EP2628150A1 - Ecran d'affichage a diodes electroluminescentes a matrice active pourvu de moyens d'attenuation - Google Patents

Ecran d'affichage a diodes electroluminescentes a matrice active pourvu de moyens d'attenuation

Info

Publication number
EP2628150A1
EP2628150A1 EP11761344.8A EP11761344A EP2628150A1 EP 2628150 A1 EP2628150 A1 EP 2628150A1 EP 11761344 A EP11761344 A EP 11761344A EP 2628150 A1 EP2628150 A1 EP 2628150A1
Authority
EP
European Patent Office
Prior art keywords
line
writing
frame
pixel
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11761344.8A
Other languages
German (de)
English (en)
Other versions
EP2628150B1 (fr
Inventor
Denis Sarrasin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2628150A1 publication Critical patent/EP2628150A1/fr
Application granted granted Critical
Publication of EP2628150B1 publication Critical patent/EP2628150B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2077Display of intermediate tones by a combination of two or more gradation control methods
    • G09G3/2081Display of intermediate tones by a combination of two or more gradation control methods with combination of amplitude modulation and time modulation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • G09G2300/0866Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes by means of changes in the pixel supply voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness

Definitions

  • the invention relates to active matrix display screens with light-emitting diodes, and in particular with organic diodes (AM-OLED).
  • AM-OLED organic diodes
  • LCDs liquid crystal displays
  • the screen In some cases, it is desired to be able to display a given image with variable average brightness, without altering the color rendition of the image. This is particularly the case when it is desired that the screen can be observed in a comfortable manner in all kinds of outdoor light atmosphere conditions. For example, in the sun, it is necessary that the screen emits a strong luminosity, otherwise one can not see anything; and in the opposite direction, at night, the screen must not be dazzling to the observer, especially if the observer must be able to watch both the screen and the outside night scenery. It is therefore desired to provide in the OLED screens attenuation means (in English "dimming") of the brightness of the screen, operable depending on the circumstances and in particular the external light atmosphere.
  • Organic light-emitting diodes are formed by the superposition of semiconductor organic material layers between two electrodes, a cathode and an anode, one of which is transparent or semi-transparent and the other is generally reflective in order to obtain emission in a hemisphere. They emit light when traversed by a current and the emission is all the more intense as the current is high.
  • the current in the diode and the voltage across the diode are linked according to the specific characteristics of the diode. In general, the curve governing this relationship between current and voltage has the appearance shown in FIG.
  • Voltages and currents corresponding to the values of the useful zone are therefore applied individually to each pixel as a function of the image to be displayed.
  • an elementary circuit, associated with each diode, LED is provided at the intersection of each row and each column of the pixel array. This circuit makes it possible to select the pixel during a write phase to apply to it a control voltage corresponding to the desired light intensity. After the write phase the pixel keeps in memory the applied control voltage and continues to emit the corresponding light intensity (near leakage) until a subsequent write phase.
  • a display in video mode or in parallel mode is possible. In video mode, all the pixels of a line are successively written, then the pixels of the following line successively, and so on. In parallel mode, the pixels of a line are written all at once, then the pixels of the next line are written, and so on.
  • the basic constitution of a pixel of an active OLED diode with its elementary circuit generally comprises:
  • control transistor having a source, a drain and a gate, able to control the current flowing in the OLED light emitting diode, the light-emitting diode itself, having an anode and a cathode, one of the electrodes being connected to the source or the drain of the control transistor, the other electrode being common to several pixels of the matrix,
  • control transistor means for controlling the control transistor according to the information to be displayed by the pixel.
  • control transistor possibly being of the NMOS or PMOS type, and the common multi-pixel electrode which can be connected between the control transistor and a low supply potential or between the control transistor and a control unit. high power potential.
  • FIG. 2 represents an exemplary pixel configuration of an active matrix with organic diodes.
  • the pixel includes:
  • the OLED light-emitting diode corresponding to this pixel the cathode of which is connected to a cathode potential Vk;
  • NMOS control transistor Q c whose source is connected to the anode of the OLED diode and whose drain is connected to a supply voltage source Vdd which can supply the current necessary for light emission;
  • a selection transistor Q s which serves to authorize the application of a gate voltage Vdat to the gate of the control transistor; this voltage Vdat is an analog voltage whose value varies according to the desired light emission for the pixel; it is applied to the drain of the transistor Q s by a column conductor Cj common to all the pixels of the same column of rank j of the matrix; the column conductor receives and transmits a voltage Vdat for a given pixel when this pixel is selected by the selection transistor Q s ; the source of the selection transistor Q s is connected to the gate of the control transistor Q c ; the gate of the selection transistor Q s is connected to a line conductor L, common to all the pixels of the same line of rank i of the matrix;
  • the operation of a matrix using this elementary pixel circuit is as follows: the pixels of the first line are written by making the selection transistors of this line conductive; then, in video mode, the individual Vdat voltages that are to be applied to the successive pixels of the line are successively applied to the different columns of the matrix; in parallel mode, the voltages would be applied simultaneously on all the columns; in both cases, the voltage Vdat assigned to a pixel refers to the gate of the control transistor of the pixel and the associated storage capacitor C s , which generates a light emission; the luminous intensity depends on the voltage Vdat, because this controls the passage of the current in the transistor and in the OLED diode.
  • the storage capacity C s maintains the potential Vdat on the gate, until a next write phase.
  • the pixel maintains the light emission corresponding to this voltage Vdat until the next writing, that is to say during the duration of an image frame.
  • An image frame comprises the successive writing of all the pixels of all the rows of the matrix.
  • line blanking or blanking of line exists at the beginning and end of writing of each line, and at the beginning and end of writing of each frame ("frame blanking" or "blanking"). blanking of frame).
  • This schema acts by temporarily interrupting the current in the OLED diode, suppressing the negative power supply or the positive power supply for a variable duration.
  • the emission intensity reduction that results on average in a pixel, for a given duty cycle therefore depends on the starting state of the pixel. It does not result in a uniform reduction in brightness, and the image is distorted, especially in terms of colorimetry, when it wants to reduce its average brightness.
  • the present invention proposes a luminance control method of a display screen comprising an active matrix of pixels, each pixel comprising a light-emitting diode having two electrodes, respectively an anode and a cathode, one of which is common to all the pixels of the matrix, at least one control MOS transistor able to control the current flowing in the diode according to a luminance information to be displayed, and in which the writing of the image is made from of a video signal line by line during a frame duration, a so-called frame blanking duration being provided between the writing of the last line of a first frame and the writing of the first line of a frame.
  • the invention proposes correlatively a display screen comprising an active matrix of pixels, each pixel comprising a light-emitting diode having two electrodes, respectively an anode and a cathode, one of which is common to all the pixels of the matrix, the least one control MOS transistor adapted to control the current flowing in the diode according to a luminance information to be displayed, and in which the image is written from a video signal line by line during a frame duration, a so-called frame blanking duration being provided between the writing of the last line of a first frame and writing of the first line of a following frame, and a so-called blanking duration line being provided between the writing of a line and the writing of a subsequent line, characterized in that it comprises a medium luminance attenuation circuit comprising a switch for periodically connecting the electrod e common diodes alternately to a fixed first potential allowing the emission of light by the diode and a second fixed potential blocking this emission, and a control circuit of the switch to perform the
  • a selection transistor is provided in the pixel for applying to the gate of the control transistor, during a pixel write phase, a variable analog voltage representing the luminance information to be displayed.
