EP2612095B1 - Kältemittelkondensatorbaugruppe - Google Patents

Kältemittelkondensatorbaugruppe Download PDF

Info

Publication number
EP2612095B1
EP2612095B1 EP11741175.1A EP11741175A EP2612095B1 EP 2612095 B1 EP2612095 B1 EP 2612095B1 EP 11741175 A EP11741175 A EP 11741175A EP 2612095 B1 EP2612095 B1 EP 2612095B1
Authority
EP
European Patent Office
Prior art keywords
chamber
refrigerant
inlet
outlet
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11741175.1A
Other languages
English (en)
French (fr)
Other versions
EP2612095A1 (de
Inventor
Herbert Hofmann
Uwe FÖRSTER
Christoph Walter
David Guillaume
Martin Kaspar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Publication of EP2612095A1 publication Critical patent/EP2612095A1/de
Application granted granted Critical
Publication of EP2612095B1 publication Critical patent/EP2612095B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0441Condensers with an integrated receiver containing a drier or a filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/04Desuperheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers

Definitions

  • the laying invention relates to a refrigerant condenser assembly according to the preamble of claim 1 and an automotive air conditioning system according to the preamble of claim 9.
  • JP 9 053866 A discloses such a refrigerant condenser assembly.
  • refrigerant condenser assemblies for an automotive air conditioner
  • vapor refrigerant is converted to a liquid state and then the refrigerant continues to be "subcooled" in a subcool region.
  • the refrigerant condenser assembly forms part of a refrigeration cycle of an automotive air conditioning system including an evaporator, an expansion device, and a compressor.
  • the refrigerant condenser assembly includes a heat exchanger with cooling tubes and two headers and in addition a collecting container.
  • the collecting tank has the task after the condensation of the refrigerant, in the condensation area and the previous cooling in the overheating area still deposit gaseous refrigerant components and ensure that only liquid refrigerant is supplied to the heat exchanger after exiting the sump in the hydraulically downstream of the sump subcooling ,
  • the subcooling region is formed on the heat exchanger with the cooling tubes and the two manifolds.
  • the collecting liquid refrigerant is arranged and the outlet opening in the collecting container (Sump without riser) is located at the bottom of the sump, so that only liquid refrigerant is discharged from the sump.
  • the subcooler section of the heat exchanger is located in the lower section of the heat transfer, so that the outlet opening on the sump is correctly aligned.
  • the liquid refrigerant stored in the sump must form a smooth liquid level for proper function. To achieve this, it is necessary to introduce the refrigerant introduced into the sump! to initiate below the liquid level.
  • the inlet opening of the collecting container is arranged in the upper region of the collecting container by design, it is therefore necessary to introduce the refrigerant introduced at the inlet opening into the collecting container through a descending tube, namely a downpipe, below the liquid level of the refrigerant in the collecting container.
  • the refrigerant at the inlet opening is not introduced directly into the downpipe, but first into an inlet chamber and the upwardly guided from the riser refrigerant initially introduced into an outlet and from the outlet chamber, the refrigerant flows through the outlet from the reservoir out.
  • the diameter of the riser and the downpipe, and the volume of the inlet chamber and the outlet chamber are designed much larger than is necessary for flow guidance due to manufacturing conditions. As a result, more refrigerant is present in the collecting tank in the flow spaces than is actually required for flow guidance.
  • the DE 10 2005 025 451 A1 shows a condenser for an air conditioner, in particular for motor vehicles, comprising a Kondensierabites and a arranged above the Kondensierabrough Unterkühlabrough and an approximately tubular modulator, which through a partition in a lower, connected to the condensing section and an upper, connected to the subcooling portion divided, a riser between the lower and upper portion of the modulator and a container for desiccant in the lower portion of the modulator, wherein the modulator is provided at the top with a sealing plug and the partition with desiccant container after release of the sealing plug upwards from the modulator removable is.
  • the tube fin block has horizontally extending tubes, a condenser section and a subcooling section arranged above the condenser section, and a collector, a dryer, a folder, a downcomer and a riser tube, which is arranged parallel to one of the header tubes and has a first overflow opening with the condenser section and is in refrigerant communication with the subcooling section via a second overflow opening, the downpipe communicating with the first overflow opening on the inlet side via an inflow chamber arranged in the collector.
  • the object of the present invention is therefore to provide a refrigerant condenser assembly and an automotive air conditioning system, in which there is little refrigerant in flow chambers in the collecting container.
  • the header tank of the refrigerant condenser assembly thereby receives little refrigerant in the flow spaces of the refrigerant condenser assembly, that is, the inlet chamber, the outlet chamber, the riser, and the downcomer.
  • the expensive refrigerant HFO 1234yf costs can be saved in the production of the refrigerant condenser assembly or of an automotive air conditioning system with the refrigerant condenser assembly because the collecting container absorbs only very little refrigerant.
  • the ratio of the sum of the volume of the inlet chamber, the outlet chamber, the downpipe and the riser to the height of the collection container is less than 100, 120 or 140.
  • the inlet opening and / or the outlet opening are formed in the upper half, in particular in the upper third, of the collecting container.
  • the cooling tubes are designed as flat tubes and / or corrugated fins are formed between the cooling tubes and / or the upper cover wall and / or lower bottom wall are designed as a sealing plug and / or the outlet opening opens into the subcooling region and / or the inlet opening opens in the condensate area.
  • the cover wall and / or the bottom wall are detachably or permanently connected to the side wall of the collecting container as a sealing plug.
  • the side wall is at least partially, in particular completely, of metal, for example aluminum or steel.
  • top wall and / or the bottom wall and / or the riser and / or the downpipe at least partially, in particular completely, made of plastic.
  • the riser pipe and / or the downpipe and / or the inlet pipe and / or the outlet pipe are produced by extrusion or the riser pipe and / or the downpipe and / or the inlet pipe and / or the outlet pipe Pipe are made of two half shells. As a result, the riser pipe and / or the downpipe can be produced with a very small flow cross-sectional area.
  • the riser and / or the downpipe and / or the top wall and / or the bottom wall of metal, for example aluminum or steel.
  • the height of the storage chamber substantially corresponds to the distance between the upper cover wall and lower bottom wall and / or the storage chamber is bounded by the upper cover wall and lower bottom wall and / or the storage chamber extends from the upper cover wall to the lower bottom wall.
  • the storage chamber is enclosed by the walls of the collecting container, namely the side wall, the top wall and the bottom wall, and the storage chamber is formed outside the riser pipe, downpipe and outside the inlet chamber and the outlet chamber and inside the collecting container.
  • the storage chamber is preferably formed completely between the top wall and the bottom wall, so that no cuts occur in a horizontal section through the collecting container, in which the Cross-sectional shape of the inlet chamber and / or outlet chamber of the cross-sectional shape of the side wall corresponds and / or in the horizontal section, the cross-sectional areas of the inlet chamber and / or the outlet chamber is smaller, in particular by 0.9, 0.7 or 0.5 times smaller is, as the cross-sectional area of the collecting container or the side wall.
  • the side wall is formed as a tube, in particular a circular or rectangular cross-section, tube and sealed fluid-tight at the top and bottom of the top wall and the bottom wall.
  • the storage chamber is formed on this horizontal section in a horizontal section at the inlet opening and / or the storage chamber is formed on this horizontal section in a horizontal section at the outlet opening.
  • the flow cross-sectional area of the riser and / or downpipe is less than 200 mm 2 , in particular less than 80 mm 2 or 100 mm 2 , and / or the inner diameter of the riser and / or the downpipe is less than 8 mm or 7 mm and / or the flow cross-sectional area of the riser and / or the downpipe is between 27 mm 2 . and 80 mm 2 , in particular, the inner diameter of the riser and / or the downpipe is between 3 mm and 5 mm.
  • the riser pipe and the downcomer include a flow space, and due to the small flow cross-sectional area of the riser and downcomer, the flow space is small and thereby only a small volume of refrigerant is disposed in the flow space of the reservoir. This saves the expensive refrigerant HFO 1234yf.
  • the inlet chamber and / or the outlet chamber is filled with a dryer granulate and the volume of the inlet chamber corresponds the flow space for the refrigerant in the inlet chamber outside the dryer granules and / or the volume of the outlet chamber corresponds to the flow space for the refrigerant in the outlet chamber outside of the dryer granules.
  • the inlet chamber and the outlet chamber are bounded by walls, for example the side wall and cutting discs.
  • the volume of the inlet chamber or the outlet chamber is considered to be only that volume which is available to the refrigerant as flow space.
  • the volume of the inlet chamber corresponds to the space enclosed by the walls of the inlet chamber volume minus the volume of the dryer granules Due to the arrangement of dryer granules in the inlet and outlet, these thus have a smaller flow space and thus also according to the above definition, a small volume, so that in the collecting container at the inlet and outlet chamber only a small amount of refrigerant is required or stored.
  • This also applies analogously to the arrangement of other components, eg. As a filter, in the inlet and / or outlet chamber.
  • this also applies analogously to the volume of the downpipe and / or riser, if in this a component, for. B. dryer granules or a dryer or a filter is arranged.
  • the inlet chamber is designed as an inlet tube and / or the outlet chamber is formed as an outlet tube.
  • a filter is arranged on the riser, in particular a lower end of the riser.
  • Automotive air conditioning system comprising a refrigerant condenser assembly, an evaporator, a compressor, preferably a blower, preferably a housing for receiving the blower and the evaporator, preferably a heater, wherein the refrigerant condenser assembly is formed as a refrigerant condenser assembly described in this patent application.
  • the refrigerant is HFO 1234yf or R134a.
  • a refrigerant condenser assembly 1 is shown in a perspective view of the refrigerant condenser assembly 1 is part of an automotive air conditioning system with an evaporator and a compressor (not shown).
  • the cooling tubes 2 open at their respective ends in a vertical manifold 5, that is, there are two manifolds 5 respectively at the ends of the cooling tubes 2.
  • Fig. 2 only one manifold 5 is shown.
  • the manifold 5 has cooling tube openings through which the ends of the cooling tubes 2 protrude into the manifold 5.
  • baffles 17 ( Fig. 5 ) formed with which a certain flow path of the refrigerant can be achieved through the cooling pipes 2.
  • the cooling tubes 2 meandering corrugated fins 4 are arranged, which are in thermal communication with the cooling tubes 2 by means of heat conduction. This increases the area available for cooling the refrigerant.
