EP2620422B1 - Nouveaux monergols ioniques à base de N2O pour la propulsion spatiale - Google Patents

Nouveaux monergols ioniques à base de N2O pour la propulsion spatiale Download PDF

Info

Publication number
EP2620422B1
EP2620422B1 EP13152595.8A EP13152595A EP2620422B1 EP 2620422 B1 EP2620422 B1 EP 2620422B1 EP 13152595 A EP13152595 A EP 13152595A EP 2620422 B1 EP2620422 B1 EP 2620422B1
Authority
EP
European Patent Office
Prior art keywords
triazolium
nitrate
dicyanamide
fuel
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13152595.8A
Other languages
German (de)
English (en)
Other versions
EP2620422A1 (fr
Inventor
Nicolas Pelletier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National dEtudes Spatiales CNES
Original Assignee
Centre National dEtudes Spatiales CNES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National dEtudes Spatiales CNES filed Critical Centre National dEtudes Spatiales CNES
Publication of EP2620422A1 publication Critical patent/EP2620422A1/fr
Application granted granted Critical
Publication of EP2620422B1 publication Critical patent/EP2620422B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B43/00Compositions characterised by explosive or thermic constituents not provided for in groups C06B25/00 - C06B41/00
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/08Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more liquids

Definitions

  • the chemical propulsion of the satellites is generally ensured by the decomposition or the combustion of propellants thus producing gases with very high temperature and very high pressure.
  • the propellants may be monergols or bergols.
  • hydrazine and its methylated derivatives pose significant risks in terms of manufacturing, handling and operations because of their sensitivity to impurities and, to a lesser extent, to temperature and their extreme toxicity. . These constraints generate cumbersome operating procedures and high implementation costs.
  • hydrazine is currently on the list of compounds listed by REACh (European Chemical Regulation), because of its dangerousness (carcinogenic substance, mutagenic or toxic, persistent, biaccumulable or toxic). In fact, a potential progressive ban on hydrazine and its derivatives is to be expected and its substitution may be necessary in the near future.
  • the patent application WO0050363 discloses a formulation based on the dinitramide anion (N (NO 2 ) 2 - ) associated with an energetic cation - preferably ammonium (NH 4 + ), hydrazinium (N 2 H 5 + ) or hydroxylammonium (OHNH 3 + ), ammonium being preferred - the salt formed being dissolved in an aqueous reducing solution or not.
  • the liquid reductant can thus serve as a solvent or be in equilibrium with a water fraction so as to form a liquid ionic energy solution.
  • the reducing agent may in particular be chosen from alcohols, amines, aldehydes or ketones, a large polarity being sought in order to promote the solubility of the energetic salt.
  • Patent applications WO01 / 51433 and WO2009 / 062183 teach as liquid monolols mixtures of nitrous oxide (N 2 O) as an oxidant and hydrocarbon fuel, such as propane (C 3 H 8 ) or ethane (C 2 H) 6 ), ethylene (C 2 H 4 ), acetylene (C 2 H 2 ).
  • the choice of nitrous oxide as oxidant is motivated by its very good oxidizing power and by its volatile nature offering the possibility of a self-pressurization of the tank.
  • the binary N 2 O / hydrocarbon formed mixture has a high saturation vapor pressure (38 bar at 10 ° C for the monergol NOFB34) and very sensitive to the temperature (48 bar at 20 ° C for the same monergol), which, on the one hand, requires qualified equipment for a higher operating pressure than those currently encountered and, on the other hand, makes its thermal control continuously delicate.
  • the energy density of these mixtures remains to be improved in particular because of their density sometimes less than 700 kg.m -3 .
  • the subject of the present invention is therefore a monergol based on nitrous oxide which does not have the disadvantages stated above, and in particular instability.
  • the problem related to the sensitivity of the mixture has been solved by generating a monergol in which the fuel is, in its isolated form, an energetic salt. Its dissolution in the nitrous oxide generates an ionic liquid phase. Due to its reduced saturated vapor pressure, the fuel is fixed in the liquid phase, so that the vapor phase coexisting with the liquid contains only nitrous oxide.
  • the density of monergols thus formed is high thanks to the contribution of salt, thus guaranteeing a high energy density.
  • the salts used have enthalpies of formation and structures such that their association with nitrous oxide provides theoretical Isp between 300s and 350s depending on the candidates.
  • Nitrous oxide N 2 O molar mass 44.013 kg mol -1
  • N 2 O molar mass 44.013 kg mol -1
  • Its saturation vapor pressure (the pressure at which the gas phase is in equilibrium with its liquid phase) varies in the range [0 +20] ° C between 31.3 bar and 50.6 bar. Over the same interval, the density of its liquid phase increases from 907.4 kg.m -3 to 786.6 kg.m -3 , while that of its gas phase increases from 84.9 kg.m -3 to 158.1 kg.m -3 .
  • Nitrous oxide is therefore a highly volatile compound.
  • N 2 O can exist in diphasic form (thermodynamic liquid / gas equilibrium) or monophasic beyond its critical point. Under normal temperature and pressure conditions, nitrous oxide is in liquid / gas equilibrium.
  • the nitrous oxide is in liquid form. It can be partially in the form of gas.
  • N 2 O in liquid form is particularly advantageous in that it solubilizes the fuel and thus act as a solvent.
  • the nitrous oxide is then in solution with the liquid phase of fuel.
  • the liquid phase of N 2 O is then mixed with the fuel.
  • the oxidizing and combustible species are in the same phase.
  • Pressurizing gas is a neutral gas - that is, not intended to participate in the chemical reaction - used in reservoirs to pressurize the monergols and allow them to flow back into the fluidic lines in the direction of flow. thrusters. The system associated with this mode of operation is then called “positive expulsion".
  • Helium (He) and dinitrogen (N 2 ) are the most common pressurizing gases.
  • the use of an additional gas induces certain disadvantages such as the loss of effective volume in the reservoir and the presence of traces of gas in the monergol by absorption.
  • the fuel is an ionic compound introduced into the liquid phase of the monergol.
  • An ionic solution is a liquid containing ions among the solvent.
  • the salt is generally polar, is solid under standard temperature conditions, and is soluble in N 2 O.
  • the salt is generally present as a pure liquid at room temperature (RTIL: Room Temperature Lonic Liquid), has a melting temperature below -20 ° C, and forms a binary mixture with N 2 O.
  • RTIL Room Temperature Lonic Liquid
  • the salt, solid in the standard state is dissolved in a solvent to form an ionic solution itself in admixture with N 2 O present in liquid form.
  • the solvent is advantageously an energy solvent, such as methanol, for example.
  • the liquid phase contains this part of N 2 O in solution.
  • the fuel in liquid form makes it possible to guarantee an advanced stability of the monergol in the face of thermomechanical stimuli, in particular of detonation (shocks, adiabatic compression, etc.) and electrostatic stimuli.
  • the fuel is such that it is compatible with N 2 O and of reduced volatility by its ionic nature.
  • the fuel can be considered as non-volatile.
  • the fuel must be an N 2 O reducing species but may optionally include certain oxidizing groups.
  • the fuel is selected from the salts of the energetic compounds.
  • Energetic compounds are molecules or combinations of molecules with high energy density and high material density. This results in a standard enthalpy of positive and high formation, which may reach several thousand kJ.kg -1 - typically 2000 to 3000 kJ.kg -1 - and a high density, generally greater than 1000 kg.m -3. . This is called HEDM (High Energy Density Materials). Some HEDMs demonstrate outstanding performance but have limitations of use because of their instability (uncontrolled release of energy) and are classified in the category of explosive materials. This is particularly the case of derivatives of pentazole. In addition, an additional feature specific to space propulsion concerns the molar mass of the products resulting from the combustion of these energetic compounds. The latter must be as low as possible - generally less than 30 gmol -1 - in order to guarantee a flame temperature to molar mass ratio. T ad M high, pledge of high specific impulse.
  • the fuel also called “reducing agent”
  • the fuel is any combination of a linear or heterocyclic cation and a linear or heterocyclic anion meeting the criteria presented above.
  • the anion and / or the cation generally comprise one or more nitrogenous and / or unsaturated energetic groups such as amino, azido, cyano, propargyl, tripropargyl and guanidyl.
  • the fuel is usually a nitrogen derivative, in the form of salt.
  • the anion and / or the cation of said salt may contain one or more nitrogen atoms.
  • Said cation may be chosen from nitrogen derivatives such as aliphatic, cyclic or aromatic, quaternary amines.
  • said cation may be chosen from ammonium, imidazolium, triazolium and tetrazolium ions and their derivatives.
  • ion derivatives refers to compounds having a nitrogen atom in the form of said ion.
  • the analogues -inium and -idinium of the above unsaturated heterocyclic compounds refer to the corresponding partially saturated (-inium) and saturated (-idinium) analogues resulting from a partial or complete partial hydrogenation, such as, for example, pyrrolinium as an analogue. partially unsaturated and pyrrolidinium as a saturated analogue of pyrrolium.
  • ammonium derivatives that may be mentioned are substituted ammonium compounds, such as ethylenediammonium, ethanolammonium, propylammonium, monopropargylammonium, tripropargylammonium, tetraethylammonium, N-tributyl-N-methylammonium, N-trimethylammonium, N-butylammonium, N-trimethyl-N-hexylammonium, N-trimethyl-N-propylammonium.
  • substituted ammonium compounds such as ethylenediammonium, ethanolammonium, propylammonium, monopropargylammonium, tripropargylammonium, tetraethylammonium, N-tributyl-N-methylammonium, N-trimethylammonium, N-butylammonium, N-trimethyl-N-hexylammonium, N-trimethyl-N-propylammonium.
  • pyrrolium derivatives that may be mentioned are substituted pyrroliums, in particular with an alkyl group, such as N-methylpyrrolium.
  • imidazolium derivatives mention may be made of substituted imidazoliums, in particular with one or more alkyl groups, and / or hydroxyalkyls, such as 1-butyl-2,3-dimethylamidazolium or 1-butyl-3-methylimidazolium, 1,3-dimethylimidazolium, 1-ethanol-3-methylimidazolium, 1-ethyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, methylimidazolium, 1-octyl-3-methylimidazolium, 1-propyl-2 3-dimethylimidazolium, 1-propyl-2,3-dimethylimidazolium.
  • 1-butyl-2,3-dimethylamidazolium or 1-butyl-3-methylimidazolium 1,3-dimethylimidazolium, 1-ethanol-3-methylimidazolium, 1-ethyl-3-methylimidazolium, 1-hexyl
  • pyrrolidinium derivatives By way of pyrrolidinium derivatives, mention may be made of substituted pyrrolidiniums, in particular with one or more alkyl groups, such as 1-butyl-1-methylpyrrolidinium, 1-ethyl-1-methylpyrrolidinium and N-propyl-N-methylpyrrolidinium. .
  • piperidinium derivatives mention may be made of piperidinium substituted with one or more alkyl groups, such as 1-methyl-1-propylpiperidinium.
  • triazolium derivatives there may be mentioned 1-methyl-1,2,4-triazolium, 3-azido-1,2,4-triazolium, 1-methyl-3-azido-1,2,4 -triazolium, 4-amino-1,2,4-triazolium.
  • tetrazolium As derivatives of tetrazolium, there may be mentioned 1-amino-4,5-dimethyltetrazolium, 2-amino-4,5-dimethyltetrazolium, 1,5-diamino-4-methyltetrazolium.
  • alkyl group saturated hydrocarbon radicals, straight or branched chain, of 1 to 20 carbon atoms, preferably 1 to 5 carbon atoms. Mention may in particular be made, when they are linear, the methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, nonyl, decyl, dodecyl, hexadecyl and octadecyl radicals.
  • alkyl radicals When they are branched or substituted by one or more alkyl radicals, mention may be made especially of the isopropyl, tert-butyl, 2-ethylhexyl, 2-methylbutyl, 2-methylpentyl, 1-methylpentyl and 3-methylheptyl radicals.
  • the counterion is especially chosen from azide, nitrate, dinitramide, dicyanamide, imidazolate and tetrazolate ions and their derivatives.
  • the salts according to the invention can be obtained by application or adaptation of known methods, in particular according to the methods described by Keskin et al., J. of Supercritical Fluids 43 (2007) 150-180 , in particular by coupling of its constituents, by metathesis or by acid-base reaction.
  • the desired salt can be prepared from the compound in neutral form by salification, for example by addition of the acid containing the desired anion; or from another ionic compound by ion exchange, for example on a column, or by transsalification in the presence of an acid containing the desired anion, or by metathesis.
