion through an expansion device.
  • the first expansion device 12 In the high pressure outlet 8b of the radiator 8 is also connected the first expansion device 12 via a high pressure line 6.
  • This first expansion device 12 is an electronic expansion valve. Integrated directly to the first solenoid valve 4, the first expansion device 12 allows the circulation of refrigerant fluid from the radiator 8 to the external heat exchanger 10.
  • the external heat exchanger 10 and the first solenoid valve 4 form a unitary piece.
  • the term "unitary" means that the external heat exchanger 10 and the first solenoid valve 4 are inseparable from each other and no ducting is necessary to convey the refrigerant fluid from the first solenoid valve 4 to the external heat exchanger 10.
  • the latter 10 comprises a fluid inlet 10a directly connected to an outlet 4c of the first solenoid valve 4.
  • the first solenoid valve 4 is structured in the following manner.
  • the high-pressure inlet 4a receiving the refrigerant fluid from the compressor 2, is connected to the output 4c, output directly connected to the input 10a of the external heat exchanger 10.
  • the first device trigger 12 being an integral part of the first solenoid valve 4, the inlet 12a of the first expansion device 12, connected to the high pressure outlet 8b of the radiator 8, constitutes a fluid inlet of the first solenoid valve 4 separate from the high pressure inlet 4a.
  • the first expansion device 12 comprises an output 12b connected to the output 4c of the first solenoid valve 4.
  • the high-pressure inlet 4a is also connected to the high-pressure outlet 4b of the first solenoid valve 4.
  • the diameters of the connections 4c and 12b will be dimensioned so as to limit the pressure drop at low pressure (heat pump mode). The dimensionality will be consistent with the dimension of the low pressure lines. Similarly, the diameters of the connections 4a and 4b will be sized in accordance with the dimensional of the high pressure lines.
  • the first solenoid valve 4 and the first expansion device 12 form a unitary unit.
  • the connection between the outlet 12b of the first expansion device 12 and the outlet 4c of the first solenoid valve 4 is not produced by an additional pipe of the type used to connect the radiator 8 to the first solenoid valve 12 or the evaporator 14 to the accumulator 16.
  • This connection is made inside the same first solenoid valve 4.
  • the connection of the high pressure inlet 4a with the high pressure outlet 4b or with the outlet 4c is performed inside the first solenoid valve 4.
  • connection between the high-pressure inlet 4a and the high-pressure outlet 4b is configured so as to withstand the pressure values for a refrigerant fluid under high pressure.
  • connection between the output 4c and the output 12b or the high pressure inlet 4a is configured to withstand the pressure values for a high pressure refrigerant.
  • the external heat exchanger 10, the first solenoid valve 4 and the first expansion device 12 form a unitary piece. As a result, the heat exchanger external heat 10, the first solenoid valve 4 and the first expansion device 12 are mechanically inseparable.
  • the external heat exchanger 10 is located inside the vehicle at the front face. "Outside" means that this heat exchanger is not located inside the ventilation, heating and / or air conditioning system 100.
  • the external heat exchanger 10 comprises an outlet 10b connected to an inlet opening 22a of the second solenoid valve 22.
  • the diameters of the outlet 10b and of the inlet 22a will be identical and homogeneous to the low-pressure pipe 18.
  • the first solenoid valve 4, this second solenoid valve 22 forms with the external heat exchanger 10 a unitary piece.
  • the one-piece assembly formed by the external heat exchanger 10, the first solenoid valve 4, the first expansion device 12 and the second solenoid valve 22 makes it possible to reduce the number of pipes used in the air conditioning loop 1 to ensure either a air conditioning mode is a heat pump mode.
  • the direct connection of the two solenoid valves 12, 22 to the external heat exchanger 10 provides a reduction in the number of pipes used in the air conditioning loop 1 greater than in the case where the solenoid valves are connected to another component of this air conditioning loop 1.
  • the location of the two solenoid valves 12, 22 on the same side of the outdoor heat exchanger 10 reduces the bulk of the unitary part.
  • the second solenoid valve 22 comprises a high pressure outlet 22b (homogeneous diameter to the high pressure line) and a low pressure outlet 22c (homogeneous diameter to the low pressure line).
  • the high pressure outlet 22b is connected via a high pressure line 6 to the second expansion device 20.
  • the low pressure outlet 22c is connected via a low pressure line 18 to the accumulator 16.
  • the second solenoid valve 22 is directly connected to the external heat exchanger 10
  • the external heat exchanger 10 the first solenoid valve 4 and the second solenoid valve 22 form a unitary piece.
  • the high pressure lines 6 have an internal diameter of between 4 and 8 mm. Preferably, the internal diameter is 6 mm.
  • the low pressure lines 18 have an internal diameter of between 10 and 16 mm. Preferably, the low pressure lines have an internal diameter of 12mm.
  • the two expansion devices 12, 20 are electronic expansion valves as indicated above.
  • the use of electronic expansion valves is preferred to thermostatic expansion valves because the expansion orifice of an electronic expansion valve can be completely closed and thus act as a valve in addition to a regulator role. In this way, it avoids resorting to an additional valve preventing access to certain parts of the air conditioning loop 1 according to its operating mode (normal mode or heat pump).
  • the coolant is put under high pressure and high temperature during its passage inside the compressor 2.
  • the refrigerant, leaving the compressor 2 reaches the first solenoid valve 4 which is controlled so as to convey all the refrigerant from from compressor 2 to radiator 8.
  • all the refrigerant from the high pressure inlet 4a is directed to the high pressure outlet 4b.
  • the totality fluid under high pressure from the compressor 2 does not reach the output 4c of the first solenoid valve 4.