  • the cooling tubes 2, the corrugated fins 4 and the two manifolds 4 are generally made of metal, in particular aluminum, and are materially connected to one another as a solder joint.
  • a fastening device 8 is arranged, with which the refrigerant condenser assembly 1 can be attached to a motor vehicle, in particular to a body of a motor vehicle.
  • a collecting container 6 is arranged ( Fig. 1 . 2 ).
  • the collecting container 6 is connected by means of an inlet and outlet opening 18, 19 (FIG. Fig. 3 to 5 ) in fluid communication with the manifold 5 and thus also indirectly in fluid communication with the cooling tubes 2.
  • the reservoir 6 has a cross-sectionally substantially circular Sidewall 20 as a tube, an upper cover wall 21 and a lower bottom wall 22, which include a fluid-tight space.
  • the top wall 21 and the bottom wall 22 are formed as a sealing plug 23 made of plastic.
  • the lower closure plug 23 is detachably connected to the side wall 20 made of aluminum to perform maintenance work, eg. As the replacement of a filter 16 to perform.
  • the refrigerant condenser assembly 1 has an assembly inlet port 9 for introducing the refrigerant HFO 1234yf into the refrigerant condenser assembly 1 and an assembly outlet port 10 for discharging the refrigerant from the refrigerant condenser assembly 1 (FIG. Fig. 1 ).
  • the ends of the cooling tubes 2 terminate in the manifolds 5.
  • baffles 17 and flow guide plates 17 (FIGS. Fig. 5 ), with the aid of which a specific predetermined flow diagram of the refrigerant can be achieved, ie with which flow path the refrigerant flows through the plurality of superimposed cooling tubes 2 of the refrigerant condenser assembly 1.
  • the refrigerant condenser assembly 1 constitutes a heat exchanger for transferring heat from the refrigerant to air surrounding the refrigerant condenser assembly 1 and flowing around and flowing therethrough.
  • the heat exchanger is essentially formed by the cooling tubes 2 and the two manifolds 5.
  • the gaseous refrigerant is passed from a compressor, not shown, to the refrigerant condenser assembly 1.
  • the gaseous refrigerant is thereby cooled at an overheating region 11 to a saturation temperature, ie at the saturation temperature occurs in accordance with the existing pressure, a condensation of the refrigerant.
  • a condensation region 12 connects, in which the refrigerant is condensed and thus liquefied.
  • the liquefied in the condensation region 12 Refrigerant is supplied as a liquid to the sump 6 through the inlet port 18, then discharged through an outlet port 19 from the sump 6 and fed to the subcooling region 13 and cooled in the subcooling region 13 below the boiling temperature of the refrigerant.
  • the subcooling region 13 is arranged above the overheating region 11 and above the condensation region 12, which are essentially formed by the cooling tubes 21,
  • a first embodiment of the collecting container 6 is shown.
  • the refrigerant is introduced from the condensation section 12 through the inlet port 18, and the refrigerant is discharged from the sump 6 into the subcool region 13 through the outlet port 19.
  • the subcool region 13 is formed above the superheat region 11 and the condensation region 12, so the inlet opening 18 and the outlet opening 19 are formed in the upper area of the collecting container 6.
  • the refrigerant introduced through the inlet opening 18 first flows into an inlet chamber 26.
  • the inlet chamber 26 adjacent to the side wall 20 of the collecting container 8 is delimited by a first separating disk 38 and a second separating disk 39, preferably made of metal or plastic.
  • the refrigerant flows through a drop tube 27 into a storage chamber 28.
  • the lower end of the drop tube 27 is designed such that it is arranged below the liquid level of the refrigerant in the storage chamber 28.
  • a riser pipe 25 ends in the lower area of the storage chamber 28.
  • the refrigerant flows upward through the riser pipe 25 into an outlet chamber 24.
  • the outlet opening 19, through which the refrigerant flows out of the outlet chamber 24, opens into the outlet chamber 24.
  • the outlet chamber 24 is bounded by the side wall 20, the top wall 21 and the first cutting disc 38.
  • the distance between the first and second cutting discs 38, 39 is in a range between 5 and 20 mm.
  • a horizontal cut of the collecting container 6 corresponds to a section of the collecting container 6 perpendicular to the plane of Fig. 3 . 4 or 5 ,
  • dryer granules 15 is arranged as a dryer 14.
  • the dryer granulate 15 serves to absorb water due to its hygroscopic properties from the refrigerant. Due to the geometry of the two cutting discs 38, 39 of the top wall 21 and the side wall 20 and their orientation to each other, the inlet chamber 26 and the outlet chamber 24 has a certain volume. In this case, the flow volume of the refrigerant in the inlet chamber 26 and the outlet chamber 24 is considered to be that volume which is available to the refrigerant for flowing. It is thus the geometric volume of the inlet and outlet chamber 26, 24 minus the volume of the dryer granules 15.
  • the storage chamber 28 corresponds to the enclosed space of the collecting container 6 minus the discharge and inlet chamber 24, 26, the riser 25 and the downpipe 27.
  • the storage chamber 28 has a volume V0.
  • the volume V1 of the inlet chamber 26 corresponds to the volume or space between the first and second cutting discs 38, 39 and the side walls 20 minus the volume of the dryer granules 15, that is, the volume V1 of the inlet chamber 26 corresponds to the flow space of the inlet chamber 26.
  • the volume V4 of the outlet chamber 24 corresponds to the space or volume enclosed between the top wall 21 and the first separator disk 38 and the side wall 20 minus the volume of the dryer granulate 15 within the outlet chamber 24, so that the volume V4 of the outlet chamber 24 corresponds to the flow space of the refrigerant inside the outlet chamber 24 Outlet chamber 24 corresponds.
  • the volume V2 is the flow space enclosed by the drop tube 27 and the volume V3 is the flow space enclosed by the riser 25 for the passage of the refrigerant.
  • a sieve or a grid are arranged between the outlet chamber 24 and the riser 25, so that the dryer granules 15 can not get from the outlet chamber 24 in the riser 25 (not shown).
  • a grid or sieve is also arranged at the upper end of the downpipe 27.
  • (V1 + V2 + V3 + V4) / L is less than 170.
  • the volumes V1, V2, V3 and V4 are in cubic millimeters (mm 3 ) and the height L of the collecting container 6 in millimeters (mm).
  • the unit square millimeters (mm 2 ) results.
  • the volume of the flow spaces of the collecting container 6 is low, so that only a small amount of the expensive refrigerant has to be kept in the flow spaces of the collecting container 6, namely the volumes V1, V2, V3 and V4.
  • the downpipe 27 and the riser 25 are made of plastic by extrusion with an inner diameter in the range between 3 and 5 mm.
  • the volume V2 and V3 of the riser 25 and the downpipe 27 is very small.
  • the inner diameter of the collecting container 6 is small in the range between 10 and 30 mm, in particular in the range between 5 and 25 mm formed, so that the collecting container 6 advantageously requires a small space and little material for the preparation of the outer walls of the collecting container 6 are required and also because the volume V0 of the storage chamber 28 is small thereby.
  • a second embodiment of the collecting container 6 is shown in the following are essentially only the differences from the first embodiment according to Fig. 3 described.
  • the inlet chamber 26 is not formed as a laterally completely limited by the side wall 20 space, but only as an inlet tube 36.
  • the diameter or the flow cross-sectional area of the inlet tube 36 preferably corresponds to the drop tube 27 and / or the flow cross-sectional area or the diameter of the outlet tube 37 to that of the riser tube 25.
  • the inlet chamber 26 has a small volume V1 and the outlet chamber 24 has a small volume V4 on, within the inlet and outlet chamber 26, 24 no dryer granules 15 is arranged.
  • the inlet tube 36 and / or the outlet tube 37 is sealed with a seal, for example an O-ring seal or a capillary gap or, via a labyrinth seal at the inlet opening 18 and the outlet opening 19 with respect to the side wall 20.
  • the dryer granules 15 is disposed in the storage chamber 28 (not shown).
  • a third embodiment of the collecting container 6 is shown.
  • the side wall 20 is formed in two lines and has a first part in the upper third and a second part in the lower third.
  • the inlet and outlet opening 18, 19 at the upper third of the side wall 20 is present.
  • a circular cross-section pipe socket 31 is arranged concentrically.
  • the outlet chamber 24 is formed as an outlet annulus 30 between the side wall 20 and the pipe socket 31 and the inlet chamber 26 as an inlet annular space 29 from.
  • the inlet port 18 opens and into the outlet annulus 30, the outlet port 19 opens.
  • the pipe socket 31 is made by injection molding, for example made of metal or plastic, and this injection molded part are at the same time also connecting piece for connecting the downpipe 27 and the riser 25 formed.
  • the riser 25 and the downpipe 27 are made of plastic or metal with a very small flow cross-sectional area. Because of this molded connection piece on the pipe socket 31, the riser and downpipe 25, 27 can be easily fluid-tightly connected to this connection piece.
  • Fig. 5 is also the manifold 5 and the overheating region 11, the condensation region 12 and the subcooling 13 shown simplified. Furthermore, the baffles 17 are also shown in a highly schematic manner on the collecting pipe 5 for the flow guidance of the refrigerant through the cooling pipes 2 Fig. 5 are the cooling tubes 2 not shown individually.
  • the overheating region 11 is arranged at the very bottom on the refrigerant condenser assembly 1, the condensation region 12 above and the supercooling region 13 above the refrigerant.
  • the refrigerant flows from the condensation region 12 into the inlet opening 18 and out of the outlet opening 19 of the collecting container 6 into the super-cooling region arranged at the top 13.
  • the arrangement of the subcooling region 13 on the heat exchanger of the refrigerant condenser assembly 1 at the top can be required within a motor vehicle for design reasons, if, for example, in front of the refrigerant condenser assembly 1 in the lower region of a charge air cooler is arranged.
  • the volume V1 of the inlet annulus 29 and the volume V4 of the outlet annulus 30 is designed as small as possible or minimally to the fluidic smallest value.
  • the storage chamber 28 extends completely between the top wall 21 and the bottom wall 22. Only in the first embodiment according to Fig. 4 If the storage chamber 28 is not formed as far as the upper cover wall 21, but through separation planes, namely the inlet chamber 26 and the outlet chamber 24, the storage chamber 28 terminates on the second cutting disc 39.
  • the pipe socket 31 may be within the side wall 20 in the third embodiment according to Fig. 5 also below as according to the illustration in Fig. 5 can be arranged without the need for further structural changes are required. Only the inlet and outlet opening 18, 19 and the length of the riser and downpipe 25, 27 are adjusted accordingly. As a result, it is possible to produce a refrigerant condenser assembly 1 having a different size of the subcooling region 13 with a substantially only slightly modified collecting container 6.
  • the volume of the flow spaces namely the volume V1 of the inlet chamber 26, the volume V2 of the downpipe 27, the volume V3 of the riser 25 and the volume V4 of the outlet chamber 24 is small, in particular in relation to the height L of the collecting container 6.
  • the collecting container requires 6 in operation in an automotive air conditioning system only a small amount of refrigerant in these flow spaces, so that in the manufacture of the automotive air conditioning with the expensive refrigerant HFO 1234yf costs can be reduced because only a small amount of refrigerant is required to fill the sump. 6