  • nitrate, dinitramide and azide salts can be advantageously prepared by metathesis in the presence of the silver salts of nitrate, dinitramide and azide from the corresponding halides.
  • the monergols according to the invention are such that the ratio N 2 O / fuel (by mass), known as the mixing ratio and often noted O / F or OF (for Oxidizer / Fuel ratio) is generally between 0, 1 and 10, preferably between 1 and 6.
  • the specific impulse represents the duration during which the engine provides a thrust equal to the weight of the consumed propellant. It is thus an indicator of the "sobriety" and therefore of the energy performance of an ergol.
  • C *, g 0 , ⁇ , P e and P c respectively represent the characteristic velocity of the gases ejected by the nozzle, the gravity at the altitude considered, the average isentropic coefficient of the ejected gases, the ejection pressure and the pressure in the room.
  • R, T ad and M are respectively the universal constant of the ideal gases, the adiabatic temperature within the chamber (so-called "flame" if presence of combustion) and the average molar mass of the ejected gases.
  • the present invention also relates to the process for preparing the monergol according to the invention.
  • said process comprises the step of mixing the fuel and N 2 O.
  • This mixture can be carried out at room temperature, but in the case where a solid salt in the standard state is used, the maximum solubility should be considered at room temperature.
  • the minimum storage temperature of the monergol orbit to overcome any risk of saturation and recrystallization in flight. It is therefore necessary, during the synthesis of the monergol, to respect this threshold.
  • the minimum operating temperature of the monolgy in orbit is typically 0 ° C.
  • the monolif according to the invention can be stored taking care not to exceed the maximum permissible storage temperature so as not to exceed a certain saturation vapor pressure level, the MEOP (Maximum Expected Operating Pressure, maximum pressure expected in operation) being between 10 and 50 bar, typically between 20 and 40 bar.
  • the maximum storage temperature is generally between 0 ° and 50 ° C.
  • the monoling stone must have sufficient stability to be stored in orbit for a period of several years - typically 5 years, but possibly up to 15 years. The stability must be reflected in particular by the absence of phase separation (demixing, settling, etc.).
  • the present invention also relates to a method of spatial propulsion using the monergol according to the invention.
  • Spatial propulsion is the propulsion of spacecraft such as launchers and satellites.
  • the monergol according to the invention is suitable for combustion operation.
  • Combustion makes it possible to dispense with a catalytic bed and consequently with a complex propellant structure.
  • the life of the propellant may be extended insofar as the catalyst currently constitutes the limiting element due to phenomena such as catalyst deactivation by erosion, oxidation, sintering, etc.
  • the method according to the invention therefore comprises the combustion of the monergol according to the invention.
  • the combustion is generally carried out by controlled ignition. This can be done according to the usual technologies, in particular by means of a high energy candle.
  • the spark plug is generally positioned in the injection head, at the arrival of the monergol in the combustion chamber, the gases burned and evacuated by a nozzle placed at the opposite end of the combustion chamber.
  • the method according to the invention may also comprise the means for pressurizing the monergol in the tank.
  • the present propellant systems known as "catalytic monergols" with hydrazine operate for pressures in the tank of the order of 20 bar at the beginning of life (initial pressure) and 5 bar at the end of life. This pressure decreases during the draining of the monergol due to the relaxation of the pressurizing gas in the volume released by the propellant.
  • Some systems provide for tank pressure regulation to keep it constant over a certain part of the satellite's mission (performance optimization). This is the case on a telecommunication platform, but this introduces a complex and expensive equipment.
  • the pressurization can be advantageously carried out by the N 2 O solution itself because of its volatile nature, so that the use of an additional inert gas is no longer necessary. This results in a gain on the filling rate of the reservoir as well as on the apparent density of the liquid-gas torque.
  • the pressurizing means can be ensured only by filling the monergol in the tank.
  • the return to equilibrium between the liquid and vapor phases by vaporization of a liquid N 2 O fraction is accompanied by a slight drop in temperature (endothermic phenomenon), so that a slight decrease in pressure will be observed.
  • This phenomenon can be counterbalanced by the exercise of a reheating of the tank via a thermal control (thermistors).
  • This phenomenon of self-pressurization "represents a major advantage since, similarly to pressure regulators on biliquid engines, it allows the thrusters to operate near their optimum performance.
  • the tank then operates in a conventional "blow down" manner similar to an inert gas pressurization.
  • the method according to the invention may also include the previous step of loading the monolgy into the tank of the spacecraft.
  • 1-Butyl-3-methyl-imidazolium dicyanamide can be prepared using the methodology described by Asikkala et al (Application of Ionic Liquids and Microactivation in Selected Organic Reactions, Acta Univ Oul. A 502, 2008, p. 134) by transsalification from 1-butyl-3-methyl-imidazolium chloride in the presence of sodium dicyanamide, the chloride being prepared by reaction between 1-chlorobutane and 1-methylimidazole.
  • the dicyanamide of 1-butyl-3-methyl-imidazolium can be prepared by metathesis as described in particular in US8,034,202 from 1-butyl-3-methylimidazolium bromide in the presence of silver dicyanamide.
  • Based on triazolium cation: Denomination Atomic composition T FUS T DECOMP ⁇ ⁇ H f ° VS NOT H O [° C] [° C] [Kg / m3] [KJ / kg] 1,2,4-triazolium 4,5-dinitroimidazolate 5 7 5 4 156 165 1730 1022.5 4,5-dinitroimidazolate of 1-methyl-1,2,4-triazolium 6 7 7 4 102 150 1660 831.1 3-azido-1,2,4-triazolium 4,5-dinitro-im idazoate 5 10 4 4 92 158 1700 2214.6 4,5-dinitroimidazolate of 1-methyl-3-azido-1,2,4-tri
  • the above salts can be prepared according to Singh et al Structure Bond 2007, 125: 35-83.
  • Example 1 the first case can be illustrated by the use of the azide of 1- (2-butynyl) -3-methyl-imidazolium, noted [ByMIM] [N 3 - ].
  • This compound can be prepared from bromide of 1- (2-butynyl) -3-methyl-imidazolium on azide exchange resin according to Schneider et al Inorganic Chemistry 2008, 47 (9), 3617-3624 . It can be dissolved by direct dissolution in N 2 O. The following figure gives the structure of [ByMIM] [N 3 - ]:
  • Example 2 the second case can be represented by the liquid-liquid binary mixture between 1-butyl-3-methyl-imidazolium dicyanamide, denoted [BMIM] [N (CN) 2 - ] (marketed by Solvionic), and the N 2 O.
  • BMIM 1-butyl-3-methyl-imidazolium dicyanamide
  • Example 3 the third case can be illustrated by the ternary equilibrium between 1,5-diamino-4-methyl-tetrazolium dinitramide, noted [DAMT] [N (NO 2 ) 2 ] synthesized according to Singh et al Structure Bond 2007, 125: 35-83 ,, pyrrolidine and N 2 O.
  • the structure of [DAMT] [N (NO 2 ) 2 ] is as follows:
  • the specific impulse generated by monergol combustion is closely dependent on the O / F mixture ratio between N 2 O and the fuel (dissolved "crystalline" salt or liquid salt).
  • a curve can then be described by plotting the evolution of the Isp as a function of O / F , any other parameter being kept constant (chamber pressure, initial temperature, expansion ratio ⁇ ).
  • a maximum of Isp can then be identified as well as the corresponding optimal O / F.
  • the monergol must be synthesized respecting this mixing ratio in order to provide the best propulsive performance.
  • the solubility of the salt in N 2 O or in the N 2 O combined solution limits the range of O / F available.
  • the crystalline salts of interest must therefore either have a high solubility at the specified minimum temperature (typically S T min > 100 ⁇ boy Wut . k ⁇ boy Wut NOT 2 ⁇ O - 1 or to disassemble a high mixing ratio Isp optimum (typically 4 O O / F ⁇ 10).
  • the use of energetic solvent makes it possible to enhance the optimal mixing ratio, to reduce the amount of salt required and thus to respect the solubility ceiling.
  • an optimal mixing ratio of 3.4 is found, which makes it possible to lower the mass of salt necessary for 117 ⁇ boy Wut . k ⁇ boy Wut NOT 2 ⁇ O - 1 .
  • this approach alters the maximum Isp (here, about -6s), which shows all the importance of the energy density of the solvent used.
  • the filling of the satellite tank can then be carried out by placing the storage tank and the propulsion module tank in communication and withdrawing the liquid phase.
  • the driving force for the transfer of monoling from the drum to the reservoir is directly ensured by the self-pressurization of the monergol.
  • the use of an additional neutral gas may be considered to expel the monolgy from the storage drum.
  • the monol ⁇ N 2 O + ionic fuel ⁇ stored in the pressurized tank is injected into the propellant via a usual fluid line including in particular a flow control valve called "motor valve".
  • the monergol is withdrawn at the reservoir by its liquid phase insofar as only this phase comprises both the oxidant and the fuel.
  • a bleeding technique well adapted to the present invention is the capillary network system (also known as the surface tension tank), well known to those skilled in the art.
  • the expulsion of the monergol through the fluidic line supplying the thrusters is ensured by the pressure generated by the N 2 O gas in equilibrium with the liquid solution. Only the liquid phase is then expelled.
  • the value of the mass flow rate of the monergol injected into the propellant (s) is dictated by the total pressure drop in the fluid lines of the reservoir to the engine (s), in particular by the singular pressure drop of the injector (dictated by its design). As long as the monergol has not crossed the injection head, it remains in liquid phase as long as it exists in this state in the tank.
  • the monergol When the monergol goes through the injector located at the engine head (called “front end”), the latter undergoes a relaxation. It then enters the upstream part of the combustion chamber and is caused to undergo a phase change.
  • the cause of the phase change differs according to the state of the combustion chamber, more precisely its pressure and temperature level. If it is an ignition, it can be assumed that the monergol enters a "fresh" environment and empty or near vacuum (so-called rarefied medium) to the extent that the room communicates with the vacuum space via the nozzle.
  • the monolol will volatilize rapidly since its saturation vapor pressure will be significantly higher than the residual pressure within the combustion chamber. This phenomenon will be exacerbated if the monolayer or the walls of the thruster are at a higher temperature.
  • the ignition phase consists in synchronizing the triggering of the spark plug with the arrival of the flow of the monergol in order to generate a "soft" ignition (contrary to the "hard start” involving a peak of transient pressure and violent damage to the system) .
  • the assurance of a quality ignition can also be achieved by the realization of a train of triggers of the candle (bursts of electric arcs) with relatively constant frequency (period of the order of a few tens of milliseconds to hundreds of milliseconds).
  • the arcing stream can also be fired in a slight phase advance over the injection to act as a local preheat.
  • the optimization of the ignition thus relies on the conjunction of a geometric design and an optimized sequence of trips.
  • the combustion is maintained after ignition as long as the monergol flow is maintained (open motor valve) and therefore does not require additional spark plugs.
  • the energy released by the combustion of the monergol is sufficient to maintain the reaction of the fresh species injected.
  • Combustion consists of a reaction between the main oxidant, namely N 2 O, and the ionic fuel optionally comprising oxidizing groups (eg nitramides).
  • the reaction produces hot gases at high pressure.
  • the combustion chamber is dimensioned such that the thermodynamic equilibrium is reached before ejection of the flue gas so as to achieve maximum efficiency.
  • the gases are ejected through a nozzle provided with a convergent, sonic and divergent neck to initiate and accelerate the flow to generate an optimal thrust force.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Inert Electrodes (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

