EP2621390A2 - Chirurgisches instrument mit klemmbackenelement - Google Patents

Chirurgisches instrument mit klemmbackenelement

Info

Publication number
EP2621390A2
EP2621390A2 EP11767551.2A EP11767551A EP2621390A2 EP 2621390 A2 EP2621390 A2 EP 2621390A2 EP 11767551 A EP11767551 A EP 11767551A EP 2621390 A2 EP2621390 A2 EP 2621390A2
Authority
EP
European Patent Office
Prior art keywords
jaw member
jaw
surgical instrument
tissue
end effector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11767551.2A
Other languages
English (en)
French (fr)
Inventor
Mark A. Davison
Chad P. Boudreaux
Scott B. Killinger
Jonathan T. Batross
James R. Giordano
Gregory A. Trees
Bingshi Wang
Aaron C. Voegele
David K. Norvell
Nathaniel F. Barbera
Kevin D. Felder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon LLC
Original Assignee
Ethicon Endo Surgery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/896,411 external-priority patent/US8979890B2/en
Priority claimed from US12/896,420 external-priority patent/US8888809B2/en
Application filed by Ethicon Endo Surgery Inc filed Critical Ethicon Endo Surgery Inc
Publication of EP2621390A2 publication Critical patent/EP2621390A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00607Coagulation and cutting with the same instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B2018/1452Probes having pivoting end effectors, e.g. forceps including means for cutting
    • A61B2018/1455Probes having pivoting end effectors, e.g. forceps including means for cutting having a moving blade for cutting tissue grasped by the jaws