Description

  • Die verlegende Erfindung betrifft eine Kältemittelkondensatorbaugruppe gemäß dem Oberbegriff des Anspruches 1 und eine Kraftfahrzeugklimaanlage gemäß dem Oberbegriff des Anspruches 9. JP 9 053866 A offenbart eine derartige Kältemittelkondensatorbaugruppe.
  • In Kältemittelkondensatorbaugruppen für eine Kraftfahrzeugklimaaliage wird dampfförmiges Kältemittel in einen flüssigen Aggregatzustand übergeführt und anschließend das flüssige Kältemittel weiter in einem Unterkühlungsbereich "unterkühlt", Die Kältemittelkondensatorbaugruppe bildet einen Teil eines Kältekreises einer Kraftfahrzeugklimaanlage mit einem Verdampfer, einem Expansionsorgan und einem Verdichter. Die Kältemittelskondensatorbaugruppe umfasst dabei einen Wärmeüberträger mit Kühlrohren sowie zwei Sammelrohren sowie zusätzlich einem Sammelbehälter. Der Sammelbehälter hat die Aufgabe, nach der Kondensation des Kältemittels, im Kondensationsbereich und der vorherigen Abkühlung im Überhitzungsbereich noch vorhandene gasförmige Kältemittelanteile abzuscheiden und sicherzustellen, dass nur flüssiges Kältemittel nach dem Austreten aus dem Sammelbehälter in den hydraulisch nach dem Sammelbehälter nachgeschalteten Unterkühlungsbereich dem Wärmeüberträger zugeführt wird. Der Unterkühlungsbereich ist dabei am Wärmeüberträger mit den Kühlrohren und den beiden Sammelrohren ausgebildet. In dem Sammelbehälter ist flüssiges Kältemittel angeordnet und die Auslassöffnung im Sammelbehälter (Sammelbehälter ohne Steigrohr) ist am untersten Punkt des Sammelbehälters angeordnet, damit aus dem Sammelbehälter ausschließlich flüssiges Kältemittel ausgeleitet wird. Im Regelfall liegt der Unterkühlungsbereich des Wärmeübertragers im unteren Abschnitt des Wärmeübertrags, sodass dadurch die Auslassöffnung an dem Sammelbehälter korrekt ausgerichtet ist.
  • Aufgrund äußerer Bedingungen in einem Kraftfahrzeug, beispielsweise einem dem Wärmeüberträger der Kältemittelkondensatorbaugruppe vorgeschalteten Ladeluftkühler, ist es erforderlich, den Unterkühlungsbereich nicht unten, sondern am oberen Bereich des Wärmeübertragers bzw. der Kältemittelkondensatorbaugruppe auszubilden, weil der Ladeluftkühler im unteren Bereich anzuordnen ist. Bei einer derartigen Anordnung, ist es erforderlich, das aus dem Sammelbehälter ausgeleitete Kältemittel an der untersten Stelle durch ein Steigrohr innerhalb des Sammelbehälters nach oben zu führen und am oberen Bereich des Sammelbehälters aus einer Auslassöffnung auszuleiten und dem Unterkühlungsbereich zuzuführen. Dieses Steigrohr ist im Allgemeinen als ein Kunststoffeinbauteil ausgeführt, welches neben der Strömungsführung auch andere Aufgaben innerhalb des Sammelbehälters, beispielsweise wie Filterung und/oder Trocknung, übernehmen kann. Das im Sammelbehälter gespeicherte flüssige Kältemittels muss zur korrekten Funktion einen ruhigen Flüssigkeitsspiegel ausbilden. Um dies zu erreichen, ist es erforderlich, das in den Sammelbehälter eingeleitete Kältemitte! unterhalb des Flüssigkeitsspiegels einzuleiten. Ist die Einlassöffnung des Sammelbehälters bauartbedingt im oberen Bereich des Sammelbehälters angeordnet, ist es deshalb erforderlich, das an der Einlassöffnung in den Sammelbehälter eingeleitete Kältemittel durch ein absteigendes Rohr, nämlich ein Fallrohr, unterhalb des Flüssigkeitsspiegels des Kältemittels in dem Sammelbehälter einzuleiten. Dabei wird das Kältemittel an der Einlassöffnung nicht unmittelbar in das Fallrohr eingeleitet, sondern zunächst in eine Einlasskammer und das aus dem Steigrohr nach oben geleitete Kältemittel zunächst in eine Auslasskammer eingeleitet und aus der Auslasskammer strömt das Kältemittel durch die Auslassöffnung aus dem Sammelbehälter heraus. Die Durchmesser des Steigrohres und des Fallrohres sowie die Volumen der Einlasskammer und der Auslasskammer sind dabei wesentlich größer ausgelegt, als es zur Strömungsführung erforderlich ist aufgrund fertigungstechnischer Gegebenheiten. Dadurch ist in dem Sammelbehälter in den Strömungsräumen mehr Kältemittel vorhanden als zur Strömungsführung eigentlich erforderlich ist.
  • Die DE 10 2005 025 451 A1 zeigt einen Kondensator für eine Klimaanlage, insbesondere für Kraftfahrzeuges, umfassend einen Kondensierabschnitt und einen über den dem Kondensierabschnitt angeordneten Unterkühlabschnitt sowie einen etwa rohrförmigen Modulator, der durch eine Trennwand in einen unteren, mit dem Kondensierabschnitt verbundenen Abschnitt und einen oberen, mit dem Unterkühlabschnitt verbundenen Abschnitt unterteilt ist, ein Steigrohr zwischen dem unteren und oberen Abschnitt des Modulators und einen Behälter für Trocknungsmittel im unteren Abschnitt des Modulators, wobei der Modulator an der Oberseite mit einem Verschlussstopfen versehen ist und die Trennwand mit Trocknungsmittelbehälter nach Lösen des Verschlussstopfens nach oben aus dem Modulator herausnehmbar ist.
  • Aus der DE 10 2007 009 923 A1 ist ein Kondensator für eine Klimaanlage, insbesondere eines Kraftfahrzeuges mit einem Rohrrippenblock und seitlich angeordneten Sammelrohren, bekannt. Der Rohrrippenblock weist waagerecht verlaufende Rohre auf, einen Kondensierabschnitt und einen oberhalb des Kondensierabschnitts angeordneten Unterkühlabschnitt, sowie mit einem parallel zu einem der Sammelrohre angeordneten, einen Trockner, einen Falter, ein Fallrohr sowie ein Steigrohr aufnehmenden Sammler, welcher über eine erste Überströmöffnung mit dem Kondensierabschnitt und über eine zweite Überströmöffnung mit dem Unterkühlabschnitt in Kältemittelverbindung steht, wobei das Fallrohr eintrittsseitig mit der ersten Überströmöffnung über eine im Sammler angeordnete Einströmkammer kommuniziert.
  • Die Aufgabe der vorliegende Erfindung besteht deshalb darin, eine Kältemittelkondensatorbaugruppe und eine Kraftfahrzeugklimaanlage zur Verfügung zu stellen, bei der in dem Sammelbehälter wenig Kältemittel in Strömungsräumen vorhanden ist.
  • Diese Aufgabe wird gelöst mit einer Kältemittelkondensatorbaugruppe für eine Kraftfahrzeugklimaanlage, mit den Merkmalen des Anspruchs 1.
  • Der Sammelbehälter der Kältemittelkondensatorbaugruppe nimmt dadurch in den Strömungsräumen der Kältemittelkondensatorbaugruppe, das heißt der Einlasskammer, der Auslasskammer, dem Steigrohr und dem Fallrohr, nur wenig Kältemittel auf. Dadurch können bei der Verwendung des teuren Kältemittel HFO 1234yf Kosten bei der Herstellung der Kältemittelkondensatorbaugruppe bzw, einer Kraftfahrzeugklimaanlage mit der Kältemittelkondensatorbaugruppe eingespart werden, weil der Sammelbehälter nur sehr wenig Kältemittel aufnimmt.
  • In einer zusätzlichen Ausgestaltung ist das Verhältnis aus der Summe des Volumens der Einlasskammer, der Auslasskammer, des Fallrohrs und des Steigrohres zu der Höhe des Sammelbehälters kleiner als 100, 120 oder 140.
  • In einer zusätzlichen Ausgestaltung sind die Einlassöffnung und/oder die Auslassöffnung in der oberen Hälfte, insbesondere im oberen Drittel, des Sammelbehälters ausgebildet.
  • In einer ergänzenden Ausführungsform sind die Kühlrohre als Flachrohre ausgebildet und/oder sind zwischen den Kühlrohren Wellrippen ausgebildet und/oder sind die obere Deckwandung und/oder untere Bodenwandung als ein Verschlussstopfen ausgebildet und/oder die Auslassöffnung mündet in den Unterkühlungsbereich und/oder die Einlassöffnung mündet in den Kondensattonsbereich.
  • In einer ergänzenden Variante sind die Deckwandung und/oder die Bodenwandung als Verschlussstopfen lösbar oder unlösbar mit der Seitenwandung des Sammelbehälters verbunden.
  • In einer ergänzenden Ausgestaltung besteht die Seitenwandung wenigstens teilweise, insbesondere vollständig, aus Metall, zum Beispiel Aluminium oder Stahl.
  • In einer zusätzlichen Ausführungsform bestehen die Deckwandung und/oder die Bodenwandung und/oder das Steigrohr und/oder das Fallrohr wenigstens teilweise, insbesondere vollständig, aus Kunststoff.
