EP2611389B1 - Percutaneous mitral valve replacement and sealing - Google Patents

Percutaneous mitral valve replacement and sealing Download PDF

Info

Publication number
EP2611389B1
EP2611389B1 EP11809374.9A EP11809374A EP2611389B1 EP 2611389 B1 EP2611389 B1 EP 2611389B1 EP 11809374 A EP11809374 A EP 11809374A EP 2611389 B1 EP2611389 B1 EP 2611389B1
Authority
EP
European Patent Office
Prior art keywords
valve
prosthetic valve
native
support
prosthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11809374.9A
Other languages
German (de)
French (fr)
Other versions
EP2611389A4 (en
EP2611389A2 (en
Inventor
Yossi Gross
Gil Hacohen
Eran Miller
Yuval Zipory
Tal Reich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cardiovalve Ltd
Original Assignee
Cardiovalve Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/840,463 external-priority patent/US9132009B2/en
Application filed by Cardiovalve Ltd filed Critical Cardiovalve Ltd
Priority to EP21176010.3A priority Critical patent/EP3906895A1/en
Publication of EP2611389A2 publication Critical patent/EP2611389A2/en
Publication of EP2611389A4 publication Critical patent/EP2611389A4/en
Application granted granted Critical
Publication of EP2611389B1 publication Critical patent/EP2611389B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/243Deployment by mechanical expansion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/2436Deployment by retracting a sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/2439Expansion controlled by filaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/044Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors with a threaded shaft, e.g. screws
    • A61B2017/0441Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors with a threaded shaft, e.g. screws the shaft being a rigid coil or spiral
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0464Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors for soft tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B2017/0647Surgical staples, i.e. penetrating the tissue having one single leg, e.g. tacks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B2017/0649Coils or spirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2409Support rings therefor, e.g. for connecting valves to tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2454Means for preventing inversion of the valve leaflets, e.g. chordae tendineae prostheses
    • A61F2/2457Chordae tendineae prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • A61F2220/0016Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/005Rosette-shaped, e.g. star-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular
    • A61F2250/0063Nested prosthetic parts