  • the refrigerant loses its calories in favor of the air F passing through the radiator 8. In fact, the radiator then behaves like a condenser or a gas cooler. In order to avoid that, at the outlet of the radiator 8, the refrigerant reaches the evaporator 14 via the second expansion device 20, the latter 20 is completely closed and prevents any passage of fluid.
  • the external heat exchanger 10 behaves as an evaporator in which the refrigerant captures calories from outside air passing through this external heat exchanger 10.
  • the second solenoid valve 22 is configured so as to prevent any passage of fluid through the high pressure outlet 22b and to allow all the coolant to flow to the accumulator 16 via the low pressure output 22c. At the outlet of the accumulator 16, the refrigerant flows towards the compressor 2 to begin a new thermodynamic cycle.
  • the total closure of the second expansion device 20 ensures the passage of fluid from the second solenoid valve 22 to the evaporator 14.
  • the air conditioning loop 1 during a defrost mode will now be explained.
  • the outdoor heat exchanger 10 behaves like an evaporator, there is a risk that the water droplets transported by the outside air condense on the surface of the outdoor heat exchanger 10 and freeze. This implies that the external heat exchanger 10 can no longer be traversed by the outside air and that the heat exchange between the outside air and the coolant no longer occurs.
  • the performance of the air conditioning loop 1 are then degraded.
  • the first solenoid valve 4 is used so as to distribute the coolant at a time to the radiator 8 and to the external heat exchanger 10.
  • the sharing of refrigerant flow rates between the radiator 8 and the heat exchanger external heat 10 makes it possible to record the value of the low pressure in the external heat exchanger 10 to defrost while warming up the cooled air downstream of the evaporator 14.
  • the refrigerant fluid under high pressure and at high temperature passes through the outdoor heat exchanger 10 and exchanges its calories with the frosted water on the surface of the outdoor heat exchanger 10.
  • the calories transferred to the water allow the transition to the liquid state of this water and finally allow the passage of the outside air through the outdoor heat exchanger 10.
  • the coolant reaching the radiator 8 exchanges its calories with the air F to heat it inside the ventilation system, heating and / or air conditioning 100. Then, the refrigerant circulates through the second expansion device 20 and then passes through the evaporator 14. Finally, on leaving the evaporator 14, the refrigerant passes through the accumulator 16 and then returns to the compressor 2.
  • the refrigerant flowing through the external heat exchanger 10 passes through the second solenoid valve 22 and exits entirely through the high pressure outlet 22b to reach the second expansion device 20. Then, the refrigerant passes inside the evaporator 14, then the accumulator 16 and returns to the compressor 2.
  • the first expansion device 12 is completely closed, thus preventing the passage of coolant from the radiator 8 to the external heat exchanger 10.
  • the second solenoid valve 22 is configured to so as to prohibit any passage of fluid through the low pressure outlet 22c to prevent the fluid exiting the outdoor heat exchanger 10 from reaching the accumulator 16.
  • the air conditioning loop operates to cool the air F inside the ventilation, heating and / or air conditioning system 100.
  • the compressor 2 compresses the refrigerant and sends it to the first solenoid valve 4.
  • the latter 4 is configured so as to allow the refrigerant to pass to the external heat exchanger 10 and to prevent passage to the radiator 8.
  • the outdoor heat exchanger 10 behaves as a condenser or a gas cooler.
  • the refrigerant then passes inside the second solenoid valve 22.
  • the latter 22 is configured so as to allow the passage of refrigerant to the second expansion device 20 and prohibit any passage to the accumulator 16.
  • the refrigerant While traveling inside the second expansion device 20, the refrigerant is expanded and reaches the evaporator 14 to capture calories in from the air F. Leaving the evaporator 14, the fluid travels to the accumulator 16 and can not reach the external heat exchanger 10 because the low pressure output 22c of the second solenoid valve 22 is completely closed. Leaving the accumulator 16, the refrigerant returns to the compressor 2.
  • the first expansion device 12 is completely closed and the first solenoid valve 4 is configured to prohibit any passage of refrigerant through the high pressure outlet 4b.
  • the refrigerant passes through the compressor 2 to reach a state of high pressure and then flows through the first solenoid valve 4.
  • the latter 4 is configured to allow all the refrigerant to move towards the radiator 8.
  • the refrigerant discharges its calories by passing inside the radiator 8 and arrives at the second expansion device 20 in which it undergoes relaxation. Then, the coolant captures calories from the air F by traveling the evaporator 14 and then travels to the accumulator 16 and finally returns to the compressor 2.
  • the first expansion device 12 is completely closed in order to prevent access to the refrigerant leaving the radiator 8 to the external heat exchanger 10.
  • the first solenoid valve 4 is also configured to prohibit any passage of refrigerant to the outlet 4c.
  • the high pressure 22b and low pressure 22c outputs of the second solenoid valve 22 are completely closed in order to prohibit a return of refrigerant to the external heat exchanger 10 through the second solenoid valve 22.
  • FIG. 2 illustrates an alternative embodiment of the air conditioning loop according to the invention.
  • the air conditioning loop comprises an internal heat exchanger 24.
  • This internal heat exchanger 24 allows a heat exchange between the high-pressure refrigerant and the low-pressure refrigerant.
  • This internal heat exchanger 24 makes it possible to improve the coefficient of performance of the air conditioning loop 1.
  • the internal heat exchanger 24 comprises a low pressure inlet 24a receiving refrigerant from the evaporator 14 and a low pressure outlet 24b connected to the accumulator 16.
  • the internal heat exchanger comprises a high pressure inlet 24c receiving fluid from the high pressure outlet 22b of the second solenoid valve 22 and a high pressure outlet 24d connected to the second device. relaxation 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