  • In einer zusätzlichen Ausführungsform sind das Steigrohr und/oder das Fallrohr und/oder das Einlass-Rohr und/oder das Auslass-Rohr mittels Extrusion hergestellt oder das Steigrohr und/oder das Fallrohr und/oder das Einlass-Rohr und/oder das Auslass-Rohr sind aus zwei Halbschalen hergestellt. Dadurch können das Steigrohr und/oder das Fallrohr mit einer sehr kleinen Strömungsquerschnittsfläche hergestellt werden.
  • In einer zusätzlichen Ausführungsform besteht das Steigrohr und/oder das Fallrohr und/oder die Deckwandung und/oder die Bodenwandung aus Metall, zum Beispiel Aluminium oder Stahl.
  • In einer ergänzenden Ausführungsform entspricht die Höhe der Speicherkammer im Wesentlichen dem Abstand zwischen der oberen Deckwandung und unteren Bodenwandung und/oder die Speicherkammer ist von der oberen Deckwandung und unteren Bodenwandung begrenzt und/oder die Speicherkammer erstreckt sich von der oberen Deckwandung zu der unteren Bodenwandung. Die Speicherkammer ist von den Wandungen des Sammelbehälters, nämlich der Seitenwandung, der Deckwandung und der Bodenwandung, eingeschlossen und dabei ist die Speicherkammer außerhalb des Steigrohres, des Fallrohres und außerhalb der Eintrittskammer und der Austrittskammer und innerhalb des Sammelbehälters ausgebildet. Dabei ist die Speicherkammer vorzugsweise vollständig zwischen der Deckwandung und der Bodenwandung ausgebildet, sodass in einem horizontalen Schnitt durch den Sammelbehälter keine Schnitte auftreten, an denen die Querschnittsform der Einlasskammer und/oder Auslasskammer der Querschnittsform der Seitenwandung entspricht und/oder in dem horizontalen Schnitt die Querschnittsflächen der Einlasskammer und/oder der Auslasskammer kleiner ist, insbesondere um das 0,9-, 0,7- oder 0,5-Fache kleiner ist, als die Querschnittsfläche des Sammelbehälters bzw. der Seitenwandung.
  • In einer zusätzlichen Ausführungsform ist die Seitenwandung als ein Rohr, insbesondere im Querschnitt kreisförmiges oder rechteckförmiges, Rohr ausgebildet und am oberen und unteren Ende von der Deckwandung und der Bodenwandung fluiddicht verschlossen.
  • In einer zusätzlichen Ausführungsform ist in einem horizontalen Schnitt an der Einlassöffnung die Speicherkammer an diesem horizontalen Schnitt ausgebildet und/oder in einem horizontalen Schnitt ist an der Auslassöffnung die Speicherkammer an diesem horizontalen Schnitt ausgebildet.
  • In einer zusätzlichen Ausgestaltung ist die Strömungsquerschnittsfläche des Steigrohres und/oder Fallrohres kleiner als 200 mm2, insbesondere kleiner als 80 mm2 oder 100 mm2, und/oder der Innendurchmesser des Steigrohres und/oder des Fallrohres ist kleiner als 8 mm oder 7 mm und/oder die Strömungsquerschnittsfläche des Steigrohres und/oder des Fallrohres liegt zwischen 27 mm2. und 80 mm2, insbesondere liegt der Innendurchmesser des Steigrohres und/oder des Fallrohres zwischen 3 mm und 5 mm. Das Steigrohr und das Fallrohr schließen einen Strömungsraum ein und aufgrund der kleinen Strömungsquerschnittsfläche des Steig- und Fallrohres ist der Strömungsraum klein und dadurch ist in dem Strömungsraum des Sammelbehälters nur ein geringes Volumen an Kältemittel angeordnet. Dadurch kann das teure Kältemittel HFO 1234yf eingespart werden.
  • In einer Variante ist die Einlasskammer und/oder die Auslasskammer mit einem Trocknergranulat befüllt und das Volumen der Einlasskammer entspricht dem Strömungsraum für das Kältemittel in der Einlasskammer außerhalb des Trocknergranulates und/oder das Volumen der Auslasskammer entspricht dem Strömungsraum für das Kältemittel in der Auslasskammer außerhalb des Trocknergranulates. Die Einlasskammer und die Auslasskammer sind von Wandungen, beispielsweise der Seitenwandung und von Trennscheiben, begrenzt. Dabei wird als Volumen der Einlasskammer oder der Auslasskammer nur dasjenige Volumen angesehen, welches dem Kältemittel als Strömungsraum zur Verfügung steht. Ist somit die Ein- oder Auslasskammer mit Trocknergranulat teilweise befüllt, entspricht das Volumen der Einlasskammer dem Raum des von den Wandungen der Einlasskammer eingeschlossenen Volumens abzüglich des Volumens des Trocknergranulates, Aufgrund der Anordnung von Trocknergranulat in der Ein- und Auslasskammer weisen diese somit einen geringeren Strömungsraum und damit auch gemäß der obigen Definition ein geringes Volumen auf, sodass dadurch in dem Sammelbehälter an der Ein- und Auslasskammer nur eine geringe Menge an Kältemittel erforderlich ist oder aufbewahrt wird. Dies gilt analog auch für die Anordnung von anderen Komponenten, z. B. einen Filter, in der Ein- und/oder Auslasskammer. Ferner gilt dies analog auch für das Volumen des Fallrohres und/oder Steigrohres, sofern in diesen eine Komponente, z. B. Trocknergranulat bzw. ein Trockner oder ein Filter angeordnet ist.
  • In einer ergänzenden Variante ist die Einlasskammer als ein Einlass-Rohr ausgebildet und/oder ist die Auslasskammer als ein Auslass-Rohr ausgebildet.
  • Zweckmäßig ist an dem Steigrohr, insbesondere einem unteren Ende des Steigrohres, ein Filter angeordnet.
  • Erfindungsgemäße Kraftfahrzeugklimaanlage, umfassend eine Kältemittelkondensatorbaugruppe, einen Verdampfer, einen Verdichter, vorzugsweise ein Gebläse, vorzugsweise ein Gehäuse zur Aufnahme des Gebläses und des Verdampfers, vorzugsweise eine Heizeinrichtung, wobei die Kältemittelkondensatorbaugruppe als eine in dieser Schutzrechtsanmeldung beschriebene Kältemittelkondensatorbaugruppe ausgebildet ist.
  • In einer zusätzlichen Ausführungsform ist das Kältemittel HFO 1234yf oder R134a.
  • Im Nachfolgenden wird ein Ausführungsbeispiel der Erfindung unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben. Es zeigt:
  • Fig. 1
    eine perspektivische Ansicht einer Kältemittelkolidensatorbaugruppe,
    Fig. 2
    eine perspektivische Teilansicht der Käitemittelkondensatorbaugruppe gemäß Fig. 1 und
    Fig. 3
    einen Längsschnitt eines Sammelbehälters in einem ersten Ausführungsbeispiel,
    Fig. 4
    einen Längsschnitt des Sammelbehälters in einem zweiten Ausführungsbeispiel und
    Fig. 5
    einen Längsschnitt des Sammelbehälters in einem dritten Ausführungsbeispiel mit einem Sammelrohr.
  • In Figur 1 und 2 ist eine Kältemittelkondensatorbaugruppe 1 in einer perspektivischen Ansicht dargestellt Die Kältemittelkondensatorbaugruppe 1 ist Bestandteil einer Kraftfahrzeugklimaanlage mit einem Verdampfer und einem Verdichter (nicht dargestellt). Durch horizontal angeordnete Kühlrohren 2 als Flachrohre 3 strömt zu kondensierendes und zu kühlendes Kältemittel (Fig. 1 und 2). Die Kühlrohre 2 münden an ihren jeweiligen Enden in ein vertikales Sammelrohr 5, d. h. es sind zwei Sammelrohre 5 jeweils an den Enden der Kühlrohre 2 vorhanden. In Fig. 2 ist nur ein Sammelrohr 5 dargestellt. Das Sammelrohr 5 weist hierfür Kühlrohröffnungen auf, durch weiche die Enden der Kühlrohre 2 in das Sammelrohr 5 ragen. Innerhalb der Sammelrohre 5 sind Leitbleche 17 (Fig. 5) ausgebildet mit denen ein bestimmter Strömungsweg des Kältemittels durch die Kühlrohre 2 erreicht werden kann.
  • Zwischen den Kühlrohren 2 sind mäanderförmige Wellrippen 4 angeordnet, welche mit den Kühlrohren 2 in thermischer Verbindung mittels Wärmeleitung stehen. Dadurch wird die Fläche vergrößert, welche zum Kühlen des Kältemittel zur Verfügung steht. Die Kühlrohre 2, die Wellrippen 4 und die beiden Sammelrohre 4 bestehen im Allgemeinen aus Metall, insbesondere Aluminium, und sind stoffschlüssig als Lötverbindung miteinander verbunden. In vier Eckbereichen der Kältemittelkondensatorbaugruppe 1 ist eine Befestigungseinrichtung 8 angeordnet, mit der die Kältemittelkondensatorbaugruppe 1 an einem Kraftfahrzeug, insbesondere an einer Karosserie eines Kraftfahrzeuges, befestigt werden kann.