Definitions

  • Embodiments of the present invention relate in general to valve replacement. More specifically, embodiments of the present invention relate to prosthetic valves for replacement of an atrioventricular valve.
  • Dilation of the annulus of the mitral valve prevents the valve leaflets from fully coapting when the valve is closed. Regurgitation of blood from the ventricle into the atrium results in increased total stroke volume and decreased cardiac output, and ultimate weakening of the ventricle secondary to a volume overload and a pressure overload of the atrium. Dilation of the annulus is sometimes treated by implanting a prosthetic mitral valve at a patient's native mitral valve.
  • US 2005/0137688 A1 relates to a method for percutaneously replacing a heart valve of a patient, and discloses a apparatus according to the pre-characterizing portion of appended claim 1.
  • one or more guide members e.g., wires, sutures, or strings
  • each guide member facilitates the advancement therealong of respective commissural anchors.
  • the commissural anchors are shaped so as to define a plurality of barbs or prongs which are expandable to restrict proximal movement of the anchors following their deployment.
  • the guide members facilitate advancement of a collapsible prosthetic valve support (e.g., a skirt) which serves as a base for and receives a collapsible prosthetic mitral valve which is subsequently coupled to the support.
  • the support comprises a proximal annular element, or ring, and may also comprise a distal cylindrical element.
  • the cylindrical element is configured to push aside and press against the native leaflets of the native valve, and the proximal annular element is shaped so as to define one or more holes for sliding the valve support along the one or more guide members.
  • the proximal annular element is configured to be positioned along the annulus of the native valve.
  • the collapsible prosthetic valve is configured for implantation in and/or at least partial replacement (e.g., full replacement) of the native atrioventricular valve of the patient, such as a native mitral valve or a native tricuspid valve.
  • the valve support and the prosthetic valve are configured to assume collapsed states for minimally-invasive delivery to the diseased native valve, such as by percutaneous or transluminal delivery using one or more catheters.
  • the valve support and the prosthetic valve are implanted during an open-heart procedure.
  • the prosthetic valve support may be shaped so as to define a downstream skirt.
  • the downstream skirt is configured to be placed at native valve, such that the downstream skirt passes through the orifice of the native valve and extends toward, and, typically partially into, a ventricle.
  • the downstream skirt typically additionally pushes aside and presses against the native leaflets of the native valve, which are left in place during and after implantation of the prosthetic valve support and/or the prosthetic valve.
  • the proximal annular element has upper and lower surfaces.
  • one or more, e.g., a plurality of, tissue anchors are coupled to the lower surface and facilitate anchoring of the proximal annular element to the annulus of the native valve.
  • the one or more anchors comprise at least first and second commissural anchors that are configured to be implanted at or in the vicinity of the commissures of the native valve.
  • the cylindrical element of the valve support has first and second ends and a cylindrical body disposed between the first and second ends.
  • the first end of the cylindrical element is coupled to the annular element while the second end defines a free end of the cylindrical element.
  • the cylindrical element of the valve support is invertible such that (1) during a first period, the second end and the cylindrical body of the cylindrical element are disposed above the annular element (e.g., in the atrium of the heart), and (2) during a second period, the second end and the cylindrical body of the cylindrical element are disposed below the annular element (e.g., in the ventricle of the heart).
  • a sealing balloon may be placed on a valve-facing, lower side of the annular element of the valve support, the sealing balloon being configured to be inflated such that the balloon seals the interface between the valve support and the native valve.
  • commissural helices are wrapped around chordae tendineae of the patient in order to facilitate sealing of the valve commissures around the valve support and/or around the valve.
  • the valve commissures are grasped by grasping elements that act in order to facilitate sealing of the commissures around the valve support and/or around the valve.
  • one or more of the aforementioned sealing elements facilitates anchoring of the prosthetic valve to the native valve in addition to facilitating sealing.
  • the prosthetic valve comprises an expandable frame (e.g., a wire frame), and a sealing material (such as latex) is disposed on the outer surface of the frame so as to form webbing between at least some of the struts of the wire frame, and to provide sealing between the wire frame and the native valve.
  • a sealing material such as latex
  • an invertible prosthetic valve support is used to support a prosthetic valve.
  • a sealing element is disposed circumferentially around a surface of the invertible prosthetic valve support that is initially an inner surface of the invertible prosthetic valve support.
  • the invertible prosthetic valve support is anchored to the native valve, and is subsequently inverted.
  • the sealing element is disposed on the outer surface of the invertible prosthetic valve support and acts to seal the interface between the outer surface and the native valve.
  • Figs. 1A-B are schematic illustrations of a system 20 for replacing an atrioventricular valve 5 of a patient comprising one or more guide members 21a and 21b which are advanced toward first and second commissures 8 and 10 of valve 5 of a heart 2 of the patient, in accordance with some applications of the present invention.
  • guide members 21a and 21b comprise distinct guide members.
  • Figs. 1A-B are schematic illustrations of a system 20 for replacing an atrioventricular valve 5 of a patient comprising one or more guide members 21a and 21b which are advanced toward first and second commissures 8 and 10 of valve 5 of a heart 2 of the patient, in accordance with some applications of the present invention.
  • guide members 21a and 21b comprise distinct guide members.
  • Alternatively as shown in Figs.
  • the guide member defines a looped portion between commissures 8 and 10 (i.e., a portion of the guide member that is disposed in a ventricle 6 of heart 2), and first and second free ends which are disposed and accessible at a site outside the body of the patient.
  • the guide member defines portions 21a and 21b.
  • first and second commissures 8 and 10 are the anterior and posterior commissures.
  • first and second commissures are typically the anterior and posterior commissures of the tricuspid valve.
  • guide members 21a and 21b comprise guide wires having a diameter of 0.035 inches (0.89mm).
  • the transcatheter procedure typically begins with the advancing of a semi-rigid guide wire into a right atrium 4 of the patient.
  • the semi-rigid guide wire provides a guide for the subsequent advancement of a sheath 25 therealong and into the right atrium. Once sheath 25 has entered the right atrium, the semi-rigid guide wire is retracted from the patient's body.
  • Sheath 25 typically comprises a 13-20 F sheath, although the size may be selected as appropriate for a given patient.
  • Sheath 25 is advanced through vasculature into the right atrium using a suitable point of origin typically determined for a given patient. For example:
  • sheath 25 is advanced through the inferior vena cava of the patient and into the right atrium using a suitable point of origin typically determined for a given patient.
  • Sheath 25 is advanced distally until sheath 25 reaches the interatrial septum.
  • a resilient needle and a dilator (not shown) are advanced through the sheath and into the heart.
  • the dilator In order to advance the sheath transseptally into the left atrium, the dilator is advanced to the septum, and the needle is pushed from within the dilator and is allowed to puncture the septum to create an opening that facilitates passage of the dilator and subsequently the sheath therethrough and into the left atrium.
  • the dilator is passed through the hole in the septum created by the needle.
  • the dilator is shaped to define a hollow shaft for passage along the needle, and the hollow shaft is shaped to define a tapered distal end. This tapered distal end is first advanced through the hole created by the needle. The hole is enlarged when the gradually increasing diameter of the distal end of the dilator is pushed through the hole in the septum.
  • sheath 25 The advancement of sheath 25 through the septum and into the left atrium is followed by the extraction of the dilator and the needle from within sheath 25.
  • Figs. 1C-D and 2A-B show advancement of one or more tissue anchors 30a and 30b along guide members 21a and 21b, respectively.
  • Anchors 30a and 30b comprise a flexible, biocompatible material (e.g., nitinol) and comprise one or more (e.g., a plurality of) radially-expandable prongs 32 (e.g., barbs).
  • Each anchor 30a and 30b is reversibly coupled to a respective delivery lumen 27a and 27b.
  • Each delivery lumen 27 slides around a respective guide member 21.
  • a respective surrounding sheath 26a and 26b surrounds each delivery lumen 27a and 27b and around anchors 30a and 30b at least in part in order to compress and prevent expansion of prongs 32 of tissue anchors 30a and 30b.
  • ribbed crimping structures 34 As shown in Fig. ID, the distal ends of lumens 27a and 27b are reversibly coupled to ribbed crimping structures 34. As described hereinbelow, anchors 30a and 30b are anchored to ventricular surfaces of commissures 8 and 10. Following the anchoring, ribbed crimping structures 34 extend from anchors 30a and 30b through commissures 8 and 10, respectively, and toward the atrial surfaces of commissures 8 and 10. Ribbed crimping structures 34 are configured to facilitate anchoring of a valve support (described hereinbelow) to the atrial surfaces of commissures 8 and 10.
  • a valve support described hereinbelow
  • Anchors 30a and 30b, ribbed crimping structures 34, and the distal ends of surrounding sheaths 26a and 26b are advanced into ventricle 6. Subsequently, anchors 30a and 30b are pushed distally from within sheaths 26a and 26b, (or sheaths 26a and 26b are pulled proximally with respect to anchors 30a and 30b) to expose anchors 30a and 30b. As anchors 30a and 30b are exposed from within sheaths 26a and 26b, prongs 32 are free to expand, as shown in Fig. 1D . Prongs 32 expand such that anchors 30a and 30b assume a flower shape. Prongs 32, collectively in their expanded state, create a larger surface area to engage tissue than in their compressed states. Following the exposing of anchors 30a and 30b, sheaths 26a and 26b are extracted.
  • lumens 27a and 27b are pulled proximally so that prongs 32 of anchors 30a and 30b engage respective ventricular surface of commissures 8 and 10. Prongs 32 create a large surface area which restricts proximal motion of anchors 30a and 30b from commissures 8 and 10, respectively.
  • guide members 21a and 21b are removed from the body of the patient.
  • Figs. 2C-F are schematic illustrations of the advancement of a prosthetic valve support 40 along lumens 27a and 27b, in accordance with some applications of the present invention.
  • lumens 27a and 27b function as valve support guide members.
  • Support 40 comprises a collapsible skirt having a proximal annular element 44 and a distal cylindrical element 42.
  • Support 40 is configured to assume a collapsed state (e.g., surrounded by a sheath or overtube 50 shown in Fig. 2C ) for minimally-invasive delivery to the diseased native valve, such as by percutaneous or transluminal delivery using one or more catheters.
  • support 40 in an expanded state after delivery in right atrium 4 and advancement toward the native valve.
  • support 40 is shaped so as to define one or more (e.g., two, as shown in View A) holes 46a and 46b for slidable advancement of support 40 along lumens 27a and 27b, respectively. That is, prior to introduction of support 40 into the body of the patient, lumens 27a and 27b are threaded through holes 46a and 46b, respectively, and support 40 is slid along lumens 27a and 27b. Support 40 is slid by pushing elements 52a and 52b which surround delivery lumens 27a and 27b, respectively.
  • support 40 is slid along lumens 27a and 27b by way of illustration and not limitation. That is, for some applications, following the anchoring of anchors 30a and 30b to commissures 8 and 10, respectively, guide members 21a and 21b are not removed from the body of the patient, but rather lumens 27a and 27b are removed (e.g., by being decoupled from crimping structures 34) leaving behind anchors 30a and 30b and guide members 21a and 21b. Guide members 21a and 21b may then be threaded through holes 46a and 46b, respectively, and support 40 is slid along guide members 21a and 21b. In such a manner, guide members 21a and 21b function as valve support guide members.
  • Support 40 comprises a collapsible flexible support frame 48, which is at least partially covered by a covering 49.
  • Support 40 is configured to be placed at native valve 5, such that cylindrical element 42 passes through the orifice of the native valve and extends towards, and, typically partially into, ventricle 6 (as shown in Fig. 2E ).
  • Cylindrical element 42 typically pushes aside and presses against native leaflets of native valve 5 at least in part, which are left in place during and after implantation of the prosthetic valve.
  • Annular element 44 is configured to be placed around a native annulus 11 of the native valve, and to extend at least partially into an atrium 4 such that annular element 44 rests against the native annulus.
  • Annular element 44 is typically too large to pass through the annulus, and may, for example, have an outer diameter of between 30 and 60 mm.
  • collapsible support frame 48 comprises a stent, which comprises a plurality of struts.
  • the struts may comprise, for example, a metal such as nitinol or stainless steel.
  • frame 48 comprises a flexible metal, e.g., nitinol, which facilitates compression of support 40 within a delivery sheath or overtube 50.
  • covering 49 comprises a fabric, such as a woven fabric, e.g., Dacron. Covering 49 is typically configured to cover at least a portion of cylindrical element 42, and at least a portion of annular element 44. The covering may comprise a single piece, or a plurality of pieces sewn together.
  • pushing elements 52a and 52b are each coupled to locking crimping elements 64a and 64b, respectively.
  • Locking crimping elements 64a and 64b are disposed adjacently, proximally to holes 46a and 46b respectively of valve support 40.
  • Fig. 2E shows valve support 40 prior to implantation at annulus 11. As shown, ribbed crimping structures 34 project away from anchors 30a and 30b, through commissures 8 and 10, and toward atrium 4. Valve support 40 is advanced along lumens 27a and 27b toward structures 34 by being pushed by pushing elements 52a and 52b and locking crimping elements 64a and 64b.
  • valve support 40 is further pushed by pushing elements 52a and 52b and locking crimping elements 64a and 64b such holes 46a and 46b of support 40 advance around ribbed crimping structures 34.
  • locking crimping elements 64a and 64b advance over and surround ribbed crimping elements 34 to lock in place valve support 40 from an atrial surface of valve 5.
  • cylindrical element 42 is positioned partially within ventricle 6 and native leaflets 12 and 14 of native valve 5 are pushed aside.
  • ribbed crimping structures 34 are shaped so as to define a plurality of male couplings.
  • Locking crimping elements 64a and 64b each comprise a cylindrical element having an inner lumen that is shaped so as to surround a respective ribbed crimping structure 34.
  • Each inner lumen of locking crimping elements 64a and 64b is shaped so as to define female couplings to receive the male couplings of ribbed crimping structure 34.
  • the female couplings of locking crimping element 64 are directioned such that they facilitate distal advancement of locking crimping element 64 while restricting proximal advancement of locking crimping element 64.
  • valve support 40 is locked in place from an atrial surface of valve 5.
  • ribbed crimping elements 34 comprise female couplings
  • locking crimping elements 64 comprise male couplings.
  • FIGs. 2G-K are schematic illustrations of the coupling of a prosthetic atrioventricular valve 80 to valve support 40, in accordance with some applications of the present invention.
  • Support 40 receives the prosthetic valve and functions as a docking station.
  • the docking station is a coupling element that provides coupling between two other elements (in this case, between annulus 11 and the prosthetic valve.)
  • pushing elements 52a and 52b and sheath or overtube 50 are removed from the body of the patient, leaving behind lumens 27a and 27b, as shown in Fig. 2G .
  • a guide wire 72 is advanced toward ventricle 6 and facilitates the advancement of an overtube 70 through sheath 25 and the positioning of a distal end of overtube 70 within ventricle 6.
  • Overtube 70 facilitates the advancement of prosthetic valve 80 in a compressed state, toward valve support 40.
  • Fig. 2H shows partial deployment of valve 80 within ventricle 6 of heart 2.
  • Valve 80 is shown comprising an expandable frame 79 comprising a plurality of stent struts by way of illustration and not limitation.
  • the wireframe of valve 80 comprises a flexible metal, e.g., nitinol or stainless steel. It is to be noted that the wireframe of valve 80 is covered by a covering (not shown for clarity of illustration) comprising a braided mesh or in a fabric such as a woven fabric, e.g., Dacron. The covering is typically configured to cover at least a portion of the frame. The covering may comprise a single piece, or a plurality of pieces sewn together.
  • Expandable frame 79 is typically self-expandable, although the scope of the present invention includes using a prosthetic valve that includes a balloon expandable frame, mutatis mutandis.
  • valve 80 Following the partial deployment of valve 80 in ventricle 6, overtube 70 is pulled proximally to pull valve 80 proximally such that cylindrical element 42 and/or annular element 44 of valve support 40 surrounds a proximal portion of prosthetic valve 80.
  • Valve 80 has a tendency to expand such that valve 80 is held in place with respect to valve support 40 responsively to radial forces acted upon valve support 40 by prosthetic valve 80.
  • Valve 80 comprises a plurality of distal protrusions 84 (e.g., snares).
  • protrusions 84 When valve 80 is pulled proximally, as described hereinabove, protrusions 84 ensnare and engage the native leaflets of the atrioventricular valve. By the ensnaring of the native leaflets, protrusions 84 sandwich the native valve between protrusions 84 and prosthetic valve support 40. Such ensnaring helps further anchor prosthetic valve 80 to the native atrioventricular valve.
  • the scope of the present invention includes using any sort of protrusions (e.g., hooks) that protrude from the distal end of expandable frame 79 of prosthetic valve 80 and that are configured such that the native valve is sandwiched between the protrusions and valve support 40.
  • the protrusions cause sandwiching of the native valve leaflets, such that the leaflets do not interfere with the left ventricular outflow tract (LVOT).
  • LVOT left ventricular outflow tract
  • protrusions 84 are such as to (a) prevent proximal migration of the valve into the patient's atrium, while (b) allowing movement of the native leaflets with respect to the frame of the prosthetic valve.
  • the protrusions may have the aforementioned functionalities by having lengths of less than 5 mm, and/or by a total width of each set of protrusions corresponding to respective leaflets of the native valve being less than 5 mm.
  • the valve may include a single protrusion corresponding to each leaflet of the native valve, the width of each of the single protrusions being less than 1 mm.
  • the valve may be stopped from proximally migrating into the atrium, by the protrusions preventing the distal end of the valve from migrating further proximally than edges of native leaflets of the valve.
  • the protrusions may allow movement of the native leaflets with respect to the frame of the prosthetic valve by not generally squeezing the native leaflets between the protrusions and the frame of the valve.
  • valve support 40 prevents the valve from migrating distally into the patient's ventricle.
  • the prosthetic valve is pulled back proximally with respect to valve support, as described hereinabove.
  • the prosthetic valve is pulled back to a position with respect to valve support that is such that protrusions 84 prevent the native leaflets from interfering with the LVOT, by sandwiching the native leaflets between the protrusions and the valve support, and/or by anchoring ends of the native leaflets as described hereinabove.
  • the prosthetic valve is then deployed at this position.
  • protrusions are disposed on the valve on the sides of the valve that are adjacent to the anterior and posterior leaflets of the native valve, and the valve does not includes protrusions on the portions of the valve that are adjacent to the commissures of the native valve, as described with reference to Figs. 11A-D .
  • the protrusions are disposed in a sinusoidal configuration in order to conform with the saddle shape of the native valve, as described hereinbelow with reference to Figs. 12A-C .
  • valve 80 comprises one or more (e.g., a plurality, as shown) coupling elements 81 at the proximal end of valve 80.
  • Overtube 70 which facilitates the advancement of prosthetic valve 80, is reversibly coupled to valve 80, via coupling elements 81.
  • Prosthetic valve 80 is configured for implantation in and/or at least partial replacement of a native atrioventricular valve 5 of the patient, such as a native mitral valve or a native tricuspid valve.
  • Prosthetic valve 80 is configured to assume a collapsed state for minimally-invasive delivery to the diseased native valve, such as by percutaneous or transluminal delivery using one or more catheters.
  • Fig. 2J shows prosthetic valve 80 in an expanded state after delivery to the native valve.
  • Prosthetic valve 80 further comprises a plurality of valve leaflets 82, which may be artificial or tissue-based.
  • the leaflets are typically coupled to an inner surface of the valve prosthesis.
  • Leaflets 82 are coupled, e.g., sewn, to expandable frame 79 and/or to the covering.
  • the prosthetic valve typically comprises three leaflets 82a, 82b, and 82c, as shown in Fig. 2K .
  • FIGs. 3A-D are schematic illustrations of the advancement of prosthetic valve support 40 toward native atrioventricular valve 5 of a patient, the valve support including a sealing balloon 90, in accordance with some applications of the present invention.
  • the steps shown in Figs. 3A-C are generally similar to those shown in Figs. 2C-F .
  • sealing balloon 40 is disposed on the valve-facing, lower side of annular element 44 of the prosthetic valve support.
  • Fig. 3D shows valve support 40, the valve support having been implanted at annulus 11. Typically, at this stage, balloon 40 is inflated, as shown in the transition from Fig. 3C to Fig. 3D .
  • the balloon is inflated via an inflation lumen 92, shown in Fig. 3C , for example.
  • the balloon seals the interface between the prosthetic valve support and native annulus 11, thereby reducing retrograde blood flow from ventricle 6 into atrium 4, relative to retrograde blood flow in the absence of a sealing balloon.
  • the balloon is inflated prior to the placement of the prosthetic support at annulus 11.
  • FIGs. 4A-C are schematic illustrations of prosthetic valve support 40 being used with commissural helices 100a and 100b that facilitate anchoring and/or sealing of the valve support, in accordance with some applications of the present invention.
  • commissural helices are used as an alternative or in addition to anchors 30a and 30b and/or other anchoring elements described herein, in order to facilitate the anchoring of valve support 40.
  • Commissural helices 100a and 100b are typically placed at commissures 8 and 10 in a generally similar technique to that described with reference to anchors 30a and 30b.
  • each helix 30a and 30b is reversibly coupled to a respective delivery lumen 27a and 27b.
  • each delivery lumen 27 slides around a respective guide member 21, and a respective surrounding sheath 26a and 26b surrounds each delivery lumen 27a and 27b.
  • Commissural helices 100a and 100b (optionally, ribbed crimping structures 34), and the distal ends of surrounding sheaths 26a and 26b are advanced into ventricle 6.
  • the helices are pushed out of the distal ends of surrounding sheaths 26a and 26b.
  • the helices are rotated proximally such that the helices wrap around at least some chordae tendineae 102 of the patient.
  • the sheaths are extracted.
  • the helices are conical helices (as shown), and the wider end of the conical helix is disposed at the proximal end of the helix.
  • prosthetic valve support 40 is placed at annulus 11, in accordance with the techniques described hereinabove, and as shown in Fig. 4B .
  • prosthetic valve 80 is coupled to the prosthetic valve support, in accordance with the techniques described hereinabove, and as shown in Fig. 4C .
  • commissural helices 100a and 100b facilitate sealing of native commissures 8 and 10, thereby reducing retrograde blood flow via the commissures, relative to retrograde blood flow in the absence of the helices. Further typically, the sealing of the native commissures facilitates anchoring of the prosthetic valve support to native valve 5.
  • Figs. 5A-D are schematic illustrations of grasping elements 106a and 106b being used to anchor prosthetic valve 80, in accordance with some applications of the present invention.
  • guide members 21a and 21b are advanced toward first and second commissures 8 and 10 of valve 5 of the patient, as described hereinabove.
  • Grasping elements 106a and 106b are reversibly coupled to distal ends of delivery lumen 27a and 27b, the delivery lumens being advanced over respective guide members, as described hereinabove.
  • the guiding members and the grasping elements are advanced toward the patient's commissures via surrounding sheaths 26a and 26b, the surrounding sheaths being generally as described hereinabove.
  • the grasping elements are typically placed distally to the commissures in a proximally-facing configuration, as shown in Fig. 5A .
  • the grasping elements may be configured to be proximally facing due to the coupling of the grasping elements to the guide members.
  • prosthetic valve 80 is advanced toward native valve 5, as shown in Fig. 5B .
  • the prosthetic valve may be advanced over delivery lumens 27a and 27b, as shown.
  • the prosthetic valve is placed at the native valve and, subsequently, the grasping elements are retracted proximally toward commissures 8 and 10, as shown in the transition from Fig. 5B to Fig. 5C .
  • the grasping elements are coupled to valve 80 via coupling tubes 107a and 107b, the coupling tubes being coupled to the sides of the valve, as shown.
  • the grasping elements are closed such that the native commissures are grasped and sealed by the grasping elements, as shown in Fig. 5D .
  • the grasping elements define two surfaces that are hingedly coupled to each other.
  • the grasping elements may include forceps, as shown.
  • the grasping elements are closed by closing the surfaces about the hinge, with respect to one another.
  • grasping elements 106a and 106b facilitate sealing of native commissures 8 and 10, thereby reducing retrograde blood flow via the commissures, relative to retrograde blood flow in the absence of the grasping elements. Further typically, the sealing of the native commissures facilitates anchoring of the prosthetic valve to native valve 5.
  • prosthetic valve support 40 is used in addition to grasping elements 106a and 106b, in order to anchor prosthetic valve 80 to native valve 5.
  • the grasping elements are used to anchor and/or provide sealing for prosthetic valve support 40 (instead of, or in addition to, being used to anchor prosthetic valve 80, as shown).
  • generally similar techniques are used to those described with respect to the use of the grasping elements for anchoring the prosthetic valve, mutatis mutandis.
  • Figs. 6A-B are schematic illustrations of prosthetic valve 80, the prosthetic valve comprising a sealing material 110 on an outer surface of the valve, in accordance with some applications of the present invention.
  • prosthetic valve 80 is used in conjunction with prosthetic valve support 40, as described hereinabove.
  • the techniques for implanting prosthetic valve 80 as shown in Figs. 6A-B are generally similar to those described hereinabove.
  • sealing material 110 seals the interface between the prosthetic valve and native valve 5.
  • the sealing material reduces retrograde blood flow from ventricle 6 into atrium 4, relative to retrograde blood flow in the absence of the sealing material.
  • the sealing material is composed of latex, dacron, and/or any other suitable biocompatible material.
  • the sealing material is typically placed around at least a portion of expandable frame 79 of the prosthetic valve so as to form a webbing between struts of the expandable frame.
  • Figs. 7A-F are schematic illustrations of a guide wire delivery system, in accordance with some applications of the present invention.
  • guide members 21a and 21b function as valve support guide members, by support 40 being slid along guide members 21a and 21b.
  • only one guide member 21 is looped through commissures 8 and 10 in a manner in which the guide member defines a looped portion between commissures 8 and 10 (i.e., a portion of the guide member that is disposed in a ventricle 6 of heart 2), and first and second free ends, which are disposed and accessible at a site outside the body of the patient.
  • the guide member defines portions 21a and 21b.
  • an anchor 302 is advanced toward the vicinity of apex 304 of heart 2, via sheath 25, and is anchored to the vicinity of the apex, as shown in Fig. 7A .
  • a guidewire 306 extends proximally from anchor.
  • Guide member 21 passes through a guide member tube 320, the guide member tube being coupled to guidewire 306.
  • Guide member 21 is pushed distally.
  • Guide member tube 320 is unable to advance distally over guidewire 306, due to the coupling of the guide member tube to the guidewire. Therefore, the pushing of guide member 21 distally, causes portions 21a and 21b to spread apart from one another and to be pushed against commissures 8 and 10 of native valve 5.
  • Portions 21a and 21b are then used to guide valve support 40 to the commissures, as shown in Figs. 7B-C , using generally similar techniques to those described hereinabove, except for the differences described hereinbelow.
  • valve support 40 is slid over guide member portions 21a and 21b, by pushing elements 52a and 52b. Since the guide member portions are positioned at commissures 8 and 10, the guide member portions guide the distal ends of pushing elements 52a and 52b, such that the pushing elements push the valve support against the commissures, as shown in Fig. 7C .
  • prosthetic atrioventricular valve 80 is coupled to valve support 40.
  • pushing elements 52a and 52b continue to push the valve support against the native valve, during the coupling of the prosthetic valve to the valve support.
  • overtube 70 is advanced into ventricle 6, as shown in Fig. 7D .
  • Fig. 7E shows prosthetic valve having been partially deployed in the ventricle.
  • overtube 70 is pulled proximally to pull valve 80 proximally such that cylindrical element 42 and/or annular element 44 of valve support 40 surrounds a proximal portion of prosthetic valve 80.
  • Valve 80 has a tendency to expand such that valve 80 is held in place with respect to valve support 40 responsively to radial forces acted upon valve support 40 by prosthetic valve 80.
  • pushing elements 52a and 52b push valve support 40 against the valve, thereby providing a counter force against which overtube 70 is pulled back.
  • the pushing of the valve support against the commissures is such that it is not necessary to use anchors for anchoring the valve support to the native valve during the coupling of the prosthetic valve to the valve support.
  • anchors are used to anchor the valve support to the native valve during the coupling of the prosthetic valve to the valve support.
  • valve 80 comprises a plurality of distal protrusions 84.
  • protrusions 84 ensnare and engage the native leaflets of the atrioventricular valve.
  • protrusions 84 sandwich the native valve between protrusions 84 and prosthetic valve support 40. Such ensnaring helps further anchor prosthetic valve 80 to the native atrioventricular valve.
  • protrusions 84 are such as to (a) prevent proximal migration of the valve into the patient's atrium, while (b) allowing movement of the native leaflets with respect to the frame of the prosthetic valve.
  • the protrusions may have the aforementioned functionalities by having lengths of less than 5 mm and/or by a total width of each set of protrusions corresponding to respective leaflets of the native valve being less than 5 mm.
  • the valve may include a single protrusion corresponding to each leaflet of the native valve, the width of each of the single protrusions being less than 1 mm.
  • the valve may be stopped from proximally migrating into the atrium, by the protrusions preventing the distal end of the valve from migrating further proximally than edges of native leaflets of the valve.
  • the protrusions may allow movement of the native leaflets with respect to the frame of the prosthetic valve by not generally squeezing the native leaflets between the protrusions and the frame of the valve.
  • sealing of the native leaflets against the outer surface of the frame of the prosthetic valve is facilitated, in accordance with the techniques described hereinbelow with reference to Fig. 10 .
  • Fig. 7F which shows the prosthetic valve in its deployed state.
  • guide member portions 21a and 21b are decoupled from guide member tube 320.
  • the guide member portions may be coupled to the guide member tube via threading, the guide member portions being decoupled from the guide member tube by unscrewing the guide member portions from the guide member tube.
  • FIGs. 8A-C are schematic illustrations of a system 120 comprising an invertible valve support 140, in accordance with some applications of the present invention.
  • Invertible valve support 140 is identical to valve support 40 described herein, with the exception that the cylindrical element of valve support 140 is invertible, as is described hereinbelow. Additionally, the method of advancing toward and implanting valve support 140 at annulus 11 is identical to the methods of advancing toward and implanting valve support 40 at annulus 11, as described hereinabove.
  • Valve support 140 comprises an annular element 144 (that is identical to annular element 44 described hereinabove) and a cylindrical element 142.
  • Cylindrical element 142 has a first end 150, a second end 152, and a cylindrical body 153 disposed between first and second ends 150 and 152. Cylindrical element 142 is attached to annular element 144 at first end 150 of cylindrical element 142.
  • cylindrical element 142 is disposed above annular element 144 in a manner in which second end 152 and cylindrical body 153 are disposed above annular element 144 and within atrium 4.
  • One or more elongate guide members 146a and 146b are reversibly coupled to cylindrical element 142 in a vicinity of second end 152. Elongate guide members 146a and 146b facilitate (a) advancement of prosthetic valve 80 therealong and toward valve support 140, and (b) inversion of cylindrical element 142 toward ventricle 6 when at least a portion of valve 80 is deployed within ventricle 6 (as shown in Fig. 8B ).
  • valve support 140 as shown in Fig. 8A (i.e., the configuration in which cylindrical element 142 is disposed within atrium 4) eliminates the obstruction of native valve 5 and of leaflets 12 and 14 by any portion of valve support 140. In this manner, valve support 140 may be implanted at valve 5 while valve 5 resumes its native function and leaflets 12 and 14 resume their natural function (as shown by the phantom drawing of leaflets 12 and 14 in Fig. 8A which indicates their movement). This atrially-inverted configuration of valve support 140 reduces and even eliminates the amount of time the patient is under cardiopulmonary bypass. Only once prosthetic valve 80 is delivered and coupled to valve support 140 and cylindrical element 142 is thereby ventricularly-inverted, native leaflets 12 and 14 are pushed aside ( Fig. 8B ).
  • Fig. 8B shows the inversion of cylindrical element 142 by the partial positioning and deployment of prosthetic valve 80 within ventricle 6.
  • Elongate guide members 146a and 146b are reversibly coupled to prosthetic valve 80 and extend within overtube 70.
  • elongate guide members 146a and 146b are decoupled from prosthetic valve 80 and from cylindrical element 142.
  • a cutting tool may be used to decouple elongate members 146a and 146b from the valve support 140.
  • elongate members 146a and 146b may be looped through the cylindrical element 142, such that both ends of each elongate member 146a and 146b remain outside of the patient's body.
  • the operating physician decouples elongate members 146a and 146b from valve support 140 by releasing one end of each of elongate members 146a and 146b and pulling on the other end, until elongate members 146a and 146b are drawn from valve support 140 and removed from within the body of the patient.
  • Fig. 8C shows prosthetic valve 80 coupled to valve support 140.
  • Valve 80 is identical to the valve described hereinabove.
  • FIGs. 9A-E are schematic illustrations of the advancement of an invertible prosthetic valve support 300 toward a native atrioventricular valve of a patient, and inversion of the valve support, in accordance with some applications of the present invention.
  • Prosthetic valve support 300 is used to anchor prosthetic valve 80 to native valve 5 in a generally similar manner to that described with reference to prosthetic valve support 40.
  • anchor 302 is advanced toward the vicinity of apex 304 of heart 2, via sheath 25, and is anchored to the vicinity of the apex, as shown in Fig. 8A .
  • a guidewire 306 extends proximally from anchor.
  • a distal tensioning element 308 e.g., a plunger
  • prosthetic valve support 300 is advanced out of the distal end of sheath 25, as shown in Fig. 9B .
  • a first end 310 of prosthetic valve support 300 (which at this stage is the distal end of the prosthetic valve support), comprises barbs 314 (shown in Fig.
  • Prosthetic valve support 300 is pushed distally such that the barbs are pushed into the native valve tissue, thereby anchoring the first end of the prosthetic valve support to the native valve, as shown in Fig. 9C .
  • a plurality of wires 309 pass from distal tensioning element 308 to a proximal tensioning element 311 (shown in Fig. 9D ), via a second end 312 of valve support 300 (which at this stage is the proximal end of the prosthetic valve support).