L'invention porte sur une boucle de climatisation (1) pour véhicule automobile dans laquelle circule un fluide réfrigérant, la boucle de climatisation étant apte à fonctionner comme pompe à chaleur et comprenant - un compresseur (2) - une première électrovanne (4) reliée au compresseur (2), à un radiateur (8) et à un échangeur de chaleur extérieur (10) - le radiateur (8) étant relié à l'échangeur de chaleur extérieur (10) par l'intermédiaire d'un premier dispositif de détente (12) et relié à un évaporateur (14) via un deuxième dispositif de détente (20) - l'évaporateur (14) étant relié au compresseur (2) - l'échangeur de chaleur extérieur (10) étant relié au compresseur (2) et à l'évaporateur (14) via une deuxième électrovanne (22) caractérisé en ce que l'échangeur de chaleur extérieur (10), la première électrovanne (4) et la deuxième électrovanne (22) forment une pièce unitaire.

Description

Boucle de climatisation munie d'électrovanne et fonctionnant comme pompe à chaleur. L'invention se rapporte aux boucles de climatisation pour véhicule automobile et en particulier aux boucles de climatisation fonctionnant comme pompe à chaleur.
Dans les véhicules automobiles électriques, la source principale de calories permettant de chauffer l'air de l'habitacle, à savoir un moteur à explosion, n'existe plus. En effet, les moteurs électriques des véhicules électriques ne fournissent que très peu de calories. Pour palier à cela, la boucle de climatisation, habituellement utilisée pour refroidir l'air de l'habitacle, est utilisée comme pompe à chaleur. Ainsi, les calories nécessaires pour chauffer l'air de l'habitacle sont fournies par le fluide réfrigérant circulant à l'intérieur de la boucle de climatisation. La compression du fluide réfrigérant par le compresseur de la boucle de climatisation permet d'augmenter sa température et de fournir des calories à l'air traversant un radiateur localisé à l'intérieur d'un système de ventilation, chauffage et/ou climatisation. L'utilisation de la boucle de climatisation pour un fonctionnement en tant que pompe à chaleur nécessite de modifier le circuit de circulation du fluide réfrigérant, d'ajouter des composants tels qu'un échangeur de chaleur extérieur et des vannes de distribution. En outre, il est nécessaire d'ajouter un nombre de canalisations plus important pour relier les différents composants de la boucle de climatisation et de former un circuit de circulation du fluide réfrigérant pour un mode climatisation où l'air est refroidi et un circuit de circulation du fluide réfrigérant pour un mode pompe à chaleur où l'air est chauffé.
Tous ces ajouts présentent un coût élevé de fabrication de la boucle de climatisation, une complexité importante du circuit de circulation du fluide et un encombrement non satisfaisant de la boucle de climatisation. La présente invention vient remédier à ces inconvénients en proposant une boucle de climatisation pour véhicule automobile dans laquelle circule un fluide réfrigérant, la boucle de climatisation étant apte à fonctionner comme pompe à chaleur et comprenant un compresseur, une première électrovanne reliée au compresseur, à un radiateur et à un échangeur de chaleur extérieur, le radiateur étant relié à l'échangeur de chaleur extérieur par l'intermédiaire d'un premier dispositif de détente et relié à un évaporateur via un deuxième dispositif de détente, l'évaporateur étant relié au compresseur, l'échangeur de chaleur extérieur étant relié au compresseur et à l'évaporateur via une deuxième électrovanne, caractérisé en ce que l'échangeur de chaleur extérieur, la première électrovanne et la deuxième électrovanne forment une pièce unitaire.
Le caractère unitaire de l'échangeur de chaleur extérieur et des deux électrovannes présente l'avantage de réduire le nombre de canalisations de la boucle de climatisation et donc réduire son coût ainsi que son encombrement. En outre, la pièce unitaire que forment l'échangeur de chaleur extérieur et les deux électrovannes assure une simplification du circuit de circulation du fluide réfrigérant à l'intérieur de la boucle de climatisation et ainsi réduit la perte de charge du fluide réfrigérant.
Par exemple, en reliant directement la deuxième électrovanne à l'échangeur de chaleur extérieur, la canalisation reliant la sortie de fluide de cet échangeur avec l'entrée de fluide d'une vanne est supprimée. Du fait que la boucle de climatisation fonctionne soit en mode pompe à chaleur soit en mode refroidissement, cette canalisation reçoit en provenance de l'échangeur de chaleur extérieur soit du fluide réfrigérant en basse pression et à l'état gazeux (mode pompe à chaleur), soit du fluide réfrigérant en haute pression et à l'état liquide (mode refroidissement). En conséquence, cette canalisation doit être structurelle adaptée à recevoir du fluide à haute pression et à basse pression, ce qui implique un coût supplémentaire par rapport à l'invention où toutes les canalisations sont uniquement adaptées à un seul état de fluide. Enfin, en supprimant des canalisations et en simplifiant le circuit de circulation du fluide réfrigérant, le parcours du fluide réfrigérant est réduit à l'intérieur de la boucle de climatisation. La densité du fluide en phase liquide étant plus élevée qu'en phase gazeuse, il est intéressant de réduire voire supprimer le volume de la canalisation à la sortie de l'échangeur externe, commune aux deux modes. Ainsi, la quantité de fluide réfrigérant à l'intérieur de la boucle de climatisation est réduite et engendre un gain économique et environnemental. Selon une première caractéristique de l'invention, le premier dispositif de détente est intégré à la première électrovanne.
Selon une autre caractéristique de l'invention, l'évaporateur et le deuxième dispositif de détente forment un bloc unitaire.
Selon encore une autre caractéristique de l'invention, les premier et deuxième dispositifs de détente sont des détendeurs électroniques.
D'autres caractéristiques, détails et avantages de l'invention ressortiront plus clairement à la lecture de la description donnée ci-après à titre indicatif en relation avec des dessins dans lesquels :
- La figure 1 est un schéma de la boucle de climatisation selon l'invention.
- La figure 2 est un schéma d'une variante de réalisation de la boucle de climatisation selon l'invention.