  • An dem Sammelrohr 4 ist, ebenfalls vertikal ausgerichtet, ein Sammelbehälter 6 angeordnet (Fig. 1, 2). Der Sammelbehälter 6 steht mittels einer Einund Auslassöffnung 18, 19 (Fig. 3 bis 5) in Fluidverbindung mit dem Sammelrohr 5 und damit auch mittelbar in Fluidverbindung mit den Kühlrohre 2. Der Sammelbehälter 6 weist eine im Querschnitt im Wesentlichen kreisförmige Seitenwandung 20 als Rohr, eine obere Deckwandung 21 und eine untere Bodenwandung 22 auf, welche einen fluiddichten Raum einschließen. Die Deckwandung 21 und die Bodenwandung 22 sind als ein Verschlussstopfen 23 aus Kunststoff ausgebildet. Dabei ist der untere Verschlussstopfen 23 lösbar mit der Seitenwandung 20 aus Aluminium verbunden, um Wartungsarbeiten, z. B. den Austausch eines Filter 16, ausführen zu können.
  • Die Kältemittelkondensatorbaugruppe 1 weist eine Baugruppen-Einlassöffnung 9 zum Einleiten des Kältemittels HFO 1234yf in die Kältemittelkondensatorbaugruppe 1 und eine Baugruppen-Auslassöffnung 10 zum Ausleiten des Kältemittels aus der Kältemittelkondensatorbaugruppe 1 auf (Fig. 1). Die Enden der Kühlrohre 2 enden dabei in den Sammelrohren 5. In den Sammelrohren 5 sind Leitbleche 17 bzw. Strömungsführungsbleche 17 (Fig. 5) angeordnet, mit Hilfe denen ein bestimmtes vorgegebenes Strömungsschaltbild des Kältemittels erzielt werden kann, d. h. mit welchem Strömungsweg das Kältemittel durch die Vielzahl von übereinander angeordneten Kühlrohre 2 der Kältemittelkondensatorbaugruppe 1 strömt.
  • Die Kältemittelkondensatorbaugruppe 1 stellt einen Wärmeübertrager zur Übertragung von Wärme von dem Kältemittel auf Luft dar, welche die Kältemittelkondensatorbaugruppe 1 umgibt und diesen um- und durchströmt. Dabei wird der Wärmeübertrager im Wesentlichen von den Kühlrohren 2 und den beiden Sammelrohren 5 gebildet. Durch die Baugruppen-Einlassöffnung 9 wird das gasförmige Kältemittel von einem nicht dargestellten Verdichter zu der Kältemittelkondensatorbaugruppe 1 geleitet. Das gasförmige Kältemittel wird dabei an einem Überhitzungsbereich 11 auf eine Sättigungstemperatur abgekühlt, d. h. an der Sättigungstemperatur tritt entsprechend dem vorhandenen Druck eine Kondensation des Kältemittels ein. In der Strömungsrichtung des Kältemittels nach dem Überhitzungsbereich 11 schließt sich ein Kondensationsbereich 12 an, in welchem das Kältemittel kondensiert und somit verflüssigt wird. Das im Kondensationsbereich 12 verflüssigte Kältemittel wird als Flüssigkeit dem Sammelbehälter 6 durch die Einlassöffnung 18 zugeführt, anschließend durch eine Auslassöffnung 19 aus dem Sammelbehälter 6 ausgeleitet und dem Unterkühlungsbereich 13 zugeführt und im Unterkühlungsbereich 13 unterhalb der Siedetemperatur des Kältemittels abgekühlt. Dabei ist der Unterkühlungsbereich 13 oberhalb des Überhitzungsbereiches 11 und oberhalb des Kondensationsbereiches 12 angeordnet, welche im Wesentlichen von den Kühlrohren 21 gebildet sind,
  • In Fig. 3 ist ein erstes Ausführungsbeispiel des Sammelbehälters 6 dargestellt. In den Sammelbehälter 6 wird aus dem Kondensationsbereich 12 durch die Einlassöffnung 18 das Kältemittel eingeleitet und durch die Auslassöffnung 19 wird das Kältemittel aus dem Sammelbehälter 6 ausgeleitet in den Unterkühlungsbereich 13. Dabei ist der Unterkühlungsbereich 13 oberhalb des Überhitzungsbereiches 11 und des Kondensationsbereiches 12 ausgebildet, sodass die Einlassöffnung 18 und die Auslassöffnung 19 im oberen Bereich des Sammelbehälters 6 ausgebildet sind. Das durch die Einlassöffnung 18 eingeleitete Kältemittel strömt zunächst in eine Einlasskammer 26. Dabei wird die Einlasskammer 26 neben der Seitenwandung 20 des Sammelbehälters 8 von einer ersten Trennscheibe 38 und einer zweiten Trennscheibe 39, vorzugsweise aus Metall oder Kunststoff, begrenzt. Aus der Einlasskanimer 26 strömt das Kältemittel durch ein Fallrohr 27 in eine Speicherkammer 28. Das untere Ende des Fallrohres 27 ist dabei dahingehend ausgebildet, dass dieses unterhalb des Flüssigkeitsspiegels des Kältemittels in der Speicherkammer 28 angeordnet ist. Im unteren Bereich der Speicherkammer 28 endet ein Steigrohr 25. Durch das Steigrohr 25 strömt das Kältemittel nach oben in eine Auslasskammer 24. Dabei mündet in die Auslasskammer 24 die Auslassöffnung 19, durch welche das Kältemittel aus der Auslasskammer 24 ausströmt. Die Auslasskammer 24 ist dabei von der Seitenwandung 20, der Deckwandung 21 und der ersten Trennscheibe 38 begrenzt. Der Abstand zwischen der ersten und zweiten Trennscheibe 38, 39 liegt in einem Bereich zwischen 5 und 20 mm. Ein horizontaler Schnitt des Sammelbehälters 6 entspricht einem Schnitt des Sammelbehälters 6 senkrecht zu der Zeichenebene von Fig. 3, 4 oder 5.
  • Innerhalb der Einlasskammer 26 und der Auslasskammer 24 ist Trocknergranulat 15 als Trockner 14 angeordnet. Das Trocknergranulat 15 dient dazu, Wasser aufgrund seiner hygroskopischen Eigenschaften aus dem Kältemittel aufzunehmen. Aufgrund der Geometrie der beiden Trennscheiben 38, 39 der Deckwandung 21 und der Seitenwandung 20 und deren Ausrichtung zueinander, weist die Einlasskammer 26 und die Auslasskammer 24 ein bestimmtes Volumen auf. Dabei wird als Strömungsraum des Kältemittels in der Einlasskammer 26 und der Auslasskammer 24 dasjenige Volumen angesehen, welches dem Kältemittel zum Strömen zur Verfügung steht. Es handelt sich somit um das geometrische Volumen der Ein- und Auslasskammer 26, 24 abzüglich des Volumens des Trocknergranulates 15. Die Speicherkammer 28 entspricht dem von dem Sammelbehälter 6 eingeschlossenen Innenraum abzüglich der Aus- und Einlasskammer 24, 26, dem Steigrohr 25 und dem Fallrohr 27. Die Speicherkammer 28 weist dabei ein Volumen V0 auf. Das Volumen V1 der Einlasskammer 26 entspricht dem Volumen oder dem Raum zwischen der ersten und zweiten Trennscheibe 38, 39 und den Seitenwandungen 20 abzüglich des Volumens des Trocknergranulates 15, das heißt das Volumen V1 der Einlasskammer 26 entspricht dem Strömungsraum der Einlasskammer 26. In analoger Weise entspricht das Volumen V4 der Auslasskammer 24 dem zwischen der Deckwandung 21 und der ersten Trennscheibe 38 sowie von der Seitenwandung 20 eingeschlossenen Raum oder Volumens abzüglich des Volumens des Trocknergranulates 15 innerhalb der Auslasskammer 24, sodass das Volumen V4 der Auslasskammer 24 dem Strömungsraum des Kältemittels innerhalb der Auslasskammer 24 entspricht. Das Volumen V2 ist der von dem Fallrohr 27 eingeschlossene Strömungsraum und das Volumen V3 ist der von dem Steigrohr 25 eingeschlossene Strömungsraum zur Durchleitung des Kältemittels. Dabei sind zwischen der Auslasskammer 24 und dem Steigrohr 25 ein Sieb oder ein Gitter angeordnet, sodass das Trocknergranulat 15 nicht von der Auslasskammer 24 in das Steigrohr 25 gelangen kann (nicht dargestellt). In analoger Weise ist auch am oberen Ende des Fallrohres 27 ein Gitter oder ein Sieb angeordnet Dabei ist (V1 + V2 + V3 + V4) / L kleiner als 170. Die Volumen V1, V2, V3 und V4 werden dabei in Kubikmillimeter (mm3) erfasst und die Höhe L des Sammelbehälters 6 in Millimeter (mm). Für das Verhältnis bzw. das Ergebnis der Division ergibt sich somit die Einheit Quadratmillimeter (mm2). Dadurch ist das Volumen der Strömungsräume des Sammelbehälters 6 gering, sodass in den Strömungsräumen des Sammelbehälters 6, nämlich den Volumen V1, V2, V3 und V4, nur eine geringe Menge des teuren Kältemittels vorgehalten werden muss. Das Fallrohr 27 und das Steigrohr 25 sind dabei aus Kunststoff durch Extrusion bergestellt mit einem Innendurchmesser im Bereich zwischen 3 und 5 mm. Dadurch ist auch das Volumen V2 und V3 des Steigrohres 25 und des Fallrohres 27 sehr klein. Außerdem ist auch der Innendurchmesser des Sammelbehälters 6 klein im Bereich zwischen 10 und 30 mm, insbesondere im Bereich zwischen 5 und 25 mm ausgebildet, sodass der Sammelbehälter 6 in vorteilhafter Weise einen geringen Bauraum benötigt und wenig Material zur Herstellung der Außenwandungen des Sammelbehälters 6 erforderlich sind und außerdem auch dadurch das Volumen V0 der Speicherkammer 28 klein ist.