  • La propulsion chimique des satellites est généralement assurée par la décomposition ou la combustion d'ergols produisant ainsi des gaz à très haute température et très forte pression. Les ergols peuvent être de type monergols ou biergols.
  • La propulsion biergol est sans conteste l'une des deux technologies les plus utilisées de nos jours, en particulier sur satellites. Son grand volume d'utilisation s'explique notamment par son adoption sur satellites de télécommunication (marché important), de masses élevées, où les poussées mises en jeu sont de gamme supérieure (10N à 400N). Leurs hautes performances (impulsion spécifique (Isp)=320s pour une expansion ε de 330, réelle) sont de plus un paramètre de choix qui réduit la quantité d'ergol embarquée pour les longues manoeuvres de transfert en orbite géostationnaire. En revanche, les biergols nécessitent le stockage de deux composés chimiques (un oxydant et un combustible) dans des réservoirs séparés, et impliquent donc une architecture complexe. Le biergol peroxyde d'azote (NTO)/monométhylhydrazine (MMH) est actuellement la combinaison oxydant/réducteur de choix.
  • La propulsion monergol constitue la seconde technologie la plus utilisée sur satellites. Sa forme la plus répandue consiste à utiliser un ergol métastable pouvant se décomposer au passage d'un lit catalytique de façon exothermique, ce qui a pour effet de convertir l'ergol en produits gazeux à haute température et faible masse molaire. La propulsion monergol dans sa généralité s'adresse aux petites poussées (1 N à 10N) et montre des performances assez moyennes. L'hydrazine (N2H4) est le monergol le plus courant et affiche une Isp de l'ordre de 210s à ε=80 (réelle). Son avantage majeur est de reposer sur une architecture assez simple en raison de la présence d'un unique ergol. Néanmoins, l'utilisation de l'hydrazine et de ses dérivés méthylés (MMH ou UDMH) présente des risques importants en termes de fabrication, manipulation et opérations du fait de leur sensibilité aux impuretés et, moindrement, à la température et de leur extrême toxicité. Ces contraintes sont génératrices de procédures opératoires lourdes et de coûts de mise en oeuvre élevés. De plus, l'hydrazine figure actuellement sur la liste des composés listés par REACh (Réglementation chimique européenne), en raison de sa dangerosité (substance cancérigène, mutagène ou toxique, persistante, biaccumulable ou toxique). De fait, une interdiction potentielle progressive de l'hydrazine puis de ses dérivés est à prévoir et sa substitution pourrait être nécessaire dans un futur proche.
  • De nombreuses études sont actuellement menées pour identifier des alternatives qualifiées de « vertes » en raison de leur toxicité réduite comparée à celle de l'hydrazine. Les « ergols verts » recherchés, respectant la réglementation REACh, devront également obéir à des exigences spécifiques au domaine spatial, notamment en termes de stockage à long terme, de stabilités thermique et mécanique (vis-à-vis des chocs, détonation, compression adiabatique, etc.), de large compatibilité avec les matériaux des systèmes de propulsion (réservoirs, tuyauteries, vannes...), de compatibilité avec les contraintes spatiales (points de fusion/ébullition, pression de vapeur etc.), de maîtrise des impacts systèmes (encombrement/masse, assemblage, intégration et tests) tout en présentant des performances élevées (Isp, masse volumique).
  • Parmi les alternatives étudiées ont été envisagés des monergols basés sur l'ADN (dinitramide d'ammonium), le HAN (nitrate d'hydroxylammonium) ou encore HNF (nitroformate d'hydrazinium). Leur mise en oeuvre est identique à celle de l'hydrazine mais, contrairement à cette dernière, ces monergols ioniques ont la particularité d'entrer en combustion après leur décomposition catalytique en raison de la présence d'espèces oxydantes et réductrices propices à une oxydo-réduction. Ceci permet d'atteindre, sous l'effet de la température, des Isp légèrement supérieures à celle de l'hydrazine (Isp = 230s à ε=50, rélle). La demande de brevet WO0050363 décrit une formulation à base de l'anion dinitramide (N(NO2)2 -) associé à un cation énergétique - préférentiellement, l'ammonium (NH4 +), l'hydrazinium (N2H5 +) ou l'hydroxylammonium (OHNH3 +), l'ammonium étant privilégié - le sel formé étant dissous dans une solution réductrice aqueuse ou non. Le réducteur liquide peut ainsi servir de solvant ou être en équilibre avec une fraction d'eau de manière à former une solution énergétique ionique liquide. Le réducteur peut être notamment choisi parmi les alcools, amines, aldéhydes ou cétones, une polarité importante étant recherchée afin de favoriser la solubilité du sel énergétique. L'augmentation de la polarité du réducteur permet alors de réduire la teneur en eau et d'ainsi accroître l'Isp du mélange. Les Isp théoriques sont comprises entre 245s à 280s (pression chambre de 20 bar et ε=50). Une formulation a reçu une attention particulière pour sa stabilité thermique au stockage : le LMP-103S (60-65% ADN, 15-20% méthanol, 3-6% ammoniaque et complément en eau), démontrant une Isp théorique de 252s. Toutefois, malgré des performances théoriques supérieures à celles de l'hydrazine, de tels monergols possèdent un inconvénient majeur lié à leur mise en oeuvre dans le propulseur : ces ergols sont en effet décomposés par catalyse puis leurs produits de décomposition entrent en combustion en raison de la cohabitation d'agents oxydants et réducteurs et d'une température de décomposition supérieure au seuil d'auto-inflammation. Dès lors, les températures de flamme atteintes sont plus élevées (1800°C) que dans le cas du monergol hydrazine (900°C) et génèrent une contrainte thermique intense pour le lit catalytique. Parmi les problèmes liés à ce stress thermique peuvent être cités : une désactivation du catalyseur par oxydation, l'érosion de la phase active ou encore le frittage des particules support. Cette perte d'activité se traduit par une diminution progressive des performances et une limitation de la durée de vie du propulseur : malgré un niveau supérieur à celui de l'hydrazine en « début de vie », l'Isp peut fortement décroître en cours de mission pour finalement générer de performances globales nettement inférieures. Il apparaît alors que le recours à un dispositif catalytique, historiquement utilisé en propulsion monergol, semble inadapté si l'on tend vers des composés à haute densité énergétique. Une mise en oeuvre alternative de la décomposition/réaction de l'ergol dans laquelle l'énergie d'activation serait atteinte par un procédé non catalytique ouvrirait alors la porte à des composés beaucoup plus énergétiques que l'hydrazine et même que l'ADN.
  • D'autres pistes ont été poursuivies en matière à la fois de monergols alternatifs « verts » et de mise en oeuvre de leur réaction. Les demandes de brevet WO01/51433 et WO2009/062183 enseignent à titre de monergols liquides des mélanges de protoxyde d'azote (N2O) à titre d'oxydant et d'hydrocarbures à titre de combustible, tels que le propane (C3H8) ou l'éthane (C2H6), l'éthylène (C2H4), l'acétylène (C2H2). A titre d'exemple, le NOFB34 est un mélange de N2O et d'acétylène dans un rapport O / F , = 4. Le choix du protoxyde d'azote en tant que comburant est motivé par son très bon pouvoir oxydant et par son caractère volatil offrant la possibilité d'une auto-pressurisation du réservoir. En revanche, les hydrocarbures utilisés, très volatils, conduisent dans l'intervalle de température d'utilisation à une phase gazeuse contenant à la fois le protoxyde d'azote et l'hydrocarbure. Ce mélange gazeux est sensible et présente des risques de détonation élevés en réponse à des stimuli thermiques ou mécaniques. On peut à ce titre mentionner les travaux portant sur l'étude de la détonabilité des mélanges N2O/hydrocarbures, de M. Kaneshige et al. (Hydrocarbon-Air-NitrousOxideDetonations, Western States Section/The Combustion Institute, Spring Meeting, Sandia National Laboratories, Livermore, CA, April 14 and 15 1997). En outre, le mélange binaire N2O/hydrocarbure formé possède une pression de vapeur saturante élevée (38 bar à 10°C pour le monergol NOFB34) et très sensible à la température (48 bar à 20°C pour ce même monergol), ce qui, d'une part, nécessite un équipement qualifié pour une pression de service supérieure à celles rencontrées actuellement et, d'autre part, rend son contrôle thermique en continu délicat. De plus, la densité énergétique de ces mélanges reste à améliorer en particulier en raison de leur masse volumique parfois inférieure à 700 kg.m-3.
  • La présente invention a donc ainsi pour objet un monergol à base de protoxyde d'azote ne présentant pas les désavantages énoncés ci-avant, et notamment l'instabilité. En premier lieu, le problème lié à la sensibilité du mélange a été résolu en générant un monergol dans lequel le combustible est, sous sa forme isolée, un sel énergétique. Sa mise en solution dans le protoxyde d'azote génère une phase liquide ionique. De par sa pression de vapeur saturante réduite, le combustible est fixé en phase liquide, de sorte que la phase vapeur cohabitant avec le liquide contienne uniquement du protoxyde d'azote. En second lieu, la masse volumique des monergols ainsi formés est élevée grâce à l'apport du sel, garantissant ainsi une densité énergétique élevée. Les sels mis en oeuvre possèdent des enthalpies de formation et des structures telles que leur association au protoxyde d'azote fournit des Isp théoriques comprises entre 300s et 350s selon les candidats.
  • Selon un premier objet, la présente invention concerne donc un monergol formé par un mélange comprenant :
    • du protoxyde d'azote (N2O) à titre d'oxydant au moins partiellement sous forme liquide, et
    • un combustible sous forme de sel dans la phase liquide du N2O.
  • Le protoxyde d'azote N2O, de masse molaire 44,013 kg.mol-1, est aussi appelé oxyde nitreux, monoxyde de diazote, oxyde d'azote, oxyde de diazote. Son point critique est à situé à Pc=72,51 bar et Tc=36,42°C. Sa pression de vapeur saturante (pression à laquelle la phase gazeuse est en équilibre avec sa phase liquide) varie dans l'intervalle [0 +20]°C entre 31,3 bar et 50,6 bar. Sur ce même intervalle, la masse volumique de sa phase liquide passe de 907,4 kg.m-3 à 786,6 kg.m-3, tandis que celle de sa phase gazeuse croît de 84,9 kg.m-3 à 158,1 kg.m-3. Le protoxyde d'azote est donc un composé fortement volatil. Selon les conditions de température et de pression, le N2O peut exister sous forme diphasique (équilibre thermodynamique liquide/gaz) ou monophasique au-delà de son point critique. Dans les conditions normales de température et de pression, le protoxyde d'azote est en équilibre liquide/gaz.
  • Selon l'invention, le protoxyde d'azote est sous forme liquide. Il peut être partiellement sous forme de gaz.
  • La présence de N2O sous forme liquide est particulièrement avantageuse en ce qu'elle permet de solubiliser le combustible et de jouer ainsi le rôle de solvant. Le protoxyde d'azote est alors en solution avec la phase liquide de combustible.
  • La phase liquide du N2O est alors en mélange avec le combustible. De fait, les espèces oxydantes et combustibles sont dans une même phase.
  • La présence d'une phase gazeuse constituée de N2O en équilibre dans le monergol est également intéressante en ce que le N2O gazeux joue le rôle de gaz de pressurisation.
  • On appelle « gaz de pressurisation » un gaz neutre - c'est-à-dire n'étant pas destiné à participer à la réaction chimique - utilisé dans les réservoirs pour mettre sous pression les monergols et permettre leur refoulement dans les lignes fluidiques en direction des propulseurs. Le système associé à ce mode de fonctionnement est alors dit « à expulsion positive ». L'hélium (He) et le diazote (N2) sont les gaz de pressurisation les plus courants. Le recours à un gaz additionnel induit certains inconvénients tels que la perte de volume efficace dans le réservoir et la présence de traces de gaz dans le monergol par absorption.
  • Selon l'invention, le combustible est un composé ionique introduit dans la phase liquide du monergol.
  • La phase liquide peut être constituée :
    1. 1) du combustible sous forme de sel solide lorsque isolé à température ambiante et solubilisé dans le N2O au moins partiellement présent sous forme liquide, ou
    2. 2) du sel fondu du combustible en mélange binaire avec le N2O au moins partiellement présent sous forme liquide, ou
    3. 3) d'une solution ionique du combustible dissous dans un solvant énergétique organique ou ionique, en mélange binaire avec le N2O au moins présent sous forme liquide. Si un solvant ionique est utilisé, il s'agit d'un sel fondu.
  • On appelle solution ionique un liquide contenant des ions parmi le solvant.
  • Selon le mode de réalisation 1), le sel est généralement polaire, est solide dans les conditions standard de température, et est soluble dans le N2O.
  • A titre illustratif, on peut citer l'azoture de 1,5-diamino-4-méthyl-tétrazolium.
  • Selon le mode de réalisation 2), le sel est généralement présent sous forme de liquide pur à température ambiante (RTIL : Room Température lonic Liquid), présente une température de fusion inférieure à -20°C, et formeun mélange binaire avec le N2O.
  • A titre illustratif, on peut citer le 5-nitro-tétrazolate de 3-azido-1,2,4-triazolium.
  • Selon le mode de réalisation 3), le sel, solide à l'état standard, est dissous dans un solvant pour former une solution ionique elle-même en mélange avec le N2O présent sous forme liquide. Le solvant est avantageusement un solvant énergétique, tel que le méthanol par exemple.
  • A titre illustratif, on peut citer le dinitramide de 1,5-diamino-4-méthyl-tétrazolium en mélange dans le méthanol.
  • Lorsque le N2O est au moins partiellement présent sous forme liquide, la phase liquide contient cette part de N2O en solution.
  • Le combustible sous forme liquide permet de garantir une stabilité avancée du monergol face aux stimuli thermo-mécaniques, notamment d'origine détonique (chocs, compression adiabatique, etc.) et électrostatiques.
  • Le combustible est tel qu'il est compatible avec N2O et de volatilité réduite de par sa nature ionique. En particulier, dans les conditions de stockage du monergol, le combustible peut être considéré comme non volatil.
  • Le terme « compatible » signifie ici que le combustible est, suivant sa phase dans les conditions standard :
    • soluble ou miscible et apte à former des mélanges binaires solide-liquide ou liquide-liquide respectivement avec le N2O liquide ;
    • donne lieu à un mélange thermodynamiquement stable avec le N2O liquide dans les conditions standard.
  • Le combustible doit être une espèce réductrice de N2O mais peut éventuellement comporter certains groupes oxydants.
  • Pour répondre aux exigences de densité énergétique nécessaire à la propulsion spatiale, le combustible est choisi parmi les sels des composés énergétiques.