  • a sealing element 316 is disposed circumferentially around a surface of the invertible prosthetic valve support that is initially an inner surface of the invertible prosthetic valve support (a shown in Figs. 8A-D ).
  • the sealing material may be latex, dacron, or another suitable biocompatible sealing material.
  • first end 310 of prosthetic valve support 300 is further advanced distally into ventricle 6, and proximal tensioning element 311 is advanced toward the ventricle.
  • wires 309 cause valve support 300 to invert, by pulling second end 312 of the valve support through first end 310 of the valve support.
  • sealing material 316 is disposed circumferentially around the outside of the valve support, thereby providing a seal at the interface between valve support 300 and native valve 5.
  • FIGs. 9G-H are schematic illustrations of the deployment of prosthetic valve 80 and the coupling of the prosthetic valve to invertible valve support 300, in accordance with some applications of the present invention.
  • prosthetic valve 80 is generally similar to the techniques described hereinabove with reference to Figs. 2H-J .
  • the valve is partially deployed in ventricle 6, via overtube 70.
  • overtube 70 is pulled proximally (as shown in Fig. 8G ) to pull valve 80 proximally such that valve support 300 surrounds a proximal portion of prosthetic valve 80, as shown in Fig. 8H .
  • Valve 80 has a tendency to expand such that valve 80 is held in place with respect to valve support 300 responsively to radial forces acted upon valve support 300 by prosthetic valve 80.
  • valve 80 comprises a plurality of distal protrusions 84.
  • protrusions 84 ensnare and engage the native leaflets of the atrioventricular valve.
  • protrusions 84 sandwich the native valve between protrusions 84 and prosthetic valve support 300. Such ensnaring helps further anchor prosthetic valve 80 to the native atrioventricular valve.
  • protrusions 84 are such as to (a) prevent proximal migration of the valve into the patient's atrium, while (b) allowing movement of the native leaflets with respect to the frame of the prosthetic valve.
  • the protrusions may have the aforementioned functionalities by having lengths of less than 5 mm, and/or by a total width of each set of protrusions corresponding to respective leaflets of the native valve being less than 5 mm.
  • the valve may include a single protrusion corresponding to each leaflet of the native valve, the width of each of the single protrusions being less than 1 mm.
  • the valve may be stopped from proximally migrating into the atrium, by the protrusions preventing the distal end of the valve from migrating further proximally than edges of native leaflets of the valve.
  • the protrusions may allow movement of the native leaflets with respect to the frame of the prosthetic valve by not generally squeezing the native leaflets between the protrusions and the frame of the valve.
  • sealing of the native leaflets against the outer surface of the frame of the prosthetic valve is facilitated, in accordance with the techniques described hereinbelow with reference to Fig. 10 .
  • valve 80 comprises one or more coupling elements 81 (for example, a plurality of coupling elements, as shown) at the proximal end of valve 80.
  • Overtube 70 which facilitates the advancement of prosthetic valve 80, is reversibly coupled to valve 80, via coupling elements 81.
  • valve 80 Subsequent to the coupling of valve 80 to valve support 300, overtube 70, distal and proximal tensioning elements 308 and 311, and wires 309 are removed from the patient's body, via sheath 25. Typically, wires 309 are cut, in order to facilitate the removal of the wires from the patient's body.
  • Guidewire 306 and anchor 302 are removed from the patient's body by detaching the anchor from apex 304, and withdrawing the anchor and the guidewire, via sheath 25.
  • FIG. 10 is a schematic illustration of prosthetic valve 80, for placing inside atrioventricular valve 5 of the patient, in accordance with some applications of the present invention.
  • the expandable frame 79 of the prosthetic valve has a diameter d, and a corresponding cross-sectional area.
  • area A which is defined by the native annulus is measured, e.g., using a measuring ring.
  • a prosthetic valve is chosen to be placed in the annulus, the cross-sectional area of the prosthetic valve being less than 90% (e.g., less than 80%, or less than 60%) of area A.
  • diameter d of the prosthetic valve is less than 25 mm, e.g., less than 20 mm, and/or more than 15 mm, e.g., 15-25 mm.
  • placing a prosthetic valve inside the native valve with the dimensions of the native valve annulus and the prosthetic valve as described facilitates sealing of the prosthetic valve with respect to the native valve, by the native valve leaflets closing around the outer surface of the prosthetic valve.
  • a prosthetic valve support 40 that includes annular element 44 (e.g., as shown in Figs. 14A-C ) is chosen to be placed at the annulus, the annular element defining an inner cross-sectional area that is less than 90% (e.g., less than 80%, or less than 60%) of area A.
  • Prosthetic valve 80 is deployed at the native valve by coupling the prosthetic valve to the prosthetic valve support at the location, responsively to radial forces acted upon the valve support by the expandable frame, by facilitating expansion of the expandable frame, as described herein.
  • the cross-sectional area defined by the expandable frame of the prosthetic valve, upon expansion of the expandable frame, is limited by the cross-sectional area defined by the annular element of the prosthetic valve support to less than 90% (e.g., less than 80%, or less than 60%) of area A.
  • placing a prosthetic valve support at the annulus with the dimensions of the native valve annulus and valve support 40, as described facilitates sealing of the prosthetic valve with respect to the native valve, by the native valve leaflets closing around the outer surface of the prosthetic valve.
  • placing a prosthetic valve inside the native valve with the dimensions of the native valve annulus, the prosthetic valve 80, and/or valve support 40 as described in the above paragraphs facilitates sealing of the prosthetic valve with respect to the native valve.
  • the sealing is facilitated by the native leaflets being pushed against, and closing against, the outer surface of the frame of the valve during systole, in a similar manner to the manner in which native valve leaflets coapt during systole, in a healthy mitral valve.
  • prosthetic valve 80, and/or valve support 40 are chosen such that the cross-sectional area of the prosthetic valve when expanded inside the valve support is less than 90% (e.g., less than 80%, or less than 60%) of area A.
  • the valve support facilitates sealing of the prosthetic valve with respect to the native valve, by the native valve leaflets closing around the outer surface of the prosthetic valve, while not causing retrograde leakage of blood through the commissures.
  • a material is placed on the outer surface of the prosthetic valve in order to provide a sealing interface between the prosthetic valve and the native valve.
  • a smooth material that prevents tissue growth e.g., polytetrafluoroethylene (PTFE), and/or pericardium
  • PTFE polytetrafluoroethylene
  • pericardium e.g., polytetrafluoroethylene (PTFE), and/or pericardium
  • PTFE polytetrafluoroethylene
  • a material that facilitates tissue growth such as dacron
  • Figs. 11A-D are schematic illustrations of prosthetic valve 80, in accordance with some applications of the present invention.
  • protrusions 84 are disposed on the valve on portions 400 of the valve that are placed adjacent to the anterior and posterior leaflets of the native valve, and the valve does not includes protrusions on portions 402 of the valve that are placed adjacent to the commissures of the native valve.
  • Figs. 11B-D show bottom views (i.e., views of the distal ends) of respective configurations of prosthetic valve 80 and protrusions 84.
  • the protrusions converge from the proximal ends 404 of the protrusion to the distal ends 406 of the protrusions.
  • the protrusions are configured such as to ensnare chordae tendineae, and to pull the chordae tendineae toward each other when the prosthetic valve is pulled proximally, due to the convergence of the snares with respect to each other.
  • Fig. 11D shows the prosthetic valve deployed at native valve 5. As shown, the protrusions ensnare chordae tendineae 102 of the patient.
  • the protrusions facilitate sealing and anchoring of the prosthetic valve with respect to the native valve by pulling the chordae tendinae toward each other, as described.
  • the prosthetic valve does not define protrusions 84 on portions 402 that are placed next to the native commissures, e.g., commissure 8, shown in Fig. 11D .
  • protrusions 84 are such as to (a) prevent proximal migration of the valve into the patient's atrium, while (b) allowing movement of the native leaflets with respect to the frame of the prosthetic valve.
  • the protrusions may have the aforementioned functionalities by having lengths of less than 5 mm, and/or by a total width of each set of protrusions corresponding to respective leaflets of the native valve being less than 5 mm.
  • the valve may include a single protrusion corresponding to each leaflet of the native valve, the width of each of the single protrusions being less than 1 mm.
  • the valve may be stopped from proximally migrating into the atrium, by the protrusions preventing the distal end of the valve from migrating further proximally than edges of native leaflets of the valve.
  • the protrusions may allow movement of the native leaflets with respect to the frame of the prosthetic valve by not generally squeezing the native leaflets between the protrusions and the frame of the valve.
  • sealing of the native leaflets against the outer surface of the frame of the prosthetic valve is facilitated, in accordance with the techniques described hereinabove with reference to Fig. 10 .
  • a first set of protrusions 84 from the distal end of prosthetic valve 80 are disposed within a first circumferential arc with respect to a longitudinal axis of the prosthetic valve, on a first side of the distal end of the prosthetic valve, the first side of the distal end being configured to be placed adjacent to the anterior leaflet of the native valve.
  • a second set of protrusions are disposed within a second circumferential arc with respect to a longitudinal axis of the prosthetic valve, on a second side of the distal end of the prosthetic valve, the second side of the distal end being configured to be placed adjacent to the posterior leaflet of the native valve.
  • the first and second sets of protrusions are disposed so as to provide first and second gaps therebetween at the distal end of the prosthetic valve.
  • at least one of the gaps between the two sets of protrusions has a circumferential arc of at least 20 degrees (e.g., at least 60 degrees, or at least 100 degrees), and/or less than 180 degrees (e.g., less than 140 degrees), e.g., 60-180 degrees, or 100-140 degrees.
  • one or both of the first and second circumferential arcs defines an angle of at least 25 degrees (e.g., at least 45 degrees), and/or less than 90 degrees (e.g., less than 75 degrees), e.g., 25-90 degrees, or 45-75 degrees.
  • Valve guide members e.g., guide members 21a and 21b, and/or delivery lumen 27a and 27b, as described hereinabove
  • Valve guide members 21a and 21b, and/or delivery lumen 27a and 27b, as described hereinabove are delivered to commissures of the native valve, and guide the valve such that the first and second circumferential arc are aligned with respective leaflets of the native valve and such that the first and second gaps are aligned with respective commissures of the native valve.
  • Figs. 12A-C are schematic illustrations of prosthetic valve 80, the valve defining distal protrusions 84 that are disposed sinusoidally around the circumference of the valve, in accordance with some applications of the present invention.
  • the protrusions are shaped sinusoidally, in order to conform with the saddle-shape of native valve annulus 11, thereby facilitating the sandwiching of the native valve leaflets between the protrusions and valve support 40.
  • the peaks of the sinusoid that is defined by the protrusions is disposed on portions 402 that are placed next to the native commissures and the troughs of the sinusoid is placed on portions of the valve that are placed in the vicinity of the centers of the anterior and posterior leaflets of the native valve.
  • the distal end of the prosthetic valve defines a sinusoidal shape.
  • valve 80 defines distal protrusions 84 that are configured to facilitate sandwiching of the native valve leaflets between the protrusions and valve support 40.
  • tips of the distal protrusions are shaped so as to prevent the tips from piercing, and/or otherwise damaging, tissue of the native leaflets.
  • the tips of the protrusions may be curved, as shown in Fig. 13A .
  • the distal tips of the protrusions may be shaped as balls, as shown in Fig. 13 , and/or a different rounded shape.
  • the distal tip of each of the protrusions is joined to the distal tip of an adjacent protrusion by an arch 410, as shown in Figs. 13C and 13D .
  • the protrusions are configured to be distally-facing during the insertion of prosthetic valve 80 into the subject's left ventricle.
  • the valve may be inserted through overtube 70 (shown in Fig. 7E , for example).
  • the valve is crimped during the insertion of the valve through the overtube, and the protrusions are constrained in their distally-facing configurations by the overtube.
  • the protrusions are pre-shaped such that in the resting state of the protrusions, the protrusions assume proximally-facing configurations, as shown in Fig. 13D , for example.
  • the protrusions upon emerging from overtube 70, the protrusions assume proximally-facing configurations.
  • the protrusions when the protrusions assume the proximally-facing configurations, the protrusions are disposed at an angle theta ( Fig. 13D ) from expandable frame 79 of more than 40 degrees (e.g., more than 50 degrees), and/or less than 80 degrees (e.g., less than 70 degrees).
  • protrusions 84 are coupled to frame 79 of valve 80 at joints 412.
  • joints 412 are thinner than portions of the protrusions and of the frame surrounding the joints, as shown in Fig. 13D .
  • the thinness of the joints with respect to the surrounding portions facilitates the crimping of the protrusions into distally-facing configuration during the insertion of the valve into the heart.
  • barbs 416 extend from a proximal portion of expandable frame 79 of valve 80, as shown in Fig. 13E .
  • the barbs may be configured to anchor the prosthetic valve to the native valve by piercing tissue of the native valve.
  • the barbs may be configured to anchor the prosthetic valve to the valve support 40, by becoming coupled to portions of the valve support.
  • the barbs protrude from the top-central corner of respective cells of expandable frame 79.
  • the barbs fit within gaps of respective cells of the expandable frame, and do not substantially increase the crimping profile of the prosthetic valve, relative to a generally similar prosthetic valve that does not include barbs.
  • the barbs are not generally used for coupling prosthetic valve support 80 to valve support 40. Rather, the prosthetic valve is coupled to the valve support by virtue of radial expansion of the prosthetic valve against annular element 44 of the valve support. Barbs 416 are used to prevent prosthetic valve from migrating distally into the patient's left ventricle, and/or to prevent valve support 40 from migrating proximally into the subject's left atrium.
  • barbs protrude from coupling elements 81 of prosthetic valve 80, the barbs being generally similar in shape and function to that described with reference to barbs 416.
  • radially-inwardly facing barbs 45 protrude from annular element 44 of valve support 40, as shown in Fig. 14D .
  • the barbs that protrude from annular element 44 may facilitate coupling of the prosthetic valve to the valve support.
  • the barbs that protrude from annular element 44 are used to prevent prosthetic valve from migrating distally into the patient's left ventricle, and/or to prevent valve support 40 from migrating proximally into the subject's left atrium.
  • a proximal end of expandable frame 79 of prosthetic valve 80 defines a larger cross-section area than more distal portions of the expandable frame.
  • the expandable frame may have a frustoconical shape, the walls of the expandable frame diverging from a distal end of the frame to a proximal end of the frame.
  • the expandable frame may have a trumpet shape (i.e., the frame may be generally tubular, with a dilated proximal end).
  • the larger cross-sectional area of the proximal end of the frame prevents the prosthetic valve from migrating distally into the patient's left ventricle, and/or prevents valve support 40 from migrating proximally into the subject's left atrium.
  • Figs. 14A-D are schematic illustrations of respective configurations of prosthetic valve support 40, in accordance with some applications of the present invention.
  • the valve support comprises a collapsible skirt having a proximal annular element 44 and a distal cylindrical element 42 (e.g., as shown in Fig. 2D ).
  • the valve support does not include a distal cylindrical element.
  • the valve support may only include annular element 44.
  • annular element 44 is configured to be placed around native annulus 11 of the native valve, and to extend at least partially into atrium 4 such that annular element 44 rests against the native annulus.
  • Annular element 44 is typically too large to pass through the annulus, and may, for example, have an outer diameter of between 30 and 60 mm.
  • Figs. 14A-D show annular element 44 of valve support 40 in respective configurations, in accordance with some applications of the present invention.
  • the annular element is D-shaped, as shown in Fig. 14A .
  • the annular element has a generally round shape, as shown in Figs. 14B-C .
  • the annular element is asymmetrical.
  • Fig. 14B shows a generally rounded annular element that is wider on a first side 420 of the element than on a second side 422 of the element.
  • the wider side of the annular element is placed on the anterior side of the native annulus.
  • the annular element is symmetrical, asymmetrical, oval, round, defines a hole that is centered with respect to the annular element, and/or defines a hole that is off-center with respect to the annular element.
  • the stiffness of the annular element varies around the circumference of the annular element.
  • annular element 44 is asymmetrical, as shown in Fig. 14B .
  • the asymmetry of the annular element is such that the center of the hole defined by the annular element is disposed asymmetrically (i.e., off-center) with respect to the center of the annular element, as defined by the outer perimeter of the annular element.
  • the asymmetric disposition of the center of the hole defined by the annular element is such that when the prosthetic valve is placed inside the annular element, the longitudinal axis of the prosthetic valve is disposed asymmetrically (i.e., off-center) with respect to the center of the annular element, as defined by the outer perimeter of the annular element.
  • the annular element is shaped such that, when the annular element is placed on the patient's mitral annulus, and the prosthetic valve is expanded inside the annular element, the longitudinal axis of the prosthetic valve is disposed in the vicinity of the location at which the patient's native leaflets coapt (this location being off-center with respect to the patient's native mitral annulus).
  • radially-inwardly facing barbs 45 protrude from annular element 44 of valve support 40, as shown in Fig. 14D .
  • the barbs that protrude from annular element 44 may facilitate coupling of the prosthetic valve to the valve support.
  • the barbs that protrude from annular element 44 are used to prevent prosthetic valve from migrating distally into the patient's left ventricle, and/or to prevent valve support 40 from migrating proximally into the subject's left atrium.
  • some or all of barbs 102 are curved. Typically, the curved barbs curve away from the plane of annular element 40, such that, when implanted, barbs 102 point into the patient's atrium.
  • the annular element includes frame 48, the frame being covered at least in part with covering 49, e.g., fabric.
  • covering 49 e.g., fabric.
  • the upper surface of annular element 44 is covered with fabric, for example, in order to provide a generally smooth surface for coming into contact with the patient's blood flow.
  • the lower surface of the annular element i.e., the side of the annular element that is placed in contact with the native annulus
  • is not covered with fabric for example, in order to reduce a crimped volume (or cross-sectional area) of the annular element, relative to the volume of the annular element if the lower surface of the annular element were covered in fabric.
  • a thickness of the fabric layer is less than 0.2 mm, e.g., less than 0.1 mm, or less than 0.05 mm.
  • the side of the annular element that is placed in contact with the native annulus is covered with the fabric, the fabric being configured to facilitate coupling of the annular element to the native annulus, by facilitating fibrosis at the interface between the annular element and the native annulus.
  • the upper surface of the annular element is not covered with fabric.
  • the upper surface may not be covered in fabric in order to reduce a crimped volume (or cross-sectional area) of the annular element, relative to the volume of the annular element if the upper surface of the annular element were covered in fabric.
  • annular element 44 is not covered with fabric, and/or is not configured to form a seal against frame 79 of prosthetic valve 80.
  • the annular element is configured to allow leakage of blood between the annular element and frame 79 of prosthetic valve 80.
  • the annular element may be configured to allow leakage of blood through the interface between the annular element and the frame of the prosthetic valve, in order to accommodate a flow of blood between the patient's atrium and the patient's ventricle that is greater than can be accommodated by blood flowing through the leaflets of the prosthetic valve.
  • Figs. 15A-E are schematic illustrations of respective steps of a procedure for deploying a prosthetic valve, in accordance with some applications of the present invention.
  • valve support 40 is placed on the valve annulus and, subsequently, prosthetic valve 80 is inserted into the subject's left ventricle through the valve support.
  • any of the procedures described herein for example, procedures described with reference to Figs.
  • FIG. 2A-K , 7A-F , 8A-C , 9A-H , and 16A-G may be performed by first placing the prosthetic valve inside the subject's left ventricle, and, subsequently, deploying the valve support at the annulus.
  • Figs. 15A-E show a procedure in which the prosthetic valve is placed inside the subject's left ventricle, and, subsequently, the valve support is deployed at the annulus.
  • prosthetic valve 80 is placed in the subject's ventricle, before prosthetic valve support 40 is placed at the native valve.
  • the prosthetic valve is typically placed in the left ventricle in an undeployed state, via overtube 70.
  • the valve support is placed at the native valve using pushing elements, as shown in Fig. 15B .
  • three pushing elements 52a, 52b, and 52c are used to push the valve support against the native valve, as shown in Fig. 15B .
  • prosthetic valve 80 is coupled to valve support 40.
  • pushing elements 52a, 52b, and 52c continue to push the valve support against the native valve, during the coupling of the prosthetic valve to the valve support.
  • Fig. 15C shows prosthetic valve having been partially deployed in the ventricle.
  • valve 80 Following the partial deployment of valve 80 in ventricle 6, overtube 70 is pulled proximally to pull valve 80 proximally such that annular element 44 of valve support 40 surrounds a proximal portion of prosthetic valve 80, as shown in Fig 15D .
  • Valve 80 has a tendency to expand such that valve 80 is held in place with respect to valve support 40 responsively to radial forces acted upon valve support 40 by prosthetic valve 80.
  • pushing elements 52a, 52b, and 52c push valve support 40 against the valve, thereby providing a counter force against which overtube 70 is pulled back.
  • the pushing of the valve support against the commissures is such that it is not necessary to use anchors for anchoring the valve support to the native valve during the coupling of the prosthetic valve to the valve support.
  • anchors are used to anchor the valve support to the native valve during the coupling of the prosthetic valve to the valve support.
  • valve 80 comprises a plurality of distal protrusions 84.
  • protrusions 84 ensnare and engage the native leaflets of the atrioventricular valve.
  • protrusions 84 sandwich the native valve between protrusions 84 and prosthetic valve support 40. Such ensnaring helps further anchor prosthetic valve 80 to the native atrioventricular valve.
  • annular element 44 of prosthetic valve support 40 defines an inner cross-sectional area thereof.
  • prosthetic valve 80 includes expandable frame 79, and prosthetic leaflets 82.
  • the expandable frame of the prosthetic valve is configured such that when the frame is in a non-constrained state thereof, the cross-sectional area of the frame, along at least a given portion L (shown in Fig. 15D ) of the length of the frame, is greater than the inner cross-sectional area defined by the annular element of the prosthetic valve support.
  • a location anywhere along portion L at which to couple the expandable valve to the prosthetic valve support is selected.
  • the location along the portion of the expandable frame is aligned with the annular element of the prosthetic valve support.
  • the expandable valve is then coupled to the prosthetic valve support at the location, responsively to radial forces acted upon the valve support by the expandable frame, by facilitating expansion of the expandable frame, when the location along the portion is aligned with the annular element of the prosthetic valve support.
  • expandable frame 79 of prosthetic valve 80 has a frustoconical shape.
  • the prosthetic valve is coupled to valve support 40 responsively to radial forces acted upon the valve support by the expandable frame, when a given location along portion L is aligned with annular element 44 of the prosthetic valve support.
  • the portion immediately proximal to the given location along portion L has a greater cross-sectional area than the frame at the given location, due to the frustoconical shape of the expandable frame.
  • the greater cross-sectional area of the portion immediately proximal to the given location along portion L relative to the cross-sectional area of the frame at the given location reduces distal migration of the prosthetic valve toward the subject's left ventricle.
  • the location along portion L at which to couple prosthetic valve 80 to valve support 40 is selected, based upon a distance D between protrusions 84 and annular element 44 that would result from coupling the prosthetic valve to the annular element at that location.
  • the location along portion L at which to couple prosthetic valve 80 to valve support 40 may be selected, such that distance D is such as to anchor the prosthetic valve to the patient's native valve by squeezing the patient's native valve leaflets between the protrusions and the annular element, and/or by ensnaring the patient's chordae tendinae between the protrusions and the annular element.
  • the location along portion L at which to couple prosthetic valve 80 to valve support 40 may be selected, such that distance D is such that protrusions 84 (a) prevent proximal migration of the valve into the patient's atrium, while (b) allowing movement of the native leaflets with respect to the frame of the prosthetic valve.
  • the location along portion L is selected such that distance D is such that the valve may be stopped from proximally migrating into the atrium, by the protrusions preventing the distal end of the valve from migrating further proximally than edges of native leaflets of the valve, while the protrusions allow movement of the native leaflets with respect to the frame of the prosthetic valve by not generally squeezing the native leaflets between the protrusions and the frame of the valve.
  • the protrusions allow movement of the native leaflets with respect to the frame of the prosthetic valve by not generally squeezing the native leaflets between the protrusions and the frame of the valve.
  • Fig. 15E which shows the prosthetic valve in its deployed state.
  • Figs. 16A-G are schematic illustrations of respective steps of an alternative procedure for deploying prosthetic valve 80, in accordance with some applications of the present invention.
  • a looped guide member 21 is looped through commissures 8 and 10 in a manner in which the guide member defines a looped portion between commissures 8 and 10.
  • the looped guide member has steering functionality.
  • the steering functionality of the looped guide member is used to guide the guide member to the commissures, and/or to guide other portions of the apparatus to the native valve and/or to ventricle 6.
  • the looped guide member is typically advanced toward ventricle 6 over guidewire 306, e.g., as described hereinabove with reference to Fig. 7A .
  • portions 21a and 21b of the looped guide member are independently manipulable.
  • the portions of the looped guide member are manipulated (e.g., expanded and contracted) so as to guide the looped guide member to the subject's native valve, by pushing against inner surfaces of the subject's heart, as shown in Fig. 16A .
  • Fig. 16B shows the looped guide member looped through commissures 8 and 10 of the subject's native valve.
  • the guide member is used to guide and to anchor valve support 40, as described hereinbelow.
  • looped guide member 21 is coupled to valve support 40 via coupling wires 500 and coupling mechanisms 502.
  • the coupling mechanism may include an anchor.
  • a suture 504, or a different looped element, protrudes from the bottom surface of annular element 44 of valve support 40 and is anchored by the anchor.
  • coupling mechanisms 502 which are used to couple looped guide member 21 to valve support 40 are detachable coupling mechanisms.
  • the coupling mechanism may include an anchor that defines an opening 506 through which suture 504 is inserted. The opening is closed by a closing member 508, such as a rod, or a wire.
  • closing member 508 is opened (e.g., by being pulled proximally) such that suture 504 is released through opening 506.
  • prosthetic atrioventricular valve 80 is placed in ventricle 6, by advancing overtube 70 into the ventricle, as shown in Fig. 16D .
  • Fig. 16E shows prosthetic valve having been partially deployed in the ventricle.
  • overtube 70 is pulled proximally to pull valve 80 proximally such that annular element 44 of valve support 40 surrounds a proximal portion of prosthetic valve 80, as shown in Figs. 16E-F .
  • Valve 80 has a tendency to expand such that valve 80 is held in place with respect to valve support 40 responsively to radial forces acted upon valve support 40 by prosthetic valve 80.
  • looped guide member 21 is pushed distally, thereby pulling valve support 40 against the native annulus and providing a counter force against which overtube 70 is pulled back.
  • pulling of the valve support against the native annulus is such that it is not necessary to use anchors for anchoring the valve support to the native valve during the coupling of the prosthetic valve to the valve support.
  • anchors are used to anchor the valve support to the native valve during the coupling of the prosthetic valve to the valve.
  • Fig. 16G shows prosthetic valve 80 and valve support 40 coupled to the native valve.
  • coupling mechanism 502 is typically detached from the valve support.
  • closing member 508 is pulled, such that opening 506 is opened, and suture 504 is released through the opening.
  • looped guide member 21, and overtube 70 are removed from the subject's body, as shown in Fig. 16H , which shows the prosthetic valve in its deployed state.
  • prosthetic valve 80 is coupled to a native valve, by (a) placing valve support 40 on an atrial side of the native annulus, (b) placing the prosthetic valve inside the ventricle, and then, simultaneously, (c) pulling the prosthetic valve toward the atrium, and pulling the valve support toward the ventricle.
  • FIGs. 17A-C are schematic illustrations of leaflets 82 of prosthetic valve 80, in accordance with some applications of the present invention.
  • Fig. 17A shows the leaflets before the leaflets are sutured to expandable frame 79 of the valve. As shown, in this state, the leaflets have a diameter D1, and the leaflets are not fully closed.
  • Fig. 17B shows the leaflets when the leaflets have been sutured to expandable frame 79 of the prosthetic valve. The expandable frame constrains the leaflets, such that the leaflets define a diameter D2, which is smaller than diameter D1, thereby closing the leaflets.
  • Fig. 17C shows the leaflets subsequent to the deployment of valve 80 inside valve support 40, the valve support constraining the expansion of the prosthetic valve. Due to the valve support constraining the prosthetic valve, the valve leaflets are constrained so as define a diameter D3, which is smaller than diameter D2.
  • valve leaflets 82 are selected to be used in prosthetic valve 80, the leaflets being sized such that both at diameter D2 (when the leaflets are constrained by expandable frame 79 but are not constrained by valve support 40) and at diameter D3 (when the leaflets are constrained by both expandable frame 79 and valve support 40), the valve leaflets fully coapt.
  • FIGs. 18A-B are schematic illustrations of a system 220 comprising a valve support 240 comprising an annular element 244 and a cylindrical element 242 and one or more (e.g., a plurality, as shown, of) tissue anchors 230, in accordance with some applications of the present invention.
  • Annular element 244 has an upper surface 241 and a lower surface 243.
  • Tissue anchors 230 are coupled to lower surface 234 of annular element.
  • Tissue anchors 230 are shaped so as to define a pointed distal tip 234 and one or more (e.g., three, as shown) radially-expandable prongs 232.
  • Prongs 232 comprise a flexible metal, e.g., nitinol or stainless steel, and have a tendency to expand radially.
  • Anchors 230 facilitate coupling of valve support 240 to annulus 11 of native valve 5, such as the mitral valve or the tricuspid valve.
  • Anchors 230 are typically distributed approximately evenly around lower surface 243 of annular element 244.
  • one or more anchors 230 are disposed at a location of annular element that is configured to be positioned adjacently to commissures 8 and 10 of valve 5.
  • FIGs. 19A-D are schematic illustrations of valve support 240 being implanted at valve 5 and the subsequent coupling of prosthetic valve 80 to valve support 240.
  • Valve support 240 is advanced toward native valve 5 by pushing elements 52a and 52b, as described hereinabove with respect to valve support 40 with reference to Figs. 2D-F .
  • anchors 230 are pushed into tissue of annulus 11 of valve 5.
  • the pushing force by elements 52a and 52b is sufficient to implant each one of the plurality of anchors that are distributed around lower surface 243 of annular element 244.
  • Fig. 19A shows initial penetration of tissue of annulus 11 by pointed distal tip 234 of anchor 230.
  • Fig. 19B the initial force of the tissue on prongs 232 pushes inwardly prongs 232.
  • prongs 232 expand within tissue of annulus 11 to assume a flower shape and a larger surface area to restrict proximal motion of anchor 230 and thereby anchor valve support 240 in tissue of annulus 11.
  • the cylindrical element of valve support 240 pushes aside native leaflets 12 and 14 of valve 5.
  • prosthetic valve 80 is coupled to valve support 240, in a manner as described hereinabove.
  • prosthetic valve 80 is self-expandable.
  • the expansion of the valve is typically constrained by valve support 40. Further typically, the expansion of the valve is not constrained by the native annulus.
  • the deployed cross-sectional area of the prosthetic valve may be fixed at a given area, by using a valve support that defines a hole having the given cross-sectional area.
  • the area defined by the native annulus is measured, and the cross-sectional area of the prosthetic valve that is to be deployed in the valve is selected based upon the measured area of the native annulus.
  • valve support 40 is selected based upon the measured area of the native annulus.
  • a valve support may be selected such that the valve support constrains the expansion of the prosthetic valve, when the cross-sectional area of the prosthetic valve is less than 90% (e.g., less than 80%, or less than 60%) of the area defined by the native annulus.
  • placing a prosthetic valve inside the native valve with the dimensions of the native valve annulus and the prosthetic valve being as described facilitates sealing of the prosthetic valve with respect to the native valve, by the native valve leaflets closing around the outer surface of the prosthetic valve.
  • the expansion of prosthetic valve 80 against valve support 40 couples the prosthetic valve to the valve support, and/or couples the valve and the valve support to the native mitral valve.
  • the expansion of the prosthetic valve against the valve support couples the prosthetic valve to the valve support, and sandwiching of the native valve leaflets between protrusions from the distal end of the valve and the valve support couples the prosthetic valve and the valve support to the native valve.
  • valve support 40 may be invertible as described hereinabove with respect to valve supports 140 and 300, with reference to Figs. 8A-C , and 9A-H . It is to be further noted that valve supports 140 and 300 may be used in conjunction with one or more of the elements for facilitating sealing of the native valve with respect to a valve support or a valve that is described with reference to Figs.
  • valve supports 140 and 300 may be used with sealing balloon 90, commissural anchors 100a and 100b, grasping elements 106a and 106b, and/or sealing material 110. It is still further noted that valve supports 140 and 300 may be implanted using a guide member that defines a looped portion between commissures 8 and 10, as described with reference to Figs. 7A-F . It is further noted that any of the applications described herein can be used in conjunction with valves having configurations as described with reference to Figs. 10-12C .
  • valve supports and prosthetic valves herein may be used to replace native mitral valves or native tricuspid valves.
  • FIGs. 20A-B are schematic illustrations of valve support 40 and prosthetic valve 80 coupled respectively to a tricuspid valve, and to an aortic valve, in accordance with some applications of the present invention.
  • valve support 40 and prosthetic valve 80 are deployed at a tricuspid valve and/or at an aortic valve using generally similar techniques to those described herein with reference to the deployment of the valve support and the prosthetic valve at the mitral valve, mutatis mutandis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • Prostheses (AREA)