  • the pixel preferably further comprises a storage capacity for maintaining the analog voltage on the gate of the transistor outside the write phase.
  • the switching of the potential between the two fixed values is done exclusively outside the writing phases of the pixels of the matrix.
  • the switching control circuit includes means for also performing potential switching during the frame blanking times.
  • the control circuit of the switch is controlled according to the clock signals which ensure the writing of an image on the pixels of the matrix.
  • This circuit may consist of a general controller for performing the write phases and having a specific output programmed to provide the switching control signal which is a variable duty cycle signal depending on the desired attenuation.
  • all the pixels of the matrix are addressed during the same frame under the same polarization conditions, which means that during a frame all the pixels are connected to the same fixed potential while an information is written in the pixel. Therefore, during a frame there may be a switching between the two fixed potentials as soon as this switching takes place during a blanking time, but during the actual writing phase the pixels are all connected to the same potential. fixed, whether it be the first or the second.
  • FIG. 1 represents a typical response curve of the intensity as a function of the voltage applied to an OLED diode
  • FIG. 2 represents a conventional pixel elementary circuit of an active OLED diode matrix
  • FIG. 3 represents the general principle of the invention
  • FIG. 4 symbolically represents the distribution of the line and frame scan times and the line and frame blanking times in a screen receiving a video signal
  • FIG. 5 shows a display screen according to the invention.
  • FIG. 3 partially reproduces elements of FIG. 2 which have the same functions and which will not be redescribed.
  • the cathodes of the OLED diodes are common to all the pixels of the matrix and that the control transistor is an NMOS.
  • the control transistor is an NMOS.
  • it is the anodes that are common.
  • One could also have a PMOS type control transistor.
  • the cathodes of the OLED diodes of the matrix are here all interconnected (they form a common electrode under the entire plane of the matrix) and they are connected to an output terminal of a two-terminal SW switch. Entrance.
  • the inputs of the switch SW are connected to two different fixed potentials VkM and Vkoff.
  • the potential VkM is a potential equivalent to the potential Vk that would be applied in the circuit of FIG. 2; assuming that the image signal can take luminance values coded from Lmin to Lmax, the potential VkM is chosen so that the screen provides a strong illumination for the pixels receiving a voltage Vdat corresponding to the maximum luminance Lmax; in other words, the potential VkM is chosen so that the OLED diode always operates in the useful part of the curve of Figure 1; for example, for a diode having the characteristic of the curve shown in FIG. 1, VkM is such that the voltage at the terminals of the diode is approximately 4 to 5 volts when the voltage Vdat applied to the pixel is that corresponding to the maximum luminance of the range in which the video signal is encoded.
  • the Vkoff potential is a more positive potential than the VKM potential. It tends to instantly reduce the voltage and current in the OLED diode regardless of the Vdat voltage applied to the pixel, and so it places the diode at the very bottom of the current-voltage characteristic.
  • the own capacitance of the OLED diode can be discharged into the terminal at the potential Vkoff, without maintaining a current in the diode.
  • the diode instantly goes into an area where it no longer emits light without its own capacitance tending to cause a light emission residue that remained in the light. prior art mentioned above.
  • the switch SW is controlled by a periodic signal Cdim from a pulse width modulation circuit Cpwm.
  • This circuit establishes a periodic switching between the two inputs of the switch with a duty cycle that can be controlled by a DIM control.
  • the DIM control modifies the duty cycle according to the attenuation (in English "dimming") desired for the average brightness of the screen.
  • the duty cycle can vary between 1 (no attenuation, the SW switch applies VkM continuously to the cathodes of the OLED diodes) and 0 (maximum attenuation, the switch SW applies Vkoff continuously to the cathodes of the OLED diodes); for an intermediate value, the duty cycle represents the ratio between the time when the switch applies Vkoff and the total time of a complete period when VkM then Vkoff are successively applied.
  • the periodicity (clock CLK) of the switching is at least 50
  • the average luminance of the screen is then proportional to the duty cycle of the periodic switching.
  • the clock CLK which defines the switching period may be a clock representing the frame scan period of the display.
  • the switches of the VkM level at the Vkoff level and vice versa are at times which do not lie during an information writing phase in a pixel.
  • the writing phase of a pixel is that during which the selection transistor Q s is turned on and a potential Vdat is applied to the storage capacitor C s t through this transistor.
  • the commutations by the switch SW are therefore only made at times when the storage capacitor C s is isolated, either because the selection transistor Q s is isolated, or because the column C j is in high impedance between two Vdat signal applications.
  • the switching is done during the line blanking times of the video signal applied to the screen.
  • FIG. 4 symbolically represents the general principles of scanning a screen to display an image in the case where this image arrives in the form of a standard video signal.
  • the image to display contains N lines and M visible pixels in each line.
  • the video signal for a complete image frame occupies a duration corresponding to both an effective write time and dead times or line and frame blanking times. More precisely, the effective write time in the frame is the write time of the NxM pixels displayed but the overall duration of the frame including the blanking times is equivalent to the virtual time it would take to display ( ⁇ + ⁇ + ⁇ ') lines of (m + M + m') pixels each.
  • the video signal therefore contains a succession of successive voltage levels which breaks down over time into:
  • an active signal of duration M.Tp representing successive levels of voltage corresponding to the luminances to be written successively in the M pixels of the line, the duration being M times the duration Tp of a write phase of a pixel; during this period, the pixels receive one after another the Vdat voltages assigned to them and which represent the respective luminances;
  • the switching control circuit Cpwm is synchronized with the video signal preferably so that the switches do not take place during the periods M.Tp corresponding to the writing of the visible pixels of each line. But it is important to note that the writing can be done while the cathode is at VkM while the cathode is at Vkoff. However, it is important that all the pixels are written during a frame with the same polarization condition, ie all with Vkoff or all with VkM. Indeed, although the writing stores a voltage in the capacitance C s t of which a terminal is at Vdd, the storage on the capacitor is slightly modified according to the polarization conditions of the transistors because of the fact that they are not ideal transistors. In order to obtain an undistorted display, one part of the lines must not be written with the VkM cathode and the other with the Vkoff cathode.
  • the switch switches the cathodes to Vkoff for almost any line or frame blanking time, ie if the cathode goes to Vkoff just after the start of all blanking periods of line or frame and replace them to VkM just before the end of all these blanking periods, the luminance becomes (600/624) x (800/1024) or 75% of its maximum value;
  • FIG. 5 represents the overall schematic diagram of an organic light-emitting diode active matrix display screen in accordance with the invention.
  • the controller receives the synchronization signals (H pixel clock, VSYNC vertical sync and HSYNC horizontal sync signals) of the video signal as well as the SV video signal itself, in digital or analog form.
  • the controller controls the row and column addressing registers of the array to perform line-by-line sequential write in the frame and pixel by pixel in each row. It is he who produces the Vdat voltages to be applied to the pixels according to the received video signal.
  • the controller CTRL which further constitutes the circuit Cpwm and which therefore establishes the signal Cdim variable duty cycle according to an external control DIM, defining the desired attenuation.
  • the external control can be manual or automatic depending on the lighting environment.
  • the signal Cdim is timed with respect to the synchronization signals according to the explanations given above to avoid in all cases that the switching occurs during the writing periods of the visible pixels and to ensure that during the signal time active M.Tp of a frame, the same cathode potential VkM or Vkoff is applied to all the pixels according to the desired attenuation level.
  • the controller can develop, from the explanations given above and in particular attenuation examples a) to i), a sequencing table of the desired switching times as a function of the desired attenuation.
  • This table can be part of a read-only memory or a programmable memory part of the controller or associated with the controller.
  • the controller constructs the sequence from logic based on state machines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