  • On appelle composés énergétiques les molécules ou associations de molécules présentant une densité d'énergie et une densité de matière élevées. Ceci se traduit par une enthalpie standard de formation positive et élevée, pouvant atteindre plusieurs milliers de kJ.kg-1 - typiquement 2000 à 3000 kJ.kg-1 - et par une masse volumique élevée, généralement supérieure à 1000 kg.m-3. On parle alors de HEDM (High Energy Density Materials). Certains HEDM démontrent des performances hors du commun mais présentent des limites d'utilisation en raison de leur instabilité (libération non contrôlée d'énergie) et sont classés dans la catégorie des matières explosives. C'est notamment le cas des dérivées du pentazole. En outre, une caractéristique supplémentaire propre à la propulsion spatiale concerne la masse molaire des produits issus de la combustion de ces composés énergétiques. Cette dernière doit être la plus faible possible - généralement inférieure à 30 g.mol-1 - afin de garantir un rapport température de flamme sur masse molaire T ad M
    Figure imgb0001
    élevé, gage d'impulsion spécifique élevée.
  • Selon l'invention, le combustible (aussi appelé « réducteur ») est toute association d'un cation linéaire ou hétérocyclique et d'un anion linéaire ou hétérocyclique répondant aux critères présentés ci-avant. L'anion et/ou le cation comprennent généralement un ou plusieurs groupes énergétiques azotés et/ou insaturés tels que amino, azido, cyano, propargyl, tripropargyl et guanidyl.
  • Le combustible est généralement un dérivé azoté, sous forme de sel. Ainsi, l'anion et/ou le cation dudit sel peuvent contenir un ou plusieurs atomes d'azote.
  • Ledit cation peut être choisi parmi les dérivés azotés tels que les amines aliphatiques, cycliques, ou aromatiques, quaternaires.
  • Ledit cation peut notamment être choisi parmi :
    • les cations linéaires, tels que les ions ammonium, hydroxylammonium, hydrazinium, et leurs dérivés ;
    • les cations hétérocycliques saturés tels que pipéridinium, pipérazinium, et leurs dérivés ; et
    • les cations hétérocycliques aromatiques ou non, tels que les azinium, azolium, diazolium, triazolium et tétrazolium, notamment pyridinium, pyrrolium, isoxazolium, pyrazolium, oxazolium, pyrazolium, imidazolium, oxadiazolium, triazolium, oxatriazolium, tétrazolium, pyrrolidium, triazinium, pyridazinium, pyrimidinium, pyrazinium, pipéridinium, 1,2,3- ou 1,2,4-triazolium, 1,4,5- ou 2,4,5- tétrazolium, ainsi que leurs analogues -inium et -idinium, et leurs dérivés.
  • Plus particulièrement, ledit cation peut être choisi parmi les ions ammonium, imidazolium, triazolium, tétrazolium et leurs dérivés.
  • L'expression « dérivés d'ion » fait référence aux composés possédant un atome d'azote sous forme dudit ion.
  • Les analogues -inium et -idinium des composés hétérocycliques insaturés ci-dessus font référence aux analogues partiellement saturés (-inium) et saturés (-idinium) correspondant résultant d'une hydrogénation partielle respectivement complète, comme par exemple le pyrrolinium à titre d'analogue partiellement insaturé et le pyrrolidinium à titre d'analogue saturé du pyrrolium.
  • A titre de dérivés ammonium, on peut notamment citer les ammonium substitués, tel que l'éthylènediammonium, l'éthanolammonium, le propylammonium, le monopropargylammonium, le tripropargylammonium, le tétraéthylammonium, le N-tributyl-N-méthylammonium, le N-triméthyl-N-butylammonium, le N-triméthyl-N-hexylammonium, le N-triméthyl-N-propylammonium.
  • A titre de dérivés de pyrrolium, on peut par exemple citer les pyrrolium substitués, notamment par un groupe alkyle, tels que le N-méthylpyrrolium.
  • A titre de dérivés d'imidazolium, on peut citer les imidazolium substitués, notamment par un ou plusieurs groupes alkyles, et/ou hydroxyalkyles, tels que le 1-butyl-2,3-diméthylamidazolium, le 1-butyl-3-méthylimidazolium, le 1,3-diméthylimidazolium, le 1-éthanol-3-méthylimidazolium, le 1-éthyl-3méthylimidazolium, le 1-héxyl-3-méthylimidazolium, le méthylimidazolium, le 1-octyl-3-méthylimidazolium, le 1-propyl-2,3-diméthylimidazolium, le 1-propyl-2,3-diméthylimidazolium.
  • A titre de dérivés de pyrrolidinium, on peut citer les pyrrolidinium substitués, notamment par un ou plusieurs groupes alkyles, tels que le 1-butyl-1-méthylpyrrolidinium, le 1-éthyl-1-méthylpyrrolidinium, le N-propyl-N-méthylpyrrolidinium.
  • A titre de dérivés de pipéridinium, on peut citer les pipéridinium substitués par un ou plusieurs groupes alkyles, tels que le 1-méthyl-1-propylpipéridinium.
  • A titre de dérivés de triazolium, on peut citer le 1-méthyl-1,2,4-triazolium, le 3-azido-1,2,4-triazolium, le 1-méthyl-3-azido-1,2,4-triazolium, le 4-amino-1,2,4-triazolium.
  • A titre de dérivés de tétrazolium, on peut citer le 1-amino-4,5-diméthyltétrazolium, le 2-amino-4,5-diméthyltétrazolium, le 1,5-diamino-4-méthyltétrazolium.
  • A titre illustratif, on peut mentionner les familles de cations suivantes :
    Famille Composé Structure générique
    Ammonium
    Figure imgb0002
    Azinium (6 atomes) Pyridinium
    Figure imgb0003
    Azolium Pyrrolium
    Figure imgb0004
    Diazolium Pyrazolium
    Figure imgb0005
    Imidazolium
    Figure imgb0006
    Triazolium 1,2,3-Triazolium (à g.)
    Figure imgb0007
    Figure imgb0008
    1,2,4-Triazolium (à d.)
    Tétrazolium 1,4,5-Tétrazolium (à g.)
    Figure imgb0009
    Figure imgb0010
    2,4,5-Tétrazolium (à d.)
    où chacun des R1, R2, R3, R4, R5 et R6, identiques ou différents, représentent indépendamment un atome d'hydrogène, ou un groupe alkyle ; CN ; alkyle substitué par CN ; NRR' ; azido-(-N3) ; nitro ; propargyl ; tripropargyl et guanidyl ; où RR' représente indépendamment un atome d'hydrogène ou un groupe alkyle...
  • Le contre-ion (anion) du combustible peut être tout anion présentant une charge négative, azoté ou non. Il peut notamment être choisi parmi
    • les anions linéaires tels que les ions azoture, nitrate, nitramide, nitroformiate, dinitramide, nitrite, acétate, cyanamide, dicyanamide, phosphate, méthylphosphonate, éthylphosphonate ; et
    • les anions hétérocycliques insaturés tels que les azolates (tels que pyrrolate), diazolate (tel que pyrazolate, imidazolate), triazolate (1,2,3- et 1,2,4-triazolate) et tétrazolate (tel que nitrotétrazolate),
    et leurs dérivés, tels que le 4,5-dinitroimidazolate, le 5-nitrotétrazolate.
  • A titre illustratif, on peut citer les familles d'anions suivantes :
    Famille Composé Structure génétique
    Nitrate
    Figure imgb0011
    Nitramide Nitramide
    Figure imgb0012
    Dinitramide
    Figure imgb0013
    Azoture N=N=N
    Cyanamide Cyanamide HN-C≡N
    Dicyanamide N≡C-N-C≡N
    Azolate Pyrrolate
    Figure imgb0014
    Diazolate Pyrazolate
    Figure imgb0015
    Imidazolate
    Figure imgb0016
    Triazolate 1,2,3-Triazolate (à g.)
    Figure imgb0017
    Figure imgb0018
    1,2,4-Triazolate (à d.)
    Tétrazolate 3-Tétrazolate (à g.)
    Figure imgb0019
    Figure imgb0020
    2-Tétrazolate (à d.)
    où chacun des R1, R2, R3, R4, R5 et R6, identiques ou différents représentent indépendamment un atome d'hydrogène, ou un groupe alkyle ; CN ; alkyle substitué par CN ; NRR' ; azido-(-N3) ; nitro ; propargyl ; tripropargyl et guanidyl ; où RR' représentent indépendamment un atome d'hydrogène ou un groupe alkyle.
  • Par groupe alkyle, on entend les radicaux hydrocarbonés saturés, en chaîne droite ou ramifiée, de 1 à 20 atomes de carbone, de préférence de 1 à 5 atomes de carbone. On peut notamment citer, lorsqu'ils sont linéaires, les radicaux méthyle, éthyle, propyle, butyle, pentyle, hexyle, octyle, nonyle, décyle, dodécyle, hexadécyle, et octadécyle. On peut notamment citer, lorsqu'ils sont ramifiés ou substitués par un ou plusieurs radicaux alkyle, les radicaux isopropyle, tert-butyl, 2-éthylhexyle, 2-méthylbutyle, 2-méthylpentyle, 1-méthylpentyle et 3-méthylheptyle.
  • Le contre-ion (anion) est notamment choisi parmi les ions azoture, nitrate, dinitramide, dicyanamide, imidazolate et tétrazolate et leurs dérivés.
  • Plus particulièrement, on peut notamment citer à titre de combustible les composés suivants :
    • l'azoture d'ammonium (AA),
    • l'azoture de tétrabutylammonium,
    • le nitrotétrazolate de triazolium,
    • le nitrotétrazolate d'azidotriazolium,
    • le dinitramide d'ammonium (ADN),
    • l'azoture d'hydroxylammonium (HAA),
    • l'azoture d'hydrazinium (HA),
    • le nitrate d'hydroxylammonium (HAN),
    • le dinitramide d'ammonium (ADN),
    • le nitroformiate d'hydrazinium (HNF),
    • le nitrate d'ammonium (AN),
    • le nitrate d'hydrazinium (HN),
    • le nitrate de triéthanolammonium (TEAN),
    • le dinitramide d'hydroxylammonium (HADN),
    • les sels d'azoture, d'acétate, de nitrate, de dinitramide, de dicyanamide, de méthylphosphonate, de 4,5-dinitroimidazolate, de 5-nitro-tétrazolate et d'éthylphosphonate
    d'ammonium, éthylènediammonium, éthanolammonium, propylammonium, monopropargylammonium, tripropargylammonium, tétrabutylammonium, tétraéthylammonium, N-tributyl-N-méthylammonium, N-triméthyl-N-butylammonium, N-triméthyl-N-hexylammonium, N-triméthyl-N-propylammonium, pyrrolinium, N-méthylpyrrolinium, imidazolium, 1-butyl-2,3-diméthylamidazolium, 1-butyl-3-méthylimidazolium, 1,3-diméthylimidazolium, 1-éthanol-3-méthylimidazolium, 1-éthyl-3méthylimidazolium, 1-héxyl-3-méthylimidazolium, méthylimidazolium, 1-octyl-3-méthylimidazolium, 1-propyl-2,3-diméthylimidazolium, 1-propyl-2,3-diméthylimidazolium, 1-(2-butynyl)-3-méthyl-imidazolium, pyrrolidinium, 1-butyl-1-méthylpyrrolidinium, 1-éthyl-1-méthylpyrrolidinium, N-propyl-N-méthyl-pyrrolidinium, pipéridinium et 1-méthyl-1-propylpipéridinium, de 1,2,4-triazolium, de 1-méthyl-1,2,4-triazolium, de 3-azido-1,2,4-triazolium, de 1-méthyl-3-azido-1,2,4-triazolium, de 4-amino-1,2,4-triazolium, de 1-amino-4,5-diméthyl-tétrazolium, de 2-amino-4,5-diméthyl-tétrazolium, de 1,5-diamino-4-méthyl-tétrazolium.
  • A titre illustratif, on peut ainsi citer :
    • l'azoture d'ammonium (AA),
    • l'azoture de tétrabutylammonium,
    • le nitrotétrazolate de triazolium,
    • le nitrotétrazolate d'azidotriazolium,
    • le dinitramide d'ammonium (ADN),
    • l'azoture d'hydroxylammonium (HAA),
    • l'azoture d'hydrazinium (HA),
    • l'azoture de 1-(2-butynyl)-3-méthyl-imidazolium
    • le nitrate d'hydroxylammonium (HAN),
    • le dinitramide d'ammonium (ADN),
    • le nitroformiate d'hydrazinium (HNF),
    • le nitrate d'ammonium (AN),
    • le nitrate d'hydrazinium (HN),
    • le nitrate de triéthanolammonium (TEAN),
    • le dinitramide d'hydroxylammonium (HADN),
    • le dicyanamide d'ammonium,
    • le dicyanamide d'imidazolium,
    • le dicyanamide de 1-butyl-3-méthylimidazolium,
    • l'acétate de 1-butyl-2,3-diméthylamidazolium,
    • l'acétate, le dicyanamide, de 1-butyl-1-méthylpyrrolidinium,
    • le méthylphosphonate de 1,3-diméthylimidazolium,
    • le dicyanamide de 1-éthanol-3-méthylimidazolium,
    • l'éthylphosphonate, le méthylphosphonate, de 1-éthyl-3-méthylimidazolium,
    • le dicyanamide de N-tributyl-N-méthylammonium,
    • le dicyanamide d'ammonium,
    • l'azoture d'ammonium,
    • le dicyanamide de 1-butyl-3-méthyl-imidazolium,
    • 4,5-dinitro imidazolate de 1,2,4-triazolium
    • 4,5-dinitro imidazolate de 1-méthyl-1,2,4-triazolium,
    • 4,5-dinitro imidazolate de 3-azido-1,2,4-triazolium,
    • 4,5-dinitro imidazolate de 1-méthyl-3-azido-1,2,4-triazolium,
    • 4,5-dinitro imidazolate de 4-amino-1,2,4-triazolium,
    • 5-nitro tétrazolate de 1,2,4-triazolium,
    • 5-nitro tétrazolate de 1-méthyl-1,2,4-triazolium,
    • 5-nitro tétrazolate de 3-azido-1,2,4-triazolium,
    • 5-nitro tétrazolate de 1-méthyl-3-azido-1,2,4-triazolium,
    • 5-nitro tétrazolate de 4-amino-1,2,4-triazolium,
    • Nitrate de 1-amino-4,5-diméthyltétrazolium
    • Nitrate de 2-amino-4,5-diméthyltétrazolium
    • Nitrate de 1,5-diamino-4-méthyltétrazolium
    • Dinitramide de 1,5-diamino-4-méthyltétrazolium
    • Azoture de 1,5-diamino-4-méthyltétrazolium
    • le dinitramide de 1,5-diamino-4-méthyl-tétrazolium.
  • Ces sels sont généralement disponibles commercialement. Ainsi, l'AA, le HAA, le HA, le nitrotétrazolate de triazolium, le nitrotétrazolate d'azidotriazolium et le dinitramide d'ammonium (ADN) sont notamment commercialisés par EURENCO Bofors (Suède).
  • Les autres sels listés ci-dessus peuvent par exemple être commercialisés par Solvionic.
  • Les sels selon l'invention, s'ils ne sont pas disponibles commercialement peuvent être obtenus par application ou adaptation de méthodes connues, notamment selon les méthodes décrites par Keskin et al., J. of Supercritical Fluids 43(2007) 150-180, notamment par couplage de ses constituants, par métathèse ou par réaction acido-basique. Ainsi, notamment, le sel recherché peut être préparé à partir du composé sous forme neutre par salification par exemple par ajout de l'acide comportant l'anion désiré ; ou à partir d'un autre composé ionique par échange d'ions, sur colonne par exemple, ou par transsalification en présence d'un acide comportant l'anion désiré , ou encore par métathèse. Alternativement, il est possible de regénérer le combustible sous forme libre en milieu basique et de générer un nouvel ion par salification. Il est également possible de générer un ion quaternaire à partir de la base correspondante par protonation ou substitution (par exemple alkylation), par exemple. Les sels de nitrate, dinitramide, azoture peuvent être avantageusement préparés par métathèse en présence des sels d'argent de nitrate, dinitramide, azoture à partir des halogénures correspondants.
  • On peut ainsi citer les méthodes décrites dans US 8,034,202 ; Asikkala et al. (Application of ionic liquids and microwave activation in selected organic reaction, Acta Univ. Oul. A 502, 2008 ; Singh et al. Structure bond 2007, 125 :35-83 ; Schneider et al. Inorganic Chemistry 2008, 47(9), 3617-3624.
  • Il est entendu que d'autres sels peuvent être utilisés. Ainsi, en fonction des anions et cations disponibles commercialement et de l'optimisation de ceux-ci (en fonction des performances énergétiques, et/ou propriétés de compatibilité avec N2O, stabilité, toxicité etc., désirées), il peut être intéressant de faire varier leur structure. Différents contre-ions peuvent être obtenus à cation ou anion donné.
  • Les monergols selon l'invention sont tels que le rapport N2O/combustible (en masse), connu sous le nom de rapport de mélange et souvent noté O / F ou OF (pour Oxidizer/Fuel ratio) est généralement compris entre 0,1 et 10, préférentiellement entre 1 et 6.
  • Un moyen de quantifier les performances d'un ergol est constitué par l'impulsion spécifique, souvent notée Isp. L'impulsion spécifique représente la durée pendant laquelle le moteur fournit une poussée égale au poids de l'ergol consommé. Il s'agit ainsi d'un indicateur de la « sobriété » et donc de la performance énergétique d'un ergol. L'Isp être exprimée de la manière suivante : Isp = C * g 0 . γ . 2 γ - 1 . 2 γ + 1 γ + 1 γ - 1 1 - P e P c γ - 1 γ
    Figure imgb0021
    où C* , g 0 , γ, Pe et Pc représentent respectivement la vitesse caractéristique des gaz éjectés par la tuyère, la pesanteur à l'altitude considérée, le coefficient isentropique moyen des gaz ejectés, la pression d'éjection et la pression au sein de la chambre.
  • La vitesse caractéristique des gaz éjectés est liée à la célérité du son selon : C * = a 0 Γ ʹ = a 0 γ . 2 γ + 1 γ + 1 2 γ - 1
    Figure imgb0022
    avec la célérité du son : a 0 = γ . R . T ad M
    Figure imgb0023