Description

    FIELD OF THE INVENTION
  • Embodiments of the present invention relate in general to valve replacement. More specifically, embodiments of the present invention relate to prosthetic valves for replacement of an atrioventricular valve.
  • BACKGROUND
  • Dilation of the annulus of the mitral valve prevents the valve leaflets from fully coapting when the valve is closed. Regurgitation of blood from the ventricle into the atrium results in increased total stroke volume and decreased cardiac output, and ultimate weakening of the ventricle secondary to a volume overload and a pressure overload of the atrium. Dilation of the annulus is sometimes treated by implanting a prosthetic mitral valve at a patient's native mitral valve.
  • US 2005/0137688 A1 relates to a method for percutaneously replacing a heart valve of a patient, and discloses a apparatus according to the pre-characterizing portion of appended claim 1.
  • SUMMARY
  • In accordance with the present invention, there is provided apparatus as defined in appended independent claim 1. Embodiments of the present invention are defined in the appended claims which depend from appended independent claim 1.
  • For some applications of the present invention, one or more guide members (e.g., wires, sutures, or strings) is configured to be anchored to respective commissures of a native atrioventricular valve of a patient, and each guide member facilitates the advancement therealong of respective commissural anchors. The commissural anchors are shaped so as to define a plurality of barbs or prongs which are expandable to restrict proximal movement of the anchors following their deployment. The guide members facilitate advancement of a collapsible prosthetic valve support (e.g., a skirt) which serves as a base for and receives a collapsible prosthetic mitral valve which is subsequently coupled to the support. The support comprises a proximal annular element, or ring, and may also comprise a distal cylindrical element. The cylindrical element is configured to push aside and press against the native leaflets of the native valve, and the proximal annular element is shaped so as to define one or more holes for sliding the valve support along the one or more guide members. The proximal annular element is configured to be positioned along the annulus of the native valve.
  • The collapsible prosthetic valve is configured for implantation in and/or at least partial replacement (e.g., full replacement) of the native atrioventricular valve of the patient, such as a native mitral valve or a native tricuspid valve. The valve support and the prosthetic valve are configured to assume collapsed states for minimally-invasive delivery to the diseased native valve, such as by percutaneous or transluminal delivery using one or more catheters. For some applications, the valve support and the prosthetic valve are implanted during an open-heart procedure.
  • The prosthetic valve support may be shaped so as to define a downstream skirt. The downstream skirt is configured to be placed at native valve, such that the downstream skirt passes through the orifice of the native valve and extends toward, and, typically partially into, a ventricle. The downstream skirt typically additionally pushes aside and presses against the native leaflets of the native valve, which are left in place during and after implantation of the prosthetic valve support and/or the prosthetic valve.
  • The proximal annular element has upper and lower surfaces. For some applications of the present invention, one or more, e.g., a plurality of, tissue anchors are coupled to the lower surface and facilitate anchoring of the proximal annular element to the annulus of the native valve. For some applications, the one or more anchors comprise at least first and second commissural anchors that are configured to be implanted at or in the vicinity of the commissures of the native valve.
  • The cylindrical element of the valve support has first and second ends and a cylindrical body disposed between the first and second ends. The first end of the cylindrical element is coupled to the annular element while the second end defines a free end of the cylindrical element. For some applications of the present invention, the cylindrical element of the valve support is invertible such that (1) during a first period, the second end and the cylindrical body of the cylindrical element are disposed above the annular element (e.g., in the atrium of the heart), and (2) during a second period, the second end and the cylindrical body of the cylindrical element are disposed below the annular element (e.g., in the ventricle of the heart).
  • For some applications, techniques are applied to facilitate sealing of the interface between the valve support and the native valve, and/or the interface between the prosthetic valve and the native valve. For example, a sealing balloon may be placed on a valve-facing, lower side of the annular element of the valve support, the sealing balloon being configured to be inflated such that the balloon seals the interface between the valve support and the native valve. Alternatively or additionally, commissural helices are wrapped around chordae tendineae of the patient in order to facilitate sealing of the valve commissures around the valve support and/or around the valve. Further alternatively or additionally, the valve commissures are grasped by grasping elements that act in order to facilitate sealing of the commissures around the valve support and/or around the valve. For some applications, one or more of the aforementioned sealing elements facilitates anchoring of the prosthetic valve to the native valve in addition to facilitating sealing.
  • For some applications, the prosthetic valve comprises an expandable frame (e.g., a wire frame), and a sealing material (such as latex) is disposed on the outer surface of the frame so as to form webbing between at least some of the struts of the wire frame, and to provide sealing between the wire frame and the native valve.
  • For some applications, an invertible prosthetic valve support is used to support a prosthetic valve. Typically, a sealing element is disposed circumferentially around a surface of the invertible prosthetic valve support that is initially an inner surface of the invertible prosthetic valve support. The invertible prosthetic valve support is anchored to the native valve, and is subsequently inverted. Subsequent to the inversion of the invertible prosthetic valve support, the sealing element is disposed on the outer surface of the invertible prosthetic valve support and acts to seal the interface between the outer surface and the native valve.
  • The present invention will be more fully understood from the following detailed description of embodiments thereof, taken together with the drawings, in which:
  • BRIEF DESCRIPTION OF THE DRAWINGS
    • Figs. 1A-B are schematic illustrations of advancement of one or more guide members toward respective commissures of a mitral valve, in accordance with some applications of the present invention;
    • Figs. 1C-D are schematic illustrations of the advancement and deployment of commissural anchors via the guide members, in accordance with some applications of the present invention;
    • Figs. 2A-D are schematic illustrations of the advancement of a prosthetic valve support toward a native atrioventricular valve of a patient, in accordance with some applications of the present invention;
    • Figs. 2E-F are schematic illustrations of locking of the prosthetic valve support at the native valve, in accordance with some applications of the present invention;
    • Figs. 2G-K are schematic illustrations of the advancement of a prosthetic valve and the coupling of the prosthetic valve to the valve support, in accordance with some applications of the present invention;
    • Figs. 3A-B are schematic illustrations of the advancement of a prosthetic valve support toward a native atrioventricular valve of a patient, the valve support including a sealing balloon, in accordance with some applications of the present invention;
    • Figs. 3C-D are schematic illustrations of locking of the prosthetic valve support at the native valve, the valve support including the sealing balloon, in accordance with some applications of the present invention;
    • Figs. 4A-C are schematic illustrations of a valve support being used with commissural helices that facilitate anchoring and/or sealing of the valve support, in accordance with some applications of the present invention;
    • Figs. 5A-D are schematic illustrations of grasping elements being used to anchor and/or provide sealing of a prosthetic valve, in accordance with some applications of the present invention;
    • Figs. 6A-B are schematic illustrations of a prosthetic valve that includes a sealing material, in accordance with some applications of the present invention;
    • Figs. 7A-F are schematic illustrations of a guide wire delivery system, in accordance with some applications of the present invention;
    • Figs. 8A-C are schematic illustrations of a valve support that has a cylindrical element that is invertible, in accordance with some applications of the present invention;
    • Figs. 9A-D are schematic illustrations of the advancement of an invertible prosthetic valve support toward a native atrioventricular valve of a patient, in accordance with some applications of the present invention;
    • Fig. 9E is a schematic illustration of inversion of the invertible prosthetic valve support at the native valve, in accordance with some applications of the present invention;
    • Figs. 9F-H are schematic illustrations of the advancement of a prosthetic valve and the coupling of the prosthetic valve to the invertible valve support, in accordance with some applications of the present invention;
    • Fig. 10 is a schematic illustration of a prosthetic valve, the cross-sectional area of which is smaller than the area defined by the patient's native valve annulus, in accordance with some applications of the present invention;
    • Figs. 11A-D are schematic illustrations of a prosthetic valve that defines protrusions from portions of the distal end of the valve, in accordance with some applications of the present invention;
    • Figs. 12A-C are schematic illustrations of a prosthetic valve that defines distal protrusions that are disposed sinusoidally around the circumference of the valve, in accordance with some applications of the present invention;
    • Figs. 13A-E are schematic illustrations of respective configurations of a frame of a prosthetic valve, in accordance with some applications of the present invention;
    • Figs. 14A-D are schematic illustrations of respective configurations of a prosthetic valve support, in accordance with some applications of the present invention;
    • Figs 15A-E are schematic illustrations of respective steps of a procedure for deploying a prosthetic valve, in accordance with some applications of the present invention;
    • Figs. 16A-H are schematic illustrations of respective steps of an alternative procedure for deploying a prosthetic valve, in accordance with some applications of the present invention;
    • Figs. 17A-C are schematic illustrations of leaflets of a prosthetic valve, in accordance with some applications of the present invention;
    • Figs. 18A-B are schematic illustrations of a valve support coupled to a plurality of tissue anchors, in accordance with some applications of the present invention;
    • Figs. 19A-D are schematic illustrations of the valve support of Figs. 18A-B being implanted in the native valve of the patient and facilitating implantation of a prosthetic valve, in accordance with some applications of the present invention; and
    • Figs. 20A-B are schematic illustrations of a prosthetic valve and a prosthetic valve support deployed, respectively, at a tricuspid valve, and at an aortic valve, in accordance with some applications of the present invention.
    DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Reference is now made to Figs. 1A-B, which are schematic illustrations of a system 20 for replacing an atrioventricular valve 5 of a patient comprising one or more guide members 21a and 21b which are advanced toward first and second commissures 8 and 10 of valve 5 of a heart 2 of the patient, in accordance with some applications of the present invention. For some applications, guide members 21a and 21b comprise distinct guide members. Alternatively (as shown in Figs. 7A-F), only one guide member is looped through commissures 8 and 10 in a manner in which the guide member defines a looped portion between commissures 8 and 10 (i.e., a portion of the guide member that is disposed in a ventricle 6 of heart 2), and first and second free ends which are disposed and accessible at a site outside the body of the patient. For such applications, the guide member defines portions 21a and 21b.
  • It is noted that for applications in which valve 5 is the patient's mitral valve, first and second commissures 8 and 10 are the anterior and posterior commissures. For applications in which valve 5 is the patient's tricuspid valve (which includes three commissures), the first and second commissures are typically the anterior and posterior commissures of the tricuspid valve.
  • For some applications, guide members 21a and 21b comprise guide wires having a diameter of 0.035 inches (0.89mm).
  • The transcatheter procedure typically begins with the advancing of a semi-rigid guide wire into a right atrium 4 of the patient. The semi-rigid guide wire provides a guide for the subsequent advancement of a sheath 25 therealong and into the right atrium. Once sheath 25 has entered the right atrium, the semi-rigid guide wire is retracted from the patient's body. Sheath 25 typically comprises a 13-20 F sheath, although the size may be selected as appropriate for a given patient. Sheath 25 is advanced through vasculature into the right atrium using a suitable point of origin typically determined for a given patient. For example:
    • sheath 25 may be introduced into the femoral vein of the patient, through an inferior vena cava, into the right atrium, and into the left atrium transseptally, typically through the fossa ovalis;
    • sheath 25 may be introduced into the basilic vein, through the subclavian vein to the superior vena cava, into the right atrium, and into the left atrium transseptally, typically through the fossa ovalis; or
    • sheath 25 may be introduced into the external jugular vein, through the subclavian vein to the superior vena cava, into the right atrium, and into the left atrium transseptally, typically through the fossa ovalis.
  • In some applications of the present invention, sheath 25 is advanced through the inferior vena cava of the patient and into the right atrium using a suitable point of origin typically determined for a given patient.
  • Sheath 25 is advanced distally until sheath 25 reaches the interatrial septum. For some applications, a resilient needle and a dilator (not shown) are advanced through the sheath and into the heart. In order to advance the sheath transseptally into the left atrium, the dilator is advanced to the septum, and the needle is pushed from within the dilator and is allowed to puncture the septum to create an opening that facilitates passage of the dilator and subsequently the sheath therethrough and into the left atrium. The dilator is passed through the hole in the septum created by the needle. Typically, the dilator is shaped to define a hollow shaft for passage along the needle, and the hollow shaft is shaped to define a tapered distal end. This tapered distal end is first advanced through the hole created by the needle. The hole is enlarged when the gradually increasing diameter of the distal end of the dilator is pushed through the hole in the septum.
  • The advancement of sheath 25 through the septum and into the left atrium is followed by the extraction of the dilator and the needle from within sheath 25.
  • Figs. 1C-D and 2A-B show advancement of one or more tissue anchors 30a and 30b along guide members 21a and 21b, respectively. Anchors 30a and 30b comprise a flexible, biocompatible material (e.g., nitinol) and comprise one or more (e.g., a plurality of) radially-expandable prongs 32 (e.g., barbs). Each anchor 30a and 30b is reversibly coupled to a respective delivery lumen 27a and 27b. Each delivery lumen 27 slides around a respective guide member 21. A respective surrounding sheath 26a and 26b surrounds each delivery lumen 27a and 27b and around anchors 30a and 30b at least in part in order to compress and prevent expansion of prongs 32 of tissue anchors 30a and 30b.
  • As shown in Fig. ID, the distal ends of lumens 27a and 27b are reversibly coupled to ribbed crimping structures 34. As described hereinbelow, anchors 30a and 30b are anchored to ventricular surfaces of commissures 8 and 10. Following the anchoring, ribbed crimping structures 34 extend from anchors 30a and 30b through commissures 8 and 10, respectively, and toward the atrial surfaces of commissures 8 and 10. Ribbed crimping structures 34 are configured to facilitate anchoring of a valve support (described hereinbelow) to the atrial surfaces of commissures 8 and 10.
  • Anchors 30a and 30b, ribbed crimping structures 34, and the distal ends of surrounding sheaths 26a and 26b are advanced into ventricle 6. Subsequently, anchors 30a and 30b are pushed distally from within sheaths 26a and 26b, (or sheaths 26a and 26b are pulled proximally with respect to anchors 30a and 30b) to expose anchors 30a and 30b. As anchors 30a and 30b are exposed from within sheaths 26a and 26b, prongs 32 are free to expand, as shown in Fig. 1D. Prongs 32 expand such that anchors 30a and 30b assume a flower shape. Prongs 32, collectively in their expanded state, create a larger surface area to engage tissue than in their compressed states. Following the exposing of anchors 30a and 30b, sheaths 26a and 26b are extracted.
  • As shown in Fig. 2B, lumens 27a and 27b are pulled proximally so that prongs 32 of anchors 30a and 30b engage respective ventricular surface of commissures 8 and 10. Prongs 32 create a large surface area which restricts proximal motion of anchors 30a and 30b from commissures 8 and 10, respectively.
  • For some applications, following the anchoring of anchors 30a and 30b to commissures 8 and 10, respectively, guide members 21a and 21b are removed from the body of the patient.
  • Reference is now made to Figs. 2C-F, which are schematic illustrations of the advancement of a prosthetic valve support 40 along lumens 27a and 27b, in accordance with some applications of the present invention. In such a manner, lumens 27a and 27b function as valve support guide members. Support 40 comprises a collapsible skirt having a proximal annular element 44 and a distal cylindrical element 42. Support 40 is configured to assume a collapsed state (e.g., surrounded by a sheath or overtube 50 shown in Fig. 2C) for minimally-invasive delivery to the diseased native valve, such as by percutaneous or transluminal delivery using one or more catheters. Fig. 2C and the other figures show support 40 in an expanded state after delivery in right atrium 4 and advancement toward the native valve. As shown in Fig. 2D, support 40 is shaped so as to define one or more (e.g., two, as shown in View A) holes 46a and 46b for slidable advancement of support 40 along lumens 27a and 27b, respectively. That is, prior to introduction of support 40 into the body of the patient, lumens 27a and 27b are threaded through holes 46a and 46b, respectively, and support 40 is slid along lumens 27a and 27b. Support 40 is slid by pushing elements 52a and 52b which surround delivery lumens 27a and 27b, respectively.
  • It is to be noted that support 40 is slid along lumens 27a and 27b by way of illustration and not limitation. That is, for some applications, following the anchoring of anchors 30a and 30b to commissures 8 and 10, respectively, guide members 21a and 21b are not removed from the body of the patient, but rather lumens 27a and 27b are removed (e.g., by being decoupled from crimping structures 34) leaving behind anchors 30a and 30b and guide members 21a and 21b. Guide members 21a and 21b may then be threaded through holes 46a and 46b, respectively, and support 40 is slid along guide members 21a and 21b. In such a manner, guide members 21a and 21b function as valve support guide members.
  • Support 40 comprises a collapsible flexible support frame 48, which is at least partially covered by a covering 49. Support 40 is configured to be placed at native valve 5, such that cylindrical element 42 passes through the orifice of the native valve and extends towards, and, typically partially into, ventricle 6 (as shown in Fig. 2E). Cylindrical element 42 typically pushes aside and presses against native leaflets of native valve 5 at least in part, which are left in place during and after implantation of the prosthetic valve. Annular element 44 is configured to be placed around a native annulus 11 of the native valve, and to extend at least partially into an atrium 4 such that annular element 44 rests against the native annulus. Annular element 44 is typically too large to pass through the annulus, and may, for example, have an outer diameter of between 30 and 60 mm.
  • For some applications, collapsible support frame 48 comprises a stent, which comprises a plurality of struts. The struts may comprise, for example, a metal such as nitinol or stainless steel. For some applications, frame 48 comprises a flexible metal, e.g., nitinol, which facilitates compression of support 40 within a delivery sheath or overtube 50. For some applications, covering 49 comprises a fabric, such as a woven fabric, e.g., Dacron. Covering 49 is typically configured to cover at least a portion of cylindrical element 42, and at least a portion of annular element 44. The covering may comprise a single piece, or a plurality of pieces sewn together.
  • As shown in Fig. 2D, pushing elements 52a and 52b are each coupled to locking crimping elements 64a and 64b, respectively. Locking crimping elements 64a and 64b are disposed adjacently, proximally to holes 46a and 46b respectively of valve support 40. These techniques enable the surgeon to readily bring crimping elements 64a and 64b to the appropriate sites along annular element 44, without the need for excessive imaging, such as fluoroscopy.
  • Fig. 2E shows valve support 40 prior to implantation at annulus 11. As shown, ribbed crimping structures 34 project away from anchors 30a and 30b, through commissures 8 and 10, and toward atrium 4. Valve support 40 is advanced along lumens 27a and 27b toward structures 34 by being pushed by pushing elements 52a and 52b and locking crimping elements 64a and 64b.
  • In Fig. 2F, valve support 40 is further pushed by pushing elements 52a and 52b and locking crimping elements 64a and 64b such holes 46a and 46b of support 40 advance around ribbed crimping structures 34. As holes 46a and 46b are advanced around ribbed crimping structures 34, locking crimping elements 64a and 64b advance over and surround ribbed crimping elements 34 to lock in place valve support 40 from an atrial surface of valve 5.
  • Responsively to the placement of valve support 40 at native valve 5, cylindrical element 42 is positioned partially within ventricle 6 and native leaflets 12 and 14 of native valve 5 are pushed aside.
  • As shown in section A-A, ribbed crimping structures 34 are shaped so as to define a plurality of male couplings. Locking crimping elements 64a and 64b each comprise a cylindrical element having an inner lumen that is shaped so as to surround a respective ribbed crimping structure 34. Each inner lumen of locking crimping elements 64a and 64b is shaped so as to define female couplings to receive the male couplings of ribbed crimping structure 34. The female couplings of locking crimping element 64 are directioned such that they facilitate distal advancement of locking crimping element 64 while restricting proximal advancement of locking crimping element 64. When the female couplings of locking crimping element 64 receive the male couplings of ribbed crimping structure 34, valve support 40 is locked in place from an atrial surface of valve 5. It is to be noted that for some applications, ribbed crimping elements 34 comprise female couplings, and locking crimping elements 64 comprise male couplings.
  • Reference is now made to Figs. 2G-K which are schematic illustrations of the coupling of a prosthetic atrioventricular valve 80 to valve support 40, in accordance with some applications of the present invention. Support 40 receives the prosthetic valve and functions as a docking station. Thus, the docking station is a coupling element that provides coupling between two other elements (in this case, between annulus 11 and the prosthetic valve.)
  • Following the placement of support 40 at annulus 11, pushing elements 52a and 52b and sheath or overtube 50 are removed from the body of the patient, leaving behind lumens 27a and 27b, as shown in Fig. 2G.
  • As shown in Fig. 2G, a guide wire 72 is advanced toward ventricle 6 and facilitates the advancement of an overtube 70 through sheath 25 and the positioning of a distal end of overtube 70 within ventricle 6. Overtube 70 facilitates the advancement of prosthetic valve 80 in a compressed state, toward valve support 40.
  • Fig. 2H shows partial deployment of valve 80 within ventricle 6 of heart 2. Valve 80 is shown comprising an expandable frame 79 comprising a plurality of stent struts by way of illustration and not limitation. The wireframe of valve 80 comprises a flexible metal, e.g., nitinol or stainless steel. It is to be noted that the wireframe of valve 80 is covered by a covering (not shown for clarity of illustration) comprising a braided mesh or in a fabric such as a woven fabric, e.g., Dacron. The covering is typically configured to cover at least a portion of the frame. The covering may comprise a single piece, or a plurality of pieces sewn together. Expandable frame 79 is typically self-expandable, although the scope of the present invention includes using a prosthetic valve that includes a balloon expandable frame, mutatis mutandis.
  • Following the partial deployment of valve 80 in ventricle 6, overtube 70 is pulled proximally to pull valve 80 proximally such that cylindrical element 42 and/or annular element 44 of valve support 40 surrounds a proximal portion of prosthetic valve 80. Valve 80 has a tendency to expand such that valve 80 is held in place with respect to valve support 40 responsively to radial forces acted upon valve support 40 by prosthetic valve 80.
  • Valve 80 comprises a plurality of distal protrusions 84 (e.g., snares). When valve 80 is pulled proximally, as described hereinabove, protrusions 84 ensnare and engage the native leaflets of the atrioventricular valve. By the ensnaring of the native leaflets, protrusions 84 sandwich the native valve between protrusions 84 and prosthetic valve support 40. Such ensnaring helps further anchor prosthetic valve 80 to the native atrioventricular valve. The scope of the present invention includes using any sort of protrusions (e.g., hooks) that protrude from the distal end of expandable frame 79 of prosthetic valve 80 and that are configured such that the native valve is sandwiched between the protrusions and valve support 40. Typically, the protrusions cause sandwiching of the native valve leaflets, such that the leaflets do not interfere with the left ventricular outflow tract (LVOT).
  • For some applications, protrusions 84 are such as to (a) prevent proximal migration of the valve into the patient's atrium, while (b) allowing movement of the native leaflets with respect to the frame of the prosthetic valve. For example, the protrusions may have the aforementioned functionalities by having lengths of less than 5 mm, and/or by a total width of each set of protrusions corresponding to respective leaflets of the native valve being less than 5 mm. For example, the valve may include a single protrusion corresponding to each leaflet of the native valve, the width of each of the single protrusions being less than 1 mm. Thus, the valve may be stopped from proximally migrating into the atrium, by the protrusions preventing the distal end of the valve from migrating further proximally than edges of native leaflets of the valve. Furthermore, the protrusions may allow movement of the native leaflets with respect to the frame of the prosthetic valve by not generally squeezing the native leaflets between the protrusions and the frame of the valve. For some applications, by allowing movement of the native leaflets with respect to the frame of the prosthetic valve, sealing of the native leaflets against the outer surface of the frame of the prosthetic valve is facilitated, in accordance with the techniques described hereinbelow with reference to Fig. 10. Typically, valve support 40 prevents the valve from migrating distally into the patient's ventricle.
  • For some applications, during the procedure, the prosthetic valve is pulled back proximally with respect to valve support, as described hereinabove. The prosthetic valve is pulled back to a position with respect to valve support that is such that protrusions 84 prevent the native leaflets from interfering with the LVOT, by sandwiching the native leaflets between the protrusions and the valve support, and/or by anchoring ends of the native leaflets as described hereinabove. The prosthetic valve is then deployed at this position.
  • For some applications, protrusions are disposed on the valve on the sides of the valve that are adjacent to the anterior and posterior leaflets of the native valve, and the valve does not includes protrusions on the portions of the valve that are adjacent to the commissures of the native valve, as described with reference to Figs. 11A-D. For some applications, the protrusions are disposed in a sinusoidal configuration in order to conform with the saddle shape of the native valve, as described hereinbelow with reference to Figs. 12A-C.
  • Additionally, as shown in Fig. 2J, valve 80 comprises one or more (e.g., a plurality, as shown) coupling elements 81 at the proximal end of valve 80. Overtube 70, which facilitates the advancement of prosthetic valve 80, is reversibly coupled to valve 80, via coupling elements 81.
  • Prosthetic valve 80 is configured for implantation in and/or at least partial replacement of a native atrioventricular valve 5 of the patient, such as a native mitral valve or a native tricuspid valve. Prosthetic valve 80 is configured to assume a collapsed state for minimally-invasive delivery to the diseased native valve, such as by percutaneous or transluminal delivery using one or more catheters. Fig. 2J shows prosthetic valve 80 in an expanded state after delivery to the native valve.
  • Reference is now made to Fig. 2K which shows a bird's-eye view of valve 80. Prosthetic valve 80 further comprises a plurality of valve leaflets 82, which may be artificial or tissue-based. The leaflets are typically coupled to an inner surface of the valve prosthesis. Leaflets 82 are coupled, e.g., sewn, to expandable frame 79 and/or to the covering. For applications in which the prosthetic valve is configured to be implanted at the native mitral valve, the prosthetic valve typically comprises three leaflets 82a, 82b, and 82c, as shown in Fig. 2K.
  • Reference is now made to Figs. 3A-D, which are schematic illustrations of the advancement of prosthetic valve support 40 toward native atrioventricular valve 5 of a patient, the valve support including a sealing balloon 90, in accordance with some applications of the present invention. The steps shown in Figs. 3A-C are generally similar to those shown in Figs. 2C-F. For some applications, sealing balloon 40 is disposed on the valve-facing, lower side of annular element 44 of the prosthetic valve support. Fig. 3D shows valve support 40, the valve support having been implanted at annulus 11. Typically, at this stage, balloon 40 is inflated, as shown in the transition from Fig. 3C to Fig. 3D. The balloon is inflated via an inflation lumen 92, shown in Fig. 3C, for example. For some applications, the balloon seals the interface between the prosthetic valve support and native annulus 11, thereby reducing retrograde blood flow from ventricle 6 into atrium 4, relative to retrograde blood flow in the absence of a sealing balloon. For some applications, the balloon is inflated prior to the placement of the prosthetic support at annulus 11.
  • Reference is now made to Figs. 4A-C, which are schematic illustrations of prosthetic valve support 40 being used with commissural helices 100a and 100b that facilitate anchoring and/or sealing of the valve support, in accordance with some applications of the present invention. For some applications, commissural helices are used as an alternative or in addition to anchors 30a and 30b and/or other anchoring elements described herein, in order to facilitate the anchoring of valve support 40.
  • Commissural helices 100a and 100b are typically placed at commissures 8 and 10 in a generally similar technique to that described with reference to anchors 30a and 30b. Typically, each helix 30a and 30b is reversibly coupled to a respective delivery lumen 27a and 27b. As described above, each delivery lumen 27 slides around a respective guide member 21, and a respective surrounding sheath 26a and 26b surrounds each delivery lumen 27a and 27b.
  • Commissural helices 100a and 100b (optionally, ribbed crimping structures 34), and the distal ends of surrounding sheaths 26a and 26b are advanced into ventricle 6. The helices are pushed out of the distal ends of surrounding sheaths 26a and 26b. Subsequently, the helices are rotated proximally such that the helices wrap around at least some chordae tendineae 102 of the patient. Following the advancement of the helices out of sheaths 26a and 26b, the sheaths are extracted. For some applications the helices are conical helices (as shown), and the wider end of the conical helix is disposed at the proximal end of the helix.
  • Subsequent to the placement of commissural helices 100a and 100b around the chordae tendineae, prosthetic valve support 40 is placed at annulus 11, in accordance with the techniques described hereinabove, and as shown in Fig. 4B. Subsequently, prosthetic valve 80 is coupled to the prosthetic valve support, in accordance with the techniques described hereinabove, and as shown in Fig. 4C.
  • Typically, commissural helices 100a and 100b facilitate sealing of native commissures 8 and 10, thereby reducing retrograde blood flow via the commissures, relative to retrograde blood flow in the absence of the helices. Further typically, the sealing of the native commissures facilitates anchoring of the prosthetic valve support to native valve 5.
  • Reference is now made to Figs. 5A-D, which are schematic illustrations of grasping elements 106a and 106b being used to anchor prosthetic valve 80, in accordance with some applications of the present invention. For some applications, guide members 21a and 21b are advanced toward first and second commissures 8 and 10 of valve 5 of the patient, as described hereinabove. Grasping elements 106a and 106b are reversibly coupled to distal ends of delivery lumen 27a and 27b, the delivery lumens being advanced over respective guide members, as described hereinabove. For some applications, the guiding members and the grasping elements are advanced toward the patient's commissures via surrounding sheaths 26a and 26b, the surrounding sheaths being generally as described hereinabove. The grasping elements are typically placed distally to the commissures in a proximally-facing configuration, as shown in Fig. 5A. For example, as shown, the grasping elements may be configured to be proximally facing due to the coupling of the grasping elements to the guide members.
  • Subsequent to the placement of grasping elements 106a and 106b distally to native commissures 8 and 10, prosthetic valve 80 is advanced toward native valve 5, as shown in Fig. 5B. For example, the prosthetic valve may be advanced over delivery lumens 27a and 27b, as shown. The prosthetic valve is placed at the native valve and, subsequently, the grasping elements are retracted proximally toward commissures 8 and 10, as shown in the transition from Fig. 5B to Fig. 5C. For some applications, the grasping elements are coupled to valve 80 via coupling tubes 107a and 107b, the coupling tubes being coupled to the sides of the valve, as shown. The grasping elements are closed such that the native commissures are grasped and sealed by the grasping elements, as shown in Fig. 5D. Typically, the grasping elements define two surfaces that are hingedly coupled to each other. For example, the grasping elements may include forceps, as shown. The grasping elements are closed by closing the surfaces about the hinge, with respect to one another.
  • Typically, grasping elements 106a and 106b facilitate sealing of native commissures 8 and 10, thereby reducing retrograde blood flow via the commissures, relative to retrograde blood flow in the absence of the grasping elements. Further typically, the sealing of the native commissures facilitates anchoring of the prosthetic valve to native valve 5.
  • Although not shown, for some applications, prosthetic valve support 40 is used in addition to grasping elements 106a and 106b, in order to anchor prosthetic valve 80 to native valve 5. For some applications, the grasping elements are used to anchor and/or provide sealing for prosthetic valve support 40 (instead of, or in addition to, being used to anchor prosthetic valve 80, as shown). For such applications, generally similar techniques are used to those described with respect to the use of the grasping elements for anchoring the prosthetic valve, mutatis mutandis.
  • Reference is now made to Figs. 6A-B, which are schematic illustrations of prosthetic valve 80, the prosthetic valve comprising a sealing material 110 on an outer surface of the valve, in accordance with some applications of the present invention. For some applications, prosthetic valve 80 is used in conjunction with prosthetic valve support 40, as described hereinabove. The techniques for implanting prosthetic valve 80 as shown in Figs. 6A-B are generally similar to those described hereinabove. Typically, sealing material 110 seals the interface between the prosthetic valve and native valve 5. The sealing material reduces retrograde blood flow from ventricle 6 into atrium 4, relative to retrograde blood flow in the absence of the sealing material. Typically, the sealing material is composed of latex, dacron, and/or any other suitable biocompatible material. The sealing material is typically placed around at least a portion of expandable frame 79 of the prosthetic valve so as to form a webbing between struts of the expandable frame.
  • Reference is now made to Figs. 7A-F, which are schematic illustrations of a guide wire delivery system, in accordance with some applications of the present invention. As described hereinabove (e.g., with reference to Figs. 2C-F), for some applications, guide members 21a and 21b, function as valve support guide members, by support 40 being slid along guide members 21a and 21b. For some applications, only one guide member 21 is looped through commissures 8 and 10 in a manner in which the guide member defines a looped portion between commissures 8 and 10 (i.e., a portion of the guide member that is disposed in a ventricle 6 of heart 2), and first and second free ends, which are disposed and accessible at a site outside the body of the patient. For such applications, the guide member defines portions 21a and 21b.
  • For some applications, an anchor 302 is advanced toward the vicinity of apex 304 of heart 2, via sheath 25, and is anchored to the vicinity of the apex, as shown in Fig. 7A. A guidewire 306 extends proximally from anchor. Guide member 21 passes through a guide member tube 320, the guide member tube being coupled to guidewire 306. Guide member 21 is pushed distally. Guide member tube 320 is unable to advance distally over guidewire 306, due to the coupling of the guide member tube to the guidewire. Therefore, the pushing of guide member 21 distally, causes portions 21a and 21b to spread apart from one another and to be pushed against commissures 8 and 10 of native valve 5. Portions 21a and 21b are then used to guide valve support 40 to the commissures, as shown in Figs. 7B-C, using generally similar techniques to those described hereinabove, except for the differences described hereinbelow.
  • As shown in Fig. 7B, valve support 40 is slid over guide member portions 21a and 21b, by pushing elements 52a and 52b. Since the guide member portions are positioned at commissures 8 and 10, the guide member portions guide the distal ends of pushing elements 52a and 52b, such that the pushing elements push the valve support against the commissures, as shown in Fig. 7C.
  • Subsequent to the placement of valve support 40 at the native valve, prosthetic atrioventricular valve 80 is coupled to valve support 40. For some applications, pushing elements 52a and 52b continue to push the valve support against the native valve, during the coupling of the prosthetic valve to the valve support. As described hereinabove, overtube 70 is advanced into ventricle 6, as shown in Fig. 7D. Fig. 7E shows prosthetic valve having been partially deployed in the ventricle. Following the partial deployment of valve 80 in ventricle 6, overtube 70 is pulled proximally to pull valve 80 proximally such that cylindrical element 42 and/or annular element 44 of valve support 40 surrounds a proximal portion of prosthetic valve 80. Valve 80 has a tendency to expand such that valve 80 is held in place with respect to valve support 40 responsively to radial forces acted upon valve support 40 by prosthetic valve 80. During the pulling back of overtube 70, pushing elements 52a and 52b push valve support 40 against the valve, thereby providing a counter force against which overtube 70 is pulled back. For some applications, the pushing of the valve support against the commissures is such that it is not necessary to use anchors for anchoring the valve support to the native valve during the coupling of the prosthetic valve to the valve support. Alternatively, in addition to the pushing elements providing a counter force against which the prosthetic valve is pulled, anchors are used to anchor the valve support to the native valve during the coupling of the prosthetic valve to the valve support.
  • As described hereinabove, valve 80 comprises a plurality of distal protrusions 84. When valve 80 is pulled proximally, as described hereinabove, protrusions 84 ensnare and engage the native leaflets of the atrioventricular valve. By the ensnaring of the native leaflets, protrusions 84 sandwich the native valve between protrusions 84 and prosthetic valve support 40. Such ensnaring helps further anchor prosthetic valve 80 to the native atrioventricular valve.
  • For some applications, as described hereinabove, protrusions 84 are such as to (a) prevent proximal migration of the valve into the patient's atrium, while (b) allowing movement of the native leaflets with respect to the frame of the prosthetic valve. For example, the protrusions may have the aforementioned functionalities by having lengths of less than 5 mm and/or by a total width of each set of protrusions corresponding to respective leaflets of the native valve being less than 5 mm. For example, the valve may include a single protrusion corresponding to each leaflet of the native valve, the width of each of the single protrusions being less than 1 mm. Thus, the valve may be stopped from proximally migrating into the atrium, by the protrusions preventing the distal end of the valve from migrating further proximally than edges of native leaflets of the valve. Furthermore, the protrusions may allow movement of the native leaflets with respect to the frame of the prosthetic valve by not generally squeezing the native leaflets between the protrusions and the frame of the valve. For some applications, by allowing movement of the native leaflets with respect to the frame of the prosthetic valve, sealing of the native leaflets against the outer surface of the frame of the prosthetic valve is facilitated, in accordance with the techniques described hereinbelow with reference to Fig. 10.
  • Subsequent to the placement of the prosthetic valve at the native valve, sheath 25, overtube 70, pushing elements 52a and 52b, guide member 21, anchor 302, and guidewire 306 are removed from the patient's body, as shown in Fig. 7F, which shows the prosthetic valve in its deployed state. For some applications, in order to remove guide member 21 from the patient's body, guide member portions 21a and 21b are decoupled from guide member tube 320. For example, the guide member portions may be coupled to the guide member tube via threading, the guide member portions being decoupled from the guide member tube by unscrewing the guide member portions from the guide member tube.
  • Reference is now made to Figs. 8A-C which are schematic illustrations of a system 120 comprising an invertible valve support 140, in accordance with some applications of the present invention. Invertible valve support 140 is identical to valve support 40 described herein, with the exception that the cylindrical element of valve support 140 is invertible, as is described hereinbelow. Additionally, the method of advancing toward and implanting valve support 140 at annulus 11 is identical to the methods of advancing toward and implanting valve support 40 at annulus 11, as described hereinabove.
  • Valve support 140 comprises an annular element 144 (that is identical to annular element 44 described hereinabove) and a cylindrical element 142. Cylindrical element 142 has a first end 150, a second end 152, and a cylindrical body 153 disposed between first and second ends 150 and 152. Cylindrical element 142 is attached to annular element 144 at first end 150 of cylindrical element 142.
  • During and following implantation of support 140 at annulus 11, as shown in Fig. 8A, cylindrical element 142 is disposed above annular element 144 in a manner in which second end 152 and cylindrical body 153 are disposed above annular element 144 and within atrium 4. One or more elongate guide members 146a and 146b are reversibly coupled to cylindrical element 142 in a vicinity of second end 152. Elongate guide members 146a and 146b facilitate (a) advancement of prosthetic valve 80 therealong and toward valve support 140, and (b) inversion of cylindrical element 142 toward ventricle 6 when at least a portion of valve 80 is deployed within ventricle 6 (as shown in Fig. 8B).
  • The configuration of valve support 140 as shown in Fig. 8A (i.e., the configuration in which cylindrical element 142 is disposed within atrium 4) eliminates the obstruction of native valve 5 and of leaflets 12 and 14 by any portion of valve support 140. In this manner, valve support 140 may be implanted at valve 5 while valve 5 resumes its native function and leaflets 12 and 14 resume their natural function (as shown by the phantom drawing of leaflets 12 and 14 in Fig. 8A which indicates their movement). This atrially-inverted configuration of valve support 140 reduces and even eliminates the amount of time the patient is under cardiopulmonary bypass. Only once prosthetic valve 80 is delivered and coupled to valve support 140 and cylindrical element 142 is thereby ventricularly-inverted, native leaflets 12 and 14 are pushed aside (Fig. 8B).
  • Fig. 8B shows the inversion of cylindrical element 142 by the partial positioning and deployment of prosthetic valve 80 within ventricle 6. Elongate guide members 146a and 146b are reversibly coupled to prosthetic valve 80 and extend within overtube 70. Following the full deployment of valve 80 and the coupling of valve 80 to valve support 140, elongate guide members 146a and 146b are decoupled from prosthetic valve 80 and from cylindrical element 142. For example, a cutting tool may be used to decouple elongate members 146a and 146b from the valve support 140. Alternatively, elongate members 146a and 146b may be looped through the cylindrical element 142, such that both ends of each elongate member 146a and 146b remain outside of the patient's body. The operating physician decouples elongate members 146a and 146b from valve support 140 by releasing one end of each of elongate members 146a and 146b and pulling on the other end, until elongate members 146a and 146b are drawn from valve support 140 and removed from within the body of the patient.