  • In Fig. 4 ist ein zweites Ausführungsbeispiel des Sammelbehälters 6 dargestellt Im Nachfolgenden werden im Wesentlichen nur die Unterschiede zu dem ersten Ausführungsbeispiel gemäß Fig. 3 beschrieben. Die Einlasskammer 26 ist nicht als ein von der Seitenwandung 20 seitlich vollständig begrenzter Raum ausgebildet, sondern lediglich als ein Einlass-Rohr 36. Dies gilt in analoger Weise auch für die Auslasskammer 24, die als ein Auslass-Rohr 37 ausgebildet ist. Vorzugsweise entsprechen dabei der Durchmesser oder die Strömungsquerschnittsfläche des Einlass-Rohres 36 dem Fallrohr 27 und/oder die Strömungsquerschnittsfläche oder der Durchmesser des Auslass-Rohres 37 demjenigen des Steigrohres 25. Dadurch weist auch in dem zweiten Ausführungsbeispiel gemäß Fig. 4 die Einlasskammer 26 ein geringes Volumen V1 und die Auslasskammer 24 ein geringes Volumen V4 auf, wobei innerhalb der Ein- und Auslasskammer 26, 24 kein Trocknergranulat 15 angeordnet ist. Das Einlass-Rohr 36 und/oder das Auslass-Rohr 37 ist dabei mit einer Dichtung, beispielsweise einer O-Ring-Dichtung oder einem Kapillarspalt bzw, über eine Labyrinthdichtung an der Einlassöffnung 18 und der Austassöffnung 19 bezüglich der Seitenwandung 20 abgedichtet. Das Trocknergranulat 15 ist in der Speicherkammer 28 angeordnet (nicht dargestellt).
  • In Fig. 5 ist ein drittes Ausführungsbeispiel des Sammelbehälters 6 dargestellt. Im Nachfolgenden werden im Wesentlichen nur die Unterschiede zu dem ersten bzw. zweiten Ausführungsbeispiel des Sammelbehälters 6 beschrieben. Die Seitenwandung 20 ist zweizeilig ausgebildet und weist im oberen Drittel einen ersten Teil und im unteren Drittel einen zweiten Teil auf. Dabei ist die Ein- und Auslassöffnung18, 19 am oberen Drittel der Seitenwandung 20 vorhanden. Innerhalb des oberen Drittels der Seitenwandung 20, welche in der Querschnittsform kreisförmig ausgebildet ist, ist konzentrisch ein im Querschnitt kreisförmiger Rohrstutzen 31 angeordnet. Dabei ist zwischen dem Rohrstutzen 31 und dem oberen Drittel der Seitenwandung 20 ein oberer Dichtring 32, ein mittlerer Dichtring 33 und ein unterer Dichtring 34, jeweils als Dichtung 35, zum Beispiel aus einem elastischen Kunststoff bzw. Gummi angeordnet. Dadurch bildet sich zwischen der Seitenwandung 20 und dem Rohrstutzen 31 die Auslasskammer 24 als Auslass-Ringraum 30 aus und die Einlasskammer 26 als Einlass-Ringraum 29 aus. In den Einlass-Ringraum 29 mündet die Einlassöffnung 18 und in den Auslass-Ringraum 30 mündet die Auslassöffnung 19. Der Rohrstutzen 31 ist dabei mittels Spritzgießen hergestellt, zum Beispiel aus Metall oder Kunststoff, und an dieses Spritzgussteil sind zugleich auch Anschlussstutzen zum Anschließen des Fallrohres 27 und des Steigrohres 25 ausgebildet. Das Steigrohr 25 und das Fallrohr 27 sind aus Kunststoff oder Metall mit einer sehr kleinen Strömungsquerschnittsfläche hergestellt. Aufgrund dieser angespritzten Anschlussstutzen an dem Rohrstutzen 31 kann das Steig- und Fallrohr 25, 27 einfach fluiddicht an diese Anschlussstutzen angeschlossen werden. Dabei weist der Rohrstutzen 31 entsprechende Öffnungen auf, sodass das Kältemittel von dem Steigrohr 25 in den Auslass-Ringraum 30 einströmen kann und aus dem Einlass-Ringraum 29 in das Fallrohr 27 einströmen kann. Am unteren Ende des Steigrohres 25 ist ein Filter 16 angeordnet. Das Trocknergranulat 15 ist in der Speicherkammer 28 angeordnet (nicht dargestellt).
  • In Fig. 5 ist auch das Sammelrohr 5 und der Überhitzungsbereich 11, der Kondensationsbereich 12 und der Unterkühlungsbereich 13 vereinfacht dargestellt. Ferner sind stark schematisiert an dem Sammelrohr 5 auch die Leitbleche 17 dargestellt zur Strömungsführung des Kältemittels durch die Kühlrohre 2. In Fig. 5 sind dabei die Kühlrohre 2 nicht einzeln abgebildet. Dabei ist an der Kältemittelkondensatorbaugruppe 1 der Überhitzungsbereich 11 ganz unten angeordnet, darüberliegend der Kondensationsbereich 12 und oben der Unterkühlungsbereich 13. Das Kältemittel strömt dabei aus dem Kondensationsbereich 12 in die Einlassöffnung 18 ein und aus der Auslassöffnung 19 des Sammelbehälters 6 in den ganz oben angeordneten Unterkühlungsbereich 13. Das Anordnen des Unterkühlungsbereiches 13 an dem Wärmeübertrager der Kältemittelkondensatorbaugruppe 1 ganz oben kann aus konstruktiven Gründen innerhalb eines Kraftfahrzeuges erforderlich sein, falls zum Beispiel vor der Kältemittelkondensatorbaugruppe 1 im unteren Bereich ein Ladeluftkühler angeordnet ist.
  • Das Volumen V1 des Einlass-Ringraumes 29 und das Volumen V4 des Auslass-Ringraumes 30 ist dabei möglichst klein bzw. minimal auf den strömungstechnisch kleinsten Wert ausgelegt. In dem dritten Ausführungsbeispiel gemäß Fig. 5 sowie auch in dem zweiten Ausführungsbeispiel gemäß Fig. 4 erstreckt sich die Speicherkammer 28 vollständig zwischen der Deckwandung 21 und der Bodenwandung 22. Lediglich in dem ersten Ausführungsbeispiel gemäß Fig. 4 ist die Speicherkammer 28 nicht bis zur oberen Deckwandung 21 ausgebildet, sondern durch Trennebenen, nämlich die Einlasskammer 26 und die Auslasskammer 24, endet die Speicherkammer 28 an der zweiten Trennscheibe 39.
  • Der Rohrstutzen 31 kann dabei innerhalb der Seitenwandung 20 in dem dritten Ausführungsbeispiel gemäß Fig. 5 auch weiter unten als gemäß der Darstellung in Fig. 5 angeordnet werden, ohne dass hierfür weitere konstruktive Änderungen erforderlich sind. Lediglich die Ein- und Auslassöffnung 18, 19 und die Länge des Steig- und Fallrohres 25, 27 sind entsprechend anzupassen. Dadurch ist es möglich, mit einem im Wesentlichen nur geringfügig veränderten Sammelbehälter 6 Kältemittelkondensatorbaugruppe 1 mit einer unterschiedlichen Größe des Unterkühlbereiches 13 herzustellen.
  • Insgesamt betrachtet sind mit der erfindungsgemäßen Kältemittelkondensatorbaugruppe 1 wesentliche Vorteile verbunden. Das Volumen der Strömungsräume, nämlich das Volumen V1 der Einlasskammer 26, das Volumen V2 des Fallrohres 27, das Volumen V3 des Steigrohres 25 und das Volumen V4 der Auslasskammer 24 ist klein, insbesondere im Verhältnis zur Höhe L des Sammelbehälters 6. Dadurch benötigt der Sammelbehälter 6 im Betrieb in einer Kraftfahrzeugklimaanlage nur eine geringe Menge an Kältemittel in diesen Strömungsräumen, sodass dadurch bei der Herstellung der Kraftfahrzeugklimaanlage mit dem teuren Kältemittel HFO 1234yf die Kosten gesenkt werden können, weil nur eine geringe Menge an Kältemittel erforderlich ist zum Befüllen des Sammelbehälters 6.
  • Bezugszetchenliste
  • 1
    Kältemittelkondensatorbaugruppe
    2
    Kühlrohr
    3
    Flachrohr
    4
    Wellrippe
    5
    Sammelrohr
    6
    Sammelbehälter
    7
    Verschlussstopfen am Sammelbehältor
    8
    Befestigungseinrichtung
    9
    Baugruppen-Einlassöffnung
    10
    Baugruppen-Auslassöffnung
    11
    Überhitzungsbereich
    12
    Kondensationsbereich
    13
    Unterkühlungsbereich
    14
    Trockner
    15
    Trocknergranulat
    16
    Filter
    17
    Leitblech
    18
    Einlassöffnung
    19
    Auslassöffnung
    20
    Seitenwandung
    21
    Obere Deckwandung
    22
    Untere Bodenwandung
    23
    Verschlussstopfen
    24
    Auslasskammer
    25
    Steigrohr
    26
    Einlasskammer
    27
    Fallrohr
    28
    Speicherkammer
    29
    Einlass-Ringraum
    30
    Auslass-Ringraum
    31
    Rohrstutzen
    32
    Oberer Dichtring
    33
    Mittlerer Dichtring
    34
    Unterer Dichtring
    35
    Dichtung
    36
    Einlass-Rohr
    37
    Auslass-Rohr
    38
    Erste Trennscheiben
    39
    Zweite Trennscheibe
    L
    Höhe des Sammelbehälters