    R , Tad et M sont respectivement la constante universelle des gaz parfaits, la température adiabatique au sein de la chambre (dite « de flamme » si présence de combustion) et la masse molaire moyenne des gaz éjectés.
  • Le rapport des pressions d'éjection et de chambre intervenant dans l'expression de l'Isp dépend de la nature des gaz éjectés mais également des caractéristiques géométriques de la tuyère : P e P c = 1 + γ - 1 2 . M e 2 γ 1 - γ
    Figure imgb0024
    Me est le nombre de Mach de l'écoulement dans la section d'éjection de la tuyère et peut être obtenu par la relation implicite suivante faisant intervenir le rapport d'expansion de la tuyère : ε = A e A col = 1 M e . 2 γ + 1 . 1 + γ - 1 2 . M e 2 γ + 1 2 γ - 1
    Figure imgb0025

    avec ε le rapport d'expansion tuyère égal au rapport entre les sections d'éjection (Ae ) et du col sonique (Acol ).
  • Les monergols selon l'invention présentent généralement une Isp théorique comprise entre 300s et 350s lorsque calculée dans les conditions suivantes: pression dans la chambre de combustion de 10 bar, rapport d'expansion de tuyère de ε=100 et détente à l'équilibre dans la tuyère.
  • Selon un autre objet, la présente invention concerne également le procédé de préparation du monergol selon l'invention. Ainsi, ledit procédé comprend l'étape de mélange du combustible et de N2O. Ce mélange peut être réalisé à température ambiante, mais dans le cas où un sel solide à l'état standard est utilisé, la solubilité maximale doit être considérée à la température minimale de stockage du monergol en orbite afin de s'affranchir de tout risque de saturation et de recristallisation en vol. Il convient donc, lors de la synthèse du monergol, de respecter ce seuil. La température minimale d'utilisation du monergol en orbite est typiquement de 0°C.
  • Le monergol selon l'invention peut être stocké en veillant à ne pas dépasser la température maximale de stockage autorisée afin de ne pas dépasser un certain niveau de pression de vapeur saturante, la MEOP (Maximal Expected Operating Pressure, pression maximale attendue en opération) étant comprise entre 10 et 50 bar, typiquement entre 20 et 40 bar. La température maximale de stockage est généralement comprise entre 0° et 50°C. Le monergol doit posséder une stabilité suffisante pour être stocké en orbite pour une durée de plusieurs années - typiquement 5 ans, mais jusqu'à 15 ans éventuellement. La stabilité doit se traduire notamment par l'absence de séparation de phase (démixtion, décantation, etc.).
  • Selon un autre objet, la présente invention concerne également un procédé de propulsion spatiale au moyen du monergol selon l'invention. On entend par propulsion spatiale la propulsion d'engins spatiaux tels que lanceurs et satellites.
  • Avantageusement, le monergol selon l'invention convient à un fonctionnement par combustion. La combustion permet de s'affranchir d'un lit catalytique et par conséquent d'une structure de propulseur complexe. En outre, la durée de vie du propulseur pourra être étendue dans le mesure où le catalyseur constitue actuellement l'élément limitant en raison de phénomènes tels que désactivation du catalyseur par érosion, oxydation, frittage, etc.
  • Le procédé selon l'invention comprend donc la combustion du monergol selon l'invention.
  • La combustion est généralement réalisée par allumage commandé. Ceci peut être effectué selon les technologies habituelles, notamment au moyen d'une bougie haute énergie. La bougie est généralement positionnée dans la tête d'injection, à l'arrivée du monergol dans la chambre de combustion, les gaz ainsi brûlés s'évacuant par une tuyère placée à l'extrémité opposée de la chambre de combustion.
  • Le procédé selon l'invention peut également comprendre le moyen de pressurisation du monergol dans le réservoir. Généralement, les systèmes propulsifs actuels dits « monergols catalytiques » à hydrazine fonctionnent pour des pressions dans le réservoir de l'ordre de 20 bar en début de vie (pression initiale) et 5 bar en fin de vie. Cette pression diminue au cours de la vidange du monergol en raison de la détente du gaz de pressurisation dans le volume libéré par l'ergol. Certains systèmes prévoient une régulation de la pression réservoir afin de la maintenir constante sur une certaine partie de la mission du satellite (optimisation des performances). Tel est le cas sur plateforme de télécommunication, mais ceci introduit un équipement complexe et coûteux.
  • Dans le cas de la présente invention, il peut être envisagé de fonctionner à une pression réservoir supérieure - typiquement comprise entre 25 et 40 bar en début de vie - afin de tenir compte de la pression de vapeur saturante du mélange à base de N2O. La pressurisation peut être avantageusement réalisée par la solution de N2O elle-même étant donné son caractère volatil, si bien que le recours à un gaz inerte additionnel n'est plus nécessaire. Il en découle un gain sur le taux de remplissage du réservoir ainsi que sur la masse volumique apparente du couple liquide-gaz.
  • Tant que les phases liquide et vapeur coexistent (équilibre entre phases), la pression demeure constante (à température constante imposée) en raison de la vaporisation du liquide dont l'effet est de générer un volume de gaz compensant la vidange du réservoir. Dans ce cas, le moyen de pressurisation peut être assuré uniquement par le remplissage du monergol dans le réservoir. En réalité, la remise à l'équilibre entre les phases liquide et vapeur par vaporisation d'une fraction de N2O liquide s'accompagne d'une légère baisse de température (phénomène endothermique), si bien qu'une légère diminution de pression sera observée. Ce phénomène peut être contrebalancé par l'exercice d'un réchauffage du réservoir via un contrôle thermique (thermistances). Ce phénomène d'auto-pressurisation » représente un avantage majeur puisque, de manière analogue aux régulateurs de pression sur moteurs biliquides, il permet aux propulseurs de fonctionner près de leur optimum de performances.
  • Dès appauvrissement de la phase liquide, l'équilibre entre phase n'est désormais plus réalisable. Le réservoir fonctionne alors classiquement en « blow down » de manière analogue à une pressurisation par gaz inerte.
  • Le procédé selon l'invention peut également comprendre l'étape antérieure de chargement du monergol dans le réservoir de l'engin spatial.
  • Figures
    • Les figures 1-3 représentent l'impulsion spécifique (Isp) en fonction du rapport de mélange pour deux rapports d'expansion (ε = 80 et ε = 330) pour chacun des monergols des exemples 1, 2 et 3 respectivement.
    • La figure 4 illustre la contrainte de solubilité vis-à-vis des performances optimales dans le cas d'un monergol faisant intervenir un sel solide à l'état standard (exemple 1 ou 3).
  • Les exemples suivants sont donnés à titre illustratif et non limitatif de la présente invention.
  • Exemples 1- Choix du sel énergétique
  • Les tableaux ci-après donnent quelques exemples de sels énergétiques parmi les cations ammonium, diazolium, triazolium et tétrazolium, certains étant pourvus de groupes substitutifs de type alkyle, azido ou amino. Les anions associés sont pris parmi les dicyanamide, azoture, imidazolate, tétrazolate, nitrate ou encore dinitramide, substitués ou non par le groupe nitro. La composition atomique et quelques-unes de leurs propriétés y sont précisées (point de fusion, seuil de décomposition thermique, masse volumique du sel à l'état standard, enthalpie standard de formation).
    ■ A base de cation ammonium :
    Dénomination Composition atomique TFUS TDECOMP ρ ΔHf°
    C N H O [°C] [°C] [kg/m3] [kJ/kg]
    Dicyanamide d'ammonium 2 4 4 0 - - - 505,8
    Azoture d'ammonium 0 4 4 0 160 >796 1346 1889,4