  • Fig. 8C shows prosthetic valve 80 coupled to valve support 140. Valve 80 is identical to the valve described hereinabove.
  • Reference is now made to Figs. 9A-E, which are schematic illustrations of the advancement of an invertible prosthetic valve support 300 toward a native atrioventricular valve of a patient, and inversion of the valve support, in accordance with some applications of the present invention. Prosthetic valve support 300 is used to anchor prosthetic valve 80 to native valve 5 in a generally similar manner to that described with reference to prosthetic valve support 40.
  • During a typical procedure, anchor 302 is advanced toward the vicinity of apex 304 of heart 2, via sheath 25, and is anchored to the vicinity of the apex, as shown in Fig. 8A. A guidewire 306 extends proximally from anchor. A distal tensioning element 308 (e.g., a plunger) is advanced over guidewire 306 into ventricle 6, and prosthetic valve support 300 is advanced out of the distal end of sheath 25, as shown in Fig. 9B. A first end 310 of prosthetic valve support 300 (which at this stage is the distal end of the prosthetic valve support), comprises barbs 314 (shown in Fig. 9B), or other anchoring elements for anchoring the first end of the prosthetic valve support to tissue of native valve 5. Prosthetic valve support 300 is pushed distally such that the barbs are pushed into the native valve tissue, thereby anchoring the first end of the prosthetic valve support to the native valve, as shown in Fig. 9C. A plurality of wires 309 pass from distal tensioning element 308 to a proximal tensioning element 311 (shown in Fig. 9D), via a second end 312 of valve support 300 (which at this stage is the proximal end of the prosthetic valve support). For some applications, a sealing element 316 is disposed circumferentially around a surface of the invertible prosthetic valve support that is initially an inner surface of the invertible prosthetic valve support (a shown in Figs. 8A-D). For example, the sealing material may be latex, dacron, or another suitable biocompatible sealing material.
  • Subsequent to the anchoring of first end 310 of prosthetic valve support 300 to native valve tissue (as shown in Fig. 9C), distal tensioning element 308 is further advanced distally into ventricle 6, and proximal tensioning element 311 is advanced toward the ventricle. As shown in the transition from Fig. 9D-F, as the proximal tensioning element passes through the valve support, wires 309 cause valve support 300 to invert, by pulling second end 312 of the valve support through first end 310 of the valve support. Subsequent to the inversion of the valve support, sealing material 316 is disposed circumferentially around the outside of the valve support, thereby providing a seal at the interface between valve support 300 and native valve 5.
  • Reference is now made to Figs. 9G-H, which are schematic illustrations of the deployment of prosthetic valve 80 and the coupling of the prosthetic valve to invertible valve support 300, in accordance with some applications of the present invention.
  • The deployment of prosthetic valve 80 is generally similar to the techniques described hereinabove with reference to Figs. 2H-J. The valve is partially deployed in ventricle 6, via overtube 70. Following the partial deployment of valve 80 in ventricle 6, overtube 70 is pulled proximally (as shown in Fig. 8G) to pull valve 80 proximally such that valve support 300 surrounds a proximal portion of prosthetic valve 80, as shown in Fig. 8H. Valve 80 has a tendency to expand such that valve 80 is held in place with respect to valve support 300 responsively to radial forces acted upon valve support 300 by prosthetic valve 80.
  • As described hereinabove, for some applications, valve 80 comprises a plurality of distal protrusions 84. When valve 80 is pulled proximally, protrusions 84 ensnare and engage the native leaflets of the atrioventricular valve. By the ensnaring of the native leaflets, protrusions 84 sandwich the native valve between protrusions 84 and prosthetic valve support 300. Such ensnaring helps further anchor prosthetic valve 80 to the native atrioventricular valve.
  • For some applications, as described hereinabove, protrusions 84 are such as to (a) prevent proximal migration of the valve into the patient's atrium, while (b) allowing movement of the native leaflets with respect to the frame of the prosthetic valve. For example, the protrusions may have the aforementioned functionalities by having lengths of less than 5 mm, and/or by a total width of each set of protrusions corresponding to respective leaflets of the native valve being less than 5 mm. For example, the valve may include a single protrusion corresponding to each leaflet of the native valve, the width of each of the single protrusions being less than 1 mm. Thus, the valve may be stopped from proximally migrating into the atrium, by the protrusions preventing the distal end of the valve from migrating further proximally than edges of native leaflets of the valve. Furthermore, the protrusions may allow movement of the native leaflets with respect to the frame of the prosthetic valve by not generally squeezing the native leaflets between the protrusions and the frame of the valve. For some applications, by allowing movement of the native leaflets with respect to the frame of the prosthetic valve, sealing of the native leaflets against the outer surface of the frame of the prosthetic valve is facilitated, in accordance with the techniques described hereinbelow with reference to Fig. 10.
  • Additionally, as shown in Fig. 9H, and as described hereinabove, valve 80 comprises one or more coupling elements 81 (for example, a plurality of coupling elements, as shown) at the proximal end of valve 80. Overtube 70, which facilitates the advancement of prosthetic valve 80, is reversibly coupled to valve 80, via coupling elements 81.
  • Subsequent to the coupling of valve 80 to valve support 300, overtube 70, distal and proximal tensioning elements 308 and 311, and wires 309 are removed from the patient's body, via sheath 25. Typically, wires 309 are cut, in order to facilitate the removal of the wires from the patient's body. Guidewire 306 and anchor 302 are removed from the patient's body by detaching the anchor from apex 304, and withdrawing the anchor and the guidewire, via sheath 25.
  • Reference is now made to Fig. 10, which is a schematic illustration of prosthetic valve 80, for placing inside atrioventricular valve 5 of the patient, in accordance with some applications of the present invention. The expandable frame 79 of the prosthetic valve has a diameter d, and a corresponding cross-sectional area. Native annulus 11, which is typically saddle-shaped, defines an area A, as shown. For some applications, area A, which is defined by the native annulus is measured, e.g., using a measuring ring. A prosthetic valve is chosen to be placed in the annulus, the cross-sectional area of the prosthetic valve being less than 90% (e.g., less than 80%, or less than 60%) of area A. For some applications, diameter d of the prosthetic valve is less than 25 mm, e.g., less than 20 mm, and/or more than 15 mm, e.g., 15-25 mm. For some applications, placing a prosthetic valve inside the native valve with the dimensions of the native valve annulus and the prosthetic valve as described, facilitates sealing of the prosthetic valve with respect to the native valve, by the native valve leaflets closing around the outer surface of the prosthetic valve.
  • For some applications, a prosthetic valve support 40 that includes annular element 44 (e.g., as shown in Figs. 14A-C) is chosen to be placed at the annulus, the annular element defining an inner cross-sectional area that is less than 90% (e.g., less than 80%, or less than 60%) of area A. Prosthetic valve 80 is deployed at the native valve by coupling the prosthetic valve to the prosthetic valve support at the location, responsively to radial forces acted upon the valve support by the expandable frame, by facilitating expansion of the expandable frame, as described herein. The cross-sectional area defined by the expandable frame of the prosthetic valve, upon expansion of the expandable frame, is limited by the cross-sectional area defined by the annular element of the prosthetic valve support to less than 90% (e.g., less than 80%, or less than 60%) of area A. For some applications, placing a prosthetic valve support at the annulus with the dimensions of the native valve annulus and valve support 40, as described, facilitates sealing of the prosthetic valve with respect to the native valve, by the native valve leaflets closing around the outer surface of the prosthetic valve.
  • Typically, placing a prosthetic valve inside the native valve with the dimensions of the native valve annulus, the prosthetic valve 80, and/or valve support 40 as described in the above paragraphs, facilitates sealing of the prosthetic valve with respect to the native valve. For some applications, the sealing is facilitated by the native leaflets being pushed against, and closing against, the outer surface of the frame of the valve during systole, in a similar manner to the manner in which native valve leaflets coapt during systole, in a healthy mitral valve. Typically, as the diameter of the prosthetic valve is increased, the length of the native leaflets that is pushed against the outer surface of the valve during systole is increased, thereby enhancing the sealing of the native leaflets with respect to the frame of the prosthetic valve. However, beyond a given diameter, as the diameter of the prosthetic valve is increased, the native valve leaflets are pushed apart at the commissures, thereby causing retrograde leakage of blood through the commissures. Therefore, in accordance with some applications of the present invention, prosthetic valve 80, and/or valve support 40 are chosen such that the cross-sectional area of the prosthetic valve when expanded inside the valve support is less than 90% (e.g., less than 80%, or less than 60%) of area A. Thus the valve support facilitates sealing of the prosthetic valve with respect to the native valve, by the native valve leaflets closing around the outer surface of the prosthetic valve, while not causing retrograde leakage of blood through the commissures.
  • For some applications, in order to facilitate the sealing of the native valve around the outer surface of the prosthetic valve, a material is placed on the outer surface of the prosthetic valve in order to provide a sealing interface between the prosthetic valve and the native valve. For example, a smooth material that prevents tissue growth (e.g., polytetrafluoroethylene (PTFE), and/or pericardium) may be placed on the outer surface of the prosthetic valve. Alternatively or additionally, a material that facilitates tissue growth (such as dacron) may be placed on the outer surface of the prosthetic valve, in order to (a) act as a sealing interface between the native valve and the prosthetic valve, and (b) facilitate tissue growth around the prosthetic valve to facilitate anchoring and/or sealing of the prosthetic valve.
  • Reference is now made to Figs. 11A-D, which are schematic illustrations of prosthetic valve 80, in accordance with some applications of the present invention. For some applications, protrusions 84 are disposed on the valve on portions 400 of the valve that are placed adjacent to the anterior and posterior leaflets of the native valve, and the valve does not includes protrusions on portions 402 of the valve that are placed adjacent to the commissures of the native valve.
  • Figs. 11B-D show bottom views (i.e., views of the distal ends) of respective configurations of prosthetic valve 80 and protrusions 84. The protrusions converge from the proximal ends 404 of the protrusion to the distal ends 406 of the protrusions. The protrusions are configured such as to ensnare chordae tendineae, and to pull the chordae tendineae toward each other when the prosthetic valve is pulled proximally, due to the convergence of the snares with respect to each other. Fig. 11D shows the prosthetic valve deployed at native valve 5. As shown, the protrusions ensnare chordae tendineae 102 of the patient. The protrusions facilitate sealing and anchoring of the prosthetic valve with respect to the native valve by pulling the chordae tendinae toward each other, as described. As described hereinabove, for some applications the prosthetic valve does not define protrusions 84 on portions 402 that are placed next to the native commissures, e.g., commissure 8, shown in Fig. 11D.
  • For some applications, as described hereinabove, protrusions 84 are such as to (a) prevent proximal migration of the valve into the patient's atrium, while (b) allowing movement of the native leaflets with respect to the frame of the prosthetic valve. For example, the protrusions may have the aforementioned functionalities by having lengths of less than 5 mm, and/or by a total width of each set of protrusions corresponding to respective leaflets of the native valve being less than 5 mm. For example, the valve may include a single protrusion corresponding to each leaflet of the native valve, the width of each of the single protrusions being less than 1 mm. Thus, the valve may be stopped from proximally migrating into the atrium, by the protrusions preventing the distal end of the valve from migrating further proximally than edges of native leaflets of the valve. Furthermore, the protrusions may allow movement of the native leaflets with respect to the frame of the prosthetic valve by not generally squeezing the native leaflets between the protrusions and the frame of the valve. For some applications, by allowing movement of the native leaflets with respect to the frame of the prosthetic valve, sealing of the native leaflets against the outer surface of the frame of the prosthetic valve is facilitated, in accordance with the techniques described hereinabove with reference to Fig. 10.
  • For some applications, a first set of protrusions 84 from the distal end of prosthetic valve 80 are disposed within a first circumferential arc with respect to a longitudinal axis of the prosthetic valve, on a first side of the distal end of the prosthetic valve, the first side of the distal end being configured to be placed adjacent to the anterior leaflet of the native valve. A second set of protrusions are disposed within a second circumferential arc with respect to a longitudinal axis of the prosthetic valve, on a second side of the distal end of the prosthetic valve, the second side of the distal end being configured to be placed adjacent to the posterior leaflet of the native valve.
  • The first and second sets of protrusions are disposed so as to provide first and second gaps therebetween at the distal end of the prosthetic valve. Typically, at least one of the gaps between the two sets of protrusions has a circumferential arc of at least 20 degrees (e.g., at least 60 degrees, or at least 100 degrees), and/or less than 180 degrees (e.g., less than 140 degrees), e.g., 60-180 degrees, or 100-140 degrees. Further typically, one or both of the first and second circumferential arcs defines an angle of at least 25 degrees (e.g., at least 45 degrees), and/or less than 90 degrees (e.g., less than 75 degrees), e.g., 25-90 degrees, or 45-75 degrees.
  • Valve guide members (e.g., guide members 21a and 21b, and/or delivery lumen 27a and 27b, as described hereinabove) are delivered to commissures of the native valve, and guide the valve such that the first and second circumferential arc are aligned with respective leaflets of the native valve and such that the first and second gaps are aligned with respective commissures of the native valve.
  • Reference is now made to Figs. 12A-C, which are schematic illustrations of prosthetic valve 80, the valve defining distal protrusions 84 that are disposed sinusoidally around the circumference of the valve, in accordance with some applications of the present invention. For some applications the protrusions are shaped sinusoidally, in order to conform with the saddle-shape of native valve annulus 11, thereby facilitating the sandwiching of the native valve leaflets between the protrusions and valve support 40. As shown, the peaks of the sinusoid that is defined by the protrusions is disposed on portions 402 that are placed next to the native commissures and the troughs of the sinusoid is placed on portions of the valve that are placed in the vicinity of the centers of the anterior and posterior leaflets of the native valve. As shown in Fig. 12C, for some applications the distal end of the prosthetic valve defines a sinusoidal shape.
  • Reference is now made to Figs. 13A-E, which are schematic illustrations of respective configurations of expandable frame 79 of prosthetic valve 80, in accordance with some applications of the present invention. As described hereinabove, for some applications, valve 80 defines distal protrusions 84 that are configured to facilitate sandwiching of the native valve leaflets between the protrusions and valve support 40. For some applications, tips of the distal protrusions are shaped so as to prevent the tips from piercing, and/or otherwise damaging, tissue of the native leaflets. For example, the tips of the protrusions may be curved, as shown in Fig. 13A. Or, the distal tips of the protrusions may be shaped as balls, as shown in Fig. 13, and/or a different rounded shape. For some applications, the distal tip of each of the protrusions is joined to the distal tip of an adjacent protrusion by an arch 410, as shown in Figs. 13C and 13D.
  • For some applications, the protrusions are configured to be distally-facing during the insertion of prosthetic valve 80 into the subject's left ventricle. For example, the valve may be inserted through overtube 70 (shown in Fig. 7E, for example). The valve is crimped during the insertion of the valve through the overtube, and the protrusions are constrained in their distally-facing configurations by the overtube. The protrusions are pre-shaped such that in the resting state of the protrusions, the protrusions assume proximally-facing configurations, as shown in Fig. 13D, for example. Thus, upon emerging from overtube 70, the protrusions assume proximally-facing configurations. For some applications, when the protrusions assume the proximally-facing configurations, the protrusions are disposed at an angle theta (Fig. 13D) from expandable frame 79 of more than 40 degrees (e.g., more than 50 degrees), and/or less than 80 degrees (e.g., less than 70 degrees).
  • Typically, protrusions 84 are coupled to frame 79 of valve 80 at joints 412. For some applications, joints 412 are thinner than portions of the protrusions and of the frame surrounding the joints, as shown in Fig. 13D. For some applications, the thinness of the joints with respect to the surrounding portions facilitates the crimping of the protrusions into distally-facing configuration during the insertion of the valve into the heart.
  • For some applications, barbs 416 extend from a proximal portion of expandable frame 79 of valve 80, as shown in Fig. 13E. For example, the barbs may be configured to anchor the prosthetic valve to the native valve by piercing tissue of the native valve. Alternatively or additionally, the barbs may be configured to anchor the prosthetic valve to the valve support 40, by becoming coupled to portions of the valve support. For some applications the barbs protrude from the top-central corner of respective cells of expandable frame 79. Typically, when the prosthetic valve is crimped, the barbs fit within gaps of respective cells of the expandable frame, and do not substantially increase the crimping profile of the prosthetic valve, relative to a generally similar prosthetic valve that does not include barbs.
  • For some applications, the barbs are not generally used for coupling prosthetic valve support 80 to valve support 40. Rather, the prosthetic valve is coupled to the valve support by virtue of radial expansion of the prosthetic valve against annular element 44 of the valve support. Barbs 416 are used to prevent prosthetic valve from migrating distally into the patient's left ventricle, and/or to prevent valve support 40 from migrating proximally into the subject's left atrium.
  • For some applications (not shown), barbs protrude from coupling elements 81 of prosthetic valve 80, the barbs being generally similar in shape and function to that described with reference to barbs 416. For some applications (not shown), radially-inwardly facing barbs 45 protrude from annular element 44 of valve support 40, as shown in Fig. 14D. As described with reference to barbs 416, the barbs that protrude from annular element 44 may facilitate coupling of the prosthetic valve to the valve support. Alternatively or additionally, the barbs that protrude from annular element 44 are used to prevent prosthetic valve from migrating distally into the patient's left ventricle, and/or to prevent valve support 40 from migrating proximally into the subject's left atrium.
  • For some applications, a proximal end of expandable frame 79 of prosthetic valve 80 defines a larger cross-section area than more distal portions of the expandable frame. For example, the expandable frame may have a frustoconical shape, the walls of the expandable frame diverging from a distal end of the frame to a proximal end of the frame. Alternatively, the expandable frame may have a trumpet shape (i.e., the frame may be generally tubular, with a dilated proximal end). For some applications, the larger cross-sectional area of the proximal end of the frame prevents the prosthetic valve from migrating distally into the patient's left ventricle, and/or prevents valve support 40 from migrating proximally into the subject's left atrium.
  • Reference is now made to Figs. 14A-D, which are schematic illustrations of respective configurations of prosthetic valve support 40, in accordance with some applications of the present invention. As described hereinabove, for some applications, the valve support comprises a collapsible skirt having a proximal annular element 44 and a distal cylindrical element 42 (e.g., as shown in Fig. 2D). Alternatively, the valve support does not include a distal cylindrical element. For example, the valve support may only include annular element 44. As described hereinabove, annular element 44 is configured to be placed around native annulus 11 of the native valve, and to extend at least partially into atrium 4 such that annular element 44 rests against the native annulus. Annular element 44 is typically too large to pass through the annulus, and may, for example, have an outer diameter of between 30 and 60 mm.
  • Figs. 14A-D show annular element 44 of valve support 40 in respective configurations, in accordance with some applications of the present invention. For some applications, the annular element is D-shaped, as shown in Fig. 14A. Alternatively or additionally, the annular element has a generally round shape, as shown in Figs. 14B-C. For some applications the annular element is asymmetrical. For example, Fig. 14B shows a generally rounded annular element that is wider on a first side 420 of the element than on a second side 422 of the element. Typically, the wider side of the annular element is placed on the anterior side of the native annulus. In accordance with some applications, the annular element is symmetrical, asymmetrical, oval, round, defines a hole that is centered with respect to the annular element, and/or defines a hole that is off-center with respect to the annular element. For some applications, the stiffness of the annular element varies around the circumference of the annular element.
  • For some applications, annular element 44 is asymmetrical, as shown in Fig. 14B. Typically, the asymmetry of the annular element is such that the center of the hole defined by the annular element is disposed asymmetrically (i.e., off-center) with respect to the center of the annular element, as defined by the outer perimeter of the annular element. For some applications, the asymmetric disposition of the center of the hole defined by the annular element is such that when the prosthetic valve is placed inside the annular element, the longitudinal axis of the prosthetic valve is disposed asymmetrically (i.e., off-center) with respect to the center of the annular element, as defined by the outer perimeter of the annular element. Typically, the annular element is shaped such that, when the annular element is placed on the patient's mitral annulus, and the prosthetic valve is expanded inside the annular element, the longitudinal axis of the prosthetic valve is disposed in the vicinity of the location at which the patient's native leaflets coapt (this location being off-center with respect to the patient's native mitral annulus).
  • For some applications (not shown), radially-inwardly facing barbs 45 protrude from annular element 44 of valve support 40, as shown in Fig. 14D. As described with reference to barbs 416 shown protruding from prosthetic valve 80 in Fig. 13E, the barbs that protrude from annular element 44 may facilitate coupling of the prosthetic valve to the valve support. Alternatively or additionally, the barbs that protrude from annular element 44 are used to prevent prosthetic valve from migrating distally into the patient's left ventricle, and/or to prevent valve support 40 from migrating proximally into the subject's left atrium. For some applications, some or all of barbs 102 are curved. Typically, the curved barbs curve away from the plane of annular element 40, such that, when implanted, barbs 102 point into the patient's atrium.
  • Typically, the annular element includes frame 48, the frame being covered at least in part with covering 49, e.g., fabric. Typically, the upper surface of annular element 44 is covered with fabric, for example, in order to provide a generally smooth surface for coming into contact with the patient's blood flow. Further typically, the lower surface of the annular element (i.e., the side of the annular element that is placed in contact with the native annulus) is not covered with fabric, for example, in order to reduce a crimped volume (or cross-sectional area) of the annular element, relative to the volume of the annular element if the lower surface of the annular element were covered in fabric. Typically, a thickness of the fabric layer is less than 0.2 mm, e.g., less than 0.1 mm, or less than 0.05 mm.
  • For some applications, the side of the annular element that is placed in contact with the native annulus is covered with the fabric, the fabric being configured to facilitate coupling of the annular element to the native annulus, by facilitating fibrosis at the interface between the annular element and the native annulus. For some applications, the upper surface of the annular element is not covered with fabric. For example, the upper surface may not be covered in fabric in order to reduce a crimped volume (or cross-sectional area) of the annular element, relative to the volume of the annular element if the upper surface of the annular element were covered in fabric.
  • For some applications, annular element 44 is not covered with fabric, and/or is not configured to form a seal against frame 79 of prosthetic valve 80. For some applications, the annular element is configured to allow leakage of blood between the annular element and frame 79 of prosthetic valve 80. For example, the annular element may be configured to allow leakage of blood through the interface between the annular element and the frame of the prosthetic valve, in order to accommodate a flow of blood between the patient's atrium and the patient's ventricle that is greater than can be accommodated by blood flowing through the leaflets of the prosthetic valve.
  • Reference is now made to Figs. 15A-E, which are schematic illustrations of respective steps of a procedure for deploying a prosthetic valve, in accordance with some applications of the present invention. As described hereinabove and hereinbelow (for example, with reference to Figs. 2A-K, 7A-F, 8A-C, 9AH, and 16A-G), for some procedures, valve support 40 is placed on the valve annulus and, subsequently, prosthetic valve 80 is inserted into the subject's left ventricle through the valve support. Alternatively, any of the procedures described herein (for example, procedures described with reference to Figs. 2A-K, 7A-F, 8A-C, 9A-H, and 16A-G) may be performed by first placing the prosthetic valve inside the subject's left ventricle, and, subsequently, deploying the valve support at the annulus. For example, Figs. 15A-E show a procedure in which the prosthetic valve is placed inside the subject's left ventricle, and, subsequently, the valve support is deployed at the annulus.
  • As shown in Fig. 15A, for some applications, prosthetic valve 80 is placed in the subject's ventricle, before prosthetic valve support 40 is placed at the native valve. The prosthetic valve is typically placed in the left ventricle in an undeployed state, via overtube 70. Subsequently, the valve support is placed at the native valve using pushing elements, as shown in Fig. 15B. For some applications, three pushing elements 52a, 52b, and 52c are used to push the valve support against the native valve, as shown in Fig. 15B.
  • Subsequent to the placement of valve support 40 at the native valve, prosthetic valve 80 is coupled to valve support 40. For some applications, pushing elements 52a, 52b, and 52c continue to push the valve support against the native valve, during the coupling of the prosthetic valve to the valve support. Fig. 15C shows prosthetic valve having been partially deployed in the ventricle.
  • Following the partial deployment of valve 80 in ventricle 6, overtube 70 is pulled proximally to pull valve 80 proximally such that annular element 44 of valve support 40 surrounds a proximal portion of prosthetic valve 80, as shown in Fig 15D. Valve 80 has a tendency to expand such that valve 80 is held in place with respect to valve support 40 responsively to radial forces acted upon valve support 40 by prosthetic valve 80. During the pulling back of overtube 70, pushing elements 52a, 52b, and 52c push valve support 40 against the valve, thereby providing a counter force against which overtube 70 is pulled back. For some applications, the pushing of the valve support against the commissures is such that it is not necessary to use anchors for anchoring the valve support to the native valve during the coupling of the prosthetic valve to the valve support. Alternatively, in addition to the pushing elements providing a counter force against which the prosthetic valve is pulled, anchors are used to anchor the valve support to the native valve during the coupling of the prosthetic valve to the valve support.
  • As described hereinabove, valve 80 comprises a plurality of distal protrusions 84. When valve 80 is pulled proximally, as described hereinabove, protrusions 84 ensnare and engage the native leaflets of the atrioventricular valve. By the ensnaring of the native leaflets, protrusions 84 sandwich the native valve between protrusions 84 and prosthetic valve support 40. Such ensnaring helps further anchor prosthetic valve 80 to the native atrioventricular valve.
  • It is noted with reference to Fig. 15D that, typically, annular element 44 of prosthetic valve support 40 defines an inner cross-sectional area thereof. As described hereinabove, prosthetic valve 80 includes expandable frame 79, and prosthetic leaflets 82. The expandable frame of the prosthetic valve is configured such that when the frame is in a non-constrained state thereof, the cross-sectional area of the frame, along at least a given portion L (shown in Fig. 15D) of the length of the frame, is greater than the inner cross-sectional area defined by the annular element of the prosthetic valve support. Typically, during a valve-deployment procedure, a location anywhere along portion L at which to couple the expandable valve to the prosthetic valve support is selected. In response thereto, the location along the portion of the expandable frame is aligned with the annular element of the prosthetic valve support. The expandable valve is then coupled to the prosthetic valve support at the location, responsively to radial forces acted upon the valve support by the expandable frame, by facilitating expansion of the expandable frame, when the location along the portion is aligned with the annular element of the prosthetic valve support.
  • As described hereinabove, for some applications, expandable frame 79 of prosthetic valve 80 has a frustoconical shape. For some applications, the prosthetic valve is coupled to valve support 40 responsively to radial forces acted upon the valve support by the expandable frame, when a given location along portion L is aligned with annular element 44 of the prosthetic valve support. For some applications, the portion immediately proximal to the given location along portion L has a greater cross-sectional area than the frame at the given location, due to the frustoconical shape of the expandable frame. Typically, the greater cross-sectional area of the portion immediately proximal to the given location along portion L relative to the cross-sectional area of the frame at the given location, reduces distal migration of the prosthetic valve toward the subject's left ventricle.
  • For some applications, the location along portion L at which to couple prosthetic valve 80 to valve support 40 is selected, based upon a distance D between protrusions 84 and annular element 44 that would result from coupling the prosthetic valve to the annular element at that location. For example, the location along portion L at which to couple prosthetic valve 80 to valve support 40 may be selected, such that distance D is such as to anchor the prosthetic valve to the patient's native valve by squeezing the patient's native valve leaflets between the protrusions and the annular element, and/or by ensnaring the patient's chordae tendinae between the protrusions and the annular element. Alternatively or additionally, the location along portion L at which to couple prosthetic valve 80 to valve support 40 may be selected, such that distance D is such that protrusions 84 (a) prevent proximal migration of the valve into the patient's atrium, while (b) allowing movement of the native leaflets with respect to the frame of the prosthetic valve. Typically, the location along portion L is selected such that distance D is such that the valve may be stopped from proximally migrating into the atrium, by the protrusions preventing the distal end of the valve from migrating further proximally than edges of native leaflets of the valve, while the protrusions allow movement of the native leaflets with respect to the frame of the prosthetic valve by not generally squeezing the native leaflets between the protrusions and the frame of the valve. For some applications, by allowing movement of the native leaflets with respect to the frame of the prosthetic valve sealing of the native leaflets against the outer surface of the frame of the prosthetic valve is facilitated, in accordance with the techniques described hereinabove with reference to Fig. 10.
  • Subsequent to the placement of the prosthetic valve at the native valve, overtube 70, and pushing elements 52a, 52b, and 52c are removed from the patient's body, as shown in Fig. 15E, which shows the prosthetic valve in its deployed state.
  • Reference is now made to Figs. 16A-G, which are schematic illustrations of respective steps of an alternative procedure for deploying prosthetic valve 80, in accordance with some applications of the present invention. As described hereinabove, with reference to Figs. 7A-F, for some applications, a looped guide member 21 is looped through commissures 8 and 10 in a manner in which the guide member defines a looped portion between commissures 8 and 10. For some applications, the looped guide member has steering functionality. The steering functionality of the looped guide member is used to guide the guide member to the commissures, and/or to guide other portions of the apparatus to the native valve and/or to ventricle 6. The looped guide member is typically advanced toward ventricle 6 over guidewire 306, e.g., as described hereinabove with reference to Fig. 7A.
  • Typically, as shown in Fig. 16A, portions 21a and 21b of the looped guide member are independently manipulable. The portions of the looped guide member are manipulated (e.g., expanded and contracted) so as to guide the looped guide member to the subject's native valve, by pushing against inner surfaces of the subject's heart, as shown in Fig. 16A.
  • Fig. 16B shows the looped guide member looped through commissures 8 and 10 of the subject's native valve. When the looped guide member is disposed at the native valve, the guide member is used to guide and to anchor valve support 40, as described hereinbelow.
  • As shown in Fig. 16C, for some applications, looped guide member 21 is coupled to valve support 40 via coupling wires 500 and coupling mechanisms 502. For example, as shown, the coupling mechanism may include an anchor. A suture 504, or a different looped element, protrudes from the bottom surface of annular element 44 of valve support 40 and is anchored by the anchor. Thus, when looped guide member 21 is pushed distally into ventricle 6, the valve support is pulled against the annulus of the native valve by coupling wires 500 pulling on the valve support.
  • Typically, coupling mechanisms 502, which are used to couple looped guide member 21 to valve support 40 are detachable coupling mechanisms. For example, as shown, the coupling mechanism may include an anchor that defines an opening 506 through which suture 504 is inserted. The opening is closed by a closing member 508, such as a rod, or a wire. In order to detach the guide member from valve support, closing member 508 is opened (e.g., by being pulled proximally) such that suture 504 is released through opening 506.
  • Subsequent to the placement of valve support 40 at the native valve, prosthetic atrioventricular valve 80 is placed in ventricle 6, by advancing overtube 70 into the ventricle, as shown in Fig. 16D. Fig. 16E shows prosthetic valve having been partially deployed in the ventricle. Following the partial deployment of valve 80 in ventricle 6, overtube 70 is pulled proximally to pull valve 80 proximally such that annular element 44 of valve support 40 surrounds a proximal portion of prosthetic valve 80, as shown in Figs. 16E-F. Valve 80 has a tendency to expand such that valve 80 is held in place with respect to valve support 40 responsively to radial forces acted upon valve support 40 by prosthetic valve 80.
  • During the pulling back of overtube 70, looped guide member 21 is pushed distally, thereby pulling valve support 40 against the native annulus and providing a counter force against which overtube 70 is pulled back. For some applications, pulling of the valve support against the native annulus is such that it is not necessary to use anchors for anchoring the valve support to the native valve during the coupling of the prosthetic valve to the valve support. Alternatively, in addition to the pulling of the valve support against the native annulus providing a counter force against which the prosthetic valve is pulled, anchors are used to anchor the valve support to the native valve during the coupling of the prosthetic valve to the valve.
  • Fig. 16G shows prosthetic valve 80 and valve support 40 coupled to the native valve. At this stage, coupling mechanism 502 is typically detached from the valve support. For example, as shown, closing member 508 is pulled, such that opening 506 is opened, and suture 504 is released through the opening. Subsequently, looped guide member 21, and overtube 70 are removed from the subject's body, as shown in Fig. 16H, which shows the prosthetic valve in its deployed state.
  • As described with reference to Figs. 16A-H, for some applications, prosthetic valve 80 is coupled to a native valve, by (a) placing valve support 40 on an atrial side of the native annulus, (b) placing the prosthetic valve inside the ventricle, and then, simultaneously, (c) pulling the prosthetic valve toward the atrium, and pulling the valve support toward the ventricle.
  • Reference is now made to Figs. 17A-C, which are schematic illustrations of leaflets 82 of prosthetic valve 80, in accordance with some applications of the present invention. Fig. 17A shows the leaflets before the leaflets are sutured to expandable frame 79 of the valve. As shown, in this state, the leaflets have a diameter D1, and the leaflets are not fully closed. Fig. 17B shows the leaflets when the leaflets have been sutured to expandable frame 79 of the prosthetic valve. The expandable frame constrains the leaflets, such that the leaflets define a diameter D2, which is smaller than diameter D1, thereby closing the leaflets. Fig. 17C shows the leaflets subsequent to the deployment of valve 80 inside valve support 40, the valve support constraining the expansion of the prosthetic valve. Due to the valve support constraining the prosthetic valve, the valve leaflets are constrained so as define a diameter D3, which is smaller than diameter D2.
  • Typically, valve leaflets 82 are selected to be used in prosthetic valve 80, the leaflets being sized such that both at diameter D2 (when the leaflets are constrained by expandable frame 79 but are not constrained by valve support 40) and at diameter D3 (when the leaflets are constrained by both expandable frame 79 and valve support 40), the valve leaflets fully coapt.
  • Reference is now made to Figs. 18A-B which are schematic illustrations of a system 220 comprising a valve support 240 comprising an annular element 244 and a cylindrical element 242 and one or more (e.g., a plurality, as shown, of) tissue anchors 230, in accordance with some applications of the present invention. Annular element 244 has an upper surface 241 and a lower surface 243. Tissue anchors 230 are coupled to lower surface 234 of annular element. Tissue anchors 230 are shaped so as to define a pointed distal tip 234 and one or more (e.g., three, as shown) radially-expandable prongs 232. Prongs 232 comprise a flexible metal, e.g., nitinol or stainless steel, and have a tendency to expand radially. Anchors 230 facilitate coupling of valve support 240 to annulus 11 of native valve 5, such as the mitral valve or the tricuspid valve. Anchors 230 are typically distributed approximately evenly around lower surface 243 of annular element 244. For some applications, one or more anchors 230 are disposed at a location of annular element that is configured to be positioned adjacently to commissures 8 and 10 of valve 5.
  • Reference is now made to Figs. 19A-D which are schematic illustrations of valve support 240 being implanted at valve 5 and the subsequent coupling of prosthetic valve 80 to valve support 240. Valve support 240 is advanced toward native valve 5 by pushing elements 52a and 52b, as described hereinabove with respect to valve support 40 with reference to Figs. 2D-F. In response to the pushing force to valve support 240 by pushing elements 52a and 52b, anchors 230 are pushed into tissue of annulus 11 of valve 5. The pushing force by elements 52a and 52b is sufficient to implant each one of the plurality of anchors that are distributed around lower surface 243 of annular element 244.
  • Fig. 19A shows initial penetration of tissue of annulus 11 by pointed distal tip 234 of anchor 230. In Fig. 19B, the initial force of the tissue on prongs 232 pushes inwardly prongs 232. Finally, in Fig. 19C, prongs 232 expand within tissue of annulus 11 to assume a flower shape and a larger surface area to restrict proximal motion of anchor 230 and thereby anchor valve support 240 in tissue of annulus 11. As shown in Figs. 19A-C, the cylindrical element of valve support 240 pushes aside native leaflets 12 and 14 of valve 5.
  • In Fig. 19D, prosthetic valve 80 is coupled to valve support 240, in a manner as described hereinabove.
  • It is noted that, in general, prosthetic valve 80 is self-expandable. When the prosthetic valve is deployed (i.e., when the valve self-expands) inside the subject's heart, the expansion of the valve is typically constrained by valve support 40. Further typically, the expansion of the valve is not constrained by the native annulus.
  • For some application, by constraining the expansion of the prosthetic valve with the valve support, the deployed cross-sectional area of the prosthetic valve may be fixed at a given area, by using a valve support that defines a hole having the given cross-sectional area. As described hereinabove with reference to Fig. 10, for some applications, the area defined by the native annulus is measured, and the cross-sectional area of the prosthetic valve that is to be deployed in the valve is selected based upon the measured area of the native annulus. Alternatively or additionally, valve support 40 is selected based upon the measured area of the native annulus.
  • For example, a valve support may be selected such that the valve support constrains the expansion of the prosthetic valve, when the cross-sectional area of the prosthetic valve is less than 90% (e.g., less than 80%, or less than 60%) of the area defined by the native annulus. As described hereinabove, for some applications, placing a prosthetic valve inside the native valve with the dimensions of the native valve annulus and the prosthetic valve being as described, facilitates sealing of the prosthetic valve with respect to the native valve, by the native valve leaflets closing around the outer surface of the prosthetic valve.
  • For some applications, the expansion of prosthetic valve 80 against valve support 40 couples the prosthetic valve to the valve support, and/or couples the valve and the valve support to the native mitral valve. Typically, the expansion of the prosthetic valve against the valve support couples the prosthetic valve to the valve support, and sandwiching of the native valve leaflets between protrusions from the distal end of the valve and the valve support couples the prosthetic valve and the valve support to the native valve.
  • Reference is now made to Figs. 1A-D, 2A-K, 3A-D, 4A-C, 5A-D, 6A-B, 7A-F, 8A-C, 9A-H, 10, 11A-D, and 12A-C. It is to be noted that valve support 40 may be invertible as described hereinabove with respect to valve supports 140 and 300, with reference to Figs. 8A-C, and 9A-H. It is to be further noted that valve supports 140 and 300 may be used in conjunction with one or more of the elements for facilitating sealing of the native valve with respect to a valve support or a valve that is described with reference to Figs. 3A-D, 4A-C, 5A-D, and 6A-B. For example, valve supports 140 and 300 may be used with sealing balloon 90, commissural anchors 100a and 100b, grasping elements 106a and 106b, and/or sealing material 110. It is still further noted that valve supports 140 and 300 may be implanted using a guide member that defines a looped portion between commissures 8 and 10, as described with reference to Figs. 7A-F. It is further noted that any of the applications described herein can be used in conjunction with valves having configurations as described with reference to Figs. 10-12C.
  • The systems described herein are advanced toward valve 5 in a transcatheter procedure, as shown. It is to be noted, however, that the systems described herein may be advanced using any suitable procedure, e.g., minimally-invasively (e.g., via a transeptal, a transatrial, a transapical, and/or a transaortic approach), or using an open-heart procedure. It is to be further noted that valve supports and prosthetic valves herein may be used to replace native mitral valves or native tricuspid valves.
  • Reference is now made to Figs. 20A-B, which are schematic illustrations of valve support 40 and prosthetic valve 80 coupled respectively to a tricuspid valve, and to an aortic valve, in accordance with some applications of the present invention. For some applications, valve support 40 and prosthetic valve 80 are deployed at a tricuspid valve and/or at an aortic valve using generally similar techniques to those described herein with reference to the deployment of the valve support and the prosthetic valve at the mitral valve, mutatis mutandis.
  • It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention is defined by the appended claims.