Claims (9)

  1. Kältemittelkondensatorbaugruppe (1) für eine Kraftfahrzeugklimaanlage, umfassend
    - Kühlrohre (2) zum Durchleiten eines Kältemittels,
    - zwei Sammelrohre (5) zum Fluidverbinden der Kühlrohre (2),
    - einen Sammelbehälter (6) mit einer oberen Deckwandung (21) und unteren Bodenwandung (22) und einer Seitenwandung (20) sowie mit einer Einlassöffnung (18) zum Einleiten des Kältemittels in den Sammelbehälter (6) und einer Auslassöffnung (19) zum Ausleiten des Kältemittels aus dem Sammelbehälter (6), so dass durch die Ein- und Auslassöffnung (18, 19) der Sammelbehälter (6) in Fluidverbindung zu dem Sammelrohr (5) und/oder den Kühlrohren (2) steht, der Sammelbehälter (6) eine Auslasskammer (24) und ein Steigrohr (25) umfasst und die Auslassöffnung (19) in die Auslasskammer (24) mündet und die Auslasskammer (24) mit dem Steigrohr (25) verbunden ist und innerhalb des Sammelbehälters (6) und außerhalb der Auslasskammer (24) und außerhalb des Steigrohres (25) eine Speicherkammer (28) für das Kältemittel ausgebildet ist,
    - vorzugsweise der Sammelbehälter (6) eine Einlasskammer (26) und ein Fallrohr (27) umfasst und die Einlassöffnung (18) in die Einlasskammer (26) mündet und die Einlasskammer (26) mit dem Fallrohr (27) verbunden ist und die Speicherkammer (28) außerhalb der Einlasskammer (26) und außerhalb des Fallrohres (27) ausgebildet ist,
    - die Kühlrohre (2) einen Überhitzungsbereich (11) zum Kühlen des dampfförmige Kältemittels, einen Kondensationsbereich (12) zum Kondensieren des Kältemittels und einen Unterkühlungsbereich (13) zum Kühlen des flüssigen Kältemittels aufweisen, wobei der Unterkühlungsbereich (13) oberhalb des Überhitzungsbereiches (11) und oberhalb des Kondensationsbereiches (12) ausgebildet ist,
    dadurch gekennzeichnet, dass
    die Höhe der Speicherkammer (28) größer ist, insbesondere um das 1,1, 1,2 oder 1,5-Fache größer ist, als der Abstand zwischen der unteren Bodenwandung (22) und der Ein- und/oder Auslassöffnung (18, 19) und/oder das Verhältnis aus der Summe des Volumens der Einlasskammer (26), der Auslasskammer (24), des Fallrohres (27) und des Steigrohres (25) zu der Höhe des Sammelbehälters (6) kleiner als 170 ist und
    die Einlasskammer (26) als ein erster Einlass-Ringraum (29) und/oder die Auslasskammer (24) als ein Auslass-Ringraum (30) zwischen der Seitenwandung (20) und einem Rohrstutzen (31) ausgebildet ist und vorzugsweise zwischen der Seitenwandung (20) und dem Rohrstutzen (31) wenigstens zwei Dichtungen (35), insbesondere Dichtringe (32, 33, 34), angeordnet sind zur Abdichtung zwischen dem Einlass-Ringraum (29) und der Speicherkammer (28) und/oder zwischen den Auslass-Ringraum (30) und der Speicherkammer (28) und/oder zwischen dem Einlass-Ringraum (29) und dem Auslass-Ringraum (30), wobei der Innenraum des Rohrstutzens Teil der Speicherkammer ist.
  2. Kältemittelkondensatorbaugruppe nach Anspruch 1, dadurch gekennzeichnet, dass die Kühlrohre (2) als Flachrohre (3) ausgebildet sind und/oder zwischen den Kühlrohren (2) Wellrippen ausgebildet (4) sind und/oder die obere Deckwandung (21) und/oder untere Bodenwandung (22) als ein Verschlussstopfen (23) ausgebildet sind und/oder die Auslassöffnung (19) in den Unterkühlungsbereich (13) mündet und/oder die Einlassöffnung (18) in den Kondensationsbereich (12) mündet.
  3. Kältemittelkondensatorbaugruppe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Höhe der Speicherkammer (28) im Wesentlichen dem Abstand zwischen der oberen Deckwandung (21) und unteren Bodenwandung (22) entspricht und/oder die Speicherkammer (28) von der oberen Deckwandung (21) und unteren Bodenwandung (22) begrenzt ist und/oder sich die Speicherkammer (28) von der oberen Deckwandung (21) zu der unteren Bodenwandung (22) erstreckt.
  4. Kältemittelkondensatorbaugruppe nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einem horizontalen Schnitt an der Einlassöffnung (18) die Speicherkammer (28) an diesem horizontalen Schnitt ausgebildet ist und/oder in einem horizontalen Schnitt an der Auslassöffnung (19) die Speicherkammer (28) an diesem horizontalen Schnitt ausgebildet ist.
  5. Kältemittelkondensatorbaugruppe nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strömungsquerschnittsfläche des Steigrohres (25) und/oder Fallrohres (27) kleiner als 200 mm2 ist, insbesondere kleiner als 80 mm2 oder 100 mm2 ist und/oder der Innendurchmesser des Steigrohres (25) und/oder des Fallrohres (27) kleiner als 8 mm oder 7 mm ist und/oder die Strömungsquerschnittsfläche des Steigrohres (25) und/oder des Fallrohres (27) zwischen 27 mm2 und 80 mm2 liegt, insbesondere der Innendurchmesser des Steigrohres (25) und/oder des Fallrohres (27) zwischen 3 mm und 5 mm liegt.
  6. Kältemittelkondensatorbaugruppe nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einlasskammer (26) und/oder die Auslasskammer (24) mit einem Trocknergranulat (15) befüllt ist und das Volumen der Einlasskammer (26) dem Strömungsraum für das Kältemittel in der Einlasskammer (26) außerhalb des Trocknergranulates (15) entspricht und/oder das Volumen der Auslasskammer (24) dem Strömungsraum für das Kältemittel in der Auslasskammer (24) außerhalb des Trocknergranulates (15) entspricht.
  7. Kältemittelkondensatorbaugruppe nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einlasskammer (26) als ein Einlass-Rohr (36) ausgebildet ist und/oder die Auslasskammer (24) als ein Auslass-Rohr (37) ausgebildet ist.
  8. Kältemittelkondensatorbaugruppe nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an dem Steigrohr (25), insbesondere einem unteren Ende des Steigrohres (25), ein Filter (16) angeordnet ist.
  9. Kraftfahrzeugklimaanlage, umfassend
    - eine Kältemittelkondensatorbaugruppe (1),
    - einen Verdampfer,
    - einen Verdichter,
    - vorzugsweise ein Gebläse,
    - vorzugsweise ein Gehäuse zur Aufnahme des Gebläses und des Verdampfers,
    - vorzugsweise eine Heizeinrichtung,
    dadurch gekennzeichnet, dass
    die Kältemittelkondensatorbaugruppe (1) gemäß einem oder mehreren der Ansprüche 1 bis 8 ausgebildet ist.
EP11741175.1A 2010-08-31 2011-07-28 Kältemittelkondensatorbaugruppe Active EP2612095B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010040025A DE102010040025A1 (de) 2010-08-31 2010-08-31 Kältemittelkondensatorbaugruppe
PCT/EP2011/063008 WO2012028398A1 (de) 2010-08-31 2011-07-28 Kältemittelkondensatorbaugruppe