Definitions

  • a surgical instrument can be configured to apply energy to tissue in order to treat and/or destroy the tissue.
  • a surgical instrument can comprise one or more electrodes which can be positioned against and/or positioned relative to the tissue such that electrical current can flow through the electrodes and into the tissue.
  • the surgical instrument can further comprise an electrical input, a supply conductor electrically coupled with the electrodes, and/or a return conductor which can be configured to allow current to flow from the electrical input, through the supply conductor, through the electrodes and tissue, and then through the return conductor to an electrical output, for example.
  • the energy can generate heat within the captured tissue to create one or more hemostatic seals within the tissue. Such embodiments may be particularly useful for sealing blood vessels, for example.
  • the surgical instrument can further comprise a cutting member which can be moved relative to the tissue and electrodes in order to transect the tissue.
  • a surgical instrument for supplying energy to tissue may comprise a handle.
  • the handle may comprise a trigger, an electrical input, and a shaft extending from the handle.
  • the shaft may comprise a conductor.
  • the trigger may be selectively actuatable to electrically couple the electrical input and the conductor.
  • the surgical instrument may comprise an end effector defining a longitudinal axis and a transection plane.
  • the end effector may comprise a first jaw member and a second jaw member. At least one of the first jaw member and the second jaw member may be movable relative to the other of the first jaw member and the second jaw member to clamp tissue intermediate the first jaw member and the second jaw member.
  • the end effector may further comprise an electrode electrically coupled with the conductor and first and second tissue engaging surfaces coupled to one of the first and second jaw members and extending along the longitudinal axis.
  • Each of the first and second tissue engaging surfaces have may have an inner portion and an outer portion, wherein the first and second tissue engaging surfaces are slanted with respect to the transection plane.
  • a surgical instrument for supplying energy to tissue may comprise a handle.
  • the handle may comprise a trigger and an electrical input.
  • a shaft may extend from the handle, wherein the shaft comprises a conductor, and wherein the trigger is selectively actuatable to electrically couple the electrical input and the conductor.
  • the surgical instrument may comprise an end effector defining a longitudinal axis and comprising a first jaw member and a second jaw member. At least one of the first jaw member and the second jaw member may be movable relative to the other of the first jaw member and the second jaw member between an open and closed positions to clamp tissue intermediate the first jaw member and the second jaw member in the closed position.
  • the end effector may comprise a passive electrode having a passive electrode tissue contacting surface and an active electrode having a first active electrode tissue contacting surface and a second active electrode tissue contacting surface.
  • the active electrode may be electrically coupled with the conductor and the first active electrode tissue contacting surface may be generally parallel to the passive electrode tissue contacting surface in the closed position.
  • the second active electrode tissue contacting surface may be generally oblique to the passive electrode tissue contacting surface in the closed position.
  • a surgical instrument for supplying energy to tissue may comprise a handle that comprises a trigger and an electrical input.
  • the surgical instrument may comprise a shaft extending from the handle, wherein the shaft comprises a conductor, and wherein the trigger is selectively actuatable to electrically couple the electrical input and the conductor.
  • the surgical instrument may comprise an end effector defining a longitudinal axis.
  • the end effector may comprise a first jaw member and a second jaw member. At least one of the first jaw member and the second jaw member may be movable relative to the other of the first jaw member and the second jaw member between an open and closed positions to clamp tissue intermediate the first jaw member and the second jaw member in the closed position.
  • the end effector may further comprise a first electrode coupled with the conductor.
  • the first electrode may comprise a plurality of raised surfaces.
  • a tissue contacting surface may oppose the first electrode in the closed position, wherein the tissue contacting surface may define a plurality of indentations.
  • the indentations may be positioned to receive the plurality of raised surfaces when the first and second jaw members are in the closed position.
  • a surgical instrument for supplying energy to tissue may comprise a trigger, an electrical input, and a shaft extending from the handle.
  • the shaft may comprise a conductor and the trigger may be selectively actuatable to electrically couple the electrical input and the conductor.
  • the surgical instrument may further comprise an end effector defining a longitudinal axis.
  • the end effector may comprise a first jaw member and a second jaw member. At least one of the first jaw member and the second jaw member may be movable relative to the other of the first jaw member and the second jaw member between an open and closed positions to clamp tissue intermediate the first jaw member and the second jaw member in the closed position.
  • the first and second jaw members may define a channel.
  • the end effector may comprise a cutting member including a distal end, wherein the cutting member is sized and configured to fit at least partially within the channel.
  • the cutting member may be configured to translate along the channel between a retracted position and a fully advanced position.
  • the cutting member may comprise at least a first, second, and third bands, wherein the second band is disposed intermediate the first and third bands and comprises a sharp distal cutting element.
  • the end effector may further comprise at least one compression element extending from the cutting member, wherein the at least one compression element engages one of the first and second jaws to move the first and second jaws from the open position to the closed position when the cutting member translates with respect to the first jaw member beyond the retracted position.
  • a surgical instrument for supplying energy to tissue may comprise a handle, a trigger, an electrical input, and a shaft extending from the handle.
  • the shaft may comprise a conductor and the trigger may be selectively actuatable to electrically couple the electrical input and the conductor.
  • the surgical instrument may comprise an end effector defining a longitudinal axis.
  • the end effector may comprise a first jaw member comprising a cammed compression surface along the longitudinal axis and a second jaw member, wherein at least one of the first jaw member and the second jaw member is movable relative to the other of the first jaw member and the second jaw member between an open and a closed position to clamp tissue intermediate the first jaw member and the second jaw member in the closed position.
  • the first and second jaw members may define a channel.
  • the end effector may comprise a cutting member including a distal end, wherein the cutting member is sized and configured to fit at least partially within the channel.
  • the cutting member may be configured to translate along the channel between a retracted position and a fully advanced position.
  • the end effector may comprise at least one compression element extending from the cutting member and contacting the cammed compression surface, wherein the at least one compression element engages the cammed compression surface to move the first and second jaws from the open position to the closed position when the cutting member translates with respect to the first and second jaw members beyond the retracted position.
  • a surgical instrument for supplying energy to tissue may comprise a handle, a trigger, and an electrical input.
  • the surgical instrument may comprise a shaft extending from the handle, wherein the shaft comprises a conductor, and wherein the trigger is selectively actuatable to electrically couple the electrical input and the conductor.
  • the surgical instrument may comprise an end effector defining a longitudinal axis.
  • the end effector may comprise a first jaw member comprising a cammed compression surface along the longitudinal axis and a second jaw member.
  • At least one of the first jaw member and the second jaw member may be movable relative to the other of the first jaw member and the second jaw member between an open and a closed position to clamp tissue intermediate the first jaw member and the second jaw member in the closed position.
  • the first and second jaw members may define a channel.
  • the end effector may further comprise a cutting member including a distal end, wherein the cutting member is sized and configured to fit at least partially within the channel.
  • the cutting member may be configured to translate along the channel between a retracted position and a fully advanced position with the cutting member defining a transection plane.
  • the end effector may further comprise an electrode comprising a tapered tissue contacting surface.
  • a surgical instrument for supplying energy to tissue may comprise a handle that comprises a trigger, an overload member operatively coupled to the trigger, and an electrical input.
  • the surgical instrument may further comprise a shaft extending from the handle, wherein the shaft comprises a conductor, and wherein the trigger is selectively actuatable to electrically couple the electrical input and the conductor.
  • the surgical instrument may comprise an end effector defining a longitudinal axis and comprising a first jaw member and a second jaw member. At least one of the first jaw member and the second jaw member may be movable relative to the other of the first jaw member and the second jaw member to clamp tissue intermediate the first jaw member and the second jaw member.
  • the end effector may further comprise an electrode electrically coupled with the conductor.
  • a surgical instrument for supplying energy to tissue may comprise a handle, a trigger, an electrical input, and a shaft extending from the handle.
  • the shaft may comprise a conductor and the trigger may be selectively actuatable to electrically couple the electrical input and the conductor.
  • the surgical instrument may comprise an end effector defining a longitudinal axis.
  • the end effector may comprise a first jaw member comprising a cammed compression surface along the longitudinal axis and a second jaw member. At least one of the first jaw member and the second jaw member may be movable relative to the other of the first jaw member and the second jaw member between an open and a closed position to clamp tissue intermediate the first jaw member and the second jaw member in the closed position.
  • the first and second jaw member may defining a channel.
  • the end effector may comprise a cutting member including a distal end, wherein the cutting member is sized and configured to fit at least partially within the channel.
  • the cutting member may be configured to translate along the channel between a retracted position and a fully advanced position.
  • the cutting member may comprise a first compression element and a second compression element separated by a distance.
  • the first compression element may be engagable to the first jaw member and the second compression element engagable to the second jaw member, wherein the first compression element is moveable relative to the cutting member.
  • FIG. 1 is a perspective view of a surgical instrument illustrated in accordance with at least one embodiment.
  • FIG. 2 is a side view of a handle of the surgical instrument of FIG. 1 with a half of a handle body removed to illustrate some of the components therein.
  • FIG. 3 is a perspective view of an end effector of the surgical instrument of FIG. 1 illustrated in an open configuration; the distal end of a closure beam is illustrated in a retracted position.
  • FIG. 4 is a perspective view of the end effector of the surgical instrument of FIG. 1 illustrated in a closed configuration; the distal end of the closure beam is illustrated in a partially advanced position.
  • FIG. 5 is a perspective cross-sectional view of a portion of an end effector of the surgical instrument of FIG. 1.
  • FIG. 6 is a cross-sectional view of an end effector in accordance with one non-limiting embodiment.
  • FIG. 6A is a cross-sectional view illustrating the interaction between the first jaw and the second jaw when the end effector is in the closed position in accordance with one non- limiting embodiment.
  • FIG. 7 is an enlarged cross-sectional view of the first jaw of the end effector shown in FIG. 6.
  • FIG. 7A is an enlarged view of tooth shown in FIG. 7 in accordance with one non- limiting embodiment.
  • FIG. 8 is a perspective view of an end effector in accordance with one non-limiting embodiment.
  • FIG. 8A is an enlarged view of a proximal portion of the first jaw shown in FIG. 8.
  • FIG. 9 is an enlarged cross-sectional view of the second jaw of the end effector shown in FIG. 6.
  • FIG. 9A is an enlarged view of a portion of FIG. 9
  • FIG. 10 is a cross-sectional perspective view of the end effector incorporating offset electrodes in accordance with one non-limiting embodiment.
  • FIG. 1 1 illustrates an end effector in accordance with one non-limiting embodiment.
  • FIG. 1 1 A is an enlarged view of a distal portion of the second jaw of the end effector shown in FIG. 1 1.
  • FIG. 12 is a partial perspective view of the first jaw of the end effector of FIG. 1 1 in accordance with one non-limiting embodiment.
  • FIGS. 13A and 13B are cross-sectional side views of the distal end of the end effector illustrated in FIG. 1 1 during two states of operation.
  • FIG. 14 illustrates an end effector that has an electrode that incorporates a waffle pattern in accordance with one non-limiting embodiment.
  • FIG. 15 illustrates the tissue contacting surface of the first jaw of the end effector shown in FIG. 14 in accordance with one non-limiting embodiment.
  • FIG. 16 illustrates the distal end of a movable cutting member in accordance with one non-limiting embodiment.
  • FIG. 17 is a view of a distal end of an end effector for use with the movable cutting member shown in FIG. 16.
  • FIG. 18 is a cross-sectional view of an end effector in an opened position in accordance with one non-limiting embodiment.
  • FIGS. 19 and 20 illustrate the end effector shown in FIG. 18 after the first jaw has been pivoted toward the second jaw.
  • FIG. 21 is a profile of a first closure pin track in accordance with one non-limiting embodiment.
  • FIG. 22 is a cross-sectional view of a jaw in accordance with one non-limiting embodiment.
  • FIGS. 23A and 23B illustrates a closure pin affixed to a moveable cutting member during two states of operation in accordance with one non-limiting embodiment.
  • FIG. 24 illustrates a moveable cutting member with translating bands in accordance with one non-limiting embodiment.
  • FIG. 25 illustrates the movable cutting member of FIG. 24 during retraction/return.
  • FIGS. 26 and 28 are cross-sectional views of a firing rod operatively coupled to a pusher block in accordance with one non-limiting embodiment.
  • FIG. 27 and 29 are perspective views of the movable cutting member in accordance with one non-limiting embodiment.
  • FIG. 30 is a perspective exploded view of a movable cutting member comprising closure pin assemblies in accordance with one non-limiting embodiment.
  • FIG. 31 is a perspective view of the movable cutting member of FIG. 30 in an assembled configuration.
  • FIG. 31 A is a cross-sectional view of the movable cutting member of FIG. 31 .
  • FIG. 32 is an exploded view of a closure pin comprising needle bearings in accordance with one non-limiting embodiment.
  • FIG. 33 is a cross-sectional view of the assembled closure pin of FIG. 32.
  • FIG. 34 is a perspective view of an end effector in accordance with one non-limiting embodiment.
  • FIG. 35 is a cross-sectional view of a portion of the end effector shown in FIG. 34.
  • FIG. 36 illustrates a stepped pin in accordance with one non-limiting embodiment.
  • FIGS. 37A and 37B illustrate outer bands of a movable cutting member in accordance with one non-limiting embodiment.
  • FIG. 38A and 38B illustrate the outer bands of FIGS. 33A and 33B in an assembly position.
  • FIG. 39 is a perspective view of the top distal end of the moveable cutting member after a first jaw closure pin has been affixed.
  • FIG. 40 illustrates a shear pin in accordance with one non-limiting embodiment.
  • FIG. 41 illustrates a simplified version of a trigger assembly that includes a shear pin in accordance with one non-limiting embodiment.
  • FIG. 42 illustrates a surgical instrument in accordance with one non-limiting embodiment with part of the housing removed to show various internal components.
  • FIG. 43 is an enlarged view of a portion of a trigger assembly with various components removed for clarity.
  • FIG. 44 is an exploded view of various components of the trigger assembly of FIG. 43 with various components removed for clarity.
  • FIG. 45 illustrates a compression member mounted internal to a drive shaft of a surgical instrument in accordance with one non-limiting embodiment.
  • FIG. 45A is a cross-sectional view of FIG. 45.
  • proximal and distal may be used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient.
  • proximal refers to the portion of the instrument closest to the clinician and the term “distal” refers to the portion located furthest from the clinician.
  • distal refers to the portion located furthest from the clinician.
  • spatial terms such as “vertical,” “horizontal,” “up,” and “down” may be used herein with respect to the illustrated embodiments.
  • surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting and absolute.