La figure 1 représente une boucle de climatisation 1 selon l'invention comprenant un compresseur 2 relié à une première électrovanne 4 via une canalisation haute pression 6. Plus précisément, une sortie 2a du compresseur 2 est reliée à une entrée haute pression 4a de la première électrovanne 4. On entend par « haute pression » le fait que le fluide réfrigérant soit dans un état de pression élevée suite à sa compression par le compresseur 2. La première électrovanne 4 est reliée à un radiateur 8, à un premier dispositif de détente 12 et à un échangeur de chaleur extérieur 10. Le premier dispositif de détente 12 est un détendeur électronique. On entend par « détendeur électronique » un détendeur muni d'un orifice de détente dont la variation de la section de passage est commandée de manière électronique. En outre, un tel détendeur permet également de fermer complètement son orifice de détente de sorte à interdire tout passage de fluide réfrigérant à travers le détendeur. Le détendeur électronique est piloté selon une loi de commande propre au mode pompe à chaleur ou au mode refroidissement. Une canalisation haute pression 6 relie une sortie haute pression 4b de la première électrovanne 4 à une entrée haute pression 8a du radiateur 8. Localisé à l'intérieur d'un système de ventilation, chauffage et/ou climatisation 100, le radiateur 8 assure le chauffage de l'air F se dirigeant vers l'habitacle du véhicule non représenté.
Le fluide réfrigérant sortant du radiateur 8 via une sortie haute pression 8b atteint ensuite une canalisation haute pression 6 puis un deuxième dispositif de détente 20. Permettant au fluide réfrigérant d'abaisser sa pression, le deuxième dispositif de détente 20 est un détendeur électronique. On entend par « détendeur électronique » un détendeur muni d'un orifice de détente dont la variation de la section de passage est commandée de manière électronique. En outre, un tel détendeur permet également de fermer complètement son orifice de détente de sorte à interdire tout passage de fluide réfrigérant à travers le détendeur. Le deuxième dispositif de détente 20 est relié à un évaporateur 14 assurant le refroidissement de l'air F et localisé à l'intérieur du système de ventilation, chauffage et/ou climatisation 100. Afin de diminuer le nombre de canalisations de la boucle de climatisation 1 , le deuxième dispositif de détente 20 forme avec l'évaporateur 14 un bloc unitaire. Autrement dit, le fluide réfrigérant traversant le deuxième dispositif de détente 20 atteint l'évaporateur 14 sans circuler à travers une canalisation. De la sorte, le deuxième dispositif de détente 20 est directement connecté à l'évaporateur 14. Plus précisément, une sortie basse pression du deuxième dispositif de détente 20 est directement connectée à l'entrée basse pression de l'évaporateur 14.
Par l'intermédiaire d'une sortie basse pression 14b, l'évaporateur 14 est relié à un accumulateur 16, lui-même relié à une entrée 2b du compresseur 2. La connexion fluidique entre l'évaporateur 14, l'accumulateur 16 et le compresseur 2 est réalisée via des canalisations basse pression 18. On entend par « basse pression » le fait que le fluide traversant ces canalisations est dans un état de pression faible du fait de sa détente à travers un dispositif de détente.
En sortie haute pression 8b du radiateur 8 est relié également le premier dispositif de détente 12 via une canalisation haute pression 6. Ce premier dispositif de détente 12 est un détendeur électronique. Intégré directement à la première électrovanne 4, le premier dispositif de détente 12 permet la circulation de fluide réfrigérant en provenance du radiateur 8 vers l'échangeur de chaleur extérieur 10.
L'échangeur de chaleur extérieur 10 et la première électrovanne 4 forment une pièce unitaire. On entend par « unitaire » le fait que l'échangeur de chaleur extérieur 10 et la première électrovanne 4 sont indissociables l'un de l'autre et qu'aucune canalisation n'est nécessaire pour acheminer le fluide réfrigérant de la première électrovanne 4 vers l'échangeur de chaleur extérieur 10. Ce dernier 10 comprend une entrée de fluide 10a directement connectée à une sortie 4c de la première électrovanne 4.
De sorte à réduire le nombre de canalisations de la boucle de climatisation 1 et de simplifier le parcours du fluide réfrigérant à l'intérieur de la boucle de climatisation 1 , la première électrovanne 4 est structurée de la manière suivante. L'entrée haute pression 4a, recevant le fluide réfrigérant en provenance du compresseur 2 est relié à la sortie 4c, sortie directement connectée à l'entrée 10a de l'échangeur de chaleur extérieur 10. En outre, le premier dispositif de détente 12 faisant partie intégrante de la première électrovanne 4, l'entrée 12a du premier dispositif de détente 12, reliée à la sortie haute pression 8b du radiateur 8, constitue une entrée de fluide de la première électrovanne 4 distincte de l'entrée haute pression 4a. Le premier dispositif de détente 12 comporte une sortie 12b reliée à la sortie 4c de la première électrovanne 4. Enfin, l'entrée haute pression 4a est également reliée à la sortie haute pression 4b de la première électrovanne 4. Les diamètres des connexions 4c et 12b seront dimensionnés de manière à limiter les pertes de charge en basse pression (mode pompe à chaleur). Le dimensionnel sera conforme à la dimension des canalisation basse pression. De même, les diamètres des connexions 4a et 4b seront dimensionnés en conformités avec le dimensionnel des canalisations haute pression.
La première électrovanne 4 et le premier dispositif de détente 12 forment une unité monobloc. Ainsi, la connexion entre la sortie 12b du premier dispositif de détente 12 et la sortie 4c de la première électrovanne 4 n'est pas réalisée par une canalisation supplémentaire du type de celle utilisée pour relier par exemple le radiateur 8 à la première électrovanne 12 ou l'évaporateur 14 à l'accumulateur 16. Cette connexion est réalisée à l'intérieur même de la première électrovanne 4. De manière identique, la connexion de l'entrée haute pression 4a avec la sortie haute pression 4b ou avec la sortie 4c est réalisée à l'intérieur de la première électrovanne 4.