    ■ A base de cation diazolium (imidazolium) :
    Dénomination Composition atomique TFUS TDECOMP ρ ΔHf°(1)
    C N H O [°C] [°C] [kg/m3] [kJ/kg]
    Dicyanamide de 1-butyl-3-méthyl-imidazolium 10 5 15 0 -6 - 1060 1004,6
    (1) d'après Emel'yanenko et al JACS 2007, 129, 3930/3937.
  • Le dicyanamide de 1-butyl-3-méthyl-imidazolium peut être préparé par application de la méthodologie décrite par Asikkala et al (Application of ionic liquids and microwave activation in selected organic reaction, Acta Univ Oul. A 502, 2008, page 134) par transsalification à partir de chlorure de 1-butyl-3-méthyl-imidazolium en présence de dicyanamide de sodium, le chlorure étant préparé par réaction entre le 1-chlorobutane et le 1-méthylimidazole.
  • Alternativement, le dicyanamide de 1-butyl-3-méthyl-imidazolium peut être préparé par métathèse telle que décrite notamment dans US 8,034,202 à partir bromure de 1-butyl-3-méthyl-imidazolium en présence de dicyanamide d'argent.
    ■ A base de cation triazolium :
    Dénomination Composition atomique TFUS TDECOMP ρ ΔHf°
    C N H O [°C] [°C] [kg/m3] [kJ/kg]
    4, 5-dinitro-imidazolate de 1,2,4-triazolium 5 7 5 4 156 165 1730 1022,5
    4,5-dinitro-imidazolate de 1-méthyl-1,2,4-triazolium 6 7 7 4 102 150 1660 831,1
    4, 5-din itro-im idazo late de 3-azido-1,2,4-triazolium 5 10 4 4 92 158 1700 2214,6
    4,5-dinitro-imidazolate de 1-méthyl-3-azido-1,2,4-triazolium 6 10 6 4 80 145 1600 1987,6
    4,5-dinitro-imidazolate de 4-amino-1,2,4-triazolium 5 8 6 4 137 149 1650 1440,9
    5-nitro-tétrazolate de 1,2,4-triazolium 3 8 4 2 137 183 1530 2370,7
    5-nitro-tétrazolate de 1-méthyl-1,2,4-triazolium 4 8 6 2 62 163 1520 2033,8
    5-nitro-tétrazolate de 3-azido-1,2,4-triazolium 3 11 3 2 -35 161 1530 3559,6
    5-nitro-tétrazolate de 1-méthyl-3-azido-1,2,4-triazolium 4 11 5 2 -38 141 1450 3215,5
    5-nitro-tétrazolate de 4-amino-1,2,4-triazolium 3 9 5 2 102 190 1580 2739,7