  • tissue "welding” and tissue “fusion” may be used interchangeably herein to describe thermal treatments of a targeted tissue volume that result in a substantially uniform fused-together tissue mass, for example, in welding blood vessels that exhibit substantial burst strength immediately post-treatment.
  • the strength of such welds is particularly useful for (i) permanently sealing blood vessels in vessel transection procedures; (ii) welding organ margins in resection procedures; (iii) welding other anatomic ducts wherein permanent closure is required; and also (iv) for performing vessel anastomosis, vessel closure or other procedures that join together anatomic structures or portions thereof.
  • tissue as disclosed herein is to be distinguished from “coagulation”, "hemostasis” and other similar descriptive terms that generally relate to the collapse and occlusion of blood flow within small blood vessels or vascularized tissue.
  • coagulation any surface application of thermal energy can cause coagulation or hemostasis— but does not fall into the category of "welding” as the term is used herein.
  • welding does not create a weld that provides any substantial strength in the treated tissue.
  • the phenomena of truly "welding" tissue as disclosed herein may result from the thermally-induced denaturation of collagen and other protein molecules in a targeted tissue volume to create a transient liquid or gel-like proteinaceous amalgam.
  • a selected energy density is provided in the targeted tissue to cause hydrothermal breakdown of intra- and intermolecular hydrogen crosslinks in collagen and other proteins.
  • the denatured amalgam is maintained at a selected level of hydration-without desiccation— for a selected time interval which can be very brief.
  • the targeted tissue volume is maintained under a selected very high level of mechanical compression to insure that the unwound strands of the denatured proteins are in close proximity to allow their intertwining and entanglement.
  • the intermixed amalgam results in protein entanglement as re-crosslinking or renaturation occurs to thereby cause a uniform fused-together mass.
  • a surgical instrument can be configured to supply energy, such as electrical energy, ultrasonic energy, and/or heat energy, for example, to the tissue of a patient.
  • energy such as electrical energy, ultrasonic energy, and/or heat energy
  • various embodiments disclosed herein provide electrosurgical jaw structures adapted for transecting captured tissue between the jaws and for contemporaneously welding or sealing the captured tissue margins with controlled application of RF energy.
  • Surgical instruments may also be configured to, for example, grasp, sever, and staple tissue.
  • the surgical or electrosurgical instrument 100 may comprise a proximal handle 105, a distal working end or end effector 1 10 and an introducer or elongate shaft 108 disposed in-between and at least partially operably coupling the handle 105 to the end effector 1 10.
  • the end effector 1 10 may comprise a set of openable-closeable jaws with straight or curved jaws— an upper first jaw 120A and a lower second jaw 120B.
  • the jaws 120A and 120B may be operably coupled together such that the first jaw 120A may move between an open position and a closed position with respect to the second jaw 120B.
  • First jaw 120A and second jaw 120B may each comprise an elongate slot or channel 142A and 142B (see FIG. 3), respectively, disposed outwardly along their respective middle portions.
  • the first jaw 120A and the second jaw 120B may be coupled to an electrical source 145 and a controller 150 through electrical leads in the cable 152.
  • the controller 150 may be used to activate the electrical source 145.
  • the electrical source 145 may comprise an RF source, an ultrasonic source, a direct current source, and/or any other suitable type of electrical energy source, for example.
  • FIG. 2 a side view of the handle 105 is shown with half of the first handle body 106A (see FIG. 1 ) removed to illustrate some of the components within the second handle body 106B.
  • the handle 105 may comprise a lever arm or trigger 128 extending from the handle body 106A and/or 106B.
  • the trigger 128 may be pulled along a path 129 such that the trigger 128 moves with respect to the body 106A and/or 106B.
  • the trigger 128 may also be operably coupled to a movable cutting member 140 disposed within the elongate shaft 108 by a shuttle 146 operably engaged to an extension 127 of the trigger 128.
  • movement of the trigger 128 relative to the handle body 106A and/or 106B may cause the cutting member 140 to translate with respect to one or both of the jaws 120A and 120B (see FIG. 1 ).
  • the cutting member 140 may be releasably engaged with a closure beam 170 (see FIGS. 3-4) that is also movably associated with the jaws 120A, 120B.
  • the shuttle 146 may further be connected to a biasing device, such as a spring 141 , which may also be connected to the second handle body 106B, to bias the shuttle 146 and thus the cutting member 140 and/or the closure beam 170 (FIG.
  • a locking member 131 (see FIG. 2) may be moved by a locking switch 130 (see FIG. 1 ) between a locked position, where the shuttle 146 is substantially prevented from moving distally as illustrated, and an unlocked position, where the shuttle 146 may be allowed to freely move in the distal direction, toward the elongate shaft 108.
  • the handle 105 can be any type of pistol-grip or other type of handle known in the art that is configured to carry actuator levers, triggers or sliders for actuating the first jaw 120A and the second jaw 120B.
  • the elongate shaft 108 may have a cylindrical or rectangular cross-section and can comprise a thin-wall tubular sleeve that extends from the handle 105.
  • the elongate shaft 108 may include a bore extending
  • actuator mechanisms such as the cutting member 140 and/or the closure beam 170, for example, for actuating the jaws and for carrying electrical leads for delivery of electrical energy to electrosurgical components of the end effector 1 10.
  • the end effector 1 10 may be adapted for capturing, welding or sealing, and transecting tissue.
  • the first jaw 120A and the second jaw 120B may close to thereby capture or engage tissue about a longitudinal axis 125 defined by the cutting member 140.
  • the first jaw 120A and the second jaw 120B may also apply compression to the tissue.
  • the elongate shaft 108, along with the first jaw 120A and the second jaw 120B, can be rotated a full 360 degrees, as shown by arrow 1 17, relative to the handle 105 through, for example, a rotary triple contact.
  • the first jaw 120A and the second jaw 120B can remain openable and/or closeable while rotated.
  • a collar 1 19, or other rotational control device may be manipulated by the user to rotate the end effector 1 10.
  • FIGS. 3 and 4 illustrate perspective views of the end effector 1 10.
  • FIG. 3 shows the end effector 1 10 in an open configuration
  • FIG. 4 shows end effector 1 10 in a closed configuration.
  • the end effector 1 10 may comprise the upper first jaw 120A and the lower second jaw 120B.
  • the first jaw 120A and second jaw 120B may each have tissue-gripping elements, such as teeth 143, disposed on the inner portions of first jaw 120A and second jaw 120B.
  • the first jaw 120A may comprise an upper first jaw body 161 A with an upper first outward-facing surface 162A and an upper first energy delivery surface 175A of a first electrode, for example.
  • the second jaw 120B may comprise a lower second jaw body
  • the first energy delivery surface 175A and the second energy delivery surface 175B may both extend in a "U" shape about the distal end of end effector 1 10.
  • the energy delivery surfaces 175A, 175B may provide a tissue contacting surface or surfaces for contacting, gripping, and/or manipulating tissue therebetween.
  • the closure beam 170 and the cutting member 140 may be sized and configured to fit at least partially within the channel 142A of the first jaw 120A.
  • the cutting member 140 may also be sized and configured to fit at least partially within the channel 142B of the second jaw 120B.
  • the closure beam 170 and the cutting member 140 may translate along the channel 142A between a first, retracted position correlating with the first jaw being at the open position (FIG. 3), and a second, advanced position correlating with the second jaw being at the closed position (see, for example, FIG. 4).
  • the trigger 128 of handle 105 see FIG.
  • the cutting member 140 and/or closure beam 170 may be adapted to actuate the cutting member 140 and, subsequently, the closure beam 170, which also functions as a jaw-closing mechanism.
  • the cutting member 140 and/or closure beam 170 may be urged distally as the trigger 128 is pulled proximally along the path 129 via the shuttle 146, seen in FIG. 2 and discussed above.
  • the cutting member 140 and the closure beam 170 may each comprise one or several pieces, but in any event, may each be movable or translatable with respect to the elongate shaft 108 and/or the jaws 120A, 120B.
  • the cutting member 140 may be made of 17-4 precipitation hardened stainless steel, for example.
  • At least a portion of the cutting member 140 is 716 stainless steel.
  • the distal portion of the cutting member 140 may comprise a flanged "I"- beam configured to slide within the channels 142A and 142B in jaws 120A and 120B.
  • the distal portion of the closure beam 170 may comprise a "C"-shaped beam configured to slide within one of channels 142A and 142B. As illustrated in FIGS. 3-5, the closure beam is shown residing in and/or on the channel 142A of the first jaw 120A. The closure beam 170 may slide within the channel 142A, for example, to open and close the first jaw 120A with respect to the second jaw 120B.
  • the distal portion of the closure beam 170 may also define inner cam surfaces 174 for engaging outward facing surfaces 162A of the first jaw 120A, for example. Accordingly, as the closure beam 170 is advanced distally through the channel 142A, from, for example, a first position (FIG. 3) to a second position (FIG. 4), the first jaw 120A may be urged closed (FIG. 4).
  • the closure beam 170 may also be guided by upper walls 165 of the first jaw 120A, which as seen in FIG. 5 may at least partially envelope the closure beam 170.
  • the upper walls 165 have been omitted from FIGS. 3-4 for purposes of clarity.
  • the cutting member 140 may be sized and configured to at least partially fit or slide within the closure beam 170, such as within an inner channel 171 of the closure beam 170, for example.
  • a portion of the cutting member 140 may protrude from the closure beam 170 in a direction transverse to a longitudinal axis 172 defined by the closure beam 170.
  • the flanges 144A and 144B of cutting member 140 may define inner cam surfaces for engaging the inner channel 171 of the closure beam 170 and the outward facing surfaces 162B of the second jaw 120B.
  • the opening and closing of jaws 120A and 120B can apply very high compressive forces on tissue using cam mechanisms which may include reciprocating "C-beam” closure beam 170 and/or "I-beam” cutting member 140 and the outward facing surfaces 162A, 162B of jaws 120A, 120B.
  • cam mechanisms which may include reciprocating "C-beam” closure beam 170 and/or "I-beam” cutting member 140 and the outward facing surfaces 162A, 162B of jaws 120A, 120B.
  • the flanges 144A and 144B of the distal end of the cutting member 140 may be adapted to slidably engage the inner channel 171 of the closure beam 170 and the second outward-facing surface 162B of the second jaw 120B, respectively.
  • the channel 142A within the first jaw 120A and the channel 142B within the second jaw 120B may be sized and configured to accommodate the movement of closure beam 170 and/or the cutting member 140, which may comprise a tissue-cutting element, for example, a sharp distal edge and/or surface.
  • FIG. 4 shows the distal end 178 of the closure beam 170 advanced at least partially through the channel 142A.
  • the advancement of the closure beam 170 can close the end effector 1 10 from the open configuration shown in FIG. 3 to the closed configuration shown in FIG. 4.
  • the closure beam 170 may move or translate along the channel 142A between a first, retracted position and a second, fully advanced position.
  • the retracted position can be seen in FIG. 3, where the jaws 120A, 120B are in an open position and a distal end 178 of the closure beam 170 is positioned proximal to the upper outward-facing surface 162A.
  • the fully advanced position while not shown, may occur when the distal end 178 of the closure beam 170 is advanced to a distal end 164 of the channel 142A and the jaws are in a closed position, see FIG. 4.
  • the cutting member 140 (FIG.
  • the cutting member 140 may also translate with respect to the closure beam 170 as the closure beam 170 is being advanced through the jaws 120A, 120B.
  • distal portions of the closure beam 170 and the cutting member 140 may be positioned within and/or adjacent to one or both of the jaws 120A and 120B of the end effector 1 10 and/or distal to the elongate shaft 108.
  • the upper first jaw 120A and the lower second jaw 120B define a gap or dimension D between the first energy delivery surface 175A and the second energy delivery surface 175B of the first jaw 120A and the second jaw 120B, respectively.
  • Dimension D may equal from about 0.0005" to about 0.040", for example, and in some embodiments may equal about 0.001 " to about 0.010", for example.
  • the edges of first energy delivery surface 175A and second energy delivery surface 175B may be rounded to prevent the dissection of tissue.
  • the end effector 1 10 may be coupled to the electrical source 145 and the controller 150.
  • the first energy delivery surface 175A and the second energy delivery surface 175B may likewise each be coupled to electrical source 145 and the controller 150.
  • the first energy delivery surface 175A and the second energy delivery surface 175B may be configured to contact tissue and deliver electrosurgical energy to engaged tissue which is adapted to seal or weld the tissue.
  • the controller 150 can regulate the electrical energy delivered by the electrical source 145 which in turn delivers electrosurgical energy to the first energy-delivery surface 175A and the second energy-delivery surface 175B.
  • the energy delivery may be initiated by an activation button 124 operably engaged with the trigger 128 and in electrical communication with the controller 150 via the cable 152.
  • the electrosurgical energy delivered by the electrical source 145 may comprise radiofrequency (RF) energy, or other suitable forms of energy.
  • at least one of the opposing first and second energy delivery surfaces 175A and 175B may carry variable resistive positive temperature coefficient (PTC) bodies.
  • the first energy delivery surface 175A comprises a passive electrode and the second energy delivery surface 175B comprises an active electrode. Additional details regarding electrosurgical end effectors, jaw closing mechanisms, and electrosurgical energy-delivery surfaces are described in the following U.S. patents and published patent applications, all of which are incorporated herein in their entirety by reference and made a part of this specification: U.S. Pat. Nos.
  • tissue rupturing along the inner and outer edges of a seal may be the result of unequal compression between the vessel walls being approximated.
  • tissue within an active electrode contact zone and zones immediately lateral to this zone liquefy to a coagulum material.
  • pressure is resisted by the intact "unaffected” tissue while the amorphous coagulum is ruptured.
  • high stress concentration at the outer edge of the jaw, high stress concentration at the inner edge of the knife slot, unequal distribution of thermal activity at the area between the active electrode and the outer wall as well as the inner wall contact surfaces on the upper jaw and lower jaw may also contribute to tissue rupture.
  • tissue within the knife slot remaining unaffected after completion of the RF energy cycle. Such a failure may lead to difficulty cutting tissue to obtain proper transection and may also negatively impact seal integrity. Furthermore, in some instances, tissue may inadvertently be charred locally at an area in direct contact with the active electrode surface. The localized heating may cause limited formation of coagulum and subsequent desiccation of the greater seal volume. The tissue within this locally heated zone becomes desiccated too quickly, before the current and therefore temperature is distributed to the rest of the seal volume.
  • the end effector may comprise teeth to prevent slipping and milking.
  • the shape and design of the teeth may be designed to minimize damage to the tissue.
  • the teeth are combined with an RF bi-polar device, for example, they need to work in concert with the electrical and compressive properties of the device to aid in both tissue sealing and tissue grasping.
  • teeth are required that are not only atraumatic but also function properly with the RF sealing, or other type of energy-based sealing.
  • FIG. 6 is a cross-sectional view of an end effector 210 having atraumatic teeth in a closed position in accordance with one non-limiting embodiment. Similar to the end effector 1 10 illustrated in FIGS.
  • the end effector 210 comprises a first jaw 220A and a second jaw 220b.
  • the first and second jaws 220A and 220B may each define a channel 242A and 242B, respectively, for receiving a closure beam (not illustrated).
  • a knife slot 272 may be defined to receive a cutting element (not illustrated) during an operation stroke.
  • the inner channel 272 (FIG.6) defines a transection plane 233 (FIG. 10) of the end effector 210, which is the plane through which the cutting element travels during an operational stroke.
  • a cross-sectional end view of a transection plane 233 is schematically indicated by plane edge 281.
  • the transection plane may be curved if the path of the cutting member in the end effector 210 is curved.
  • At least one of the first jaw 220A and second jaw 220B may have teeth 243 positioned to assist with grasping, manipulating, energy delivery and/or compressing captured tissue.
  • at least one of the first jaw 220A and second jaw 220B carry a variable resistive positive temperature coefficient (PTC) body 275.
  • PTC positive temperature coefficient