La demande concerne les écrans d'affichage à matrice active à diodes électroluminescentes, et en particulier à diodes organiques (AM-OLED). L'écran d'affichage comprend une matrice active de pixels, chaque pixel comprenant une diode électroluminescente, un transistor MOS de commande pour appliquer une tension ou un courant variable à l'anode de la diode, un transistor de sélection pour appliquer à la grille du transistor, pendant une phase d'écriture de ce pixel, une tension analogique variable (Vdat) représentant un niveau relatif de luminance du pixel dans l'image, une capacité de stockage pour maintenir cette tension sur la grille du transistor en dehors de la phase d'écriture. Un circuit d'atténuation de luminance moyenne comprenant un commutateur (SW) pour relier périodiquement l'une des électrodes, de préférence la cathode, de la diode à l'un ou à l'autre de deux potentiels fixes (VkM, Vkoff), et un circuit (CTRL) de commande du commutateur pour effectuer la commutation avec un rapport cyclique variable en fonction de l'atténuation désirée, la commutation se produisant pendant les temps de blanking.

Description

ECRAN D'AFFICHAGE A DIODES ELECTROLUMINESCENTES A MATRICE ACTIVE POURVU DE MOYENS D'ATTENUATION
L'invention concerne les écrans d'affichage à matrice active à diodes électroluminescentes, et en particulier à diodes organiques (AM- OLED).
Ces écrans présentent des avantages notables par rapport aux écrans à cristaux liquides (LCD) parce qu'ils émettent directement de la lumière au lieu de moduler la transmission de la lumière d'une source extérieure à la matrice. Ils ne nécessitent donc pas de source de lumière. De plus, ils ont un meilleur contraste, ils peuvent être réalisés sur des supports flexibles, et ils peuvent fournir des images ayant d'excellentes qualités colorimétriques.
Dans certains cas, on souhaite pouvoir afficher une image donnée avec une luminosité moyenne variable, sans altérer le rendu des couleurs de l'image. C'est le cas notamment quand on veut que l'écran puisse être observé de manière confortable dans toutes sortes de conditions d'ambiance lumineuse extérieure. Par exemple, au soleil, il faut que l'écran émette une forte luminosité, sinon on ne peut rien voir ; et dans le sens contraire, la nuit, il ne faut pas que l'écran soit éblouissant pour l'observateur, surtout si celui-ci doit pouvoir regarder à la fois l'écran et le paysage nocturne extérieur. On souhaite donc prévoir dans les écrans OLED des moyens d'atténuation (en anglais "dimming") de la luminosité de l'écran, actionnables en fonction des circonstances et notamment de l'ambiance lumineuse extérieure.
Mais le réglage de la luminosité globale de l'écran n'est pas facile à cause des caractéristiques propres à l'émission lumineuse des diodes OLED. Un réglage de la luminosité moyenne tend à modifier les couleurs de l'image, ce qu'on souhaite éviter.
Les diodes électroluminescentes organiques sont formées par la superposition de couches de matériaux organiques semiconducteurs entre deux électrodes, une cathode et une anode, dont l'une est transparente ou semi-transparente et l'autre est en général réfléchissante afin d'obtenir une émission dans une hémisphère. Elles émettent de la lumière lorsqu'elles sont parcourues par un courant et l'émission est d'autant plus intense que le courant est élevé. Le courant dans la diode et la tension aux bornes de la diode sont liés en fonction des caractéristiques propres de la diode. En général la courbe qui régit cette relation entre courant et tension a l'allure représentée à la figure 1 . Pour simplifier la compréhension, on peut dire qu'elles ont une zone inactive ou zone de forte résistivité, pour des tensions faibles (inférieures à 2 volts), dans laquelle le courant est faible et ne produit pratiquement pas d'émission lumineuse, puis une zone utile de plus faible résistivité, dans laquelle le courant croît très fortement avec la tension (exponentiellement), et enfin une zone de saturation, pour des tensions plus élevées, dans laquelle le courant et l'émission lumineuse croissent encore avec la tension mais moins vite que dans la zone utile. Trois courbes sont représentées sur la figure 1 , pour montrer que le courant, donc l'émission lumineuse, varie en outre avec la température dans des proportions non négligeables. Dans l'exemple de courbe de la figure 1 , on voit que l'écran peut bénéficier d'une très large dynamique de courant, donc d'émission lumineuse, si on utilise une tension variant entre 2 et 4 ou 5 volts.
Des tensions et courants correspondant aux valeurs de la zone utile sont donc appliqués individuellement à chaque pixel en fonction de l'image à afficher. Pour cela, un circuit élémentaire, associé à chaque diode, LED est prévu au croisement de chaque ligne et chaque colonne de la matrice de pixels. Ce circuit permet de sélectionner le pixel pendant une phase d'écriture pour lui appliquer une tension de commande correspondant à l'intensité lumineuse souhaitée. Après la phase d'écriture le pixel conserve en mémoire la tension de commande appliquée et continue à émettre l'intensité lumineuse correspondante (aux fuites près) jusqu'à une phase d'écriture suivante. Un affichage en mode vidéo ou en mode parallèle est possible. En mode vidéo, on écrit successivement tous les pixels d'une ligne puis successivement les pixels de la ligne suivante et ainsi de suite. En mode parallèle, les pixels d'une ligne sont écrits tous simultanément, puis on écrit les pixels de la ligne suivante, et ainsi de suite.
La constitution de base d'un pixel d'une matrice active à diodes OLED avec son circuit élémentaire comprend en général :
- au moins un transistor de commande ayant une source, un drain et une grille, apte à contrôler le courant circulant dans la diode électroluminescente OLED, - la diode électroluminescente elle-même, ayant une anode et une cathode, l'une des électrodes étant reliée à la source ou au drain du transistor de commande, l'autre électrode étant commune à plusieurs pixels de la matrice,
- des moyens pour piloter le transistor de commande en fonction de l'information à afficher par le pixel.
Différentes configurations sont possibles, le transistor de commande pouvant notamment être de type NMOS ou PMOS, et l'électrode commune à plusieurs pixels pouvant être reliée entre le transistor de commande et un potentiel d'alimentation bas ou bien entre le transistor de commande et un potentiel d'alimentation haut.
La figure 2 représente un exemple de configuration de pixel d'une matrice active à diodes organiques. Le pixel comprend :
- la diode électroluminescente OLED correspondant à ce pixel, dont la cathode est reliée à un potentiel de cathode Vk ;
- un transistor NMOS de commande Qc dont la source est reliée à l'anode de la diode OLED et dont le drain est relié à une source de tension d'alimentation Vdd qui peut fournir le courant nécessaire à l'émission lumineuse ;
- un transistor de sélection Qs qui sert à autoriser l'application d'une tension de grille Vdat à la grille du transistor de commande ; cette tension Vdat est une tension analogique dont la valeur varie en fonction de l'émission lumineuse désirée pour le pixel ; elle est appliquée au drain du transistor Qs par un conducteur de colonne Cj commun à tous les pixels d'une même colonne de rang j de la matrice ; le conducteur de colonne reçoit et transmet une tension Vdat pour un pixel donné lorsque ce pixel est sélectionné par le transistor de sélection Qs ; la source du transistor de sélection Qs est reliée à la grille du transistor de commande Qc ; la grille du transistor de sélection Qs est reliée à un conducteur de ligne L, commun à tous les pixels d'une même ligne de rang i de la matrice ;
- une capacité de stockage Cst connectée entre le drain et la grille du transistor de commande ; cette capacité maintient la tension appliquée à la grille du transistor Qc pendant toute une trame d'image, après qu'une tension Vdat ait été appliquée à cette grille au moment de l'écriture du pixel. La capacité de stockage n'est pas toujours nécessaire, notamment si la capacité parasite du transistor (entre grille d'une part et source-drain d'autre part) est suffisamment élevée pour pouvoir jouer ce rôle de maintien de la tension pendant la durée d'une trame.