Claims (10)

  1. Apparatus for use with a native valve of a heart of the subject, the native valve having an annulus and native leaflets, and being disposed between an atrium of the heart and a ventricle of the heart, the apparatus comprising:
    a sheath (50), percutaneously advanceable to the native valve; and
    a prosthetic valve (80):
    comprising an expandable frame (79), a plurality of prosthetic leaflets (82) disposed within the expandable frame (79), and a plurality of protrusions (84),
    having:
    a collapsed state for percutaneous delivery to the native valve via the sheath (50), and
    a tendency to expand toward the expanded state, characterized in that:
    the apparatus further comprises a prosthetic valve support (40) :
    having a collapsed state for percutaneous delivery to the native valve via the sheath (50), and
    comprising an annular element (44), configured to be placed at the native valve such that the annular element (44) is positioned along the annulus and defines an inner cross-sectional area; and
    the prosthetic valve (80): has an expanded state in which the prosthetic valve (80) has a cross-sectional area that is greater than the inner cross-sectional area of the prosthetic valve support (40); and is configured, subsequently to the placement of the prosthetic valve support (40):
    to be partially deployed,
    to be subsequently moved upstream with respect to the prosthetic valve support (40) so as to sandwich the native leaflets between the protrusions (84) and the prosthetic valve support (40), and
    to be subsequently deployed into the expanded state such that a tendency of the prosthetic valve (80) to expand holds the prosthetic valve (80) in place with respect to the prosthetic valve support (40).
  2. The apparatus according to claim 1, wherein the prosthetic valve support (40) comprises barbs (45) that protrude radially inward from the annular element (44), and are configured to facilitate coupling of the prosthetic valve (80) to the prosthetic valve support (40).
  3. The apparatus according to claim 1, further comprising pushing elements (52a,52b), configured to push the prosthetic valve support (40) against the native valve.
  4. The apparatus according to claim 1, wherein the prosthetic valve support (40) further comprises a cylindrical element (42), and is configured to be placed at the native valve such that the annular element (44) is positioned along the annulus and the cylindrical element (42) passes through the native valve and at least partially into the ventricle.
  5. The apparatus according to claim 1, wherein the cross-sectional area of the prosthetic valve (80) is a cross-sectional area of at least a given portion of a length of the frame (79), and wherein the prosthetic valve (80) is couplable to the prosthetic valve support (40) at any location along the portion by the frame (79) being expanded when the location along the portion is aligned with the annular element (44) of the prosthetic valve support (40).
  6. The apparatus according to claim 5, wherein an upstream end of the frame (79) has a cross-sectional area that is greater than that of more downstream portions of the frame (79).
  7. The apparatus according to claim 1, wherein the annular element (44) of the valve support (40) is asymmetrically shaped.
  8. The apparatus according to claim 7, wherein the annular element (44) is shaped to define a hole, and wherein a center of the hole is disposed asymmetrically with respect to an outer perimeter of the annular element (44).
  9. The apparatus according to claim 1, wherein the prosthetic valve (80) is configured such that when the frame (79) is in the expanded state the frame (79) has a maximum diameter of less than 25 mm.
  10. The apparatus according to claim 1, wherein in the expanded state the frame (79) defines a trumpet shape.
EP11809374.9A 2010-07-21 2011-07-21 Percutaneous mitral valve replacement and sealing Active EP2611389B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21176010.3A EP3906895A1 (en) 2010-07-21 2011-07-21 Valve support

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/840,463 US9132009B2 (en) 2010-07-21 2010-07-21 Guide wires with commissural anchors to advance a prosthetic valve
US13/033,852 US8992604B2 (en) 2010-07-21 2011-02-24 Techniques for percutaneous mitral valve replacement and sealing
US201161492449P 2011-06-02 2011-06-02
PCT/IL2011/000582 WO2012011108A2 (en) 2010-07-21 2011-07-21 Techniques for percutaneous mitral valve replacement and sealing

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP21176010.3A Division-Into EP3906895A1 (en) 2010-07-21 2011-07-21 Valve support
EP21176010.3A Division EP3906895A1 (en) 2010-07-21 2011-07-21 Valve support

Publications (3)

Publication Number Publication Date
EP2611389A2 EP2611389A2 (en) 2013-07-10
EP2611389A4 EP2611389A4 (en) 2017-08-02
EP2611389B1 true EP2611389B1 (en) 2021-07-07

Family

ID=45494243

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11809374.9A Active EP2611389B1 (en) 2010-07-21 2011-07-21 Percutaneous mitral valve replacement and sealing
EP21176010.3A Pending EP3906895A1 (en) 2010-07-21 2011-07-21 Valve support

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP21176010.3A Pending EP3906895A1 (en) 2010-07-21 2011-07-21 Valve support

Country Status (3)

Country Link
US (1) US8992604B2 (en)
EP (2) EP2611389B1 (en)
WO (1) WO2012011108A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12016772B2 (en) 2020-09-28 2024-06-25 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods

Families Citing this family (299)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004019826A1 (en) 2002-08-29 2004-03-11 Md3 Technologies, Llc Apparatus for implanting surgical devices
US8758372B2 (en) 2002-08-29 2014-06-24 St. Jude Medical, Cardiology Division, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
WO2006063199A2 (en) 2004-12-09 2006-06-15 The Foundry, Inc. Aortic valve repair
WO2006097931A2 (en) 2005-03-17 2006-09-21 Valtech Cardio, Ltd. Mitral valve treatment techniques
US8864823B2 (en) 2005-03-25 2014-10-21 StJude Medical, Cardiology Division, Inc. Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen
US9492276B2 (en) 2005-03-25 2016-11-15 St. Jude Medical, Cardiology Division, Inc. Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
SE530568C2 (en) * 2006-11-13 2008-07-08 Medtentia Ab Medical device for improving function of heart valve, has flange unit connected to loop-shaped support and provided to be arranged against annulus when loop shaped support abut heart valve
US9974653B2 (en) 2006-12-05 2018-05-22 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
WO2008085814A2 (en) 2007-01-03 2008-07-17 Mitralsolutions, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
US8382829B1 (en) 2008-03-10 2013-02-26 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
US20090276040A1 (en) * 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
EP2296744B1 (en) 2008-06-16 2019-07-31 Valtech Cardio, Ltd. Annuloplasty devices
US8715342B2 (en) 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US8241351B2 (en) 2008-12-22 2012-08-14 Valtech Cardio, Ltd. Adjustable partial annuloplasty ring and mechanism therefor
US8911494B2 (en) 2009-05-04 2014-12-16 Valtech Cardio, Ltd. Deployment techniques for annuloplasty ring
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
ES2873182T3 (en) 2008-12-22 2021-11-03 Valtech Cardio Ltd Adjustable annuloplasty devices
US8808371B2 (en) 2009-01-22 2014-08-19 St. Jude Medical, Cardiology Division, Inc. Post-operative adjustment tool, minimally invasive attachment apparatus, and adjustable tricuspid ring
US8353956B2 (en) 2009-02-17 2013-01-15 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
CN101919750A (en) 2009-03-30 2010-12-22 卡迪万蒂奇医药公司 There is not the implantation method of sewing up cusps of pulmonary valve or mitral valve
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
WO2013069019A2 (en) 2011-11-08 2013-05-16 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
WO2011067770A1 (en) 2009-12-02 2011-06-09 Valtech Cardio, Ltd. Delivery tool for implantation of spool assembly coupled to a helical anchor
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
JP2013512765A (en) 2009-12-08 2013-04-18 アヴァロン メディカル リミテッド Devices and systems for transcatheter mitral valve replacement
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
US8961596B2 (en) * 2010-01-22 2015-02-24 4Tech Inc. Method and apparatus for tricuspid valve repair using tension
US8475525B2 (en) 2010-01-22 2013-07-02 4Tech Inc. Tricuspid valve repair using tension
US9307980B2 (en) 2010-01-22 2016-04-12 4Tech Inc. Tricuspid valve repair using tension
US10058323B2 (en) 2010-01-22 2018-08-28 4 Tech Inc. Tricuspid valve repair using tension
US9072603B2 (en) * 2010-02-24 2015-07-07 Medtronic Ventor Technologies, Ltd. Mitral prosthesis and methods for implantation
WO2011111047A2 (en) 2010-03-10 2011-09-15 Mitraltech Ltd. Prosthetic mitral valve with tissue anchors
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
JP5848345B2 (en) 2010-07-09 2016-01-27 ハイライフ エスエーエス Transcatheter atrioventricular valve prosthesis
US9763657B2 (en) 2010-07-21 2017-09-19 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US9132009B2 (en) 2010-07-21 2015-09-15 Mitraltech Ltd. Guide wires with commissural anchors to advance a prosthetic valve
US8992604B2 (en) 2010-07-21 2015-03-31 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US20120053680A1 (en) 2010-08-24 2012-03-01 Bolling Steven F Reconfiguring Heart Features
US9579193B2 (en) * 2010-09-23 2017-02-28 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
US9005279B2 (en) * 2010-11-12 2015-04-14 Shlomo Gabbay Beating heart buttress and implantation method to prevent prolapse of a heart valve
EP2654624B1 (en) 2010-12-23 2023-10-04 Twelve, Inc. System for mitral valve repair and replacement
EP2486894B1 (en) * 2011-02-14 2021-06-09 Sorin Group Italia S.r.l. Sutureless anchoring device for cardiac valve prostheses
ES2567186T3 (en) 2011-03-08 2016-04-20 W.L. Gore & Associates, Inc. Medical device for use with a stoma
WO2012127309A1 (en) * 2011-03-21 2012-09-27 Ontorfano Matteo Disk-based valve apparatus and method for the treatment of valve dysfunction
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US10500038B1 (en) 2011-05-20 2019-12-10 Tel Hashomer Medical Research Infrastructure And Services Ltd. Prosthetic mitral valve, and methods and devices for deploying the prosthetic mitral valve
EP3964176A1 (en) 2011-06-21 2022-03-09 Twelve, Inc. Prosthetic heart valve devices
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
WO2013011502A2 (en) 2011-07-21 2013-01-24 4Tech Inc. Method and apparatus for tricuspid valve repair using tension
US20140324164A1 (en) 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
EP3417813B1 (en) 2011-08-05 2020-05-13 Cardiovalve Ltd Percutaneous mitral valve replacement
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2013028387A2 (en) 2011-08-11 2013-02-28 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
US9387075B2 (en) 2011-09-12 2016-07-12 Highlife Sas Transcatheter valve prosthesis
US8956404B2 (en) 2011-09-12 2015-02-17 Highlife Sas Transcatheter valve prosthesis
WO2013037519A1 (en) 2011-09-12 2013-03-21 Highlife Sas Transcatheter valve prosthesis
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
JP6151705B2 (en) 2011-10-19 2017-06-21 トゥエルヴ, インコーポレイテッド Devices, systems and methods for heart valve replacement
WO2013059747A1 (en) 2011-10-19 2013-04-25 Foundry Newco Xii, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9655722B2 (en) 2011-10-19 2017-05-23 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9763780B2 (en) 2011-10-19 2017-09-19 Twelve, Inc. Devices, systems and methods for heart valve replacement
US11202704B2 (en) 2011-10-19 2021-12-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US8858623B2 (en) 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
EP2881083B1 (en) 2011-12-12 2017-03-22 David Alon Heart valve repair device
US9827092B2 (en) * 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
WO2013128432A1 (en) * 2012-02-28 2013-09-06 Mvalve Technologies Ltd. Cardiac valve support structure
US9579198B2 (en) 2012-03-01 2017-02-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
BR112014022075B1 (en) * 2012-03-06 2021-05-25 Highlife Sas treatment catheter member with wrap-around function
US20130274873A1 (en) * 2012-03-22 2013-10-17 Symetis Sa Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage
ES2535295T3 (en) * 2012-03-23 2015-05-08 Sorin Group Italia S.R.L. Folding valve prosthesis
US9011515B2 (en) 2012-04-19 2015-04-21 Caisson Interventional, LLC Heart valve assembly systems and methods
US9427315B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
DK2852354T3 (en) * 2012-05-20 2020-08-24 Tel Hashomer Medical Res Infrastructure & Services Ltd ARTIFICIAL MITRAL CLAP
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US8961594B2 (en) 2012-05-31 2015-02-24 4Tech Inc. Heart valve repair system
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US9675454B2 (en) 2012-07-30 2017-06-13 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
ES2735536T3 (en) 2012-08-10 2019-12-19 Sorin Group Italia Srl A valve prosthesis and a kit
US9232995B2 (en) * 2013-01-08 2016-01-12 Medtronic, Inc. Valve prosthesis and method for delivery
US10206775B2 (en) 2012-08-13 2019-02-19 Medtronic, Inc. Heart valve prosthesis
US9610156B2 (en) 2012-09-14 2017-04-04 Millipede, Inc. Mitral valve inversion prostheses
US10849755B2 (en) 2012-09-14 2020-12-01 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
US10543088B2 (en) 2012-09-14 2020-01-28 Boston Scientific Scimed, Inc. Mitral valve inversion prostheses
US9216018B2 (en) 2012-09-29 2015-12-22 Mitralign, Inc. Plication lock delivery system and method of use thereof
EP3517052A1 (en) 2012-10-23 2019-07-31 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
WO2014064695A2 (en) 2012-10-23 2014-05-01 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
US10327901B2 (en) 2012-11-20 2019-06-25 Innovheart S.R.L. Device for the deployment of a system of guide wires within a cardiac chamber for implanting a prosthetic heart valve
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
US8986371B2 (en) 2013-01-08 2015-03-24 Medtronic CV Luxembourg S.a.r.l. Method of treating paravalvular leakage after prosthetic valve implantation
US9066801B2 (en) 2013-01-08 2015-06-30 Medtronic, Inc. Valve prosthesis and method for delivery
CN105007832B (en) 2013-01-09 2018-01-23 4科技有限公司 Organize ancora equipment
ES2934670T3 (en) 2013-01-24 2023-02-23 Cardiovalve Ltd Ventricularly Anchored Prosthetic Valves
CA2899002C (en) * 2013-01-25 2022-11-29 Medtentia International Ltd Oy A medical system, a device for collecting chordae and/or leaflets and a method therefor.
US9439763B2 (en) * 2013-02-04 2016-09-13 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US9724084B2 (en) 2013-02-26 2017-08-08 Mitralign, Inc. Devices and methods for percutaneous tricuspid valve repair
US10583002B2 (en) * 2013-03-11 2020-03-10 Neovasc Tiara Inc. Prosthetic valve with anti-pivoting mechanism
CN105208978B (en) 2013-03-14 2016-12-07 4科技有限公司 There is the support of tether interface
US9730791B2 (en) * 2013-03-14 2017-08-15 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US20140277427A1 (en) * 2013-03-14 2014-09-18 Cardiaq Valve Technologies, Inc. Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US10307241B2 (en) 2013-03-14 2019-06-04 Suzhou Jiecheng Medical Technology Co., Ltd. Embolic protection devices and methods of use
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
US11259923B2 (en) 2013-03-14 2022-03-01 Jc Medical, Inc. Methods and devices for delivery of a prosthetic valve
US11406497B2 (en) 2013-03-14 2022-08-09 Jc Medical, Inc. Heart valve prosthesis
WO2014152503A1 (en) 2013-03-15 2014-09-25 Mitralign, Inc. Translation catheters, systems, and methods of use thereof
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
EP2991599A4 (en) * 2013-05-03 2016-12-21 Cormatrix Cardiovascular Inc Prosthetic valve delivery and mounting apparatus and system
CN108272536B (en) 2013-05-20 2020-03-03 托尔福公司 Implantable heart valve devices, mitral valve repair devices, and associated systems and methods
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
CA2914856C (en) 2013-06-25 2021-03-09 Chad Perrin Thrombus management and structural compliance features for prosthetic heart valves
CA2916955A1 (en) 2013-07-26 2015-01-29 Impala, Inc. Systems and methods for sealing openings in an anatomical wall
WO2015017689A1 (en) 2013-08-01 2015-02-05 Robert Vidlund Epicardial anchor devices and methods
EP2835112B1 (en) 2013-08-08 2021-01-27 Sorin Group Italia S.r.l. Heart valve prosthesis
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
WO2015058039A1 (en) 2013-10-17 2015-04-23 Robert Vidlund Apparatus and methods for alignment and deployment of intracardiac devices
US10299793B2 (en) 2013-10-23 2019-05-28 Valtech Cardio, Ltd. Anchor magazine
EP3062744B1 (en) 2013-10-28 2020-01-22 Tendyne Holdings, Inc. Prosthetic heart valve and systems for delivering the same
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US10022114B2 (en) 2013-10-30 2018-07-17 4Tech Inc. Percutaneous tether locking
US10052095B2 (en) 2013-10-30 2018-08-21 4Tech Inc. Multiple anchoring-point tension system
WO2015063580A2 (en) 2013-10-30 2015-05-07 4Tech Inc. Multiple anchoring-point tension system
EP3071149B1 (en) * 2013-11-19 2022-06-01 St. Jude Medical, Cardiology Division, Inc. Sealing structures for paravalvular leak protection
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
CA3160505A1 (en) 2014-02-04 2015-08-13 Innovheart S.R.L. Prosthetic device for a heart valve
WO2015120122A2 (en) 2014-02-05 2015-08-13 Robert Vidlund Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
AU2015221862B2 (en) * 2014-02-28 2019-05-02 Highlife Sas Transcatheter valve prosthesis
US9889003B2 (en) * 2014-03-11 2018-02-13 Highlife Sas Transcatheter valve prosthesis
WO2015128747A2 (en) * 2014-02-28 2015-09-03 Highlife Sas Transcatheter valve prosthesis
US9763779B2 (en) * 2014-03-11 2017-09-19 Highlife Sas Transcatheter valve prosthesis
US10064719B2 (en) * 2014-03-11 2018-09-04 Highlife Sas Transcatheter valve prosthesis
USD755384S1 (en) 2014-03-05 2016-05-03 Edwards Lifesciences Cardiaq Llc Stent
JP6865037B2 (en) 2014-03-10 2021-04-28 テンダイン ホールディングス,インコーポレイテッド Devices and methods for positioning the artificial mitral valve and monitoring the tether load of the artificial mitral valve
US9687343B2 (en) 2014-03-11 2017-06-27 Highlife Sas Transcatheter valve prosthesis
US9572666B2 (en) 2014-03-17 2017-02-21 Evalve, Inc. Mitral valve fixation device removal devices and methods
US9763778B2 (en) * 2014-03-18 2017-09-19 St. Jude Medical, Cardiology Division, Inc. Aortic insufficiency valve percutaneous valve anchoring
CR20160424A (en) * 2014-03-26 2016-12-08 St Jude Medical Cardiology Div Inc Transcather mitral valve stent frames
US11712230B2 (en) 2014-05-02 2023-08-01 W. L. Gore & Associates, Inc. Occluder and anastomosis devices
US9993251B2 (en) * 2014-05-02 2018-06-12 W. L. Gore & Associates, Inc. Anastomosis devices
CN106456321B (en) 2014-05-14 2019-08-27 索林集团意大利有限责任公司 It is implanted into equipment and implantation external member
US9532870B2 (en) * 2014-06-06 2017-01-03 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
CN106573129B (en) 2014-06-19 2019-09-24 4科技有限公司 Heart tissue is tightened
EP3160395A4 (en) 2014-06-25 2018-08-08 Canary Medical Inc. Devices, systems and methods for using and monitoring heart valves
US9180005B1 (en) 2014-07-17 2015-11-10 Millipede, Inc. Adjustable endolumenal mitral valve ring
US10524910B2 (en) 2014-07-30 2020-01-07 Mitraltech Ltd. 3 Ariel Sharon Avenue Articulatable prosthetic valve
EP3922213A1 (en) 2014-10-14 2021-12-15 Valtech Cardio, Ltd. Leaflet-restraining techniques
US9907547B2 (en) 2014-12-02 2018-03-06 4Tech Inc. Off-center tissue anchors
CN107405195B (en) 2015-01-07 2020-09-08 坦迪尼控股股份有限公司 Artificial mitral valve and apparatus and method for delivering artificial mitral valve
EP3253333B1 (en) 2015-02-05 2024-04-03 Cardiovalve Ltd Prosthetic valve with axially-sliding frames
ES2877699T3 (en) 2015-02-05 2021-11-17 Tendyne Holdings Inc Prosthetic Heart Valve with Ligation and Expandable Epicardial Pad
US9974651B2 (en) 2015-02-05 2018-05-22 Mitral Tech Ltd. Prosthetic valve with axially-sliding frames
JP6735294B2 (en) 2015-02-13 2020-08-05 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Implantable heart valve device
CN107249482B (en) 2015-02-17 2021-01-05 美敦力瓦斯科尔勒公司 Method for anchoring a heart valve prosthesis in a transcatheter valve implantation procedure
US20160256269A1 (en) 2015-03-05 2016-09-08 Mitralign, Inc. Devices for treating paravalvular leakage and methods use thereof
WO2016154166A1 (en) * 2015-03-24 2016-09-29 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
WO2016168609A1 (en) 2015-04-16 2016-10-20 Tendyne Holdings, Inc. Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves
CN107847320B (en) 2015-04-30 2020-03-17 瓦尔泰克卡迪欧有限公司 Valvuloplasty techniques
US10376363B2 (en) 2015-04-30 2019-08-13 Edwards Lifesciences Cardiaq Llc Replacement mitral valve, delivery system for replacement mitral valve and methods of use
AU2016262564B2 (en) 2015-05-14 2020-11-05 Cephea Valve Technologies, Inc. Replacement mitral valves
GB2539444A (en) 2015-06-16 2016-12-21 Ucl Business Plc Prosthetic heart valve
US10376673B2 (en) 2015-06-19 2019-08-13 Evalve, Inc. Catheter guiding system and methods
CN111658234B (en) 2015-08-21 2023-03-10 托尔福公司 Implantable heart valve devices, mitral valve repair devices, and associated systems and methods
US10034747B2 (en) 2015-08-27 2018-07-31 Medtronic Vascular, Inc. Prosthetic valve system having a docking component and a prosthetic valve component
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
US10335275B2 (en) 2015-09-29 2019-07-02 Millipede, Inc. Methods for delivery of heart valve devices using intravascular ultrasound imaging
US10456243B2 (en) * 2015-10-09 2019-10-29 Medtronic Vascular, Inc. Heart valves prostheses and methods for percutaneous heart valve replacement
CN109172046B (en) 2015-11-06 2022-02-11 麦克尔有限公司 Mitral valve prosthesis
JP6892446B2 (en) 2015-11-17 2021-06-23 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Implantable equipment and delivery system to reshape the heart valve annulus
ES2777609T3 (en) 2015-12-03 2020-08-05 Tendyne Holdings Inc Framework Features for Prosthetic Mitral Valves
EP3397206B1 (en) 2015-12-28 2022-06-08 Tendyne Holdings, Inc. Atrial pocket closures for prosthetic heart valves
EP3397208B1 (en) 2015-12-30 2020-12-02 Caisson Interventional, LLC Systems for heart valve therapy
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
EP3397207A4 (en) 2015-12-30 2019-09-11 Mitralign, Inc. System and method for reducing tricuspid regurgitation
CA3007670A1 (en) 2016-01-29 2017-08-03 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
US10321992B2 (en) 2016-02-01 2019-06-18 Medtronic, Inc. Heart valve prostheses having multiple support arms and methods for percutaneous heart valve replacement
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
CN116172753A (en) 2016-04-29 2023-05-30 美敦力瓦斯科尔勒公司 Prosthetic heart valve devices having tethered anchors and associated systems and methods
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US10702274B2 (en) 2016-05-26 2020-07-07 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
US11039921B2 (en) 2016-06-13 2021-06-22 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
US10588745B2 (en) 2016-06-20 2020-03-17 Medtronic Vascular, Inc. Modular valve prosthesis, delivery system, and method of delivering and deploying a modular valve prosthesis
CN109640887B (en) 2016-06-30 2021-03-16 坦迪尼控股股份有限公司 Prosthetic heart valve and apparatus and method for delivering same
US10736632B2 (en) 2016-07-06 2020-08-11 Evalve, Inc. Methods and devices for valve clip excision
GB201611910D0 (en) 2016-07-08 2016-08-24 Valtech Cardio Ltd Adjustable annuloplasty device with alternating peaks and troughs
EP3484411A1 (en) 2016-07-12 2019-05-22 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
US10639151B2 (en) 2016-07-29 2020-05-05 Cephea Valve Technologies, Inc. Threaded coil
US10974027B2 (en) 2016-07-29 2021-04-13 Cephea Valve Technologies, Inc. Combination steerable catheter and systems
US11324495B2 (en) 2016-07-29 2022-05-10 Cephea Valve Technologies, Inc. Systems and methods for delivering an intravascular device to the mitral annulus
US10646689B2 (en) 2016-07-29 2020-05-12 Cephea Valve Technologies, Inc. Mechanical interlock for catheters
US10661052B2 (en) 2016-07-29 2020-05-26 Cephea Valve Technologies, Inc. Intravascular device delivery sheath
US20190231525A1 (en) 2016-08-01 2019-08-01 Mitraltech Ltd. Minimally-invasive delivery systems
USD800908S1 (en) 2016-08-10 2017-10-24 Mitraltech Ltd. Prosthetic valve element
WO2018029680A1 (en) 2016-08-10 2018-02-15 Mitraltech Ltd. Prosthetic valve with concentric frames
US10933216B2 (en) 2016-08-29 2021-03-02 Cephea Valve Technologies, Inc. Multilumen catheter
US10751485B2 (en) 2016-08-29 2020-08-25 Cephea Valve Technologies, Inc. Methods, systems, and devices for sealing and flushing a delivery system
US11045315B2 (en) 2016-08-29 2021-06-29 Cephea Valve Technologies, Inc. Methods of steering and delivery of intravascular devices
US11109967B2 (en) 2016-08-29 2021-09-07 Cephea Valve Technologies, Inc. Systems and methods for loading and deploying an intravascular device
US10575946B2 (en) 2016-09-01 2020-03-03 Medtronic Vascular, Inc. Heart valve prosthesis and separate support flange for attachment thereto
US10874512B2 (en) 2016-10-05 2020-12-29 Cephea Valve Technologies, Inc. System and methods for delivering and deploying an artificial heart valve within the mitral annulus
US11071564B2 (en) 2016-10-05 2021-07-27 Evalve, Inc. Cardiac valve cutting device
EP3525725B1 (en) 2016-10-13 2024-04-24 Boston Scientific Scimed, Inc. Replacement heart valve with diaphragm
US10363138B2 (en) 2016-11-09 2019-07-30 Evalve, Inc. Devices for adjusting the curvature of cardiac valve structures
US10398553B2 (en) 2016-11-11 2019-09-03 Evalve, Inc. Opposing disk device for grasping cardiac valve tissue
US10631981B2 (en) 2016-11-15 2020-04-28 Cephea Valve Technologies, Inc. Delivery catheter distal cap
CA3042588A1 (en) 2016-11-21 2018-05-24 Neovasc Tiara Inc. Methods and systems for rapid retraction of a transcatheter heart valve delivery system
US10524934B2 (en) * 2016-12-30 2020-01-07 Zimmer, Inc. Shoulder arthroplasty trial device
US11253357B2 (en) 2017-01-11 2022-02-22 Mitrassist Medical Ltd. Multi-level cardiac implant
CN110621260B (en) 2017-01-23 2022-11-25 科菲瓣膜技术有限公司 Replacement mitral valve
EP4209196A1 (en) * 2017-01-23 2023-07-12 Cephea Valve Technologies, Inc. Replacement mitral valves
WO2018148584A1 (en) 2017-02-10 2018-08-16 Millipede, Inc. Implantable device and delivery system for reshaping a heart valve annulus
CN110678149B (en) 2017-03-27 2021-12-21 楚利福医疗有限公司 Device for treating a diseased mitral valve comprising a docking element
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US10575950B2 (en) 2017-04-18 2020-03-03 Twelve, Inc. Hydraulic systems for delivering prosthetic heart valve devices and associated methods
US11724075B2 (en) 2017-04-18 2023-08-15 W. L. Gore & Associates, Inc. Deployment constraining sheath that enables staged deployment by device section
PL3682854T3 (en) * 2017-04-18 2022-04-04 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10702378B2 (en) 2017-04-18 2020-07-07 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
US10433961B2 (en) 2017-04-18 2019-10-08 Twelve, Inc. Delivery systems with tethers for prosthetic heart valve devices and associated methods
US10792151B2 (en) 2017-05-11 2020-10-06 Twelve, Inc. Delivery systems for delivering prosthetic heart valve devices and associated methods
US10646338B2 (en) 2017-06-02 2020-05-12 Twelve, Inc. Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods
US10709591B2 (en) 2017-06-06 2020-07-14 Twelve, Inc. Crimping device and method for loading stents and prosthetic heart valves
US10786352B2 (en) 2017-07-06 2020-09-29 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10729541B2 (en) 2017-07-06 2020-08-04 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
WO2019014473A1 (en) 2017-07-13 2019-01-17 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US10537426B2 (en) 2017-08-03 2020-01-21 Cardiovalve Ltd. Prosthetic heart valve
US10888421B2 (en) 2017-09-19 2021-01-12 Cardiovalve Ltd. Prosthetic heart valve with pouch
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
WO2019028264A1 (en) 2017-08-03 2019-02-07 The Regents Of The University Of California Atrial cage for placement, securing and anchoring of atrioventricular valves
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
US10575948B2 (en) 2017-08-03 2020-03-03 Cardiovalve Ltd. Prosthetic heart valve
US11819405B2 (en) 2017-09-19 2023-11-21 Cardiovalve Ltd. Prosthetic valve with inflatable cuff configured for radial extension
CN111263622A (en) 2017-08-25 2020-06-09 内奥瓦斯克迪亚拉公司 Sequentially deployed transcatheter mitral valve prosthesis
WO2019046099A1 (en) 2017-08-28 2019-03-07 Tendyne Holdings, Inc. Prosthetic heart valves with tether coupling features
US9895226B1 (en) 2017-10-19 2018-02-20 Mitral Tech Ltd. Techniques for use with prosthetic valve leaflets
EP3697346B1 (en) 2017-10-20 2022-01-19 Boston Scientific Scimed, Inc. Heart valve repair implant for treating tricuspid regurgitation
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
GB201720803D0 (en) 2017-12-13 2018-01-24 Mitraltech Ltd Prosthetic Valve and delivery tool therefor
CN210582753U (en) 2018-01-07 2020-05-22 苏州杰成医疗科技有限公司 Delivery system for delivering a valve prosthesis
CN111712216B (en) 2018-01-07 2024-01-26 苏州杰成医疗科技有限公司 Heart valve prosthesis and delivery
GB201800399D0 (en) 2018-01-10 2018-02-21 Mitraltech Ltd Temperature-control during crimping of an implant
WO2019145947A1 (en) 2018-01-24 2019-08-01 Valtech Cardio, Ltd. Contraction of an annuloplasty structure
EP3743014B1 (en) 2018-01-26 2023-07-19 Edwards Lifesciences Innovation (Israel) Ltd. Techniques for facilitating heart valve tethering and chord replacement
CN111787885A (en) * 2018-02-22 2020-10-16 美敦力瓦斯科尔勒公司 Prosthetic heart valve delivery systems and methods
WO2019195860A2 (en) 2018-04-04 2019-10-10 Vdyne, Llc Devices and methods for anchoring transcatheter heart valve
US11147673B2 (en) 2018-05-22 2021-10-19 Boston Scientific Scimed, Inc. Percutaneous papillary muscle relocation
WO2019224577A1 (en) 2018-05-23 2019-11-28 Sorin Group Italia S.R.L. A cardiac valve prosthesis
CR20210020A (en) 2018-07-12 2021-07-21 Valtech Cardio Ltd Annuloplasty systems and locking tools therefor
US20200069415A1 (en) * 2018-08-30 2020-03-05 Edwards Lifesciences Corporation Systems and methods for sizing and implanting prosthetic heart valves
US10779946B2 (en) 2018-09-17 2020-09-22 Cardiovalve Ltd. Leaflet-testing apparatus
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US11071627B2 (en) 2018-10-18 2021-07-27 Vdyne, Inc. Orthogonally delivered transcatheter heart valve frame for valve in valve prosthesis
US10595994B1 (en) 2018-09-20 2020-03-24 Vdyne, Llc Side-delivered transcatheter heart valve replacement
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US10321995B1 (en) 2018-09-20 2019-06-18 Vdyne, Llc Orthogonally delivered transcatheter heart valve replacement
US11395738B2 (en) 2018-09-25 2022-07-26 Truleaf Medical Ltd. Docking elements
US11109969B2 (en) 2018-10-22 2021-09-07 Vdyne, Inc. Guidewire delivery of transcatheter heart valve
CA3118599A1 (en) 2018-11-08 2020-05-14 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
US11724068B2 (en) 2018-11-16 2023-08-15 Cephea Valve Technologies, Inc. Intravascular delivery system
US10653522B1 (en) 2018-12-20 2020-05-19 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valve prosthesis
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
US11185409B2 (en) 2019-01-26 2021-11-30 Vdyne, Inc. Collapsible inner flow control component for side-delivered transcatheter heart valve prosthesis
EP4364706A2 (en) 2019-03-05 2024-05-08 Vdyne, Inc. Tricuspid regurgitation control devices for orthogonal transcatheter heart valve prosthesis
JP7430732B2 (en) 2019-03-08 2024-02-13 ニオバスク ティアラ インコーポレイテッド Retrievable prosthesis delivery system
US11173027B2 (en) 2019-03-14 2021-11-16 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US10631983B1 (en) 2019-03-14 2020-04-28 Vdyne, Inc. Distal subannular anchoring tab for side-delivered transcatheter valve prosthesis
US10758346B1 (en) 2019-03-14 2020-09-01 Vdyne, Inc. A2 clip for side-delivered transcatheter mitral valve prosthesis
US11076956B2 (en) 2019-03-14 2021-08-03 Vdyne, Inc. Proximal, distal, and anterior anchoring tabs for side-delivered transcatheter mitral valve prosthesis
CA3135753C (en) 2019-04-01 2023-10-24 Neovasc Tiara Inc. Controllably deployable prosthetic valve
US11491006B2 (en) 2019-04-10 2022-11-08 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
CN114072106A (en) 2019-05-04 2022-02-18 维迪内股份有限公司 Cinching device and method for deploying a laterally delivered prosthetic heart valve in a native annulus
EP3972673A4 (en) 2019-05-20 2023-06-07 Neovasc Tiara Inc. Introducer with hemostasis mechanism
US11311376B2 (en) 2019-06-20 2022-04-26 Neovase Tiara Inc. Low profile prosthetic mitral valve
CN114599316A (en) 2019-08-20 2022-06-07 维迪内股份有限公司 Delivery and retrieval devices and methods for sidedly deliverable transcatheter prosthetic valves
CA3152632A1 (en) 2019-08-26 2021-03-04 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
CA3142906A1 (en) 2019-10-29 2021-05-06 Valtech Cardio, Ltd. Annuloplasty and tissue anchor technologies
EP3831343B1 (en) 2019-12-05 2024-01-31 Tendyne Holdings, Inc. Braided anchor for mitral valve
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
US11951002B2 (en) 2020-03-30 2024-04-09 Tendyne Holdings, Inc. Apparatus and methods for valve and tether fixation
US11707355B2 (en) 2020-05-28 2023-07-25 Medtronic, Inc. Modular heart valve prosthesis
US11938022B2 (en) 2020-06-26 2024-03-26 Highlife Sas Transcatheter valve prosthesis and method for implanting the same
US11857417B2 (en) 2020-08-16 2024-01-02 Trilio Medical Ltd. Leaflet support
WO2022039853A1 (en) 2020-08-19 2022-02-24 Tendyne Holdings, Inc. Fully-transseptal apical pad with pulley for tensioning
US11701224B1 (en) * 2022-06-28 2023-07-18 Seven Summits Medical, Inc. Prosthetic heart valve for multiple positions and applications
US11931256B1 (en) 2023-09-19 2024-03-19 Seven Summits Medical, Inc. Expandable prosthetic heart valve