  • the electrode 277 may ride on an insulative body 279 to avoid contact between the electrode 277 and a return path to the RF source 145 (FIG. 1 ), such as the conductive portion of the second jaw 220B.
  • FIG. 7 is an enlarged cross-sectional view of the first jaw 220A of the end effector 210 shown in FIG. 6.
  • the first jaw 220A may generally define a transection zone 204 that is disposed intermediate a first lateral portion 202 and a second lateral portion 206 and parallel to the transection plane of the end effector 210.
  • the first lateral portion 202 may carry a first tooth 243A and the second lateral portion may carry a second tooth 243B.
  • the teeth 243 may be integral or unitary with upper walls 265A and 265B of the first jaw 220A, as illustrated. In other embodiments, the teeth 243 may be joined to or otherwise coupled to the first jaw 220A using suitable attachment means.
  • Laterally disposed teeth such as tooth 243A and 243B may collectively have a generally "V-shaped" cross-sectional profile.
  • the first tooth 243A may have a slanted face 245A and the second tooth 243B may have a slanted face 245B.
  • the slanted face 245A may comprise an inner portion 245AA and an outer portion 245AB.
  • the slanted face 245A may be slanted such that the inner portion 245AA is positioned closer to the transection zone 204 than the outer portion 245AB.
  • the slanted face 245B may comprise an inner portion 245BA and an outer portion 245BB.
  • the slanted face 245B may be slanted such that the inner portion 245BA is positioned closer to the transection zone 204 than the outer portion 245BB.
  • the first tooth 243A may have a first transection zone face 247A and the second tooth 243B may have a second transection zone face 247B that is laterally opposed to the first transection zone face 247A. While the slanted faces 245A and 245B are illustrated as being planar, it is to be appreciated that in some embodiments, the slanted faces 245A and/or 245B may be curved, or a combination of planar and curved components.
  • FIG. 7A is an enlarged view of the first tooth 243A and a portion of the first jaw 220A in accordance with one non-limiting embodiment.
  • the first tooth 243A may comprise a lower face 249A that joins the slanted face 245A to the first transection zone face 247A to aid in the atraumatic engagement of captured tissue.
  • the slanted face 245A has a slant angle of ⁇ . In one embodiment, slant angle ⁇ is approximately 42 degrees. The slant angle ⁇ may differ based on application.
  • the slant angle ⁇ of the tissue slanted faces may be based on the type of tissue being captured by the end effector 210 or may be based on the size of the end effector 210. In some embodiments, the slant angle ⁇ may be in the range from about 10 degrees to about 80 degrees, for example.
  • FIG. 8 is a perspective view of the end effector 210 and FIG. 8A is an enlarged view of a proximal portion of the first jaw of the end effector 210.
  • the end effector 210 may have a plurality of teeth 243 each with a slanted face 245 that serves as a tissue engaging surfaces.
  • the teeth 243 may be elongated in the longitudinal direction with leading face 251 on the distal side and a trailing face 253 on the proximal side.
  • the leading face 251 may be angled such that it is substantially oblique to a longitudinal axis 215 of the first jaw 220A.
  • the trailing face 253 may be substantially normal to the longitudinal axis 215 of the first jaw 220A. In some embodiments, the trailing face 253 may also be slanted at either the same or different angle as the leading face 251. Generally, the angled leading face 251 allows tissue to move into the jaws 220A and 220B relatively easily while the square back (e.g., trailing face 253) assists in locking the tissue in place once the jaws are closed. The transitions from the leading face 251 to the lower face 249 and to the trailing face 253 may be rounded to reduce trauma to the captured tissue.
  • the relatively long side profile of the teeth 243 provide tissue compression to maximize sealing when the RF (or other type of energy) energizes the tissue.
  • the longitudinal length of an individual tooth 243 in the direction indicated by the arrow 241 may be about 3 to about 5 times the depth of the tooth 243, as determined by the length of the trailing face 253.
  • the longitudinal length of an individual tooth 243 in the direction indicated by the arrow 241 may be about 2 to about 7 times the depth of the tooth.
  • the longitudinal space between adjacent teeth may be about 2 to about 3 times smaller than the longitudinal length of the teeth 243 to increase the conductive and compressive nature of the teeth.
  • the longitudinal length of at least one tooth 243 may differ from the longitudinal length of a different tooth 243.
  • the teeth 243 are illustrated as being a component of the first jaw 220A, it is to be appreciated that the teeth 243 may instead be located on the second jaw 220B, or on both first and second jaws 220A and 220B.
  • the teeth 243 are conductive and are part of the return path for the RF source 145 (FIG. 1 ) with their relatively large surface area helping to compress and deliver energy to the captured tissue for sealing.
  • FIG. 9 is an enlarged cross-sectional view of the second jaw 220B of the end effector 210 shown in FIG. 6.
  • the electrode 277 may have a first lateral portion 277A and a second lateral portion 277B that are separated by the transection zone 204.
  • the first and second lateral portions 277A and 277B may collectively have a generally "V-shaped" cross-sectional profile.
  • the particular profile of the electrode 277 may be coordinated with the profile of the teeth 243.
  • an electrode slant angle ⁇ may be substantially similar to the slant angle ⁇ of the slanted face 245A (FIG. 7A).
  • a V-shaped electrode profile serves to increase the amount of contact with captured tissue thereby reducing the likelihood of charring the tissue, for example.
  • FIG. 9A is an enlarged view of a portion of FIG. 9.
  • the electrode 277 comprises a plurality of different sections, such as four sections, for example. Positioned proximate the transection plane is a inner vertical section 260 which transitions into a slanted section 262. Transitioning outwardly from the slanted section 262 yields a horizontal section 264 which then transitions into an outer vertical section 266. As illustrated, the transitions between the various sections of the electrode 277 may be rounded in order to reduce incidental damage to the captured tissue. As is to be appreciated, other embodiments may utilize an electrode 277 having a different cross-sectional profile. In any event, the teeth 243 (FIG.
  • the slanted face 245A of the first tooth 243A may be generally parallel to the slanted section 262 of the electrode.
  • FIG. 6A is a cross-sectional view showing the interaction between the first and second jaws 220A, 220B in the closed position in accordance with one non-limiting embodiment.
  • the first jaw 220A comprises teeth 243A and 243B.
  • the first jaw 220A may or may not comprise teeth and the second jaw 220B may or may not comprise teeth.
  • first jaw 220A is illustrated carrying the variable resistive PTC body 275.
  • the PTC body 275 may be wider, narrower, thinner or thicker than the illustrated embodiment.
  • the active electrode contact length is measured as the perimeter of the electrode 277 that is in contact with captured tissue when viewed from a cross sectional plane perpendicular to the transection plane. In some embodiments, the active electrode contact length may range from about 0.088" to about 0.269", for example. In some embodiments, the active electrode contact length may range from about 0.050" to about 0.400", for example. As used herein, the passive electrode contact length is measured as the portions of the first and second jaws 220A and 220B that are in contact with captured tissue when viewed from a cross sectional plane perpendicular to the transection plane. In some embodiments, the passive electrode contact length may range from about 0.1 13" to about 0.804", for example.
  • the passive electrode contact length may range from about 0.080" to about 1.000", for example.
  • the ratio of contact areas is the ratio between the active electrode contact length to the passive electrode contact length. In some embodiments, the ratio of contact areas ranges from about 0.145 to about 2.382, for example. In some
  • the ratio of contact areas ranges from about 0.080 to about 3.000, for example.
  • distance identified by distance “A” is the internal horizontal spacing between the knife slot 272 and the active electrode 277 on the second jaw 220B.
  • distance A is in the range of about 0.0" to about 0.044", for example.
  • distance A is in the range of about 0.0" to about 0.060", for example.
  • distance identified by distance “B” is the horizontal spacing between opposing active electrode 277 contact zones.
  • distance B is in the range of about 0.0" to about 0.034", for example.
  • distance B is in the range of about 0.0" to about 0.1 12", for example.
  • distance identified by distance “C” is the internal horizontal spacing between the knife slot 272 defined by the first jaw 220A and the active electrode 277 on the second jaw 220B. In one embodiment, distance C is in the range of about 0.0" to about 0.044", for example. In another embodiment, distance C is in the range of about 0.0" to about 0.060", for example.
  • the distance identified by distance “D” is the external horizontal spacing between the active and passive electrode on the second jaw 220B. In one embodiment, distance D is in the range of about 0.0" to about 0.013", for example. In another embodiment, distance D is in the range of about 0.0" to about 0.025", for example.
  • distance E is the external horizontal spacing between the active electrode on the second jaw 220B and the passive electrode on the first jaw 220A. In one embodiment, distance E is in the range of about 0.0" to about 0.012", for example. In another embodiment, distance E is in the range of about 0.0" to about 0.025", for example.
  • distance identified by distance “F” is the external vertical spacing between the active and passive electrode on the second jaw 220B. In one embodiment, distance F is in the range of about 0.0" to about 0.023", for example. In another embodiment, distance F is in the range of about 0.0" to about 0.035", for example.
  • the distance identified by distance “G” is the external vertical spacing between the active electrode on the second jaw 220B and passive electrode on the first jaw 220A. In one embodiment, distance G is in the range of about 0.0" to about 0.028", for example. In another embodiment, distance G is in the range of about 0.0" to about 0.040", for example.
  • the distance identified by distance “J” is the compression relief spacing on second jaw 220B. In one embodiment, distance J is about 0.002", for example. In another embodiment, distance J is about 0.005", for example.
  • the distance identified by distance “K” is the vertical exposure of active electrode 277 to the knife slot 272. In one embodiment, distance K is in the range of about 0.006" to about 0.058", for example.
  • distance K is in the range of about 0.005" to about 0.060", for example.
  • the distance identified by distance “L” is the straight line spacing between the upper edge/corner of the active electrode 277 to the lower edge/corner of the outer wall of the first jaw 220A. In one embodiment, distance L is in the range of about 0.008" to about 0.031 ", for example. In another embodiment, distance L is in the range of about 0.005" to about 0.040", for example.
  • the distance identified by distance “M” is the straight line spacing between the lower edge/corner of the active electrode 277 to the upper edge/corner of the outer wall of the second jaw 200B. In one embodiment, distance M is in the range of about 0.005" to about 0.037", for example.
  • distance M is in the range of about 0.002" to about 0.045", for example.
  • the distance identified by distance “N” is the straight line distance between the tissue contact surface of the second jaw 220B and the surface of the first jaw 220A. In one embodiment, distance N is in the range of about 0.0" to about 0.031 ", for example. In one embodiment, distance N is in the range of about 0.0" to about 0.045", for example.
  • the distance identified by distance "P” is the compression relief spacing on first jaw 220A. In one embodiment, distance P is about 0.002", for example. In another embodiment, distance P is about 0.005", for example.
  • the V-shape cross-sectional profile of the electrode 277 provides numerous benefits, such as adding additional contact length to the active electrode surface, allowing closer proximity of the active electrode surface to the knife slot, allowing closer proximity between seal zones and better thermal communication between seal zones, and allowing inclusion of non traumatic teeth providing required compression and grasping capabilities.
  • FIG. 10 is a cross-sectional perspective view of the end effector 210 incorporating offset electrodes in accordance with one non-limiting embodiment.
  • a transection plane 233 is illustrated that is generally parallel to the path that a cutting element (not illustrated) travels during an operational stroke. As illustrated, the transection plane 233 is curved to match the curve of the first jaw 220A and second jaw 220B. It is to be appreciated, that in embodiments having straight jaws, for example, the transection plane 233 will also be straight.
  • FIG. 1 1 is an end effector 310 in accordance with one non-limiting embodiment.
  • FIG. 1 1 A is an enlarged view of a portion of FIG. 1 1 .
  • the end effector 310 may be structured similarly to the end effector 1 10 illustrated in FIG. 1 such that it has a first jaw 320A and a second jaw 320B. At least one of the jaws 320A and 320B may have teeth 343 for aiding in the manipulation and grasping of tissue. In some embodiments, the teeth 343 may be structured similarly to the teeth 243 illustrated in FIG. 7, for example.
  • a bi-polar RF device having an end effector with sealing jaws, such as electrosurgical instrument 100 that is illustrated in FIG.
  • the second jaw 320B may include a first conductive stop 322.
  • the first conductive stop 322 is insulated from a supply electrode 324, which is in communication with the energy supply path, by an insulator 326.
  • the first conductive stop 322 may be positioned at the distal end of a knife slot 327.
  • FIG. 12 is a partial perspective view of the first jaw 320A of the end effector 310 in accordance with one non-limiting embodiment.
  • the first jaw 320A may include, for example, a variable resistive positive temperature coefficient (PTC) body 375, which is in electrical communication with the energy return path.
  • the first jaw 320A may also include a second conductive stop 328.
  • the first conductive stop 322 may have a surface 330 that can contact a surface 332 of the second conductive stop 328 when the end effector 310 in the closed position without any tissue intermediate the jaws. This interaction prevents the unwanted flow of energy (e.g., RF energy) when the electrosurgical instrument is not being used since the electrode 324 will be prevented from coming in contact with the PTC body 375, or any other part of the energy return path.
  • energy e.g., RF energy
  • first and second conductive stops 322 and 328 prevents potentially damaging high force from being applied to the PTC body 375.
  • the first and second conductive stops 322 and 328 may be made from the same material as other parts of the end effector 310, thereby easing manufacturing.
  • the first conductive stop 322 may be positioned near the distal tip of the end effector 310. While the conductive stop 322 illustrated in FIG. 1 1 is cylindrical, it is to be appreciated that any suitable structure may be used. In one embodiment, the interaction between the first and second conductive stops 322 and 328 does not set the tissue gap for sealing but only prevents unwanted contact between a supply electrode and a return electrode of the end effector 310 when there is no tissue intermediate the jaws 320A and 320B.
  • an I-beam associated with the cutting element may set the tissue gap for sealing, while the conductive stop 322 is used to form a clearance between the supply electrode 324 and the PTC body 375 when no tissue is present between the jaws of the end effector.
  • the first and second conductive stops 322 and 328 may be conductive, they may serve as return paths when energy is delivered to tissue captured between the jaws 320A and 320B and therefore may aid in the sealing of the tissue.
  • FIGS. 13A and 13B are cross-sectional side views of the distal end of the end effector 310 illustrated in FIG. 1 1 during two different states of operation.
  • the placement of the first jaw 302A relative to the second jaw 302B is set by the I-beam (not illustrated) when it distally advanced through the end effector 310.
  • the I-beam not illustrated
  • the first conductive stop 322 may not necessarily contact the second conductive stop 328.
  • FIG. 13B illustrates the end effector in an "over-closed" state.
  • An over-closed state may be caused by a variety of factors, such as loose fitting components, components out of tolerance, or gravity, for example.
  • this over-closed state there is contact between the first conductive stop 322 and the second conductive stop 328.
  • the electrode 324 is still prevented from making physical contact with the PTC body 375.
  • FIG. 14 is an end effector 410 that has an electrode 477 that incorporates a waffle pattern.
  • waffle pattern includes a grid-like pattern, as well as non-grid-like patterns. As illustrated the waffle pattern is incorporated onto the second jaw 420B. It is to be appreciated, however, that the waffle pattern may be incorporated into the first jaw 420A.
  • the waffle pattern on the electrode 477 increases the surface area and the number of edges, thereby increasing the amount of tissue in contact with the electrode 477 when capturing tissue.
  • the sharp edges also can help to concentrate electrical energy to improve transfer efficiency of the electrode 477.
  • FIG. 15 shows the tissue contacting surface 422 of the first jaw 420A.
  • a reverse pattern of the waffle pattern of the second jaw 420B may be incorporated into the first jaw 420A.