Le fonctionnement d'une matrice utilisant ce circuit élémentaire de pixel est le suivant : on écrit les pixels de la première ligne en rendant conducteurs les transistors de sélection de cette ligne ; puis, en mode vidéo, on applique successivement aux différentes colonnes de la matrice les tensions Vdat individuelles qu'on veut appliquer aux pixels successifs de la ligne ; en mode parallèle, les tensions seraient appliquées simultanément sur toutes les colonnes ; dans les deux cas, la tension Vdat affectée à un pixel se reporte sur la grille du transistor de commande du pixel et sur la capacité de stockage Cst associée, ce qui génère une émission lumineuse ; l'intensité lumineuse dépend de la tension Vdat, car celle-ci contrôle le passage du courant dans le transistor et dans la diode OLED. Après l'écriture dans un pixel, la capacité de stockage Cst maintient le potentiel Vdat sur la grille, jusqu'à une phase d'écriture suivante. De ce fait, le pixel maintient l'émission lumineuse correspondant à cette tension Vdat jusqu'à l'écriture suivante, c'est-à-dire pendant la durée d'une trame d'image.
Une trame d'image comprend l'écriture successive de tous les pixels de toutes les lignes de la matrice. En outre, en mode vidéo, des temps de repos ("line blanking" ou blanking de ligne) existent en début et fin d'écriture de chaque ligne, et en début et fin d'écriture de chaque trame ("frame blanking" ou blanking de trame).
On comprendra que si on veut afficher une même image avec une forte luminosité (pour ambiance diurne) ou avec une faible luminosité (pour ambiance nocturne), on peut modifier toutes les tensions Vdat pour adapter l'image à l'ambiance et afficher des images plus sombres dans le deuxième cas grâce à des tensions toutes plus faibles. Mais, d'une part cela demande une extension de la dynamique d'entrée sur plusieurs décades et d'autre part, compte-tenu de la forme très non-linéaire des caractéristiques d'émission des OLED (figure 1 ), il est très difficile de conserver la même qualité d'image pour les deux cas, en particulier en termes de conservation des couleurs, ceci surtout si on doit le faire pour plusieurs niveaux de luminance moyenne. On pourrait également modifier la luminosité de l'écran en agissant sur la valeur de la tension de cathode Vk sans modifier les tensions analogiques Vdat représentant l'image et sans modifier la tension Vdd de la source d'alimentation : en montant Vk, on comprend qu'on se déplace globalement vers le bas de la caractéristique de la figure 1 . Mais là encore, on change les caractéristiques colorimétriques de l'image d'autant plus qu'on se rapproche du pied de la courbe.
On a proposé par ailleurs dans la publication de brevet US2006/0164345 un schéma de circuit de pixel tendant à appliquer la tension Vk à la cathode de la diode OLED pendant une partie d'un cycle et à interrompre cette application pendant le reste du temps. Un transistor d'atténuation, alternativement mis en conduction et bloqué par des impulsions de rapport cyclique variable (en anglais "Puise Width Modulation" PWM) sur sa grille, est placé en série entre la cathode de la diode et la référence de cathode au potentiel Vk. Selon le rapport cyclique de commutation, on pourra faire varier la luminosité moyenne de l'écran sans modifier le motif de tensions Vdat à appliquer à la matrice.
Ce schéma, ainsi que d'autres schémas de cette publication, agit donc par interruption temporaire du courant dans la diode OLED, en supprimant l'alimentation négative ou l'alimentation positive pendant une durée variable.
Cependant, lorsqu'on cesse d'appliquer la tension négative Vk, on constate que le courant dans la diode OLED n'est pas interrompu instantanément comme on le souhaiterait. Ceci résulte des capacités parasites qui empêchent la suppression instantanée de la tension présente aux bornes de la diode. Le courant présent dans la LED pendant que l'alimentation négative Vk est appliquée tend à se maintenir pendant un certain temps, notamment parce que la capacité existant naturellement entre les électrodes de la diode maintient une tension aux bornes de celle-ci ; cette capacité se décharge progressivement du fait du courant qui passe dans la diode, et le courant se réduit progressivement, réduisant progressivement rémission de lumière. Cette réduction dépend beaucoup du courant qui existe dans la diode juste avant la commutation. Elle varie donc de pixel à pixel. A cause de cela, la réduction d'intensité d'émission qui en résulte en moyenne dans un pixel, pour un rapport cyclique donné, dépend donc de l'état de départ du pixel. On n'aboutit pas à une réduction uniforme de la luminosité, et l'image est distordue, notamment en termes de colorimétrie, lorsqu'on veut atténuer sa luminosité moyenne.
On peut ajouter à cela que pour les points d'image de faible luminosité, la décharge de la tension aux bornes de la diode se fait particulièrement lentement pendant que l'alimentation par Vk est interrompue, ce qui fait que pour des rapports cycliques faibles on peut arriver à ce qu'il n'y ait en fait aucune réduction de luminosité pour ces pixels.
On a proposé par ailleurs dans la demande de brevet EP1 061 497 de réduire la luminosité en agissant sur la tension de la cathode, mais le dispositif décrit ne permet pas d'établir des atténuations moyennes, ou bien il exige que les cathodes des OLEDs soient regroupées par lignes indépendantes des cathodes des autres lignes. C'est pourquoi la présente invention propose un procédé de contrôle de luminance d'un écran d'affichage comprenant une matrice active de pixels, chaque pixel comprenant une diode électroluminescente ayant deux électrodes, respectivement une anode et une cathode, dont l'une est commune à tous les pixels de la matrice, au moins un transistor MOS de commande apte à contrôler le courant circulant dans la diode en fonction d'une information de luminance à afficher, et dans lequel l'écriture de l'image se fait à partir d'un signal vidéo ligne par ligne au cours d'une durée de trame, une durée dite de blanking de trame étant prévue entre l'écriture de la dernière ligne d'une première trame et l'écriture de la première ligne d'une trame suivante, et une durée dite de blanking de ligne étant prévue entre écriture d'une ligne et l'écriture d'une ligne suivante, caractérisé en ce que, pour afficher une image donnée avec une atténuation désirée de la luminance moyenne, on impose périodiquement sur l'électrode commune des diodes électroluminescentes alternativement un premier potentiel fixe permettant l'émission de lumière par les diodes et un second potentiel fixe bloquant l'émission de lumière, avec un rapport cyclique variable en fonction de l'atténuation désirée, et en ce qu'une commutation du potentiel de l'électrode commune est effectuée pour certaines atténuations désirées à des instants situés pendant les temps de blanking de ligne. Et l'invention propose corrélativement un écran d'affichage comprenant une matrice active de pixels, chaque pixel comprenant une diode électroluminescente ayant deux électrodes, respectivement une anode et une cathode, dont l'une est commune à tous les pixels de la matrice, au moins un transistor MOS de commande apte à contrôler le courant circulant dans la diode en fonction d'une information de luminance à afficher, et dans lequel l'écriture de l'image l'image se fait à partir d'un signal vidéo ligne par ligne au cours d'une durée de trame, une durée dite de blanking de trame étant prévue entre l'écriture de la dernière ligne d'une première trame et écriture de la première ligne d'une trame suivante, et une durée dite de blanking de ligne étant prévue entre l'écriture d'une ligne et l'écriture d'une ligne suivante, caractérisé en ce qu'il comprend un circuit d'atténuation de luminance moyenne comprenant un commutateur pour relier périodiquement l'électrode commune des diodes alternativement à un premier potentiel fixe permettant l'émission de lumière par la diode et un deuxième potentiel fixe bloquant cette émission, et un circuit de commande du commutateur pour effectuer la commutation avec un rapport cyclique variable en fonction de l'atténuation désirée, et en ce que le circuit de commande du commutateur comprend des moyens pour effectuer une commutation du potentiel de l'électrode commune à des instants situés pendant les temps de blanking de ligne.