Publications (2)

Publication Number Publication Date
EP2612095A1 EP2612095A1 (de) 2013-07-10
EP2612095B1 true EP2612095B1 (de) 2017-04-26

Family

ID=44514690

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11741175.1A Active EP2612095B1 (de) 2010-08-31 2011-07-28 Kältemittelkondensatorbaugruppe

Country Status (6)

Country Link
US (1) US9546805B2 (de)
EP (1) EP2612095B1 (de)
JP (1) JP5845524B2 (de)
CN (1) CN203421990U (de)
DE (1) DE102010040025A1 (de)
WO (1) WO2012028398A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11137208B2 (en) * 2017-09-19 2021-10-05 Chubu Electric Power Co., Inc. Heating device and heating method, each of which uses superheated steam

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9612046B2 (en) * 2012-12-14 2017-04-04 Mahle International Gmbh Sub-cooled condenser having a receiver tank with a refrigerant diverter for improved filling efficiency
EP3062042A1 (de) 2015-02-27 2016-08-31 MAHLE International GmbH Fluidsammler
WO2016190025A1 (ja) * 2015-05-26 2016-12-01 株式会社デンソー 凝縮器
FR3049270B1 (fr) * 2016-03-22 2019-09-27 Arkema France Recipient pour le stockage d'une composition comprenant du tetrafluoropropene et methode de stockage de celle-ci
DE102016122310A1 (de) * 2016-11-21 2018-05-24 Valeo Klimasysteme Gmbh Kondensator für eine Klimaanlage, insbesondere für ein Kraftfahrzeug

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595815Y2 (ja) 1981-02-05 1984-02-22 三菱アルミニウム株式会社 自動車などのク−ラ用リキツドタンク
JP2806379B2 (ja) 1989-04-28 1998-09-30 株式会社デンソー 冷媒凝縮器
JPH05306857A (ja) 1992-03-04 1993-11-19 Nippondenso Co Ltd 冷凍装置の受液器
JPH0953866A (ja) 1995-08-10 1997-02-25 Calsonic Corp 凝縮器
JPH09178301A (ja) 1995-12-27 1997-07-11 Denso Corp 可逆式受液器およびヒートポンプサイクル
US6330810B1 (en) * 2000-08-11 2001-12-18 Showa Denko K.K. Condensing apparatus for use in a refrigeration cycle receiver-dryer used for said condensing apparatus
DE10164668A1 (de) 2001-12-28 2003-07-10 Behr Lorraine S A R L Europole Gelöteter Kondensator
DE10345921A1 (de) * 2003-10-02 2005-05-12 Modine Mfg Co Kondensator und Aufnahmevorrichtung für Trocknungsmittel
DE102004043133A1 (de) 2004-09-07 2006-03-23 Daimlerchrysler Ag Klima-Kondensator
DE102005005187A1 (de) * 2005-02-03 2006-08-10 Behr Gmbh & Co. Kg Kondensator für eine Klimaanlage, insbesondere eines Kraftfahrzeuges
DE102005021787A1 (de) * 2005-05-11 2006-11-16 Modine Manufacturing Co., Racine Vorrichtung zur Behandlung des Kältemittels
DE102005025451A1 (de) 2005-06-02 2006-12-07 Denso Automotive Deutschland Gmbh Kondensator für eine Klimaanlage
DE102007009923A1 (de) 2007-02-27 2008-08-28 Behr Gmbh & Co. Kg Kondensator für eine Klimaanlage, insbesondere eines Kraftfahrzeuges
JP2010139089A (ja) * 2008-12-09 2010-06-24 Showa Denko Kk 熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11137208B2 (en) * 2017-09-19 2021-10-05 Chubu Electric Power Co., Inc. Heating device and heating method, each of which uses superheated steam

Also Published As

Publication number Publication date
JP2013536780A (ja) 2013-09-26
EP2612095A1 (de) 2013-07-10
US20130219953A1 (en) 2013-08-29
WO2012028398A1 (de) 2012-03-08
JP5845524B2 (ja) 2016-01-20
US9546805B2 (en) 2017-01-17
CN203421990U (zh) 2014-02-05
DE102010040025A1 (de) 2012-03-01

Similar Documents

Publication Publication Date Title
EP1459025B1 (de) Vorrichtung zum austausch von wärme
EP2612095B1 (de) Kältemittelkondensatorbaugruppe
DE102012215411A1 (de) Verdampfer mit Kältespeicherfunktion
DE102007054345A1 (de) Kühlmodul
EP2606292B1 (de) Kältemittelkondensatorbaugruppe
EP2293001A2 (de) Wärmeübertrager mit integriertem Kältespeicher
DE102015111393A1 (de) Vorrichtung zur Wärmeübertragung
DE102011080673B4 (de) Kältemittelkondensatorbaugruppe
EP3204709B1 (de) Verfahren zur montage einer wärmetauschereinrichtung und wärmetauschereinrichtung
DE102006032570A1 (de) Einheit, aufweisend einen Gaskühler und einen inneren Wärmetauscher, und Wärmetauscher
EP1853868A1 (de) Kasten zur aufnahme eines fluids für einen wärmeübertrager, wärmeübertrager, insbesondere für eine wärmeübertragereinheit, wärmeübertragereinheit, insbesondere in ausführung als monoblock
DE102005028510A1 (de) Verstellbarer innerer Wärmeübertrager
EP2606291B1 (de) Kältemittelkondensatorbaugruppe
DE102019132955B4 (de) Wärmeübertrager mit integriertem Trockner und Platte für einen Plattenwärmeübertrager
WO2012098261A2 (de) Kältemittelkondensatorbaugruppe
WO2012098264A2 (de) Kältemittelkondensatorbaugruppe
DE102015224236A1 (de) Wärmeübertrager
EP2818817B1 (de) Kondensatorbaugruppe
DE102006007560A1 (de) Kasten zur Aufnahme eines Fluids für einen Wärmeübertrager, Wärme-übertrager, insbesondere für eine Wärmeübertragereinheit, Wärme-übertragereinheit, insbesondere in Ausführung als Monoblock
EP2795230A2 (de) Wärmeübertrager
DE102011007216A1 (de) Kältemittelkondensatorbaugruppe
DE112016002286T5 (de) Wärmetauscher mit Flüssigkeitsbehälter
EP2053333A2 (de) Innerer Wärmeübertrager für einen Kältekreis
WO2016055457A2 (de) Kältemittelbehälter für eine kälteanlage
DE202009006155U1 (de) Wärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130402

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 40/04 20060101ALN20160727BHEP

Ipc: F28B 9/08 20060101ALI20160727BHEP

Ipc: F25B 40/00 20060101AFI20160727BHEP

Ipc: F28D 21/00 20060101ALN20160727BHEP

Ipc: F25B 39/04 20060101ALI20160727BHEP

Ipc: F25B 40/02 20060101ALN20160727BHEP

Ipc: F28D 1/053 20060101ALI20160727BHEP

INTG Intention to grant announced

Effective date: 20160826

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011012115

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F28D0001053000

Ipc: F25B0040000000

INTC Intention to grant announced (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 21/00 20060101ALN20161219BHEP

Ipc: F28B 9/08 20060101ALI20161219BHEP

Ipc: F25B 40/00 20060101AFI20161219BHEP

Ipc: F25B 40/04 20060101ALN20161219BHEP

Ipc: F25B 40/02 20060101ALN20161219BHEP

Ipc: F28D 1/053 20060101ALI20161219BHEP

Ipc: F25B 39/04 20060101ALI20161219BHEP

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KASPAR, MARTIN

Inventor name: GUILLAUME, DAVID

Inventor name: WALTER, CHRISTOPH

Inventor name: FOERSTER, UWE

Inventor name: HOFMANN, HERBERT

INTG Intention to grant announced

Effective date: 20170313

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 888245

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011012115

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170426

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170727

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170826

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011012115

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170728

26N No opposition filed

Effective date: 20180129

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170728

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170728

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170728

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 888245

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210719

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230719

Year of fee payment: 13