  • the reverse waffle pattern may be created by the PTC body 475, for example.
  • the raised surfaces on the electrode may be use to form the corresponding indentations by heating the two elements and compressing to a desired depth.
  • the waffle pattern incorporated into the end effector 410 may be any suitable pattern, such as a grid of raised surfaces 479 (FIG. 14).
  • the waffle pattern may comprises randomly placed raised surfaces, or may comprise a combination of raised surface in a grid and raised surfaces in random locations.
  • the waffle pattern may cover substantially the entire electrode 477, or less than substantially the entire electrode 477.
  • the raised surface may be any suitable shape, such as square (as illustrated), oval, circular, or any other bounded shape.
  • the corresponding indentions 481 may be a similar shape as the raised surface 479.
  • the raise surface 479 may incorporate a plurality of different shapes.
  • the connecting surfaces 483 which span the raised surfaces 479 and base surface 485 may be outwardly slanted to increase the amount of surface area, as illustrated, or generally
  • the raised surfaces 479 may be generally evenly distributed across the electrode 477 or may have higher or lower concentrations in different portions of the electrode 477.
  • the end effector 410 may comprises more than 5 raised surfaces 479. In some embodiments, the end effector 410 may comprises more than 20 raised surfaces 479. In some embodiments, the end effector 410 may comprises more than 10 raised surfaces 479. In some embodiments, the end effector 410 may comprises more than 100 raised surfaces 479.
  • the waffle-pattern may be generated through any suitable manufacturing technique, such as milling or stamping, for example.
  • the raised surfaces may be incorporated into the PTC body 475 (or other return electrode) and the indentions may be incorporated into the active electrode 277.
  • the raised surfaces 479 may have a height of about 0.020" and the indentations may have a depth of about 0.020".
  • FIG. 16 is the distal end of a movable cutting member 540 in accordance with one non- limiting embodiment.
  • the movable cutting member 540 may comprise a plurality of lateral extending elements, such as a first jaw closure pin 542 and a second jaw closure pin 544.
  • the movable cutting member 540 may have a jaw opening pin 546. As is to be appreciated, the pins may laterally extend from both sides of the movable cutting member 540.
  • the movable cutting member 540 may be comprised of a plurality of bands, such as a first support band 548, a second support band 550, and a knife band 552 disposed intermediate the support bands 548 and 550.
  • the knife band 552 may have a sharp distal cutting edge 554.
  • the support bands 548 and 550 may provide rigidity to the movable cutting member 540 and protect the sharp distal cutting edge 554 from the walls of the knife slot 530 (FIG. 17), thereby preventing unintended wear on the distal cutting edge 554.
  • the movable cutting member 540 may define at least one cutout 556 through at least one of the bands.
  • the at least one cutout 556 may improve lateral flexibility of the movable cutting member 540.
  • the first and second support bands 548 and 550 may also define a distal cutout 558, such as notch, for example.
  • the cutout 558 may be generally symmetric about a longitudinal axis 552 or may be asymmetric (as illustrated). During transection, the distal cutout 558 provides a funneling action to the tissue to force it to the center of the cutting edge 554.
  • the movable cutting member 540 may be electrically coupled to the energy source to serves as part of the energy return path (e.g., the passive electrode).
  • FIG. 17 is a view of a distal end of an end effector 510 for use with the movable cutting member 540.
  • the end effector has a first jaw 520A and a second jaw 520B.
  • the first jaw 520A defines a knife slot 530 through which the movable cutting member 540 translates.
  • the first jaw 520A may further define closure pin tracks 532 on either side of the knife slot 530.
  • At the distal end of at least one of closure pin tracks 532 is a closure pin stop 534 to impede distal movement of the first jaw closure pin 542 during an operational stroke.
  • the second jaw 520B may include similar closure pin tracks and closure pin stop to
  • the knife slot 530 may distally extend further than the closure pin tracks 532, as the first and second jaw closure pins 542 and 544 are positioned slightly proximal from the sharp distal cutting edge 554.
  • the first and second jaw closure pins 542 and 544 ride in the pin closure tracks to simultaneously close the end effector 510 and compress the tissue.
  • the sharp distal cutting edge 554 transects the tissue as the movable cutting member 540 is distally progressed.
  • the moveable cutting member 540 may be distally progressed until at least one of the jaw closure pins 542 and 544 engages a pin stop, such as pin stop 534.
  • the use of the pin stop 534 may provide repeatable cutting length and prevent damage to the sharp distal cutting edge 554 by preventing the sharp distal cutting edge 554 from contacting the distal end of the knife slot 530.
  • the trigger has to perform a lot of work with a relatively small stroke (e.g., the path 129 in FIG. 2).
  • a relatively small stroke e.g., the path 129 in FIG. 2.
  • the amount of force necessary to distally advance the cutting member after the tissue has been clamped may be reduced by altering the shape of a path (e.g., the ramp) that the closing member, such as an I-beam, travels during an operational stroke.
  • the shape of the ramp profile may be cammed to generally reduce the amount tissue compression.
  • FIG. 18 shows a cross-sectional view of an end effector 610 in an opened position in accordance with one non-limiting embodiment. Similar to previously discussed embodiments, the end effector 610 may have a first jaw 620A that is pivotable towards a second jaw 620B during an operational stroke. A variety of pins that are coupled to a movable cutting member (not illustrated) may engage with various ramps within the end effector 610 open and/or close the jaws 620A and 620B.
  • a proximal pin 646 may engage an opening ramp 660 when the proximal pin 646 is drawn proximally (e.g., at the conclusion of an operational stroke).
  • the opening ramp 660 may have a curved tail section 662 that the causes the first jaw 620A to rapidly pivot in the direction indicated by the arrow 647 when engaged with the proximal pin 646.
  • the cross-sectional shape of the opening ramp 660 will affect the relative speed at which the jaws 620A and 620B open.
  • an end effector having an opening ramp that has a relatively gradual slope will open more slowly than an end effector with a steeper opening ramp.
  • the jaws 620A and 620B may "open" when the second jaw 620B remains relatively stationary while the distal end of the first jaw 620A pivots away from the distal end of the second jaw 620A.
  • the second jaw 620B may also comprise an opening ramp similar to the opening ramp 660 of the first jaw 620A.
  • only the second jaw 620B comprises an opening ramp that is configured to pivot the distal end of the second jaw 620B away from the distal end of the first jaw 620A.
  • the end effector 610 may comprise additional cammed compression pathways to accommodate a first jaw closure pin 642 and a second jaw closure pin 644 during an operational stroke.
  • the first jaw 620A has a first closure pin track 632 and the second jaw 620B has a second closure pin track 633.
  • the second closure pin track 633 can be substantially linear, as illustrated, or may include a variety of sloped or curved portions.
  • the first closure pin track 632 has a plurality of sloped profiles to affect the action of the first jaw 620A during an operational stroke and reduce the force to fire.
  • FIG. 19 illustrates the end effector after the first jaw 620A has been pivoted toward the second jaw 620B through distal advancement of the movable cutting member.
  • first closure pin track 632 At the proximal end of the first closure pin track 632 is a relatively steep closure ramp 650.
  • first jaw closure pin 642 As the first jaw closure pin 642 is distally translated from the position shown in FIG. 18, it engages the closure ramp 650 to pivot the first jaw 620A toward the second jaw 620B relatively quickly.
  • the first jaw closure pin 642 then encounters a ridge 652 at the top of the closure ramp 650.
  • the ridge 652 may have a flat portion that transitions down to a ramped section 654.
  • the tissue contacting surface of the first jaw 620A may be angled to reduce the compressive impact on the tissue at the distal end of the end effector 610 prior to advancement of the moveable cutting member.
  • the ramped section 654 transitions to a flat section 656 positioned intermediate the ramped section 654 and the distal end of the end effector 610.
  • the relative elevation of the flat section 656 may be substantially similar to that of the flat portion of the ridge 652.
  • the proximal pin 646 may be positioned on the movable cutting member such that it does not contact the first closure pin track 632.
  • the second jaw closure pin 644 may progress along the second closure pin track 633 during the operational stroke.
  • the closure ramp 650 leads to a ridge 652 that has a full close flat portion.
  • the flat portion of the ridge 652 leads to a downward ramped section 654.
  • the downward ramped section 654 generally relieves the closing pressure where the loads are highest.
  • the ramped section 654 ramps back up to a full close flat section 656 for final compression.
  • the profile of the track may be modified in various embodiments.
  • the length of slope of the ramped section 654 may be modified, or the flat section 656 may be modified to have a slope, or other modifications may be made.
  • the second closure pin track 633 may be modified to have features similar to that of first closure pin track 632.
  • various finishings, coatings, and/or lubrications may be used to reduce trigger forces by lowering friction between the moving components of the end effector.
  • at least one of the first jaw closure pin 642 and a second jaw closure pin 644 are coated with a friction reducing substance.
  • the tracks in which the pins travel may also be coated with a friction reducing substance.
  • the friction reducing substances may include boron aluminum manganese (BAM), aluminum titanium nitride (AITiN), titanium nitride, diamond-like carbon (DLC), molybdenum disulfide titanium, or vanadium carbide (VC), for example.
  • the sides of the moveable cutting member may also be coated with a friction reducing substance, such as titanium nitride (TiN), for example, to help reduce galling against the jaw track.
  • a friction reducing substance such as titanium nitride (TiN)
  • TiN titanium nitride
  • any suitable lubrication substance may be used to reduce the force to fire and improve operation of the surgical instrument.
  • suitable lubricants include KRYTOX, sodium stearate, DOW 360, and NUSIL, for example.
  • the surface finish of various components of the end effector 610 may also be modified to lower friction.
  • the interfaces between various components of the end effector may be electropolished and secondary mechanical polishing using abrasives may be utilized. In some embodiments, an average surface roughness of about 4 to 16 microinches is targeted.
  • various components may be made from specific materials that help to reduce frictional forces. As described above, lowering the friction of interface components can reduce the force to fire of the end effector.
  • spinodal bronzes may be utilized to assist in the reduction of friction.
  • spinodal bronzes contain copper and nickel and operate well in applications having high loads and low speeds.
  • a variety of parts of the end effector 610 may be comprised of spinodal bronze, such as the pins 642, 644, and 646, for example.
  • Spinodal bronzes are available from ANCHOR BRONZE (e.g., NICOMET) and BRUSH-WELLMAN (e.g., TOUGHMET).
  • Parts comprised of spinodal bronze may be used in a wide variety of surgical instruments, such as endocutters, staplers, RF devices, and ultrasonice devices, for example.
  • other techniques are used to reduce the force at the trigger and enable a greater chance of success of seal.
  • the amount of force required to compress the tissue may be reduced by reducing the amount of tissue being compressed to a relatively small thickness, such as 0.006", for example.
  • FIG. 22 is a cross-sectional view of a jaw 720 in accordance with one non-limiting embodiment.
  • the jaw 720 may define a cavity 724 to receive a compression element, such as an I-beam, for example, and a knife cavity 722 through which a cutting element can pass.
  • the jaw 720 also has a tapered electrode 777 positioned on an insulator 779.
  • the tapered electrode 777 has an inner region 780 that is positioned toward an inner edge of the tapered electrode 777. In one embodiment, at full compression there is about a 0.006" gap between the inner region 780 and a passive electrode positioned on an opposing jaw (not shown). This narrow region is the area intended to have the greatest seal strength. Moving outward, the tapered electrode 777 tapers away from the inner region 780 and increases the gap. As the gap increases, the amount of tissue compression is decreased.
  • the taper angle ⁇ may be any suitable angle, such as in the range from about 1 to about 30 degrees, for example. In one embodiment, the taper angle ⁇ is about 10 degrees. In one embodiment, an outer region 782 descends a distance d from the inner region 780. In one embodiment, the distance d is about 0.007". In some embodiments, the distance d may be in the range of about 0.002" to about 0.020", for example. Through the use of tapered surface, the tissue load in the jaw may decrease in the range of about 30% to about 50%. In some embodiments, the passive electrode may be alternatively tapered, or both the active electrode and the passive electrode may be tapered.
  • tapering the electrode effectively reduces the amount of tissue that is to be compressed by the jaws, with tissue proximate the cutting element receiving the most compression.
  • other electrode configuration may be implemented to achieve a variation in tissue compression across the contacting surface of the electrode.
  • the electrode is cylindrically shaped to compress the tissue at a narrow line contact along the jaw length. All such implementations are intended to be covered by this disclosure.
  • the relative distance between the compression pins on the movable cutting member may differ during different stages of the operational stroke.
  • the pins may be relatively closer during the compression/cutting portion of the stroke and relatively further away when the moveable cutting member is being retracted from the distal end of the end effector and translated toward the proximal end of the end effector.
  • a movable cutting member 840 with movable pins is illustrated in FIGS. 23A and 23B. While the movable cutting member 840 is illustrated as a banded cutting member similar to the cutting member 540 illustrated in FIG. 16, it is to be appreciated that any suitable movable cutting member may be used.
  • the movable cutting member 840 comprises a first jaw closure pin 842, a second jaw closure pin 844 and a proximal pin 846. At least one of the first and second jaw closure pins 842 and 844 may ride in a slot or cam surface to allow the pins 842 and 844 to move relative to one another. As illustrated, the first jaw closure pin 842 may be positioned in a slot 850. The slot 850 may be oblique to a longitudinal axis 851 of the movable cutting member 840. In one embodiment the slot angle a is about 5 degrees. In some embodiments, the slot angle a may be in the range of about 2 degrees to about 30 degrees, for example.
  • the particular position of the first jaw closure pin 842 within the slot 850 will depend on the action of movable cutting member 840.
  • the first jaw closure pin 842 is shown in the position corresponding to when the movable cutting member 840 is being translated in the direction indicated by arrow 852 (e.g., during cutting). In this position, the first jaw closure pin 842 is driven downward and the vertical separation between the first jaw closure pin 842 and the second jaw closure pin 844 is distance d-i .
  • FIG. 23B the first jaw closure pin 842 is shown in the position corresponding to when the movable cutting member 840 is translated in the direction indicated by arrow 854 (e.g., during retraction).
  • the first jaw closure pin 842 is driven upward and the vertical separation from the first jaw closure pin 842 and the second jaw closure pin 844 is increased to a distance d 2 , where d 2 >d .
  • the difference between d 2 and d- ⁇ is at least partially based on the slot angle a.
  • the greater the slot angle a the greater the difference between d 2 and d-i .
  • the additional distance of separation between the jaw closure pins 842 and 844 in the reverse direction will increase the compression gap which will lower the force required to retract the compression system.
  • additional features in the bands of the moveable cutting member may be used to ensure the closure pin moves back (down) and forward (up) appropriately during an operational stroke.
  • the multiple bands may be timed to push the slotted pin either up or down based on the forward or reverse motion of the moveable cutting member.
  • a moveable cutting member 940 with translating bands in accordance with one non-limiting embodiment is shown in FIG. 24.
  • a central band 952 has a vertical slot 960.
  • Two outer bands 948 each have an angled slot 950.
  • the angle slot 950 is oblique to a longitudinal axis 951 of the movable cutting member 940.
  • a first jaw closure pin 942 rests between the three bands.
  • FIG. 25 illustrates the movable cutting member 940 during retraction/return.
  • the first jaw closure pin 942 is forced toward the distal end of the angled slot 950 and the top of the vertical slot 960, thereby increasing the vertical separation between the first jaw closure pin 942 and the second jaw closure pin 944.
  • the distance separating pins 942 and 944 decreases the amount tissue compression and reduces the force required to retract the moveable cutting member 940.