De préférence un transistor de sélection est prévu dans le pixel pour appliquer à la grille du transistor de commande, pendant une phase d'écriture du pixel, une tension analogique variable représentant l'information de luminance à afficher.
Le pixel comprend de préférence encore une capacité de stockage pour maintenir la tension analogique sur la grille du transistor en dehors de la phase d'écriture.
La commutation du potentiel entre les deux valeurs fixes se fait exclusivement en dehors des phases d'écriture des pixels de la matrice.
De préférence encore, le circuit de commande de commutation comprend des moyens pour effectuer également une commutation de potentiel pendant les temps de blanking de trame. Pour assurer cette commutation, le circuit de commande du commutateur est commandé en fonction des signaux d'horloge qui assurent l'écriture d'une image sur les pixels de la matrice. Ce circuit peut être constitué par un contrôleur général servant à effectuer les phases d'écriture et ayant une sortie spécifique programmée pour fournir le signal de commande de commutation qui est un signal à rapport cyclique variable en fonction de l'atténuation désirée.
De préférence également, tous les pixels de la matrice sont adressés au cours d'une même trame dans les mêmes conditions de polarisation, ce qui signifie que lors d'une trame tous les pixels sont connectés au même potentiel fixe pendant qu'une information est écrite dans le pixel. Par conséquent, au cours d'une trame il peut y avoir une commutation entre les deux potentiels fixes dès lors que cette commutation a lieu pendant un temps de blanking, mais lors de la phase d'écriture effective les pixels sont tous connectés au même potentiel fixe, que ce soit le premier ou le second.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels :
- la figure 1 représente une courbe de réponse typique de l'intensité en fonction de la tension appliquée à une diode OLED ;
- la figure 2 représente un circuit élémentaire de pixel classique d'une matrice active à diodes OLED ;
- la figure 3 représente le principe général de l'invention ;
- la figure 4 représente symboliquement la répartition des temps de balayage de ligne et de trame et les temps de blanking de ligne et de trame dans un écran recevant un signal vidéo ;
- la figure 5 représente un écran d'affichage selon l'invention.
La figure 3 reprend en partie des éléments de la figure 2 qui ont les mêmes fonctions et qui ne seront pas redécrits.
On considérera dans toute la suite que les cathodes des diodes OLED sont communes à tous les pixels de la matrice et que le transistor de commande est un NMOS. Cependant on pourrait aussi avoir une configuration dans laquelle ce sont les anodes qui sont communes. On pourrait aussi avoir un transistor de commande de type PMOS.
Les cathodes des diodes OLED de la matrice sont donc ici toutes reliées entre elles (elles forment une électrode commune sous l'ensemble du plan de la matrice) et elles sont reliées à une borne de sortie d'un commutateur SW à deux bornes d'entrée. Les entrées du commutateur SW sont reliées à deux potentiels fixes différents VkM et Vkoff.
Le potentiel VkM est un potentiel équivalent au potentiel Vk qu'on appliquerait dans le circuit de la figure 2 ; en supposant que le signal d'image peut prendre des valeurs de luminance codées de Lmin à Lmax, le potentiel VkM est choisi pour que l'écran fournisse un éclairement fort pour les pixels recevant une tension Vdat correspondant à la luminance maximale Lmax ; en d'autres mots, le potentiel VkM est choisi pour que la diode OLED fonctionne toujours dans la partie utile de la courbe de la figure 1 ; par exemple, pour une diode ayant la caractéristique de la courbe représentée à la figure 1 , VkM est tel que la tension aux bornes de la diode soit d'environ 4 à 5 volts lorsque la tension Vdat appliquée au pixel est celle qui correspond à la luminance maximale de la gamme dans laquelle le signal vidéo est codé.
Le potentiel Vkoff est un potentiel plus positif que le potentiel VKM. Il tend à réduire instantanément la tension et le courant dans la diode OLED quelle que soit la tension Vdat appliquée au pixel, et il place donc la diode tout en bas de la caractéristique courant tension. La capacité propre de la diode OLED peut se décharger dans la borne au potentiel Vkoff, sans entretenir un courant dans la diode. Ainsi, pour une même tension Vdd et pour une même tension de pixel Vdat, la diode passe instantanément dans une zone où elle n'émet plus de lumière sans que sa capacité propre tende à provoquer un résidu d'émission lumineuse qui subsistait dans l'art antérieur mentionné plus haut.
Par conséquent, lorsque le commutateur applique VkM aux cathodes, l'écran fonctionne normalement, mais quand il applique Vkoff l'écran n'émet plus du tout de lumière quel que soit le niveau de tension Vdat appliqué aux pixels.
Le commutateur SW est commandé par un signal périodique Cdim issu d'un circuit à modulation de largeur d'impulsion Cpwm. Ce circuit établit une commutation périodique entre les deux entrées du commutateur avec un rapport cyclique qui peut être commandé par une commande DIM. La commande DIM modifie le rapport cyclique selon l'atténuation (en anglais "dimming") désirée pour la luminosité moyenne de l'écran. Le rapport cyclique peut varier entre 1 (pas d'atténuation, le commutateur SW applique VkM en continu aux cathodes des diodes OLED) et 0 (atténuation maximale, le commutateur SW applique Vkoff en continu aux cathodes des diodes OLED) ; pour une valeur intermédiaire, le rapport cyclique représente le rapport entre le temps où le commutateur applique Vkoff et le temps total d'une période complète où VkM puis Vkoff sont successivement appliqués.
La périodicité (horloge CLK) de la commutation est d'au moins 50
Hz pour que la persistance rétinienne empêche que le passage de VkM à Vkoff soit visible. La luminance moyenne de l'écran est alors proportionnelle au rapport cyclique de la commutation périodique. L'horloge CLK qui définit la période de commutation peut être une horloge représentant la période de balayage de trame de l'afficheur.
Selon l'invention, on prévoit de préférence en outre que les commutations du niveau VkM au niveau Vkoff et inversement se font à des instants qui ne situent pas pendant une phase d'écriture d'information dans un pixel. La phase d'écriture d'un pixel est celle pendant laquelle on rend conducteur le transistor de sélection Qs et on applique un potentiel Vdat sur la capacité de stockage Cst à travers ce transistor. Les commutations par le commutateur SW ne sont donc faites qu'à des instants où la capacité de stockage Cst est isolée, soit parce que le transistor de sélection Qs est isolé, soit parce que la colonne Cj est en haute impédance entre deux applications de signal Vdat.
De plus, on prévoit que pour certaines atténuations désirées, la commutation se fait pendant les temps de blanking de ligne du signal vidéo appliqué à l'écran.
La figure 4 représente symboliquement les principes généraux du balayage d'un écran pour afficher une image dans le cas où cette image parvient sous forme d'un signal vidéo standard. L'image à afficher contient N lignes et M pixels visibles dans chaque ligne. Le signal vidéo pour une trame d'image complète occupe une durée correspondant à la fois à un temps d'écriture effectif et à des temps morts ou temps de blanking de ligne et de trame. Plus précisément, le temps d'écriture effectif dans la trame est le temps d'écriture des NxM pixels affichés mais la durée globale de la trame incluant les temps de blanking est équivalente au temps virtuel qu'il faudrait pour afficher (η+Ν+η') lignes de (m+M+m') pixels chacune. Les nombres n et n' représentent les nombres de lignes fictives des temps de blanking de début et de fin de trame. Les nombres m et m' représentent des nombres de pixels fictifs des temps de blanking de début et de fin de ligne.