Il est à noter que d'une part, la connexion entre l'entrée haute pression 4a et la sortie haute pression 4b est configurée de sorte à résister aux valeurs de pression pour un fluide réfrigérant sous haute pression. D'autre part, la connexion entre la sortie 4c et la sortie 12b ou l'entrée haute pression 4a est configurée de sorte à résister aux valeurs de pression pour un fluide réfrigérant sous haute pression. L'échangeur de chaleur extérieur 10, la première électrovanne 4 et le premier dispositif de détente 12 forment une pièce unitaire. De ce fait, l'échangeur de chaleur extérieur 10, la première électrovanne 4 et le premier dispositif de détente 12 sont mécaniquement inséparable.
L'échangeur de chaleur extérieur 10 est localisé à l'intérieur du véhicule au niveau de la face avant. On entend par « extérieur » le fait que cet échangeur de chaleur ne soit pas localisé à l'intérieur du système de ventilation, chauffage et/ou climatisation 100.
L'échangeur de chaleur extérieur 10 comprend une sortie 10b reliée à une ouverture d'entrée 22a de la deuxième électrovanne 22. Les diamètres de la sortie 10b et de l'entrée 22a seront identiques et homogène à la canalisation basse pression 18. Tout comme la première électrovanne 4, cette deuxième électrovanne 22 forme avec l'échangeur de chaleur extérieur 10 une pièce unitaire. Ainsi, l'ensemble monobloc formé par l'échangeur de chaleur extérieur 10, la première électrovanne 4, le premier dispositif de détente 12 et la deuxième électrovanne 22 permet de réduire le nombre de canalisations utilisées dans la boucle de climatisation 1 pour assurer soit un mode de climatisation soit un mode pompe à chaleur. En particulier, la connexion directe des deux électrovannes 12, 22 à l'échangeur de chaleur extérieur 10 apporte une réduction du nombre de canalisations utilisées dans la boucle de climatisation 1 plus importante que dans le cas où les électrovannes sont connectées à un autre composant de cette boucle de climatisation 1.
La localisation des deux électrovannes 12, 22 sur un même côté de l'échangeur de chaleur extérieur 10 permet de réduire l'encombrement de la pièce unitaire.
La deuxième électrovanne 22 comprend une sortie haute pression 22b (diamètre homogène à la canalisation haute pression) et une sortie basse pression 22c (diamètre homogène à la canalisation basse pression). La sortie haute pression 22b est relié via une canalisation haute pression 6 au deuxième dispositif de détente 20. La sortie basse pression 22c est reliée via une canalisation basse pression 18 à l'accumulateur 16. La deuxième électrovanne 22 est directement reliée à l'échangeur de chaleur extérieur 10. Ainsi, l'échangeur de chaleur extérieur 10, la première électrovanne 4 et la deuxième électrovanne 22 forment une pièce unitaire.
Les canalisations haute pression 6 ont un diamètre interne compris entre 4 et 8mm. De préférence, le diamètre interne est de 6 mm. Les canalisations basse pression 18 ont un diamètre interne compris entre 10 et 16 mm. De préférence, les canalisations basse pression ont un diamètre interne de 12mm.
Les deux dispositifs de détente 12, 20 sont des détendeurs électroniques comme indiqué précédemment. L'utilisation de détendeurs électroniques est préférée aux détendeurs thermostatiques du fait que l'orifice de détente d'un détendeur électronique peut être fermée totalement et ainsi jouer un rôle de vanne en plus d'un rôle de détendeur. De la sorte, on évite de recourir à une vanne supplémentaire interdisant l'accès à certaines parties de la boucle de climatisation 1 selon son mode de fonctionnement (mode normal ou pompe à chaleur).
Le fonctionnement de la boucle de climatisation 1 lors du mode pompe à chaleur va maintenant être explicité.
Le fluide réfrigérant est mis sous haute pression et haute température lors de son passage à l'intérieur du compresseur 2. Le fluide réfrigérant, sortant du compresseur 2, atteint la première électrovanne 4 qui est contrôlée de sorte à acheminer tout le fluide réfrigérant en provenance du compresseur 2 vers le radiateur 8. Autrement dit, tout le fluide réfrigérant en provenance de l'entrée haute pression 4a est dirigé vers la sortie haute pression 4b. Ainsi, la totalité fluide sous haute pression en provenance du compresseur 2 n'atteint pas la sortie 4c de la première électrovanne 4.
Lors de son passage à l'intérieur du radiateur 8, le fluide réfrigérant perd ses calories au profit de l'air F traversant le radiateur 8. En effet, le radiateur se comporte alors comme un condenseur ou un refroidisseur de gaz. Afin d'éviter qu'en sortie du radiateur 8, le fluide réfrigérant atteigne l'évaporateur 14 via le deuxième dispositif de détente 20, ce dernier 20 est totalement fermé et empêche tout passage de fluide.
En conséquence, tout le fluide réfrigérant traversant le radiateur 8 arrive vers le premier dispositif de détente 12, le traverse en subissant une détente puis s'achemine directement vers l'échangeur de chaleur extérieur 10 via la sortie 4c. Ainsi, la sortie 4c reçoit uniquement du fluide sous basse pression en provenance du premier dispositif de détente 12. Dans ce mode pompe à chaleur, l'échangeur de chaleur extérieur 10 se comporte comme un évaporateur dans lequel le fluide réfrigérant capte des calories en provenance de l'air extérieur traversant cet échangeur de chaleur extérieur 10. La deuxième électrovanne 22 est configurée de sorte à interdire tout passage de fluide à travers la sortie haute pression 22b et à autoriser tout le fluide réfrigérant à circuler vers l'accumulateur 16 via la sortie basse pression 22c. En sortie de l'accumulateur 16, le fluide réfrigérant s'achemine vers le compresseur 2 pour commencer un nouveau cycle thermodynamique. La fermeture totale du deuxième dispositif de détente 20 assure l'interdiction de passage de fluide de la deuxième électrovanne 22 vers l'évaporateur 14.