    ■ A base de cation tétrazolium
    Dénomination Composition atomique TFUS TDECOMP ρ ΔHf°
    C N H O [°C] [°C] [kg/m3] [kJ/kg]
    Nitrate de 1-amino-4,5-diméthyl-tétrazolium 3 6 8 3 -59 170 1500 801,7
    Nitrate de 2-amino-4,5-diméthyl-tétrazolium 3 6 8 3 94 173 1550 750,0
    Nitrate de 1,5-diamino-4-méthyl-tétrazolium 2 7 7 3 121 181 1510 986,4
    Dinitramide de 1,5-diamino-4-méthyl-tétrazolium 2 9 7 4 85 184 1720 1744,8
    Azoture de 1,5-diamino-4-méthyl-tétrazolium 2 9 7 0 135 137 1420 4309,6
  • Les sels ci-dessus peuvent être préparés selon Singh et al Structure bond 2007, 125 :35-83 .
  • 2- Performances théoriques
  • On donne ici les performances théoriques de certains couples cations/anions en mélange avec le N2O sur la base des enthalpies de formation trouvées dans la littérature. Les tableaux et figures ci-dessous précisent l'évolution de l'impulsion spécifique (Isp) dans le vide du monergol en fonction du rapport de mélange ( O / F ). Les calculs sont effectués pour une pression dans la chambre de combustion de 10 bar, un rapport d'expansion de tuyère de ε=100 et une détente à l'équilibre dans la tuyère. Les tableaux et courbes sont donnés pour des valeurs autour du maximum d'Isp et du rapport de mélange optimal correspondant. Les exemples donnés ci-après font intervenir des sels énergétiques mis en solution selon chacune des trois méthodes décrites plus tôt, à savoir :
    • Exemple 1 : monergol formé par un sel « cristal » dissous dans le N2O liquide ;
    • Exemple 2 : sel liquide en mélange binaire avec le N2O liquide ;
    • Exemple 3 : solution formée d'un sel « cristal » dissous dans un solvant énergétique organique ou ionique, elle-même en équilibre binaire avec le N2O liquide :
  • Exemple 1 : le premier cas peut être illustré par l'utilisation de l'azoture de 1-(2-butynyl)-3-méthyl-imidazolium, noté [ByMIM][N3 -]. Ce composé peut être préparé à partir du bromure de 1-(2-butynyl)-3-méthyl-imidazolium sur résine d'échange d'azoture selon Schneider et al Inorganic Chemistry 2008, 47(9), 3617-3624. Il peut être mis en solution par dissolution directe dans le N2O. La figure suivante donne la structure du [ByMIM][N3 -]:
    Figure imgb0026
  • Le tableau ci-après et la Figure 1 fournissent les valeurs théoriques d'Isp pour une pression chambre de 10 bar et pour deux rapports de détente: ε= 80 et ε= 330. Des Isp maximales d'environ 311s et 329s sont respectivement trouvées pour un rapport de mélange optimal de O / F =5. Ceci correspond à la mise en solution de 200g de [ByMIM][N3 -] par kg de N2O.
    Paramètre Unité Valeur
    O/F [-] 1,0 2,0 3,0 4,0 5,0 6,0 ,0 8,0 9,0
    Isp vide (ε = 80) [s] 274,8 289,0 302,9 309,7 311,3 304,6 296,0 288,1 282,1
    Isp vide (ε = 330) [s] 291,3 305,1 318,5 325,6 329,2 322,0 311,8 303,1 295,6
  • Exemple 2 : le deuxième cas peut être représenté par le mélange binaire liquide-liquide entre le dicyanamide de 1-butyl-3-méthyl-imidazolium, noté [BMIM][N(CN)2 -] (commercialisé par Solvionic), et le N2O. La figure suivante donne la structure du [BMIM][N(CN)2 -]:
    Figure imgb0027
  • La variation de l'Isp avec le rapport de mélange est décrite dans le tableau ci-après et la Figure 2, dans les mêmes conditions que celles précisées dans l'exemple 1. Les maxima d'Isp sont obtenus pour un rapport de mélange optimal de O / F =6 et valent respectivement 304,6s et 322,3s respectivement pour ε = 80 et ε = 330 .
    Paramètre Unité Valeur
    O/F [-] 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0
    Isp vide (ε = 80) [s] 246,5 267,3 287,1 298,8 304,2 304,6 296,3 289,0 282,6
    Isp vide (ε = 330) [s] 263,0 284,0 301,9 314,5 320,4 322,3 312,3 303,7 296,3
  • Exemple 3 : le troisième cas peut être illustré par l'équilibre ternaire entre le dinitramide de 1,5-diamino-4-méthyl-tétrazolium, noté [DAMT][N(NO2)2] synthétisé selon Singh et al Structure bond 2007, 125 :35-83, , la pyrrolidine et le N2O. La structure du [DAMT][N(NO2)2] est la suivante :
    Figure imgb0028
  • S'agissant d'un mélange ternaire, la notion de rapport de mélange O / F n'est plus utilisée ici. On étudie plutôt le diagramme ternaire d'Isp où sont balayées les fractions massiques des trois composés. Le tableau ci-après et la Figure 3 fournissent les valeurs d'Isp maximales et les rapports de mélanges optimaux correspondants pour différentes fractions massiques de sel dans le solvant énergétique. Les calculs sont effectués dans les mêmes conditions que celles des exemples 1 et 2.
    Paramètre Unité Valeur
    Fraction massique de sel dans le solvant [%] 0 10 20 30 40 50
    O/F optimal * [-] 0,5 1,2 2,0 2,7 3,4 4,0
    Isp vide maximale (ε = 80) [s] 316,2 313,2 311,6 310,6 310,0 309,4
    Isp vide maximale (ε = 330) [s] 333,1 330,3 329,3 328,3 327,6 326,8
    * Calculé comme le rapport des masses N2O sur solution de {sel+solvant énergétique}
  • 3- Préparation du sel
  • Les sels selon l'invention peuvent être péparés notamment :
    • par quaternarisation par alkylation selon Singh et al., Structure bond 2007, 125 :35-83 ; US 8,034,202 ; Asikkala et al. (Application of ionic liquids and microwave activation in selected organic reaction, Acta Univ. Oul. A 502, 2008
    • par métathèse en présence des sels d'argent de nitrate, dinitramide, azoture à partir des halogénures correspondants selon Singh et al Structure bond 2007, 125 :35-83 ; US 8,034,202 ;
    • à partir d'un autre composé ionique par échange d'ions selon Asikkala et al (Application of ionic liquids and microwave activation in selected organic reaction, Acta Univ Oul. A 502, 2008 ; sur colonne : Schneider et al Inorganic Chemistry 2008, 47(9), 3617-3624.
    4- Optimisation du sel
  • L'impulsion spécifique générée par la combustion du monergol dépend étroitement du rapport de mélange O / F entre le N2O et le combustible (sel « cristallin » dissous ou sel liquide). Une courbe peut alors être décrite en traçant l'évolution de l'Isp en fonction de O / F , tout autre paramètre étant maintenu constant (pression chambre, température initiale, rapport de détente ε). Un maximum d'Isp peut alors être identifié ainsi que le O / F optimal correspondant. Idéalement, le monergol doit être synthétisé en respectant ce rapport de mélange afin de founir les meilleures performances propulsives.
  • Toutefois, dans le cas d'un sel cristallin (i.e. solide dans les conditions standard), la solubilité du sel dans le N2O ou dans la solution combinée au N2O limite l'intervalle de O / F accessible. En effet, le rapport de mélange doit être supérieur à une valeur seuil dictée par la solubilité du sel à la température minimale d'utilisation (typiquement Tmin = 0°C). Il apparaît clairement qu'à monergol donné, I est préfarable que le rapport de mélange optimal se trouve dans une zone de solubilité réalisable de manière à pouvoir atteindre le maximum d'Isp : / F O opt > / F O min = 1 S T min
    Figure imgb0029
  • Ceci est illustré sur la Figure 4.
  • Les sels cristallins d'intêret doivent donc soit posséder une grande solubilité à la température minimale spécifiée (typiquement S T min > 100 g . k g N 2 O - 1
    Figure imgb0030
    soit démonter un optimum d'Isp à rapport de mélange élevé (typiquement 4≤ O / F ≤10).
  • L'exemple 3 donné ci-avant illustre bien cette problématique : sans recours au solvant, le maximum d'Isp est trouvé pour ( O / F ) opt =0.5, ce qui correspond à une dissolution de 2 kg . k g N 2 O - 1
    Figure imgb0031
    de sel. Cette valeur est bien au-delà de la solubilité maximale de [DAMT][N(NO2)2] à 0°C. Le recours au solvant énergétique permet de rehausser le rapport de mélange optimal, de diminuer la quantité de sel nécessaire et donc de respecter le plafond de solubilité. Ainsi, pour une fraction massique de sel de 40% dans la solution de pyrrolidine, un rapport de mélange optimale de 3.4 est trouvé, ce qui permet d'abaisser la masse de sel nécessaire à 117 g . k g N 2 O - 1 .
    Figure imgb0032
    Toutefois, cette approche altère l'Isp maximale (ici, -6s environ), ce qui montre toute l'importane de la densité énergétique du solvant utilisé.
  • Le respect de la condition sur le rapport de mélange minimum ( O / F )min doit être valable quel que soit l'avancement de la vidange du réservoir. Or, le changement de phase du N2O au cours de la vidange, dû au suivi de la courbe de saturation du mélange, va induire une augmentation de la teneur de la phase liquide en sel. Le rapport de mélange va progressivement diminuer au cours du soutirage de la phase liquide. Il convient de s'assurer que l'augmentation de la concentration en sel ne conduit pas à un dépassement de la solubilité, au risque de recristalliser ce dernier. Le choix du rapport de mélange initial du monergol doit alors tenir compte de son état en fin de vidange. C'est pourquoi dans certains cas, en particulier si ( O / F ) opt est très proche de ( O /F)min, il est nécessaire de se placer à un rapport de mélange initial supérieur à l'optimum. Dans un cas défavorable, l'Isp maximale est dans une zone au-delà de la saturation. L'Isp accessible sera inférieure à la valeur maximale et choisie dans une zone allant jusqu'au maximum de solubilité.
  • 5- Préparation du monergol
  • La nature volatile du protoxyde d'azote implique un mode de préparation spécifique du monergol, au cours de laquelle le mélange sel et/ou solvant et N2O ne peut être réalisé à l'air libre, mais au contraire dans une enceinte fermée. Une procédure illustrative est la suivante, partant d'une enceinte propre et décontaminée :
    1. 1) Introduction dans l'enceinte du sel sous forme cristalline ou liquide, selon une masse respectant le critère d'optimisation présenté ci-avant ;
    2. 2) Le cas échéant, injection du solvant énergétique dans les proportions requises ;
    3. 3) Mise sous vide de l'enceinte (pression résiduelle typiquement de 103 Pa);
    4. 4) Injection dans l'enceinte du protoxyde d'azote avec contrôle de la masse introduite par pesée continue de l'enceinte d'arrivée ou pesée continue du contenant de départ du N2O;
    5. 5) Agitation du mélange ;
    6. 6) Stockage avec contrôle des conditions pression-température de l'enceinte - ou « fût de stockage » - afin de respecter l'intervalle de température spécifié.
    6- Remplissage sur satellite
  • Le remplissage du réservoir sur satellite peut ensuite être effectué par mise en communication du fût de stockage et du réservoir du module de propulsion et soutirage de la phase liquide. La force motrice permettant le transfert du monergol du fût vers le réservoir est directement assuré par l'auto-pressurisation du monergol. L'utilisation d'un gaz neutre additionnel peut être envisagée pour expulser le monergol du fût de stockage.
  • 7- Conditions de fonctionnement & combustion
  • Le monergol {N2O + combustible ionique} stocké dans le réservoir pressurisé est injecté dans le propulseur via une ligne fluidique habituelle comprenant notamment une vanne de contrôle du flux dite « vanne-moteur ». Le monergol est soutiré au niveau du réservoir par sa phase liquide dans la mesure où seule cette phase comporte à la fois l'oxydant et le combustible. Une technique de soutirage bien adaptée à la présente innovation est le système de réseau capillaire (connu aussi sous le terme de réservoir à tension de surface), bien connue de l'homme du métier. L'expulsion du monergol à travers la ligne fluidique alimentant les propulseurs est assurée par la pression générée par le N2O gazeux en équilibre avec la solution liquide. Seule la phase liquide est alors expulsée.
  • La valeur du débit-masse du monergol injecté dans le(s) propulseur(s) est dictée par la perte de charge totale dans les lignes fluidiques du réservoir au(x) moteur(s), en particulier par la perte de charge singulière de l'injecteur (dictée par sa conception). Tant que le monergol n'a pas franchi la tête d'injection, il demeure sous phase liquide tant qu'il existe dans cet état dans le réservoir.
  • Lorsque le monergol passe par l'injecteur situé à la tête du moteur (dit « fond avant »), ce dernier subit une détente. Il pénètre alors dans la partie amont de la chambre de combustion et est amené à subir un changement de phase. La cause du changement de phase diffère selon l'état de la chambre de combustion, plus précisément son niveau de pression et de température. S'il s'agit d'un allumage, il peut être supposé que le monergol pénètre dans un milieu « frais » et vide ou proche du vide (on parle alors de milieu raréfié) dans la mesure où la chambre communique avec le vide spatial via la tuyère. Le monergol se volatilisera rapidement puisque sa pression de vapeur saturante sera nettement supérieure à la pression résiduelle au sein de la chambre de combustion. Ce phénomène sera exacerbé si le monergol ou les parois du propulseur sont à une température supérieure.
  • La phase d'allumage consiste à synchroniser le déclenchement de la bougie avec l'arrivée du flux du monergol afin de générer un allumage « doux » (contraire du « hard start » faisant intervenir un pic de pression transitoire et violent dommageable pour le système). L'assurance d'un allumage de qualité peut également être atteinte par la réalisation d'un train de déclenchements de la bougie (salves d'arcs électriques) à fréquence relativement soutenue (période de l'ordre de quelques dizaines de millisecondes à centaines de millisecondes). Le train d'arcs peut également être déclenché en légère avance de phase sur l'injection pour jouer le rôle de préchauffage local. L'optimisation de l'allumage repose ainsi sur la conjonction d'une conception géométrique et d'une séquence de déclenchements optimisées.
  • Dans le cas où le monergol pénètre dans une chambre « chaude », ce qui correspond par exemple à plusieurs mises à feu successives entrecoupées de phases inactives relativement rapprochées (cycles courts), l'allumage est facilité car le monergol reçoit un apport d'énergie supplémentaire avant les stimuli de la bougie. Ces problématiques sont bien connues de l'homme du métier, notamment en matière d'allumage des turboréacteurs en haute altitude ou des propulseurs biliquides cryotechniques.
  • Avantageusement, la combustion s'entretient après allumage tant que le flux du monergol est maintenu (vanne-moteur ouverte) et ne nécessite donc pas de déclenchements de bougie supplémentaires. L'énergie dégagée par la combustion du monergol est suffisante pour entretenir la réaction des espèces fraîches injectées. La combustion consiste en une réaction entre l'oxydant principal, à savoir le N2O, et le combustible ionique comprenant éventuellement des groupements oxydants (ex. nitramides). La réaction produit des gaz chauds à haute pression. La chambre de combustion est dimensionnée de telle façon que l'équilibre thermodynamique est atteint avant éjection des gaz brûlés de manière à atteindre un rendement maximal. Les gaz sont éjectés à travers une tuyère pourvue d'un convergent, d'un col sonique et d'un divergent de façon à amorcer et accélérer l'écoulement pour générer une force de poussée optimale.