Le signal vidéo contient donc une succession de niveaux de tension successifs qui se décompose dans le temps en :
- blanking de début de trame, dont la durée Tn représente n fois la durée standard d'écriture d'une ligne de pixels ; pendant cette durée Tn les pixels de la matrice ne reçoivent pas de tension Vdat, leurs transistors de sélection Qs étant bloqués ;
- puis, pour chaque ligne successive de 1 à N de la matrice de pixels :
- blanking de début de ligne, dont la durée Tm représente m fois la durée Tp d'une phase d'écriture d'un pixel ; pendant cette durée, les pixels de la matrice ne reçoivent pas de tension Vdat les colonnes de la matrice étant en haute impédance et/ou les transistors de sélection de ligne étant bloqués ;
- signal actif de durée M.Tp représentant les niveaux successifs de tension correspondant aux luminances à écrire successivement dans les M pixels de la ligne, la durée étant M fois la durée Tp d'une phase d'écriture d'un pixel ; pendant cette durée, les pixels reçoivent l'un après l'autre les tensions Vdat qui leur sont affectées et qui représentent les luminances respectives ;
- blanking de fin de ligne, dont la durée Tm' représente m' fois la durée Tp d'une phase d'écriture d'un pixel ; pendant cette durée, comme pendant le blanking de début de ligne, les pixels de la matrice ne reçoivent pas de nouvelle tension Vdat ;
- après la dernière ligne de rang N, blanking de fin de trame, dont la durée Tn' représente n' fois la durée standard d'écriture d'une ligne de pixels, soit Tn' = n'. (m+M+m'). Tp ; pendant cette durée Tn', comme pour le début de trame, les pixels de la matrice ne reçoivent pas de tension Vdat.
On notera qu'on a décomposé ici les durées de blanking en un blanking de début et un blanking de fin (de trame ou de ligne) mais la durée de fin de blanking de ligne ou de trame se prolonge par une durée de début de blanking de la ligne ou la trame suivante. Pour la somme de ces deux durées, on peut aussi parler de durée de retour de ligne ou retour de trame si on ne souhaite pas les considérer comme deux parties distinctes.
Le circuit de commande de commutation Cpwm est synchronisé avec le signal vidéo de préférence de manière que les commutations n'aient pas lieu pendant les durées M.Tp correspondant à l'écriture des pixels visibles de chaque ligne. Mais il est important de constater que l'écriture peut se faire aussi bien pendant que la cathode est à VkM que pendant que la cathode est à Vkoff. Cependant, il est important que tous les pixels soient écrits au cours d'une trame avec la même condition de polarisation, c'est-à- dire tous avec Vkoff ou tous avec VkM. En effet, bien que l'écriture stocke une tension dans la capacité Cst dont une borne est à Vdd, la mémorisation sur la capacité est légèrement modifiée selon les conditions de polarisation des transistors en raison du fait qu'ils ne sont pas des transistors idéaux. Pour obtenir un affichage non distordu il ne faut donc pas écrire une partie des lignes avec la cathode à VkM et l'autre avec la cathode à Vkoff.
Pour donner un exemple des possibilités de réglage de l'atténuation, on considère un écran d'affichage au format de N=600 lignes et M = 800 pixels (norme SVGA), recevant un signal vidéo de (η+Ν+η') = 624 lignes et (m+M+m') = 1024 pixels (norme de transmission VESA).
On peut considérer que n=n'= 12 et m=m'=1 12
a) si le commutateur SW place les cathodes au potentiel VkM tout le temps (rapport cyclique = 1 ), la luminance est de 100% du maximum possible ;
b) si le commutateur commute les cathodes à Vkoff pendant presque tout les temps de blanking de ligne ou de trame, c'est-à-dire si la cathode passe à Vkoff juste après le début de toutes les périodes de blanking de ligne ou de trame et les replace à VkM juste avant la fin de toutes ces périodes de blanking, la luminance devient (600/624)x(800/1024) soit 75% de sa valeur maximale ;
c) si le commutateur commute les cathodes à Vkoff juste avant le début du signal actif de durée M.Tp et les commute à VKM juste après la fin du signal actif, ceci pour chaque ligne, la luminance devient {1 - ((600/624)x(800/1024)} soit 25% du maximum ; c) si le commutateur fait l'opération c) mais place en outre le potentiel de cathode à Vkoff pendant les temps de blanking de début de ligne mais pas ceux de fin de ligne (ou le contraire) la luminance passe à 10% ;
d) si le potentiel de cathode est à Vkoff tout le temps sauf pendant les blankings de trame : luminance à 4% ;
f) potentiel de cathode à VkM seulement pendant une moitié d'un blanking de début (ou de fin) de trame, à Vkoff le reste du temps : luminance à 1 % ;
g) potentiel de cathode à VkM pendant une seule ligne de 800 pixels du blanking de trame, à Vkoff le reste du temps : luminance 1 /800 de la luminance maximale ;
h) potentiel de cathode à VkM pendant un seul blanking (début ou fin) d'une seule ligne, et à Vkoff le reste du temps : luminance 1 12/(624x1024), inférieure à 0,2 pour mille de la luminance maximale.
On a donc une très grande gamme de possibilités d'atténuation de la luminance, et en particulier des atténuations moyennes obtenues par une commutation pendant tout ou partie des durées de blanking de ligne. Si on souhaite des atténuations de valeur plus précisément définie, différentes des valeurs citées ci-dessous on peut également ajuster plus précisément le nombre de lignes ou fractions de lignes concernées par le passage du potentiel à VkM.
En effectuant la réduction de luminance de cette manière, on garde bien le contraste de l'image initiale.
La figure 5 représente le schéma global de principe d'un écran d'affichage à matrice active à diodes électroluminescentes organiques conforme à l'invention. Dans cette figure, on considère simplement que l'écriture des pixels est gérée par un contrôleur ou séquenceur CTRL ; le contrôleur reçoit les signaux de synchronisation (horloge de pixel H, signaux logiques de synchronisation verticale VSYNC et horizontale HSYNC) du signal vidéo ainsi que le signal vidéo SV lui-même, sous forme numérique ou analogique. Le contrôleur commande les registres d'adressage de lignes et colonnes de la matrice pour effectuer l'écriture séquentielle ligne par ligne dans la trame et pixel par pixel dans chaque ligne. C'est lui qui produit les tensions Vdat à appliquer aux pixels en fonction du signal vidéo reçu. Dans ce cas, le plus simple est de prévoir que c'est le contrôleur CTRL qui constitue en outre le circuit Cpwm et qui établit donc le signal Cdim à rapport cyclique variable en fonction d'une commande externe DIM, définissant l'atténuation désirée. La commande externe peut être manuelle, ou encore automatique en fonction de l'ambiance lumineuse. Le signal Cdim est calé temporellement par rapport aux signaux de synchronisation en fonction des explications données ci-dessus pour éviter dans tous les cas que la commutation ne se produise pendant les périodes d'écriture des pixels visibles et pour assurer que pendant le temps de signal actif M.Tp d'une trame on applique le même potentiel de cathode VkM ou Vkoff à tous les pixels selon le niveau d'atténuation souhaité.
Le contrôleur peut élaborer, à partir des explications données ci- dessus et notamment des exemples d'atténuation a) à i), une table de séquencement des instants de commutation souhaités en fonction de l'atténuation désirée. Cette table peut faire partie d'une mémoire morte ou une mémoire programmable faisant partie du contrôleur ou associée au contrôleur. Dans une autre réalisation, le contrôleur élabore la séquence à partir d'une logique basée sur des machines à états.