Le fonctionnement de la boucle de climatisation 1 lors d'un mode dégivrage va maintenant être explicité. Lors du mode pompe à chaleur, il existe un problème de givrage de l'échangeur de chaleur extérieur 10. A cet égard, puisque l'échangeur de chaleur extérieur 10 se comporte comme un évaporateur, il existe un risque que les gouttelettes d'eau transportées par l'air extérieur se condensent à la surface de l'échangeur de chaleur extérieur 10 et givrent. Ceci implique que l'échangeur de chaleur extérieur 10 ne peut plus être traversé par l'air extérieur et que l'échange thermique entre l'air extérieur et le fluide réfrigérant ne se réalise plus. Les performances de la boucle de climatisation 1 sont alors dégradées. Pour palier à cela, on utilise la première électrovanne 4 de sorte à distribuer le fluide réfrigérant à la fois vers le radiateur 8 et vers l'échangeur de chaleur extérieur 10. Le partage des débits de fluide réfrigérant entre le radiateur 8 et l'échangeur de chaleur extérieur 10 permet de relever la valeur de la basse pression dans l'échangeur de chaleur extérieur 10 pour dégivrer tout en réchauffant l'air refroidi en aval de l'évaporateur 14. De ce fait, le fluide réfrigérant sous haute pression et à haute température traverse l'échangeur de chaleur extérieur 10 et échange ses calories avec l'eau givrée à la surface de l'échangeur de chaleur extérieur 10. Les calories transférées à l'eau permettent le passage à l'état liquide de cette eau et finalement permettent le passage de l'air extérieur à travers l'échangeur de chaleur extérieur 10.
Le fluide réfrigérant atteignant le radiateur 8 échange ses calories avec l'air F pour le chauffer à l'intérieur du système de ventilation, chauffage et/ou climatisation 100. Ensuite, le fluide réfrigérant circule à travers le deuxième dispositif de détente 20 puis traverse l'évaporateur 14. Enfin, en sortant de l'évaporateur 14, le fluide réfrigérant traverse l'accumulateur 16 puis retourne au compresseur 2.
Le fluide réfrigérant traversant l'échangeur de chaleur extérieur 10 parcoure la deuxième électrovanne 22 et sort en totalité par la sortie haute pression 22b pour atteindre le deuxième dispositif de détente 20. Ensuite, le fluide réfrigérant passe à l'intérieur de l'évaporateur 14, puis de l'accumulateur 16 et retourne au compresseur 2.
On comprend qu'avec un tel mode de fonctionnement, le premier dispositif de détente 12 est totalement fermé, interdisant ainsi le passage de fluide réfrigérant du radiateur 8 vers l'échangeur de chaleur extérieur 10. En outre, la deuxième électrovanne 22 est configurée de sorte à interdire tout passage de fluide à travers la sortie basse pression 22c pour empêcher le fluide sortant de l'échangeur de chaleur extérieur 10 d'atteindre l'accumulateur 16.
Le fonctionnement de la boucle de climatisation 1 lors d'un mode refroidissement va maintenant être explicité.
Dans ce mode, la boucle de climatisation fonctionne de sorte à refroidir l'air F à l'intérieur du système de ventilation, chauffage et/ou climatisation 100.
Le compresseur 2 comprime le fluide réfrigérant et l'envoie vers la première électrovanne 4. Cette dernière 4 est configurée de sorte à autoriser le passage du fluide réfrigérant vers l'échangeur de chaleur extérieur 10 et à interdire le passage vers le radiateur 8.
En passant dans l'échangeur de chaleur extérieur 10, le fluide réfrigérant échange ses calories avec l'air extérieur. Ainsi, l'échangeur de chaleur extérieur 10 se comporte comme un condenseur ou un refroidisseur de gaz. Le fluide réfrigérant passe ensuite à l'intérieur de la deuxième électrovanne 22. Cette dernière 22 est configurée de sorte à autoriser le passage du fluide réfrigérant vers le deuxième dispositif de détente 20 et à interdire tout passage vers l'accumulateur 16. En circulant à l'intérieur du deuxième dispositif de détente 20, le fluide réfrigérant subit une détente puis atteint l'évaporateur 14 pour capter des calories en provenance de l'air F. En sortant de l'évaporateur 14, le fluide s'achemine vers l'accumulateur 16 et ne peut pas atteindre l'échangeur de chaleur extérieur 10 du fait que la sortie basse pression 22c de la deuxième électrovanne 22 est complètement fermée. En sortant de l'accumulateur 16, le fluide réfrigérant retourne vers le compresseur 2.
Dans ce mode, le premier dispositif de détente 12 est donc complètement fermé et la première électrovanne 4 est configurée de sorte à interdire tout passage de fluide réfrigérant à travers la sortie haute pression 4b.
Le fonctionnement de la boucle de climatisation 1 lors d'un mode déshumidification va maintenant être explicité.
Le fluide réfrigérant traverse le compresseur 2 pour atteindre un état de haute pression puis parcourt la première électrovanne 4. Cette dernière 4 est configurée de sorte à autoriser la totalité du fluide réfrigérant à se diriger vers le radiateur 8.
Le fluide réfrigérant se décharge de ses calories en passant à l'intérieur du radiateur 8 puis arrive au deuxième dispositif de détente 20 dans lequel il subit une détente. Ensuite, le fluide réfrigérant capte des calories en provenance de l'air F en parcourant l'évaporateur 14 puis s'achemine vers l'accumulateur 16 et enfin retourne au compresseur 2. Dans ce mode de fonctionnement, le premier dispositif de détente 12 est complètement fermé afin d'interdire l'accès au fluide réfrigérant sortant du radiateur 8 vers l'échangeur de chaleur extérieur 10. La première électrovanne 4 est également configurée de sorte à interdire tout passage de fluide réfrigérant vers la sortie 4c. En outre, les sortie haute pression 22b et basse pression 22c de la deuxième électrovanne 22 sont complètement fermées afin d'interdire un retour de fluide réfrigérant vers l'échangeur de chaleur extérieur 10 à travers la deuxième électrovanne 22.
La figure 2 illustre une variante de réalisation de la boucle de climatisation selon l'invention.
Selon cette variante, la boucle de climatisation comprend un échangeur de chaleur interne 24. Cet échangeur de chaleur interne 24 permet un échange thermique entre le fluide réfrigérant sous haute pression et le fluide réfrigérant sous basse pression. Cet échangeur de chaleur interne 24 permet d'améliorer le coefficient de performance de la boucle de climatisation 1. L'échangeur de chaleur interne 24 comprend une entrée basse pression 24a recevant du fluide réfrigérant en provenance de l'évaporateur 14 et une sortie basse pression 24b reliée à l'accumulateur 16. En outre, l'échangeur de chaleur interne comprend une entrée haute pression 24c recevant du fluide en provenance de la sortie haute pression 22b de la deuxième électrovanne 22 et une sortie haute pression 24d reliée au deuxième dispositif de détente 20.