  • a pusher block may be used to facilitate the relative translation of the central band 952 and the outer bands 948 during various stages of the operational stroke.
  • FIG. 26 illustrates a cross-sectional view of a firing rod 920 operatively coupled to a pusher block 922 during a cutting stroke.
  • the firing rod 920 may be operatively coupled to a trigger (not shown) of the surgical instrument such that the firing rod 920 may be selectively advanced and/or retracted in the directions indicated by arrows 902 and 904, respectively.
  • the pusher block 922 has a distal face 924 and a proximal face 926.
  • FIG. 27 A perspective view of the movable cutting member 940 during the cutting stroke is shown in FIG. 27. In this position, the vertical separation between the first and second jaw closure pins 942 and 944 is at a minimum distance to generate maximum tissue compression.
  • FIG. 28 illustrates a cross-sectional view of the firing rod 920 during retraction of the movable cutting member 940 (e.g., when the firing rod 920 is retracted in the direction indicated by arrow 904). During retraction, the three bands of the movable cutting member 940 align on the proximal face 926.
  • FIG. 29 A perspective view of the movable cutting member 940 during the retraction is shown in FIG. 29. In this position, the vertical separation between the first and second jaw closure pins 942 and 944 is at a maximum distance to provide a reduced amount of tissue compression.
  • FIG. 30 is a perspective exploded view of a movable cutting member 960 comprising closure pin assemblies.
  • FIG. 31 is a perspective view of the movable cutting member 960 of FIG. 30 in an assembled configuration.
  • FIG. 31A is a cross- sectional view of the movable cutting member 960.
  • first and second closure pin 962, 964 are assemblies while proximal pin 966 is unitary.
  • the first closure pin 962 may comprise a shaft 968 and first and second rings 970, 972.
  • the shaft 968 and first and second rings 970, 972 may be manufactured from any suitable material.
  • the shaft 968 is 17-7PH stainless steel and the first and second rings 970, 972 are an alloy, such as TOUGHMET.
  • the first and second rings 970, 972 may be, for example, press-fit onto the shaft 968.
  • the second closure pin 964 may be assembled similarly to the first closure pin 962.
  • the second closure pin may comprise a shaft 974 and first and second rings 976, 978.
  • the rings 970, 972, 976, 978 contact the various closure pin tracks of an associated end effector.
  • the size of the shafts 968, 974 and the rings 970, 972, 976, 978 may differ based on the size of the end effector.
  • the shafts 968, 974 have outer diameters of about 0.0400" with a tolerance of +/- 0.0002".
  • the rings 970, 972, 976, 978 have an inner diameter of about 0.0394" with a tolerance of +/- 0.0003".
  • the rings 970, 972, 976, 978 have an outer diameter of about 0.070" with a tolerance of +/- 0.0003".
  • the distance d 3 (FIG. 31A) between the first and second closure pins 962, 064 may be about 0.148" with a tolerance of about +/- 0.001 ".
  • the rings 970, 972, 976, 978 allow for a relatively large outer diameter to capture the closure pins 962, 968 in the tracks of the end effector. Furthermore, the relatively large outer diameters of the rings 970, 972, 976, 978 may prevent the closure pins 962, 968 from cocking within the track which may lead to a jam. If the track is deformed, such as due to high clamp loads, the relatively large diameter of the rings 970, 972, 976, 978 also may assist in ensuring the closure pins 962, 964 remain engaged with the track. Additionally, in some embodiments, the closure pins 962, 964 may be manufactured without a peening process which eliminates a source of process variability.
  • the closure pins may incorporate bearings to reduce frictional concerns while firing.
  • FIG. 32 is an exploded view of a closure pin 980 comprising needle bearings.
  • FIG. 33 is a cross-sectional view of the assembled closure pin 980.
  • the closure pin 980 comprises a shaft 982.
  • the shaft may be, for example, about 1 mm in diameter.
  • the closure pin 980 may comprise a stepped collar 984 having a first portion 985 and a second portion 986.
  • the outer diameter of the first portion 985 may be larger than the outer diameter of the second portion 986.
  • the closure pin 980 may also comprise an inner collar 988. When assembled, the inner collar 988 and the stepped collar 984 may define a notch 989.
  • the notch 989 receives an associated movable cutting member (not illustrated).
  • the closure pin 980 may also comprise a first and second set of needle bearings 990, 991.
  • each needle of the needle bearings 990, 991 is about 0.010" in diameter.
  • First and second wheels 992, 993 may receive the first and second set of needle bearings 990, 991 , respectively.
  • First and second end collars 994, 995 may be attached to the shaft 982 using a press-fit engagement, for example.
  • the wheels 992, 993 of the closure pin 980 may engage a track of the end effector.
  • the wheels 992, 993 may rotate with respect to the shaft 968 via the first and second sets of needle bearings 990, 991 . Accordingly, frictional forces that may be experienced during an operational stroke may be reduced.
  • the end effector may comprise a variety of features that collectively assist in reducing the force to fire and/or the force to return.
  • FIG. 34 is a perspective view of an end effector 1010 in accordance with one non-limiting embodiment.
  • FIG. 35 is a cross-sectional view of a portion of the end effector 1010.
  • the moveable cutting member 1040 has a first jaw closure pin 1042 that translates relative to a second jaw closure pin 1044 via an oblique slot 1050 to alter the distance of separation between the two pins.
  • the first jaw 1020A comprises a multi-sloped track to engage the first jaw closure pin 1042 and the proximal pin 1046.
  • the first jaw 1020A comprises an opening ramp 1060, a closure ramp 1050, a ridge 1052, and a ramped section 1054 similar to the end effector 610 shown in FIG. 19
  • the various pins associated with the moveable cutting member may be affixed using any suitable technique.
  • the pins may be secured to a multi-banded movable cutting member using a key slot technique.
  • a stepped pin 1 142 as illustrated in FIG. 36 may be used.
  • the stepped pin 1 142 has a longitudinal axis 1 130 at least two portions along the longitudinal axis 1 130 that have different outer diameters.
  • a middle portion 1 144 has a smaller diameter than a first outer portion 1 146 and a second outer portion 1 152.
  • FIGS. 37A and 37B show outer bands 1 148 and 1 149 according to one non-limiting embodiment.
  • Each outer band 1 148 and 1 149 has a slot 1 150 with a larger aperture 1 151 at one end.
  • the aperture 1 151 on the outer band 1 148 is on the opposite end of the slot 1 150 as compared to the outer band 1 149.
  • the apertures 1 151 have width of w-i and the slots 1 150 have a width of w 2 .
  • the width w 2 may be slight greater than the outer diameter of one of the first outer portion 1 146 and a second outer portion 1 152 of the stepped pin 1 142.
  • the width w-i may be slightly greater than the outer diameter of the a middle portion 1 144 but less than the diameter of the first and second outer portions 1 146 and 1 152.
  • FIG. 38A shows two bands 1 148 and 1 149 sandwiching a central band 1 152 with their apertures 1 151 aligned.
  • FIG. 38B shows the bands 1 148 are pulled in opposite directions so that the narrower section of the slot 1 150 traps the stepped pin 1 142 in place.
  • FIG. 39 is a perspective view of the top distal end of the moveable cutting member 1 140 after the first jaw closure pin 1 142 has been affixed.
  • a surgical instrument may become overloaded. For example, if large vessels or large tissue bundles are being sealed and cut, the force necessary to clamp the jaws and distally drive the cutting element may overload various components of the device.
  • a shear pin may be used which intentionally fractures when the force reaches a load threshold.
  • FIG. 40 shows a shear pin 1200 in accordance with one non-limiting embodiment.
  • the shear pin 1200 may be manufactured from or comprise any suitable material, such as aluminum (e.g., aluminum alloy 2024) or steel, for example. In one embodiment, the shear pin 1200 may shear in two points during an overloaded condition.
  • a first shear groove 1202 is positioned at one end of the shear pin 1200 and a second shear groove 1204 is positioned at the other end of the shear pin 1200.
  • a single shear groove located at any suitable position may be used in some embodiments.
  • the size of shear pin 1200 may be determined by application and operational thresholds. In some embodiments, the shear pin 1200 may shear at about 60lbf, which is lower than the force that could damage components of an associated surgical instrument.
  • the shear pin can be assembled in the trigger assembly, allowing free motion of the trigger after shear occurs.
  • FIG. 41 is a simplified version of a trigger assembly 1210 that includes a shear pin 1200.
  • a trigger 1210 is pivotable about pivot 1212 to impart linear movement upon the firing rod 1214.
  • the firing rod 1214 may be operatively coupled to an end effector (not shown) at its distal end.
  • the firing rod 1214 defines a bore 1216 that receives the shear pin 1200.
  • the trigger 1210 is coupled to a cradle 1220 which is operatively coupled to the shear groove 1202 of the shear pin 1200. Force from the trigger 1210 is delivered to the end effector (not shown) through the shear pin 1200.
  • the trigger 1210 may, for example, distally advance a knife in the end effector.
  • FIG. 42 illustrates a surgical instrument 1230 with part of the housing removed to show various internal components.
  • the surgical instrument 1230 incorporates a shear pin 1240 (FIG. 44) as an overload member.
  • FIG. 43 is an enlarged view of a portion of the trigger assembly 1232 with various components removed for clarity.
  • FIG. 44 is an exploded view of various components of the trigger assembly 1232 with various components removed for clarity.
  • the surgical instrument 1230 generally may operate similar to previously discussed embodiments.
  • movement of a trigger 1234 along a path 1236 may actuate an end effector (not shown).
  • the end effector may have jaws through which a knife is translated.
  • the actuation of the end effector may be driven by a gear assembly 1238 which is operatively coupled to the trigger 1234 and a rack 1240.
  • the trigger assembly 1232 may pivot about a pivot pin 1240 when an operator moves the trigger 1234 along the path 1236.
  • the trigger assembly may comprise a first side trigger plate 1242 and a second side trigger plate 1244 with a central trigger plate 1246 disposed therebetween.
  • the central trigger plate 1246 may be coupled to the trigger 1234.
  • a return pin 1248 may be coupled to the central trigger plate 1246 and ride in a return slot 1250 defined by the first side trigger plate 1242.
  • the second side trigger plate 1244 may define a slot similar to the return slot 1250 and configured to receive a portion of the return pin 1240.
  • An actuation plate 1252 may also pivot about the pivot pin 1240 upon actuation of the trigger 1234 such that a rack 1254 engages the gear assembly 1238 and ultimately actuates the end effector.
  • the first and second side trigger plates 1242, 1244 may each define first and second shear pin bores 1260, 1262, respectively.
  • the shear pin 1240 may be received by the first and second shear pin bores 1260, 1262.
  • a central portion 1264 of the shear pin 1240 may engage a bore of the central trigger plate 1246 (FIG. 43).
  • the shear pin 1240 may have first and second ends 1266, 1268 that engage the first and second side trigger plates 1242, 1244, respectively.
  • the shear pin 1240 may define a first shear groove 1270 positioned intermediate the first end 1266 and the central portion 12654 and a second shear groove 1272 positioned intermediate the central portion 12654 and the first end 1266.
  • the surgical instrument 1230 may be used to distally advance a knife in an end effector comprising jaws for grasping tissue (not shown).
  • the first and second side trigger plates 1242, 1244 exert excess force onto the first and second ends 1266, 1268 of the shear pin 1240.
  • the shear pin 1240 fractures at one or both of the shear grooves 1270, 1272.
  • the trigger 1234 can no longer push the knife forward due to the decoupling of the first and second side trigger plates 1242, 1244 from the central trigger plate 1246.
  • the return pin 1248 allows the trigger 1234 to pull the knife back through its engagement with the return slot 1250. Therefore, in one embodiment, even though the trigger 1234 can no longer distally advance the knife, the trigger 1234 can still be used to can retract the knife via the coupling of the return pin 1248 with the first and second side trigger plates 1242, 1244. Once the knife if retracted, the jaws of the end effector may be opened and the tissue removed. Thus, in one embodiment, after an overload condition has been experienced, the trigger 1234 is prohibited from pushing the knife forward but still may return the knife to disengage the end effector from the captured tissue. While the shear pin 1240 is illustrated in the context of an electrosurgical instrument, it may also be used with other types of surgical instruments, such as an endocutter for clamping, severing and stapling tissue, for example.
  • a spring may serve as compression means to limit the maximum force applied to the end effector.
  • the springs may be preloaded with the maximum desired compression loading amount and only translate (e.g., compress) when an overload force is applied.
  • the springs may be axial in nature and may be any suitable type, such as compression type, belleville type, die spring, or other type of linear spring member.
  • the compression member During normal operational loading, the compression member generally acts as a solid member. The compression force is passed directly from a trigger to the moveable cutting member via a firing rod, for example.
  • the compression member When an overload force is applied, however, the compression member will compress to absorb the excess force and limit the amount of force that is translated to the end effector. In one embodiment, the amount of force necessary to compress the compression member is less than the amount of force that would cause a component of the end effector to fail.
  • FIG. 45 shows a compression member 1300 mounted internal to a drive shaft of a surgical instrument in accordance with one non-limiting embodiment.
  • a firing rod 1302 transfers a force from a trigger (not shown) to a movable cutting member 1340.
  • the compression member 1300 is illustrated as a series of belleville washers, although any suitable compression member may be used.
  • FIG. 45A is a cross-sectional view of FIG. 45.
  • a plunger 1304 is operatively engaged with a pusher block 1306. When an overload force is applied, the firing rod 1302 will translate relative to the plunger 1304 due to the compression of the compression member 1300.
  • the firing rod 1302 may be coupled to a pin 1308 and the plunger 1304 may be operatively coupled to a member 1310.
  • the member 1310 can define a slot 1312 to receive the pin 1308.
  • the pin 1308 may translate relative to the slot 1312 when the compression member 1300 compresses. Accordingly, the longitudinal length of the slot 1312 may limit the relative translation of the firing rod 1302 to the plunger 1304.
  • inventions of the devices described herein may be introduced inside a patient using minimally invasive or open surgical techniques. In some instances it may be
  • Minimally invasive techniques may provide more accurate and effective access to the treatment region for diagnostic and treatment procedures.
  • the devices described herein may be inserted through natural openings of the body such as the mouth, anus, and/or vagina, for example.
  • Minimally invasive procedures performed by the introduction of various medical devices into the patient through a natural opening of the patient are known in the art as
  • NOTESTM procedures Some portions of the devices may be introduced to the tissue treatment region percutaneously or through small - keyhole - incisions.
  • Endoscopic minimally invasive surgical and diagnostic medical procedures are used to evaluate and treat internal organs by inserting a small tube into the body.
  • the endoscope may have a rigid or a flexible tube.
  • a flexible endoscope may be introduced either through a natural body opening (e.g., mouth, anus, and/or vagina) or via a trocar through a relatively small - keyhole - incision incisions (usually 0.5 - 1.5cm).
  • the endoscope can be used to observe surface conditions of internal organs, including abnormal or diseased tissue such as lesions and other surface conditions and capture images for visual inspection and photography.
  • the endoscope may be adapted and configured with working channels for introducing medical instruments to the treatment region for taking biopsies, retrieving foreign objects, and/or performing surgical procedures.
  • the various embodiments of the devices described herein will be processed before surgery.
  • a new or used instrument is obtained and if necessary cleaned.
  • the instrument can then be sterilized.
  • the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag.
  • the container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons.
  • the radiation kills bacteria on the instrument and in the container.
  • the sterilized instrument can then be stored in the sterile container.
  • the sealed container keeps the instrument sterile until it is opened in the medical facility.
  • Other sterilization techniques can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, and/or steam.
EP11767551.2A 2010-10-01 2011-09-27 Chirurgisches instrument mit klemmbackenelement Withdrawn EP2621390A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/896,411 US8979890B2 (en) 2010-10-01 2010-10-01 Surgical instrument with jaw member
US12/896,420 US8888809B2 (en) 2010-10-01 2010-10-01 Surgical instrument with jaw member
PCT/US2011/053413 WO2012044606A2 (en) 2010-10-01 2011-09-27 Surgical instrument with jaw member