Claims

REVENDICATIONS
1 . Procédé de contrôle de luminance d'un écran d'affichage comprenant une matrice active de pixels, chaque pixel comprenant une diode électroluminescente ayant deux électrodes, respectivement une anode (A) et une cathode (K), dont l'une est commune à tous les pixels de la matrice, et au moins un transistor MOS de commande (Qc) apte à contrôler le courant circulant dans la diode en fonction d'une information de luminance à afficher, et dans lequel l'écriture de l'image se fait à partir d'un signal vidéo ligne par ligne au cours d'une durée de trame, une durée dite de blanking de trame étant prévue entre l'écriture de la dernière ligne d'une première trame et écriture de la première ligne d'une trame suivante, et une durée dite de blanking de ligne étant prévue entre l'écriture d'une ligne et l'écriture d'une ligne suivante, caractérisé en ce que, pour afficher une image donnée avec une atténuation désirée de la luminance moyenne, on impose périodiquement sur l'électrode commune des diodes électroluminescentes alternativement un premier potentiel fixe (VkM) permettant l'émission de lumière par les diodes et un second potentiel fixe (Vkoff) bloquant l'émission de lumière, avec un rapport cyclique variable en fonction de l'atténuation désirée, et en ce qu'une commutation du potentiel de l'électrode commune est effectuée pour certaines atténuations désirées à des instants situés pendant les temps de blanking de ligne.
2. Procédé selon la revendication 1 , caractérisé en ce que pendant l'écriture des pixels de la matrice au cours d'une même trame, le potentiel fixe appliqué est le même pour tous les pixels, que ce soit le premier ou le second potentiel fixe.
3. Ecran d'affichage comprenant une matrice active de pixels, chaque pixel comprenant une diode électroluminescente ayant deux électrodes, respectivement une anode (A) et une cathode (K), dont l'une est commune à tous les pixels de la matrice, et au moins un transistor MOS de commande (Qc) apte à contrôler le courant circulant dans la diode en fonction d'une information de luminance à afficher, et dans lequel l'écriture de l'image se fait à partir d'un signal vidéo ligne par ligne au cours d'une durée de trame, une durée dite de blanking de trame étant prévue entre l'écriture de la dernière ligne d'une première trame et l'écriture de la première ligne d'une trame suivante, et une durée dite de blanking de ligne étant prévue entre l'écriture d'une ligne et l'écriture d'une ligne suivante, caractérisé en ce qu'il comprend un circuit d'atténuation de luminance moyenne comprenant un commutateur (SW) pour relier périodiquement l'électrode commune des diodes alternativement à un premier potentiel fixe (VkM) permettant l'émission de lumière par la diode et un deuxième potentiel fixe (Vkoff) bloquant cette émission, et un circuit (Cpwm) de commande du commutateur pour effectuer la commutation avec un rapport cyclique variable en fonction de l'atténuation désirée, et en ce que le circuit de commande du commutateur comprend des moyens pour effectuer une commutation du potentiel de l'électrode commune à des instants situés pendant les temps de blanking de ligne.
4. Ecran d'affichage selon la revendication 3, caractérisé en ce que le pixel comporte un transistor de sélection pour appliquer à la grille du transistor de commande, pendant une phase d'écriture du pixel, une tension analogique variable représentant l'information de luminance à afficher.
5. Ecran d'affichage selon l'une des revendications 3 et 4, caractérisé en que le pixel comprend une capacité de stockage (Cst) pour maintenir la tension analogique sur la grille du transistor en dehors de la phase d'écriture.
6. Ecran d'affichage selon l'une des revendications 3 à 5, caractérisé en ce que les diodes sont des diodes électroluminescentes organiques.
7. Ecran d'affichage selon l'une des revendications 3 à 6, caractérisé en ce que le circuit de commande de commutation de potentiel comprend en outre des moyens pour effectuer une commutation de potentiel pendant les blankings de trame.
EP11761344.8A 2010-10-15 2011-09-22 Ecran d'affichage a diodes electroluminescentes a matrice active pourvu de moyens d'attenuation Active EP2628150B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1004065A FR2966276B1 (fr) 2010-10-15 2010-10-15 Ecran d'affichage a diodes electroluminescentes a matrice active pourvu de moyens d'attenuation
PCT/EP2011/066523 WO2012049000A1 (fr) 2010-10-15 2011-09-22 Ecran d'affichage a diodes electroluminescentes a matrice active pourvu de moyens d'attenuation