Claims

Revendications
1. - Boucle de climatisation (1 ) pour véhicule automobile dans laquelle circule un fluide réfrigérant, la boucle de climatisation étant apte à fonctionner comme pompe à chaleur et comprenant
- un compresseur (2)
- une première électrovanne (4) reliée au compresseur (2), à un radiateur (8) et à un échangeur de chaleur extérieur (10)
- le radiateur (8) étant relié à l'échangeur de chaleur extérieur (10) par l'intermédiaire d'un premier dispositif de détente (12) et relié à un évaporateur (14) via un deuxième dispositif de détente (20)
- l'évaporateur (14) étant relié au compresseur (2)
- l'échangeur de chaleur extérieur (10) étant relié au compresseur (2) et à l'évaporateur (14) via une deuxième électrovanne (22)
caractérisé en ce que l'échangeur de chaleur extérieur (10), la première électrovanne (4) et la deuxième électrovanne (22) forment une pièce unitaire.
2. - Boucle de climatisation (1 ) selon la revendication 1 , dans laquelle le premier dispositif de détente (12) est intégré à la première électrovanne (4).
3. - Boucle de climatisation (1) selon la revendication 1 ou 2, dans laquelle l'évaporateur (14) et le deuxième dispositif de détente (20) forment un bloc unitaire.
4. - Boucle de climatisation selon l'une quelconque des revendications précédentes, dans laquelle les premier (12) et deuxième (20) dispositifs de détente sont des détendeurs électroniques.
EP11781823.7A 2010-11-19 2011-11-15 Boucle de climatisation munie d'électrovanne et fonctionnant comme pompe à chaleur. Withdrawn EP2641037A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1004504A FR2967760B1 (fr) 2010-11-19 2010-11-19 Boucle de climatisation munie d'electrovannes et fonctionnant comme pompe a chaleur
PCT/EP2011/070110 WO2012065972A1 (fr) 2010-11-19 2011-11-15 Boucle de climatisation munie d'électrovanne et fonctionnant comme pompe à chaleur.

Publications (1)

Publication Number Publication Date
EP2641037A1 true EP2641037A1 (fr) 2013-09-25

Family

ID=44462089

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11781823.7A Withdrawn EP2641037A1 (fr) 2010-11-19 2011-11-15 Boucle de climatisation munie d'électrovanne et fonctionnant comme pompe à chaleur.

Country Status (5)