Claims (14)

  1. Monergol comprenant un mélange comprenant :
    - du protoxyde d'azote (N2O) à titre d'oxydant au moins partiellement sous forme liquide, et
    - un combustible sous forme de sel dans la phase liquide du N2O.
  2. Monergol selon la revendication 1 tel que le protoxyde d'azote est en partie sous forme de gaz.
  3. Monergol selon l'une quelconque des revendications précédentes tel que sa phase liquide est constituée :
    (i) du combustible sous forme de sel solide lorsque isolé à température ambiante et solubilisé dans le N2O au moins partiellement présent sous forme liquide, ou
    (ii) du sel fondu du combustible en mélange binaire avec le N2O au moins partiellement présent sous forme liquide, ou
    (iii) d'une solution ionique du combustible dissous dans un solvant énergétique organique ou ionique, en mélange binaire avec le N2O au moins présent sous forme liquide.
  4. Monergol selon l'une quelconque des revendications précédentes tel que le combustible est un sel d'un composé organique énergétique.
  5. Monergol selon l'une quelconque des revendications précédentes, tel que le combustible est un sel d'un dérivé azoté.
  6. Monergol selon l'une quelconque des revendications précédentes tel que le cation dudit sel est choisi parmi :
    - les cations linéaires, tels que les ions ammonium, hydroxylammonium, hydrazinium, et leurs dérivés ;
    - les cations hétérocycliques saturés tels que pipéridinium, pipérazinium, et leurs dérivés ; et
    - les cations hétérocycliques aromatiques ou non, tels que les azinium, azolium, diazolium, triazolium et tétrazolium, notamment pyridinium, pyrrolium, isoxazolium, pyrazolium, oxazolium, imidazolium, oxadiazolium, triazolium, oxatriazolium, tétrazolium, pyrrolidium, triazinium, pyridazinium, pyrimidinium, pyrazinium, pipéridinium, 1,2,3- ou 1,2,4- triazolium, 1,4,5- ou 2,4,5-tétrazolium, ainsi que leurs analogues -inium et -idinium, et leurs dérivés.
  7. Monergol selon la revendication 6 tel que le cation est choisi parmi les ions ammonium, imidazolium, triazolium, tétrazolium et leurs dérivés.
  8. Monergol selon l'une quelconque des revendications précédentes tel que l'anion dudit sel est choisi parmi :
    - les anions linéaires tels que les ions azoture, nitrate, nitramide, dinitramide, nitroformiate, nitrite, acétate, cyanamide, dicyanamide ; et
    - les anions hétérocycliques insaturés tels que les azolates tels que pyrrolate, diazolate tel que pyrazolate, imidazolate, triazolate tels que 1,2,3- et 1,2,4-triazolate et tétrazolate tel que nitrotétrazolate, et leurs dérivés.
  9. Monergol selon la revendication 8 tel que le contre-ion (anion) est choisi parmi les ions azoture, nitrate, dinitramide, dicyanamide, imidazolate et tétrazolate et leurs dérivés.
  10. Monergol selon l'une quelconque des revendications précédente tel que le combustible est choisi parmi :
    - l'azoture d'ammonium (AA),
    - l'azoture de tétrabutylammonium,
    - le nitrotétrazolate de triazolium,
    - le nitrotétrazolate d'azidotriazolium,
    - le dinitramide d'ammonium (ADN),
    - l'azoture d'hydroxylammonium (HAA),
    - l'azoture d'hydrazinium (HA),
    - l'azoture de 1-(2-butynyl)-3-méthyl-imidazolium
    - le nitrate d'hydroxylammonium (HAN),
    - le nitroformiate d'hydrazinium (HNF),
    - le nitrate d'ammonium (AN),
    - le nitrate d'hydrazinium (HN),
    - le nitrate de triéthanolammonium (TEAN),
    - le dinitramide d'hydroxylammonium (HADN),
    - le dicyanamide d'ammonium,
    - le dicyanamide d'imidazolium,
    - le dicyanamide de 1-butyl-3-méthylimidazolium,
    - l'acétate de 1-butyl-2,3-diméthylamidazolium,
    - l'acétate, le dicyanamide, de 1-butyl-1-méthylpyrrolidinium,
    - le dicyanamide de 1-éthanol-3-méthylimidazolium,
    - le dicyanamide de N-tributyl-N-méthylammonium,
    - le dicyanamide de 1-butyl-3-méthyl-imidazolium,
    - 4,5-dinitro imidazolate de 1,2,4-triazolium
    - 4,5-dinitro imidazolate de 1-méthyl-1,2,4-triazolium,
    - 4,5-dinitro imidazolate de 3-azido-1,2,4-triazolium,
    - 4,5-dinitro imidazolate de 1-méthyl-3-azido-1,2,4-triazolium,
    - 4,5-dinitro imidazolate de 4-amino-1,2,4-triazolium,
    - 5-nitro tétrazolate de 1,2,4-triazolium,
    - 5-nitro tétrazolate de 1-méthyl-1,2,4-triazolium,
    - 5-nitro tétrazolate de 3-azido-1,2,4-triazolium,
    - 5-nitro tétrazolate de 1-méthyl-3-azido-1,2,4-triazolium,
    - 5-nitro tétrazolate de 4-amino-1,2,4-triazolium,
    - Nitrate de 1-amino-4,5-diméthyltétrazolium
    - Nitrate de 2-amino-4,5-diméthyltétrazolium
    - Nitrate de 1,5-diamino-4-méthyltétrazolium
    - Dinitramide de 1,5-diamino-4-méthyltétrazolium
    - Azoture de 1,5-diamino-4-méthyltétrazolium
    - le dinitramide de 1,5-diamino-4-méthyl-tétrazolium.
  11. Procédé de préparation d'un monergol selon l'une quelconque des revendications précédentes comprenant l'étape de mélange du combustible et de N2O dans une enceinte fermée.
  12. Procédé de propulsion spatiale au moyen d'un monergol selon l'une quelconque des revendications 1 à 10.
  13. Procédé de propulsion selon la revendication 12 comprenant la combustion du monergol par allumage commandé.
  14. Procédé selon la revendication 12 ou 13 comprenant le moyen de pressurisation du monergol dans le réservoir.
EP13152595.8A 2012-01-27 2013-01-24 Nouveaux monergols ioniques à base de N2O pour la propulsion spatiale Active EP2620422B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1250794A FR2986229B1 (fr) 2012-01-27 2012-01-27 Nouveaux monergols ioniques a base de n2o pour la propulsion spatiale

Publications (2)

Publication Number Publication Date
EP2620422A1 EP2620422A1 (fr) 2013-07-31
EP2620422B1 true EP2620422B1 (fr) 2014-04-23

Family

ID=47559353

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13152595.8A Active EP2620422B1 (fr) 2012-01-27 2013-01-24 Nouveaux monergols ioniques à base de N2O pour la propulsion spatiale

Country Status (4)

Country Link
US (1) US20130305685A1 (fr)
EP (1) EP2620422B1 (fr)
JP (1) JP6154142B2 (fr)
FR (1) FR2986229B1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189450A1 (fr) 2013-05-20 2014-11-27 Ecaps Ab Monoergols liquides riches en comburant destinés à un moteur-fusée à propulsion chimique bimode
US10253136B2 (en) 2014-02-06 2019-04-09 Adeka Corporation Compound and epoxy resin composition containing same
JP6240940B2 (ja) * 2014-02-06 2017-12-06 株式会社Adeka エポキシ樹脂組成物
CN106370301A (zh) * 2016-08-24 2017-02-01 中国科学院合肥物质科学研究院 用于星载大气环境探测仪的防潮防污染导流吹氮保护系统
CN108981162A (zh) * 2018-06-06 2018-12-11 朱焕旺 一种熔盐循环运行工艺
CN111925262B (zh) * 2020-08-19 2021-08-27 中国工程物理研究院化工材料研究所 基于金属氯化物的多组分低共融液体的制备方法
DE102020122337A1 (de) * 2020-08-26 2022-03-03 LabOrbital GmbH Heißgaserzeugungsvorrichtung mit monergolem ionischen Treibstoff und Niederspannungsanzündung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8006A (en) * 1851-04-01 Horseshoe-nail machine
DE4303169C1 (de) * 1993-02-04 1994-04-28 Dynamit Nobel Ag Gasentwickelndes Material sowie Verwendung des Materials zur Erzeugung von Nutz- oder Druckgas
US6045638A (en) * 1998-10-09 2000-04-04 Atlantic Research Corporation Monopropellant and propellant compositions including mono and polyaminoguanidine dinitrate
SE513930C2 (sv) 1999-02-26 2000-11-27 Svenska Rymdaktiebolaget Flytande drivmedel
AU5695001A (en) * 1999-11-11 2001-07-24 Kelly Space & Technology, Inc. Nitrous oxide/fuel monopropellants
US7771549B1 (en) * 2002-10-07 2010-08-10 United States Of America As Represented By The Secretary Of The Air Force Energetic ionic liquids
JP4333943B2 (ja) * 2003-05-01 2009-09-16 株式会社Ihi Han/hnベースモノプロペラントを用いた高温ガス発生方法
US6931832B2 (en) * 2003-05-13 2005-08-23 United Technologies Corporation Monopropellant combustion system
US7745635B1 (en) * 2003-06-16 2010-06-29 Drake Greg W Energetic ionic salts
US20050269001A1 (en) * 2004-04-22 2005-12-08 Liotta Charles L Ionic liquid energetic materials
US20090031700A1 (en) * 2006-11-13 2009-02-05 Space Propulsion Group, Inc. Mixtures of oxides of nitrogen and oxygen as oxidizers for propulsion, gas generation and power generation applications
US8034202B1 (en) * 2007-10-04 2011-10-11 The United States Of America As Represented By The Secretary Of The Air Force Hypergolic fuels
CN101855325A (zh) * 2007-11-09 2010-10-06 火星工程有限公司 氧化亚氮燃料掺混物单元推进剂
US20120304620A1 (en) * 2011-06-01 2012-12-06 Aerojet-General Corporation Catalyst, gas generator, and thruster with improved thermal capability and corrosion resistance

Also Published As

Publication number Publication date
EP2620422A1 (fr) 2013-07-31
FR2986229B1 (fr) 2014-03-21
US20130305685A1 (en) 2013-11-21
JP6154142B2 (ja) 2017-06-28
FR2986229A1 (fr) 2013-08-02
JP2013155105A (ja) 2013-08-15

Similar Documents

Publication Publication Date Title
EP2620422B1 (fr) Nouveaux monergols ioniques à base de N2O pour la propulsion spatiale
CN1321950C (zh) 二硝酰胺基液体单组份推进剂
Florczuk et al. Performance evaluation of the hypergolic green propellants based on the HTP for a future next generation spacecrafts
Zhang et al. Ionic liquids as hypergolic fuels
JP6567507B2 (ja) デュアルモード化学ロケットエンジン、およびデュアルモード化学ロケットエンジンを備えるデュアルモード推進システム
JP6484224B2 (ja) デュアルモード化学ロケットエンジンおよびデュアルモード化学ロケットエンジンを備えるデュアルモード推進システム
JP5642538B2 (ja) ハイブリッドロケットモータ
JP2007023135A (ja) 液体酸化剤、これを用いた推進薬及び高温ガス発生方法
US20080173004A1 (en) Bi-propellant rocket motor having controlled thermal management
US20240124372A1 (en) Propellant
US9970740B2 (en) Viscous liquid monopropellant
Zube et al. Evaluation of HAN-based propellant blends
Bhosale et al. Sodium Iodide: a Trigger for Hypergolic Ignition of Non-toxic Fuels With Hydrogen Peroxide
JP4312383B2 (ja) 一元推進剤系
Remissa et al. Propulsion Systems, Propellants, Green Propulsion Subsystems and their Applications: A Review
Amrousse et al. Development of green propellants for future space applications
Matsunaga et al. Analysis of evolved gases during the thermal decomposition of ammonium diniramide under pressure
US3088272A (en) Stable propellants
DeGroot et al. Chemical microthruster options
Mehendiratta et al. A review on different propellant materials for space vehicles and their characterisation
JP2002020191A (ja) 液体酸化剤及びハイブリッド推進薬
WO2011083252A1 (fr) Procede et dispositif de propulsion comprenant un liquide oxydant et un compose solide
Amrousse et al. The effect of iron metal ions and chelating agents of iron on the thermal decomposition of HAN-based liquid monopropellant
Mota et al. Development of Polyamine/Alkanolamine-based Hypergolics with hydrogen Peroxide: A new route to N-methylimidazole with MDEA as a promising green fuel
BONDUGULA et al. Hydrogen peroxide based green propellants for future space propulsion applications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130829

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: C06B 43/00 20060101AFI20130912BHEP

Ipc: C06D 5/08 20060101ALI20130912BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131114

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PELLETIER, NICOLAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 663734

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013000030

Country of ref document: DE

Effective date: 20140605

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 663734

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140423

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140423

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140724

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140823

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013000030

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

26N No opposition filed

Effective date: 20150126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013000030

Country of ref document: DE

Effective date: 20150126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602013000030

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150124

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170124

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231215

Year of fee payment: 12