Publications (1)

Publication Number Publication Date
EP2621390A2 true EP2621390A2 (de) 2013-08-07

Family

ID=45893736

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11767551.2A Withdrawn EP2621390A2 (de) 2010-10-01 2011-09-27 Chirurgisches instrument mit klemmbackenelement

Country Status (8)

Country Link
EP (1) EP2621390A2 (de)
JP (1) JP5905472B2 (de)
CN (1) CN103429182B (de)
AU (1) AU2011307338B8 (de)
BR (1) BR112013007879A2 (de)
CA (1) CA2813389C (de)
RU (1) RU2581715C2 (de)
WO (1) WO2012044606A2 (de)

Families Citing this family (637)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
EP3162309B1 (de) 2004-10-08 2022-10-26 Ethicon LLC Chirurgisches ultraschallinstrument
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7673781B2 (en) 2005-08-31 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling device with staple driver that supports multiple wire diameter staples
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8236010B2 (en) 2006-03-23 2012-08-07 Ethicon Endo-Surgery, Inc. Surgical fastener and cutter with mimicking end effector
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US8348131B2 (en) 2006-09-29 2013-01-08 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical indicator to show levels of tissue compression
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US7438209B1 (en) 2007-03-15 2008-10-21 Ethicon Endo-Surgery, Inc. Surgical stapling instruments having a releasable staple-forming pocket
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
EP2796102B1 (de) 2007-10-05 2018-03-14 Ethicon LLC Ergonomische chirurgische Instrumente
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
RU2493788C2 (ru) 2008-02-14 2013-09-27 Этикон Эндо-Серджери, Инк. Хирургический режущий и крепежный инструмент, имеющий радиочастотные электроды
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US10390823B2 (en) 2008-02-15 2019-08-27 Ethicon Llc End effector comprising an adjunct
US20090206131A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
PL3476312T3 (pl) 2008-09-19 2024-03-11 Ethicon Llc Stapler chirurgiczny z urządzeniem do dopasowania wysokości zszywek
US7857186B2 (en) 2008-09-19 2010-12-28 Ethicon Endo-Surgery, Inc. Surgical stapler having an intermediate closing position
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
BRPI1008667A2 (pt) 2009-02-06 2016-03-08 Ethicom Endo Surgery Inc aperfeiçoamento do grampeador cirúrgico acionado
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US9050093B2 (en) 2009-10-09 2015-06-09 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8834518B2 (en) 2010-04-12 2014-09-16 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8685020B2 (en) 2010-05-17 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instruments and end effectors therefor
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US8632525B2 (en) 2010-09-17 2014-01-21 Ethicon Endo-Surgery, Inc. Power control arrangements for surgical instruments and batteries
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US10123798B2 (en) 2010-09-30 2018-11-13 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9566061B2 (en) 2010-09-30 2017-02-14 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasably attached tissue thickness compensator
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
AU2011308701B2 (en) 2010-09-30 2013-11-14 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and an alignment matrix
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US8740038B2 (en) 2010-09-30 2014-06-03 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a releasable portion
US9216019B2 (en) 2011-09-23 2015-12-22 Ethicon Endo-Surgery, Inc. Surgical stapler with stationary staple drivers
US8979890B2 (en) 2010-10-01 2015-03-17 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US9033204B2 (en) 2011-03-14 2015-05-19 Ethicon Endo-Surgery, Inc. Circular stapling devices with tissue-puncturing anvil features
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
US9044243B2 (en) 2011-08-30 2015-06-02 Ethcon Endo-Surgery, Inc. Surgical cutting and fastening device with descendible second trigger arrangement
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9314292B2 (en) 2011-10-24 2016-04-19 Ethicon Endo-Surgery, Llc Trigger lockout mechanism
US8864753B2 (en) * 2011-12-13 2014-10-21 Covidien Lp Surgical Forceps Connected to Treatment Light Source
JP6165780B2 (ja) 2012-02-10 2017-07-19 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. ロボット制御式の手術器具
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
JP6105041B2 (ja) 2012-03-28 2017-03-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. 低圧環境を画定するカプセルを含む組織厚コンペンセーター
BR112014024102B1 (pt) 2012-03-28 2022-03-03 Ethicon Endo-Surgery, Inc Conjunto de cartucho de prendedores para um instrumento cirúrgico, e conjunto de atuador de extremidade para um instrumento cirúrgico
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
MX353040B (es) 2012-03-28 2017-12-18 Ethicon Endo Surgery Inc Unidad retenedora que incluye un compensador de grosor de tejido.
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US20140005640A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical end effector jaw and electrode configurations
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US20140001234A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Coupling arrangements for attaching surgical end effectors to drive systems therefor
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
EP2866686A1 (de) 2012-06-28 2015-05-06 Ethicon Endo-Surgery, Inc. Sperrvorrichtung für leeres klammermagazin
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
BR112014032776B1 (pt) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9492224B2 (en) 2012-09-28 2016-11-15 EthiconEndo-Surgery, LLC Multi-function bi-polar forceps
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
BR112015021098B1 (pt) 2013-03-01 2022-02-15 Ethicon Endo-Surgery, Inc Cobertura para uma junta de articulação e instrumento cirúrgico
MX364729B (es) 2013-03-01 2019-05-06 Ethicon Endo Surgery Inc Instrumento quirúrgico con una parada suave.
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US20140263552A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9888919B2 (en) 2013-03-14 2018-02-13 Ethicon Llc Method and system for operating a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9867612B2 (en) 2013-04-16 2018-01-16 Ethicon Llc Powered surgical stapler
BR112015026109B1 (pt) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc Instrumento cirúrgico
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9775609B2 (en) 2013-08-23 2017-10-03 Ethicon Llc Tamper proof circuit for surgical instrument battery pack
MX369362B (es) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Dispositivos de retraccion de miembros de disparo para instrumentos quirurgicos electricos.
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US20150173749A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical staples and staple cartridges
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9629627B2 (en) * 2014-01-28 2017-04-25 Coviden Lp Surgical apparatus
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9757124B2 (en) 2014-02-24 2017-09-12 Ethicon Llc Implantable layer assemblies
BR112016019387B1 (pt) 2014-02-24 2022-11-29 Ethicon Endo-Surgery, Llc Sistema de instrumento cirúrgico e cartucho de prendedores para uso com um instrumento cirúrgico de fixação
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
BR112016021943B1 (pt) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc Instrumento cirúrgico para uso por um operador em um procedimento cirúrgico
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
US10028761B2 (en) 2014-03-26 2018-07-24 Ethicon Llc Feedback algorithms for manual bailout systems for surgical instruments
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US10524852B1 (en) 2014-03-28 2020-01-07 Ethicon Llc Distal sealing end effector with spacers
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
JP6636452B2 (ja) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC 異なる構成を有する延在部を含む締結具カートリッジ
US20150297225A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
JP6612256B2 (ja) 2014-04-16 2019-11-27 エシコン エルエルシー 不均一な締結具を備える締結具カートリッジ
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US11517315B2 (en) 2014-04-16 2022-12-06 Cilag Gmbh International Fastener cartridges including extensions having different configurations
JP6532889B2 (ja) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC 締結具カートリッジ組立体及びステープル保持具カバー配置構成
US9757186B2 (en) 2014-04-17 2017-09-12 Ethicon Llc Device status feedback for bipolar tissue spacer
WO2015184446A2 (en) * 2014-05-30 2015-12-03 Applied Medical Resources Corporation Electrosurgical seal and dissection systems
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US9700333B2 (en) 2014-06-30 2017-07-11 Ethicon Llc Surgical instrument with variable tissue compression
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10194976B2 (en) 2014-08-25 2019-02-05 Ethicon Llc Lockout disabling mechanism
US9877776B2 (en) 2014-08-25 2018-01-30 Ethicon Llc Simultaneous I-beam and spring driven cam jaw closure mechanism
US10194972B2 (en) 2014-08-26 2019-02-05 Ethicon Llc Managing tissue treatment
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US20160066913A1 (en) 2014-09-05 2016-03-10 Ethicon Endo-Surgery, Inc. Local display of tissue parameter stabilization
BR112017004361B1 (pt) 2014-09-05 2023-04-11 Ethicon Llc Sistema eletrônico para um instrumento cirúrgico
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
CN107427300B (zh) 2014-09-26 2020-12-04 伊西康有限责任公司 外科缝合支撑物和辅助材料
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
BR112017012996B1 (pt) 2014-12-18 2022-11-08 Ethicon Llc Instrumento cirúrgico com uma bigorna que é seletivamente móvel sobre um eixo geométrico imóvel distinto em relação a um cartucho de grampos
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US10111699B2 (en) 2014-12-22 2018-10-30 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US10159524B2 (en) 2014-12-22 2018-12-25 Ethicon Llc High power battery powered RF amplifier topology
US10092348B2 (en) 2014-12-22 2018-10-09 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US9848937B2 (en) 2014-12-22 2017-12-26 Ethicon Llc End effector with detectable configurations
CN105877837A (zh) * 2014-12-25 2016-08-24 瑞奇外科器械(中国)有限公司 一种高频电外科手术器械及其执行装置
GB2535003B (en) * 2015-01-14 2018-12-12 Gyrus Medical Ltd Electrosurgical instrument
US10172612B2 (en) 2015-01-21 2019-01-08 Covidien Lp Surgical instruments with force applier and methods of use
US10245095B2 (en) * 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10182816B2 (en) 2015-02-27 2019-01-22 Ethicon Llc Charging system that enables emergency resolutions for charging a battery
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
JP2020121162A (ja) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
US10117702B2 (en) 2015-04-10 2018-11-06 Ethicon Llc Surgical generator systems and related methods
US10130410B2 (en) 2015-04-17 2018-11-20 Ethicon Llc Electrosurgical instrument including a cutting member decouplable from a cutting member trigger
US9872725B2 (en) 2015-04-29 2018-01-23 Ethicon Llc RF tissue sealer with mode selection
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US10178992B2 (en) 2015-06-18 2019-01-15 Ethicon Llc Push/pull articulation drive systems for articulatable surgical instruments
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US20170056038A1 (en) * 2015-08-26 2017-03-02 Ethicon Endo-Surgery, Llc Dissecting surgical jaws
US11103248B2 (en) 2015-08-26 2021-08-31 Cilag Gmbh International Surgical staples for minimizing staple roll
CN108348233B (zh) 2015-08-26 2021-05-07 伊西康有限责任公司 用于允许改变钉特性并实现轻松仓加载的外科钉条
MX2022009705A (es) 2015-08-26 2022-11-07 Ethicon Llc Metodo para formar una grapa contra un yunque de un instrumento de engrapado quirurgico.
US10314587B2 (en) 2015-09-02 2019-06-11 Ethicon Llc Surgical staple cartridge with improved staple driver configurations
MX2022006191A (es) 2015-09-02 2022-06-16 Ethicon Llc Configuraciones de grapas quirurgicas con superficies de leva situadas entre porciones que soportan grapas quirurgicas.
EP3138522B1 (de) * 2015-09-03 2020-11-04 Erbe Elektromedizin GmbH Instrument zum fassen, trennen und/oder koagulieren von biologischem gewebe
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US11058475B2 (en) 2015-09-30 2021-07-13 Cilag Gmbh International Method and apparatus for selecting operations of a surgical instrument based on user intention
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
GB201600546D0 (en) * 2016-01-12 2016-02-24 Gyrus Medical Ltd Electrosurgical device
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10842523B2 (en) 2016-01-15 2020-11-24 Ethicon Llc Modular battery powered handheld surgical instrument and methods therefor
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
CN108882932B (zh) 2016-02-09 2021-07-23 伊西康有限责任公司 具有非对称关节运动构造的外科器械
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US11045191B2 (en) 2016-04-01 2021-06-29 Cilag Gmbh International Method for operating a surgical stapling system
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US20170296258A1 (en) * 2016-04-15 2017-10-19 Just Right Surgical, Llc Electrosurgical sealer and divider
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10765471B2 (en) 2016-04-15 2020-09-08 Bolder Surgical, Llc Electrosurgical sealer and divider
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10426469B2 (en) 2016-04-18 2019-10-01 Ethicon Llc Surgical instrument comprising a primary firing lockout and a secondary firing lockout
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10542979B2 (en) 2016-06-24 2020-01-28 Ethicon Llc Stamped staples and staple cartridges using the same
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
CN109310431B (zh) 2016-06-24 2022-03-04 伊西康有限责任公司 包括线材钉和冲压钉的钉仓
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10828056B2 (en) 2016-08-25 2020-11-10 Ethicon Llc Ultrasonic transducer to waveguide acoustic coupling, connections, and configurations
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
JP7010956B2 (ja) 2016-12-21 2022-01-26 エシコン エルエルシー 組織をステープル留めする方法
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
CN110099619B (zh) 2016-12-21 2022-07-15 爱惜康有限责任公司 用于外科端部执行器和可替换工具组件的闭锁装置
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
US10610224B2 (en) 2016-12-21 2020-04-07 Ethicon Llc Lockout arrangements for surgical end effectors and replaceable tool assemblies
US20180168648A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Durability features for end effectors and firing assemblies of surgical stapling instruments
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10542982B2 (en) 2016-12-21 2020-01-28 Ethicon Llc Shaft assembly comprising first and second articulation lockouts
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US10639034B2 (en) 2016-12-21 2020-05-05 Ethicon Llc Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
CN110337275B (zh) * 2016-12-21 2022-08-09 爱惜康有限责任公司 包括熔断器的击发组件
BR112019011947A2 (pt) 2016-12-21 2019-10-29 Ethicon Llc sistemas de grampeamento cirúrgico
US10898186B2 (en) 2016-12-21 2021-01-26 Ethicon Llc Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10835246B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US20180168618A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling systems
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11141154B2 (en) 2017-06-27 2021-10-12 Cilag Gmbh International Surgical end effectors and anvils
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US10786253B2 (en) 2017-06-28 2020-09-29 Ethicon Llc Surgical end effectors with improved jaw aperture arrangements
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11389161B2 (en) 2017-06-28 2022-07-19 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
EP3420947B1 (de) 2017-06-28 2022-05-25 Cilag GmbH International Chirurgisches instrument mit selektiv betätigbaren drehbaren kupplern
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
WO2019092822A1 (ja) * 2017-11-08 2019-05-16 オリンパス株式会社 処置具
CN108113746A (zh) * 2017-11-16 2018-06-05 上海理工大学 射频能量焊接吻合电极及应用
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11576668B2 (en) 2017-12-21 2023-02-14 Cilag Gmbh International Staple instrument comprising a firing path display
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11129609B2 (en) * 2018-04-24 2021-09-28 Covidien Lp Devices, systems, and methods for providing surgical access and facilitating closure of surgical access openings
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
USD904611S1 (en) 2018-10-10 2020-12-08 Bolder Surgical, Llc Jaw design for a surgical instrument
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11607278B2 (en) 2019-06-27 2023-03-21 Cilag Gmbh International Cooperative robotic surgical systems
US11547468B2 (en) 2019-06-27 2023-01-10 Cilag Gmbh International Robotic surgical system with safety and cooperative sensing control
US11413102B2 (en) 2019-06-27 2022-08-16 Cilag Gmbh International Multi-access port for surgical robotic systems
US11612445B2 (en) 2019-06-27 2023-03-28 Cilag Gmbh International Cooperative operation of robotic arms
US11723729B2 (en) 2019-06-27 2023-08-15 Cilag Gmbh International Robotic surgical assembly coupling safety mechanisms
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
KR20220044282A (ko) * 2019-07-31 2022-04-07 콘메드 코포레이션 수술용 기구들에 대한 힘 제한 메커니즘
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
RU2729017C1 (ru) * 2019-12-23 2020-08-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Северо-Осетинская государственная медицинская академия" Министерства здравоохранения Российской Федерации Устройство для браш-биопсии дистального отдела холедоха
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US20210196358A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with electrodes biasing support
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US20210196359A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instruments with electrodes having energy focusing features
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
US20220031351A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with differential articulation joint arrangements for accommodating flexible actuators
USD934423S1 (en) 2020-09-11 2021-10-26 Bolder Surgical, Llc End effector for a surgical device
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US20220378425A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a control system that controls a firing stroke length
US11931026B2 (en) 2021-06-30 2024-03-19 Cilag Gmbh International Staple cartridge replacement
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US11957342B2 (en) 2021-11-01 2024-04-16 Cilag Gmbh International Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation
WO2023204233A1 (ja) * 2022-04-21 2023-10-26 テルモ株式会社 血管採取デバイス