Country Link
US (1) US9194614B2 (fr)
EP (1) EP2641037A1 (fr)
JP (1) JP5819433B2 (fr)
FR (1) FR2967760B1 (fr)
WO (1) WO2012065972A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5834391B2 (ja) * 2010-10-05 2015-12-24 日立化成株式会社 有機エレクトロルミネセンス素子、表示素子、照明装置、及び表示装置
US11885535B2 (en) * 2021-06-11 2024-01-30 Hanon Systems ETXV direct discharge injection compressor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2697210B1 (fr) * 1992-10-26 1994-12-09 Valeo Thermique Habitacle Dispositif de climatisation plus particulièrement pour véhicule électrique.
JP3574281B2 (ja) * 1995-10-02 2004-10-06 カルソニックカンセイ株式会社 積層型エバポレータおよび車両用空気調和装置の配管構造
JP3591304B2 (ja) * 1998-05-25 2004-11-17 株式会社日本自動車部品総合研究所 発熱体冷却装置
JP2001050572A (ja) * 1999-08-06 2001-02-23 Calsonic Kansei Corp 自動車用空気調和装置
DE10065112A1 (de) * 2000-12-28 2002-07-11 Bosch Gmbh Robert Anordnung und Verfahren zum Kühlen beziehungsweise Heizen
NO320664B1 (no) * 2001-12-19 2006-01-16 Sinvent As System for oppvarming og kjoling av kjoretoy
JP2003287322A (ja) * 2002-03-27 2003-10-10 Mitsubishi Electric Corp 冷凍サイクル装置
US6516623B1 (en) * 2002-05-07 2003-02-11 Modine Manufacturing Company Vehicular heat pump system and module therefor
DE10253357B4 (de) * 2002-11-13 2006-05-18 Visteon Global Technologies, Inc., Dearborn Kombinierte Kälteanlage/Wärmepumpe zum Einsatz in Kraftfahrzeugen zum Kühlen, Heizen und Entfeuchten des Fahrzeuginnenraumes
JP2005106339A (ja) * 2003-09-29 2005-04-21 Calsonic Kansei Corp 熱交換器、および、熱交換器を用いたヒートポンプ式空調装置
US6804976B1 (en) * 2003-12-12 2004-10-19 John F. Dain High reliability multi-tube thermal exchange structure
FR2886388B1 (fr) * 2005-05-31 2007-10-26 Climatik Sarl Systeme de chauffage et de refrigeration
JP2007055553A (ja) * 2005-08-26 2007-03-08 Calsonic Kansei Corp 車両用空調装置
US7607313B2 (en) * 2006-12-14 2009-10-27 Gm Global Technology Operations, Inc. Vehicle HVAC system
US8359882B2 (en) * 2007-04-13 2013-01-29 Al-Eidan Abdullah A Air conditioning system with selective regenerative thermal energy feedback control
FR2916835B1 (fr) * 2007-05-31 2010-07-30 Valeo Systemes Thermiques Module d'echange de chaleur pour un circuit de climatisation
FR2937589B1 (fr) * 2008-10-29 2012-07-13 Valeo Systemes Thermiques Boucle thermodynamique de climatisation integree a une installation de chauffage,ventilation et/ou climatisation equipant un vehicule,notamment a propulsion electrique.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012065972A1 *

Also Published As

Publication number Publication date
WO2012065972A1 (fr) 2012-05-24
US9194614B2 (en) 2015-11-24
JP5819433B2 (ja) 2015-11-24
JP2013543103A (ja) 2013-11-28
FR2967760B1 (fr) 2012-12-21
US20130283850A1 (en) 2013-10-31
FR2967760A1 (fr) 2012-05-25

Similar Documents

Publication Publication Date Title
EP2933586B1 (fr) Un dispositif de conditionnement thermique d'un espace
EP2895806B1 (fr) Dispositif de conditionnement thermique d'un habitacle d'un vehicule electrique
FR3020130A1 (fr) Circuit de fluide frigorigene
FR2936445A1 (fr) Systeme de chauffage et climatisation ameliore pour vehicule automobile
WO2020065230A1 (fr) Circuit de fluide refrigerant pour vehicule
WO2001087655A9 (fr) Procede et dispositif de regulation thermique d'un habitacle de vehicule automobile
FR3037639A1 (fr) Dispositif de gestion thermique
EP2785543B1 (fr) Circuit comprenant un echangeur interne dont une branche est parcourue par un fluide refrigerant selon deux sens opposes
FR2982355A1 (fr) Boucle de climatisation pour une installation de chauffage, ventilation et/ou climatisation
EP2336682A2 (fr) Bloc de distribution d'un fluide réfrigérant circulant à l'intérieur d'une boucle de climatisation et boucle de climatisation comprenant un tel bloc de distribution
FR3080442A1 (fr) Dispositif de conditionnement thermique pour vehicule automobile
FR2974624A1 (fr) Ensemble comprenant un circuit de fluide refrigerant et un circuit de fluide caloporteur
FR3017450A1 (fr) Circuit de fluide frigorigene pour le conditionnement thermique d'un vehicule automobile
WO2018211200A1 (fr) Circuit de climatisation inversible indirect de vehicule automobile et procede de de gestion en mode pompe a chaleur
EP3002443A1 (fr) Module d'admission d'air d'un moteur a combustion interne de vehicule automobile
EP2641037A1 (fr) Boucle de climatisation munie d'électrovanne et fonctionnant comme pompe à chaleur.
FR3022852A1 (fr) Dispositif de gestion thermique de vehicule automobile et procede de pilotage correspondant
FR2976322A1 (fr) Repartiteur d'air comprenant un dispositif adapte a echanger de la chaleur avec de l'air de suralimentation, et systeme de transfert thermique comprenant un tel repartiteur
FR2988467A1 (fr) Installation de chauffage pour un vehicule hybride
EP4308393A1 (fr) Système de conditionnement thermique
FR3013268A1 (fr) Systeme de conditionnement thermique pour vehicule automobile et installation de chauffage, ventilation et/ou climatisation correspondante
FR3051547B1 (fr) Systeme et procede de conditionnement d'air pour un compartiment, notamment un habitacle de vehicule automobile
WO2023030791A1 (fr) Échangeur thermique pour une boucle de fluide réfrigérant
WO2023072586A1 (fr) Systeme de gestion thermique pour vehicule hybride ou electrique
FR3121202A1 (fr) Dispositif de climatisation reversible pour vehicule automobile et procede d’implantation d’un tel dispositif

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170601