Publications (2)

Publication Number Publication Date
EP2628150A1 true EP2628150A1 (fr) 2013-08-21
EP2628150B1 EP2628150B1 (fr) 2017-04-19

Family

ID=43501019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11761344.8A Active EP2628150B1 (fr) 2010-10-15 2011-09-22 Ecran d'affichage a diodes electroluminescentes a matrice active pourvu de moyens d'attenuation

Country Status (6)

Country Link
US (1) US9984618B2 (fr)
EP (1) EP2628150B1 (fr)
JP (1) JP6214396B2 (fr)
KR (1) KR101958030B1 (fr)
FR (1) FR2966276B1 (fr)
WO (1) WO2012049000A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140195A (zh) * 2020-01-19 2021-07-20 北京小米移动软件有限公司 显示屏亮度调节方法及装置、电子设备、存储介质

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102115530B1 (ko) * 2012-12-12 2020-05-27 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
KR102141204B1 (ko) * 2013-11-20 2020-08-05 삼성디스플레이 주식회사 유기 발광 표시 장치, 및 유기 발광 표시 장치의 리페어 방법
US9640114B2 (en) 2014-06-19 2017-05-02 Stmicroelectronics International N.V. Device comprising a matrix of active OLED pixels with brightness adjustment, and corresponding method
US10366674B1 (en) * 2016-12-27 2019-07-30 Facebook Technologies, Llc Display calibration in electronic displays
CN107993609A (zh) * 2018-03-16 2018-05-04 成都晶砂科技有限公司 模拟和数字混合驱动显示单元显示的方法、系统及驱动电路
JP7066537B2 (ja) * 2018-06-06 2022-05-13 株式会社ジャパンディスプレイ 表示装置及び表示装置の駆動方法
CN110675806A (zh) * 2019-10-09 2020-01-10 南京国兆光电科技有限公司 一种能提高宽动态范围调亮的微显示驱动电路及调亮方法
CN110706652B (zh) * 2019-10-09 2021-03-30 南京国兆光电科技有限公司 一种公共阳极微显示像素驱动电路及驱动方法
US11615740B1 (en) 2019-12-13 2023-03-28 Meta Platforms Technologies, Llc Content-adaptive duty ratio control
CN112652266A (zh) * 2020-12-28 2021-04-13 厦门天马微电子有限公司 一种显示面板以及显示装置
US11922892B2 (en) 2021-01-20 2024-03-05 Meta Platforms Technologies, Llc High-efficiency backlight driver
CN113053301B (zh) * 2021-03-23 2022-08-19 京东方科技集团股份有限公司 像素驱动电路、像素驱动方法、显示面板及显示装置
KR20220140062A (ko) 2021-04-08 2022-10-18 삼성디스플레이 주식회사 픽셀 및 표시 장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231834A (ja) * 1998-02-13 1999-08-27 Pioneer Electron Corp 発光ディスプレイ装置及びその駆動方法
JP4092857B2 (ja) * 1999-06-17 2008-05-28 ソニー株式会社 画像表示装置
JP2002169499A (ja) * 2000-11-30 2002-06-14 Sanyo Electric Co Ltd 表示パネルの駆動方法及び表示パネルの駆動制御装置
KR20040019207A (ko) * 2002-08-27 2004-03-05 엘지.필립스 엘시디 주식회사 유기전계발광소자와 그의 구동장치 및 방법
CN100446068C (zh) * 2002-12-04 2008-12-24 皇家飞利浦电子股份有限公司 有机led显示器件及其驱动方法
US7663589B2 (en) * 2004-02-03 2010-02-16 Lg Electronics Inc. Electro-luminescence display device and driving method thereof
US20060164345A1 (en) 2005-01-26 2006-07-27 Honeywell International Inc. Active matrix organic light emitting diode display
WO2009144913A1 (fr) * 2008-05-29 2009-12-03 パナソニック株式会社 Dispositif d'affichage et son procédé de pilotage
KR101495865B1 (ko) * 2008-09-18 2015-02-25 삼성디스플레이 주식회사 표시 장치 및 이의 구동방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012049000A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140195A (zh) * 2020-01-19 2021-07-20 北京小米移动软件有限公司 显示屏亮度调节方法及装置、电子设备、存储介质

Also Published As

Publication number Publication date
KR20130108581A (ko) 2013-10-04
JP6214396B2 (ja) 2017-10-18
KR101958030B1 (ko) 2019-03-13
WO2012049000A1 (fr) 2012-04-19
US20130208030A1 (en) 2013-08-15
US9984618B2 (en) 2018-05-29
FR2966276B1 (fr) 2013-03-08
JP2013545126A (ja) 2013-12-19
FR2966276A1 (fr) 2012-04-20
EP2628150B1 (fr) 2017-04-19

Similar Documents

Publication Publication Date Title
EP2628150B1 (fr) Ecran d'affichage a diodes electroluminescentes a matrice active pourvu de moyens d'attenuation
JP5351169B2 (ja) 制御回路を有するledディスプレイ
EP2013863B1 (fr) Ecran electroluminescent organique
TWI503809B (zh) 像素電路及顯示裝置
JP5675601B2 (ja) 有機el表示パネル及びその駆動方法
TW200903439A (en) Light source device and liquid crystal display device
FR2816095A1 (fr) Procede de pilotage et circuit de pilotage d'un panneau d'affichage plasma
EP2277164B1 (fr) Dispositif d'affichage amélioré à base de pixels à coordonnées chromatiques variables
EP1695332A2 (fr) Cellule de commande electronique pour diode electroluminescente organique d afficheur a matrice active, procedes de fonctionn ement et afficheur
US8749456B2 (en) Method of driving an organic light emitting diode (OLED) pixel, a system for driving an OLED pixel and a computer-readable medium
FR3034902A1 (fr) Procede d’affichage d’images sur un ecran matriciel
KR101205912B1 (ko) 영상 디스플레이 스크린 및 이 스크린을 어드레스 지정하는 방법
EP1964095A1 (fr) Panneau d'affichage et procede de pilotage avec couplage capacitif transitoire
EP1771838B1 (fr) Dispositif d'affichage d'images et procede de commande d'un dispositif d'affichage
WO2006054189A1 (fr) Dispositifs d'affichage a matrice active
EP1864275B1 (fr) Dispositif d'affichage d'images et procede de pilotage de celui-ci.
US20030052840A1 (en) Matrix display
JP2007508594A (ja) カラーディスプレイパネル
JP2004086051A (ja) マトリクス駆動型ディスプレイ
JP2011039453A (ja) 発光素子表示装置
JP2009047778A (ja) 画像表示装置
FR2654244A1 (fr) Procede et dispositif d'adressage a grande vitesse pour l'entretien et l'adressage independants de panneaux d'affichage a plasma.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130313

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140626

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 886626

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011037144

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170419

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 886626

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170720

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170819

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011037144

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

26N No opposition filed

Effective date: 20180122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170922

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230921

Year of fee payment: 13

Ref country code: DE

Payment date: 20230919

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230929

Year of fee payment: 13