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1042742A1 (ru) * 1980-02-08 1983-09-23 Всесоюзный Научно-Исследовательский Институт Клинической И Экспериментальной Хирургии Хирургический сшивающий аппарат дл наложени линейных швов
US4633861A (en) * 1984-10-19 1987-01-06 Senmed, Inc. Surgical stapling instrument with jaw clamping mechanism
RU2175644C1 (ru) * 2000-04-04 2001-11-10 Баркар Леонид Иванович Электрокоагулятор
US6500176B1 (en) 2000-10-23 2002-12-31 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US6656177B2 (en) * 2000-10-23 2003-12-02 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US6533784B2 (en) 2001-02-24 2003-03-18 Csaba Truckai Electrosurgical working end for transecting and sealing tissue
US6913579B2 (en) 2001-05-01 2005-07-05 Surgrx, Inc. Electrosurgical working end and method for obtaining tissue samples for biopsy
US6802843B2 (en) 2001-09-13 2004-10-12 Csaba Truckai Electrosurgical working end with resistive gradient electrodes
US6929644B2 (en) 2001-10-22 2005-08-16 Surgrx Inc. Electrosurgical jaw structure for controlled energy delivery
US7070597B2 (en) 2001-10-18 2006-07-04 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US7125409B2 (en) 2001-10-22 2006-10-24 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US7083619B2 (en) 2001-10-22 2006-08-01 Surgrx, Inc. Electrosurgical instrument and method of use
US7354440B2 (en) * 2001-10-22 2008-04-08 Surgrx, Inc. Electrosurgical instrument and method of use
US6770072B1 (en) 2001-10-22 2004-08-03 Surgrx, Inc. Electrosurgical jaw structure for controlled energy delivery
US6926716B2 (en) 2001-11-09 2005-08-09 Surgrx Inc. Electrosurgical instrument
US7041102B2 (en) 2001-10-22 2006-05-09 Surgrx, Inc. Electrosurgical working end with replaceable cartridges
US6905497B2 (en) 2001-10-22 2005-06-14 Surgrx, Inc. Jaw structure for electrosurgical instrument
US7189233B2 (en) 2001-10-22 2007-03-13 Surgrx, Inc. Electrosurgical instrument
US7311709B2 (en) 2001-10-22 2007-12-25 Surgrx, Inc. Electrosurgical instrument and method of use
US7011657B2 (en) 2001-10-22 2006-03-14 Surgrx, Inc. Jaw structure for electrosurgical instrument and method of use
EP1474031B1 (de) 2002-01-22 2012-01-11 Surgrx, Inc. Elektrochirurgisches instrument und anwendungsverfahren
US6733498B2 (en) * 2002-02-19 2004-05-11 Live Tissue Connect, Inc. System and method for control of tissue welding
US7087054B2 (en) 2002-10-01 2006-08-08 Surgrx, Inc. Electrosurgical instrument and method of use
US7169146B2 (en) 2003-02-14 2007-01-30 Surgrx, Inc. Electrosurgical probe and method of use
US7309849B2 (en) 2003-11-19 2007-12-18 Surgrx, Inc. Polymer compositions exhibiting a PTC property and methods of fabrication
US7220951B2 (en) 2004-04-19 2007-05-22 Surgrx, Inc. Surgical sealing surfaces and methods of use
GB2414185A (en) * 2004-05-20 2005-11-23 Gyrus Medical Ltd Morcellating device using cutting electrodes on end-face of tube
DE102004055669B4 (de) * 2004-08-11 2009-09-24 Erbe Elektromedizin Gmbh Elektrochirurgisches Instrument
EP1876979B1 (de) * 2005-04-29 2011-10-05 Bovie Medical Corporation Zange zur durchführung einer endoskopischen oder arthroskopischen operation
US7845537B2 (en) * 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8597297B2 (en) * 2006-08-29 2013-12-03 Covidien Ag Vessel sealing instrument with multiple electrode configurations
US8267935B2 (en) * 2007-04-04 2012-09-18 Tyco Healthcare Group Lp Electrosurgical instrument reducing current densities at an insulator conductor junction
US20090076506A1 (en) 2007-09-18 2009-03-19 Surgrx, Inc. Electrosurgical instrument and method
US20100036370A1 (en) 2008-08-07 2010-02-11 Al Mirel Electrosurgical instrument jaw structure with cutting tip
US8795274B2 (en) * 2008-08-28 2014-08-05 Covidien Lp Tissue fusion jaw angle improvement
CN201341921Y (zh) * 2008-12-30 2009-11-11 申屠丙花 喉部息肉钳

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2012044606A2 *

Also Published As

Publication number Publication date
BR112013007879A2 (pt) 2016-06-14
CA2813389A1 (en) 2012-04-05
CA2813389C (en) 2020-01-14
JP2013541988A (ja) 2013-11-21
CN103429182B (zh) 2016-01-20
AU2011307338A1 (en) 2013-04-18
WO2012044606A3 (en) 2013-08-15
AU2011307338A8 (en) 2015-02-19
CN103429182A (zh) 2013-12-04
RU2013120005A (ru) 2014-11-20
AU2011307338B8 (en) 2015-02-19
JP5905472B2 (ja) 2016-04-20
AU2011307338B2 (en) 2014-09-11
RU2581715C2 (ru) 2016-04-20
WO2012044606A2 (en) 2012-04-05

Similar Documents

Publication Publication Date Title
AU2011307338B8 (en) Surgical instrument with jaw member
US9554846B2 (en) Surgical instrument with jaw member
US8888809B2 (en) Surgical instrument with jaw member
US9743947B2 (en) End effector with a clamp arm assembly and blade
AU2011232538B2 (en) Surgical cutting and sealing instrument with reduced firing force
US9808308B2 (en) Electrosurgical cutting and sealing instruments with cam-actuated jaws
US10278721B2 (en) Electrosurgical instrument with separate closure and cutting members
US8496682B2 (en) Electrosurgical cutting and sealing instruments with cam-actuated jaws
WO2014179199A2 (en) Electrosurgical instrument with dual blade end effector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130501

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

R17D Deferred search report published (corrected)

Effective date: 20130815

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170911

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ETHICON LLC

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180123