Family Cites Families (288)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES474582A1 (en) 1978-10-26 1979-11-01 Aranguren Duo Iker Process for installing mitral valves in their anatomical space by attaching cords to an artificial stent
US5108420A (en) 1991-02-01 1992-04-28 Temple University Aperture occlusion device
US6074417A (en) 1992-11-16 2000-06-13 St. Jude Medical, Inc. Total mitral heterologous bioprosthesis to be used in mitral or tricuspid heart replacement
US6283127B1 (en) 1992-12-03 2001-09-04 Wesley D. Sterman Devices and methods for intracardiac procedures
US5607444A (en) 1993-12-02 1997-03-04 Advanced Cardiovascular Systems, Inc. Ostial stent for bifurcations
US5607470A (en) 1995-05-01 1997-03-04 Milo; Simcha Suture rings for prosthetic heart valves
US6616675B1 (en) 1996-02-02 2003-09-09 Transvascular, Inc. Methods and apparatus for connecting openings formed in adjacent blood vessels or other anatomical structures
US6402780B2 (en) 1996-02-23 2002-06-11 Cardiovascular Technologies, L.L.C. Means and method of replacing a heart valve in a minimally invasive manner
US6007544A (en) 1996-06-14 1999-12-28 Beth Israel Deaconess Medical Center Catheter apparatus having an improved shape-memory alloy cuff and inflatable on-demand balloon for creating a bypass graft in-vivo
US6599316B2 (en) 1996-11-04 2003-07-29 Advanced Stent Technologies, Inc. Extendible stent apparatus
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
IL131063A (en) 1997-01-24 2005-07-25 Kentucky Oil N V Bistable spring construction for a stent and other medical apparatus
US6409755B1 (en) 1997-05-29 2002-06-25 Scimed Life Systems, Inc. Balloon expandable stent with a self-expanding portion
WO1999011201A2 (en) 1997-09-04 1999-03-11 Endocore, Inc. Artificial chordae replacement
US6120534A (en) 1997-10-29 2000-09-19 Ruiz; Carlos E. Endoluminal prosthesis having adjustable constriction
US6332893B1 (en) 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
US6530952B2 (en) 1997-12-29 2003-03-11 The Cleveland Clinic Foundation Bioprosthetic cardiovascular valve system
EP1051128B1 (en) 1998-01-30 2006-03-15 St. Jude Medical ATG, Inc. Medical graft connector or plug structures, and methods of making
US6260552B1 (en) 1998-07-29 2001-07-17 Myocor, Inc. Transventricular implant tools and devices
US6113612A (en) 1998-11-06 2000-09-05 St. Jude Medical Cardiovascular Group, Inc. Medical anastomosis apparatus
US6152937A (en) 1998-11-06 2000-11-28 St. Jude Medical Cardiovascular Group, Inc. Medical graft connector and methods of making and installing same
US20040267349A1 (en) 2003-06-27 2004-12-30 Kobi Richter Amorphous metal alloy medical devices
US6558418B2 (en) 1999-01-26 2003-05-06 Edwards Lifesciences Corporation Flexible heart valve
JP2002535632A (en) * 1999-01-26 2002-10-22 エドワーズ ライフサイエンシーズ コーポレイション Anatomical orifice size measuring device and orifice size measuring method
US6736845B2 (en) 1999-01-26 2004-05-18 Edwards Lifesciences Corporation Holder for flexible heart valve
US6425916B1 (en) 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
AU3729400A (en) 1999-03-09 2000-09-28 St. Jude Medical Cardiovascular Group, Inc. Medical grafting methods and apparatus
DE60045429D1 (en) 1999-04-09 2011-02-03 Evalve Inc Device for heart valve surgery
US7604646B2 (en) 1999-04-09 2009-10-20 Evalve, Inc. Locking mechanisms for fixation devices and methods of engaging tissue
US6428550B1 (en) 1999-05-18 2002-08-06 Cardica, Inc. Sutureless closure and deployment system for connecting blood vessels
US6790229B1 (en) 1999-05-25 2004-09-14 Eric Berreklouw Fixing device, in particular for fixing to vascular wall tissue
US6287339B1 (en) 1999-05-27 2001-09-11 Sulzer Carbomedics Inc. Sutureless heart valve prosthesis
US6699256B1 (en) 1999-06-04 2004-03-02 St. Jude Medical Atg, Inc. Medical grafting apparatus and methods
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US7462162B2 (en) 2001-09-04 2008-12-09 Broncus Technologies, Inc. Antiproliferative devices for maintaining patency of surgically created channels in a body organ
US6440164B1 (en) 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
US6926730B1 (en) 2000-10-10 2005-08-09 Medtronic, Inc. Minimally invasive valve repair procedure and apparatus
US20070043435A1 (en) 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US8016877B2 (en) 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US6602263B1 (en) 1999-11-30 2003-08-05 St. Jude Medical Atg, Inc. Medical grafting methods and apparatus
DE60111184T2 (en) 2000-02-02 2005-10-27 Robert V. Snyders ARTIFICIAL HEART FLAP
US6797002B2 (en) 2000-02-02 2004-09-28 Paul A. Spence Heart valve repair apparatus and methods
DE10010074B4 (en) 2000-02-28 2005-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for fastening and anchoring heart valve prostheses
IL153753A0 (en) 2002-12-30 2003-07-06 Neovasc Medical Ltd Varying-diameter vascular implant and balloon
US6953476B1 (en) 2000-03-27 2005-10-11 Neovasc Medical Ltd. Device and method for treating ischemic heart disease
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US8366769B2 (en) 2000-06-01 2013-02-05 Edwards Lifesciences Corporation Low-profile, pivotable heart valve sewing ring
WO2002001999A2 (en) 2000-06-30 2002-01-10 Viacor, Incorporated Method and apparatus for performing a procedure on a cardiac valve
US6419696B1 (en) 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
US7077861B2 (en) 2000-07-06 2006-07-18 Medtentia Ab Annuloplasty instrument
AU2001287144A1 (en) 2000-09-07 2002-03-22 Viacor, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US7527646B2 (en) 2000-09-20 2009-05-05 Ample Medical, Inc. Devices, systems, and methods for retaining a native heart valve leaflet
US6893459B1 (en) 2000-09-20 2005-05-17 Ample Medical, Inc. Heart valve annulus device and method of using same
US7381220B2 (en) 2000-09-20 2008-06-03 Ample Medical, Inc. Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US6974476B2 (en) 2003-05-05 2005-12-13 Rex Medical, L.P. Percutaneous aortic valve
US7211101B2 (en) 2000-12-07 2007-05-01 Abbott Vascular Devices Methods for manufacturing a clip and clip
US6623510B2 (en) 2000-12-07 2003-09-23 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US6695867B2 (en) 2002-02-21 2004-02-24 Integrated Vascular Systems, Inc. Plunger apparatus and methods for delivering a closure device
US6716244B2 (en) 2000-12-20 2004-04-06 Carbomedics, Inc. Sewing cuff assembly for heart valves
US8038708B2 (en) 2001-02-05 2011-10-18 Cook Medical Technologies Llc Implantable device with remodelable material and covering material
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US20050148925A1 (en) 2001-04-20 2005-07-07 Dan Rottenberg Device and method for controlling in-vivo pressure
KR100393548B1 (en) 2001-06-05 2003-08-02 주식회사 엠아이텍 Stent
FR2826863B1 (en) 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
FR2828263B1 (en) 2001-08-03 2007-05-11 Philipp Bonhoeffer DEVICE FOR IMPLANTATION OF AN IMPLANT AND METHOD FOR IMPLANTATION OF THE DEVICE
CA2870392C (en) 2001-10-04 2017-11-14 Neovasc Medical Ltd. Flow reducing implant
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US20090112302A1 (en) 2001-11-28 2009-04-30 Josh Stafford Devices, systems, and methods for endovascular staple and/or prosthesis delivery and implantation
AU2002353807B2 (en) 2001-11-28 2008-08-14 Aptus Endosystems, Inc. Endovascular aneurysm repair system
US7201771B2 (en) 2001-12-27 2007-04-10 Arbor Surgical Technologies, Inc. Bioprosthetic heart valve
US7033390B2 (en) 2002-01-02 2006-04-25 Medtronic, Inc. Prosthetic heart valve system
US6764510B2 (en) 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US20030139819A1 (en) 2002-01-18 2003-07-24 Beer Nicholas De Method and apparatus for closing septal defects
US7029482B1 (en) 2002-01-22 2006-04-18 Cardica, Inc. Integrated anastomosis system
US8430934B2 (en) 2002-03-01 2013-04-30 Regents Of The University Of Minnesota Vascular occlusion device
US7094244B2 (en) 2002-03-26 2006-08-22 Edwards Lifesciences Corporation Sequential heart valve leaflet repair device and method of use
US7288111B1 (en) 2002-03-26 2007-10-30 Thoratec Corporation Flexible stent and method of making the same
US6830638B2 (en) 2002-05-24 2004-12-14 Advanced Cardiovascular Systems, Inc. Medical devices configured from deep drawn nickel-titanium alloys and nickel-titanium clad alloys and method of making the same
DE60325355D1 (en) 2002-06-04 2009-01-29 Abbott Vascular Inc SURGICAL CLOSURE AND MOUNTING DEVICE FOR VASCULAR SEALING
US7101395B2 (en) 2002-06-12 2006-09-05 Mitral Interventions, Inc. Method and apparatus for tissue connection
US20060241656A1 (en) 2002-06-13 2006-10-26 Starksen Niel F Delivery devices and methods for heart valve repair
US7041132B2 (en) 2002-08-16 2006-05-09 3F Therapeutics, Inc, Percutaneously delivered heart valve and delivery means thereof
CO5500017A1 (en) 2002-09-23 2005-03-31 3F Therapeutics Inc MITRAL PROTESTIC VALVE
US7335213B1 (en) 2002-11-15 2008-02-26 Abbott Cardiovascular Systems Inc. Apparatus and methods for heart valve repair
US7404824B1 (en) 2002-11-15 2008-07-29 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US6830585B1 (en) 2003-01-14 2004-12-14 3F Therapeutics, Inc. Percutaneously deliverable heart valve and methods of implantation
WO2004082538A2 (en) 2003-03-18 2004-09-30 St. Jude Medical, Inc. Body tissue remodeling apparatus
DE602004023708D1 (en) * 2003-04-24 2009-12-03 Cook Inc ARTIFICIAL FLAP FLAP WITH IMPROVED FLOW BEHAVIOR
DE602004023350D1 (en) 2003-04-30 2009-11-12 Medtronic Vascular Inc Percutaneous inserted provisional valve
CA2526347C (en) 2003-05-20 2010-07-06 The Cleveland Clinic Foundation Apparatus and methods for repair of a cardiac valve
US8052751B2 (en) 2003-07-02 2011-11-08 Flexcor, Inc. Annuloplasty rings for repairing cardiac valves
US7201772B2 (en) 2003-07-08 2007-04-10 Ventor Technologies, Ltd. Fluid flow prosthetic device
EP1648339B2 (en) 2003-07-08 2020-06-17 Ventor Technologies Ltd. Implantable prosthetic devices particularly for transarterial delivery in the treatment of aortic stenosis, and methods of implanting such devices
AU2004258942B2 (en) 2003-07-21 2009-12-03 The Trustees Of The University Of Pennsylvania Percutaneous heart valve
DE10335648A1 (en) 2003-07-30 2005-03-03 Eberhard-Karls-Universität Tübingen Closing plug for an opening in a wall of a vessel or hollow organ
US8298280B2 (en) 2003-08-21 2012-10-30 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US20050075725A1 (en) 2003-10-02 2005-04-07 Rowe Stanton J. Implantable prosthetic valve with non-laminar flow
US20050075730A1 (en) 2003-10-06 2005-04-07 Myers Keith E. Minimally invasive valve replacement system
US10219899B2 (en) 2004-04-23 2019-03-05 Medtronic 3F Therapeutics, Inc. Cardiac valve replacement systems
ITBO20030631A1 (en) 2003-10-23 2005-04-24 Roberto Erminio Parravicini VALVULAR PROSTHETIC EQUIPMENT, IN PARTICULAR FOR HEART APPLICATIONS.
US7955384B2 (en) 2003-11-12 2011-06-07 Medtronic Vascular, Inc. Coronary sinus approach for repair of mitral valve regurgitation
IL158960A0 (en) 2003-11-19 2004-05-12 Neovasc Medical Ltd Vascular implant
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
EP2529696B1 (en) 2003-12-23 2014-01-29 Sadra Medical, Inc. Repositionable heart valve
US8052749B2 (en) 2003-12-23 2011-11-08 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US8343213B2 (en) * 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US7329279B2 (en) 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US20050137691A1 (en) * 2003-12-23 2005-06-23 Sadra Medical Two piece heart valve and anchor
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
AU2003299404A1 (en) 2003-12-23 2005-08-11 Laboratoires Perouse Kit which is intended to be implanted in a conduit
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US7871435B2 (en) 2004-01-23 2011-01-18 Edwards Lifesciences Corporation Anatomically approximate prosthetic mitral heart valve
WO2005082289A1 (en) 2004-02-20 2005-09-09 Cook Incorporated Prosthetic valve with spacing member
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
WO2005086888A2 (en) 2004-03-09 2005-09-22 Fidel Realyvasquez Off pump aortic valve replacement for valve prosthesis
US8979922B2 (en) 2004-03-11 2015-03-17 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous heart valve prosthesis
NL1025830C2 (en) 2004-03-26 2005-02-22 Eric Berreklouw Prosthesis e.g. heart valve secured in place by ring with shape memory material anchor, includes anchor temperature control system
US8048140B2 (en) 2004-03-31 2011-11-01 Cook Medical Technologies Llc Fenestrated intraluminal stent system
EP2856949B2 (en) 2004-04-08 2019-09-11 Aga Medical Corporation Flanged occlusion devices
US7445630B2 (en) 2004-05-05 2008-11-04 Direct Flow Medical, Inc. Method of in situ formation of translumenally deployable heart valve support
EP1786367B1 (en) 2004-08-27 2013-04-03 Cook Medical Technologies LLC Placement of multiple intraluminal medical devices within a body vessel
US7455688B2 (en) 2004-11-12 2008-11-25 Con Interventional Systems, Inc. Ostial stent
EP2353494B1 (en) 2005-02-08 2014-07-30 Koninklijke Philips N.V. System for percutaneous glossoplasty
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
US8685086B2 (en) 2006-02-18 2014-04-01 The Cleveland Clinic Foundation Apparatus and method for replacing a diseased cardiac valve
US20060195186A1 (en) 2005-02-28 2006-08-31 Drews Michael J Connectors for two piece heart valves and methods for implanting such heart valves
US9492276B2 (en) 2005-03-25 2016-11-15 St. Jude Medical, Cardiology Division, Inc. Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen
US20060271171A1 (en) * 2005-04-01 2006-11-30 Mcquinn Tim C Artificial heart valve
US8062359B2 (en) 2005-04-06 2011-11-22 Edwards Lifesciences Corporation Highly flexible heart valve connecting band
US7513909B2 (en) 2005-04-08 2009-04-07 Arbor Surgical Technologies, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US8317855B2 (en) 2005-05-26 2012-11-27 Boston Scientific Scimed, Inc. Crimpable and expandable side branch cell
US8211169B2 (en) 2005-05-27 2012-07-03 Medtronic, Inc. Gasket with collar for prosthetic heart valves and methods for using them
US8974523B2 (en) * 2005-05-27 2015-03-10 Hlt, Inc. Stentless support structure
US9089423B2 (en) 2010-05-10 2015-07-28 Hlt, Inc. Stentless support structure
US7780723B2 (en) 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
US20070162111A1 (en) 2005-07-06 2007-07-12 The Cleveland Clinic Foundation Apparatus and method for replacing a cardiac valve
US7682391B2 (en) 2005-07-13 2010-03-23 Edwards Lifesciences Corporation Methods of implanting a prosthetic mitral heart valve having a contoured sewing ring
WO2007009117A1 (en) 2005-07-13 2007-01-18 Arbor Surgical Technologies, Inc. Two-piece percutaneous prosthetic heart valves and methods for making and using them
US20070038295A1 (en) 2005-08-12 2007-02-15 Cook Incorporated Artificial valve prosthesis having a ring frame
US7582111B2 (en) 2005-08-22 2009-09-01 Incept, Llc Steep-taper flared stents and apparatus and methods for delivering them
AU2006287211B2 (en) 2005-09-01 2012-09-27 Cardinal Health 529, Llc Patent foramen ovale closure method
US7731741B2 (en) 2005-09-08 2010-06-08 Boston Scientific Scimed, Inc. Inflatable bifurcation stent
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
DE102005051849B4 (en) 2005-10-28 2010-01-21 JenaValve Technology Inc., Wilmington Device for implantation and attachment of heart valve prostheses
DE102005052628B4 (en) 2005-11-04 2014-06-05 Jenavalve Technology Inc. Self-expanding, flexible wire mesh with integrated valvular prosthesis for the transvascular heart valve replacement and a system with such a device and a delivery catheter
EP1951352B1 (en) 2005-11-10 2017-01-11 Edwards Lifesciences CardiAQ LLC Balloon-expandable, self-expanding, vascular prosthesis connecting stent
US20070112418A1 (en) 2005-11-14 2007-05-17 Boston Scientific Scimed, Inc. Stent with spiral side-branch support designs
WO2007059483A2 (en) 2005-11-14 2007-05-24 Ev3, Inc. Stent and stent delivery system for ostial locations in a conduit
US8764820B2 (en) 2005-11-16 2014-07-01 Edwards Lifesciences Corporation Transapical heart valve delivery system and method
WO2007062054A2 (en) 2005-11-21 2007-05-31 The Brigham And Women's Hospital, Inc. Percutaneous cardiac valve repair with adjustable artificial chordae
US9125742B2 (en) 2005-12-15 2015-09-08 Georgia Tech Research Foundation Papillary muscle position control devices, systems, and methods
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
EP2583640B1 (en) 2006-02-16 2022-06-22 Venus MedTech (HangZhou), Inc. Minimally invasive replacement heart valve
JP5102279B2 (en) 2006-03-10 2012-12-19 メドトロニック,インコーポレイテッド Artificial valve introducer, method for producing the same and method for using the same
US20070225759A1 (en) 2006-03-22 2007-09-27 Daniel Thommen Method for delivering a medical device to the heart of a patient
DE102006013770A1 (en) 2006-03-24 2007-09-27 Occlutech Gmbh Occlusion instrument and method for its production
EP2004095B1 (en) 2006-03-28 2019-06-12 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
CN101049269B (en) 2006-04-03 2010-12-29 孟坚 Medical use obstruction appliance
US7625403B2 (en) 2006-04-04 2009-12-01 Medtronic Vascular, Inc. Valved conduit designed for subsequent catheter delivered valve therapy
EP2015709B1 (en) 2006-05-05 2013-01-09 Children's Medical Center Corporation Transcatheter heart valve prostheses
CA2657442A1 (en) 2006-06-20 2007-12-27 Aortx, Inc. Prosthetic heart valves, support structures and systems and methods for implanting the same
EP2059191A4 (en) 2006-06-21 2010-03-31 Aortx Inc Prosthetic valve implantation systems
US8449605B2 (en) 2006-06-28 2013-05-28 Kardium Inc. Method for anchoring a mitral valve
WO2008013915A2 (en) 2006-07-28 2008-01-31 Arshad Quadri Percutaneous valve prosthesis and system and method for implanting same
US7871432B2 (en) 2006-08-02 2011-01-18 Medtronic, Inc. Heart valve holder for use in valve implantation procedures
US8529597B2 (en) 2006-08-09 2013-09-10 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
US8840655B2 (en) 2006-08-09 2014-09-23 Coherex Medical, Inc. Systems and devices for reducing the size of an internal tissue opening
US8430926B2 (en) 2006-08-11 2013-04-30 Japd Consulting Inc. Annuloplasty with enhanced anchoring to the annulus based on tissue healing
US8414643B2 (en) 2006-09-19 2013-04-09 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
FR2906454B1 (en) * 2006-09-28 2009-04-10 Perouse Soc Par Actions Simpli IMPLANT INTENDED TO BE PLACED IN A BLOOD CIRCULATION CONDUIT.
US7534261B2 (en) 2006-10-02 2009-05-19 Edwards Lifesciences Corporation Sutureless heart valve attachment
US8029556B2 (en) 2006-10-04 2011-10-04 Edwards Lifesciences Corporation Method and apparatus for reshaping a ventricle
US8163011B2 (en) 2006-10-06 2012-04-24 BioStable Science & Engineering, Inc. Intra-annular mounting frame for aortic valve repair
US7771467B2 (en) 2006-11-03 2010-08-10 The Cleveland Clinic Foundation Apparatus for repairing the function of a native aortic valve
CA2664557C (en) 2006-11-07 2015-05-26 David Stephen Celermajer Devices and methods for the treatment of heart failure
JP2010511469A (en) 2006-12-05 2010-04-15 バルテック カーディオ,リミティド Segmented ring placement
US8236045B2 (en) 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
US8623074B2 (en) 2007-02-16 2014-01-07 Medtronic, Inc. Delivery systems and methods of implantation for replacement prosthetic heart valves
US20080208328A1 (en) 2007-02-23 2008-08-28 Endovalve, Inc. Systems and Methods For Placement of Valve Prosthesis System
US8070802B2 (en) 2007-02-23 2011-12-06 The Trustees Of The University Of Pennsylvania Mitral valve system
US20080208327A1 (en) 2007-02-27 2008-08-28 Rowe Stanton J Method and apparatus for replacing a prosthetic valve
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US8147504B2 (en) 2007-05-05 2012-04-03 Medtronic, Inc. Apparatus and methods for delivering fasteners during valve replacement
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
US20120150218A1 (en) 2007-09-13 2012-06-14 Robert Tyler Sandgren Medical device for occluding a heart defect and a method of manufacturing the same
WO2009052188A1 (en) 2007-10-15 2009-04-23 Edwards Lifesciences Corporation Transcatheter heart valve with micro-anchors
JP5603776B2 (en) 2007-10-25 2014-10-08 サイメティス エスアー Stent, valved stent and method, and delivery system thereof
US8057532B2 (en) 2007-11-28 2011-11-15 Cook Medical Technologies Llc Implantable frame and valve design
US8277501B2 (en) 2007-12-21 2012-10-02 Boston Scientific Scimed, Inc. Bi-stable bifurcated stent petal geometry
US8157853B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8177836B2 (en) 2008-03-10 2012-05-15 Medtronic, Inc. Apparatus and methods for minimally invasive valve repair
EP2282700B1 (en) 2008-04-23 2016-11-02 Medtronic, Inc. Stented heart valve devices
US8136218B2 (en) 2008-04-29 2012-03-20 Medtronic, Inc. Prosthetic heart valve, prosthetic heart valve assembly and method for making same
HUE047259T2 (en) 2008-06-06 2020-04-28 Edwards Lifesciences Corp Low profile transcatheter heart valve
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
WO2010006627A1 (en) 2008-07-17 2010-01-21 Nvt Ag Cardiac valve prosthesis system
US9314335B2 (en) 2008-09-19 2016-04-19 Edwards Lifesciences Corporation Prosthetic heart valve configured to receive a percutaneous prosthetic heart valve implantation
US8287591B2 (en) 2008-09-19 2012-10-16 Edwards Lifesciences Corporation Transformable annuloplasty ring configured to receive a percutaneous prosthetic heart valve implantation
EP2617388B2 (en) 2008-10-10 2019-11-06 Boston Scientific Scimed, Inc. Medical devices and delivery systems for delivering medical devices
US8137398B2 (en) 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8449625B2 (en) 2009-10-27 2013-05-28 Edwards Lifesciences Corporation Methods of measuring heart valve annuluses for valve replacement
US8308798B2 (en) 2008-12-19 2012-11-13 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
US8808368B2 (en) 2008-12-22 2014-08-19 Valtech Cardio, Ltd. Implantation of repair chords in the heart
ES2873182T3 (en) 2008-12-22 2021-11-03 Valtech Cardio Ltd Adjustable annuloplasty devices
US8323312B2 (en) 2008-12-22 2012-12-04 Abbott Laboratories Closure device
US20100174363A1 (en) 2009-01-07 2010-07-08 Endovalve, Inc. One Piece Prosthetic Valve Support Structure and Related Assemblies
WO2010081033A1 (en) 2009-01-08 2010-07-15 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9681950B2 (en) 2009-01-12 2017-06-20 Valve Medical Ltd. System and method for placing a percutaneous valve device
EP2395944B1 (en) 2009-02-11 2020-09-23 Georg Lutter Cathetersystem for reconstruction of an anatomic structure
US20100217382A1 (en) 2009-02-25 2010-08-26 Edwards Lifesciences Mitral valve replacement with atrial anchoring
US8021420B2 (en) 2009-03-12 2011-09-20 Medtronic Vascular, Inc. Prosthetic valve delivery system
US9078751B2 (en) 2009-03-17 2015-07-14 Mitrassist Medical Ltd. Heart valve prosthesis with collapsible valve and method of delivery thereof
US8052741B2 (en) 2009-03-23 2011-11-08 Medtronic Vascular, Inc. Branch vessel prosthesis with a roll-up sealing assembly
CN101919750A (en) 2009-03-30 2010-12-22 卡迪万蒂奇医药公司 There is not the implantation method of sewing up cusps of pulmonary valve or mitral valve
US9980818B2 (en) 2009-03-31 2018-05-29 Edwards Lifesciences Corporation Prosthetic heart valve system with positioning markers
US8986370B2 (en) 2009-04-10 2015-03-24 Lon Sutherland ANNEST Implantable scaffolding containing an orifice for use with a prosthetic or bio-prosthetic valve
US8075611B2 (en) 2009-06-02 2011-12-13 Medtronic, Inc. Stented prosthetic heart valves
WO2010139771A2 (en) 2009-06-03 2010-12-09 Symetis Sa Closure device and methods and systems for using same
US8348998B2 (en) 2009-06-26 2013-01-08 Edwards Lifesciences Corporation Unitary quick connect prosthetic heart valve and deployment system and methods
US8439970B2 (en) 2009-07-14 2013-05-14 Edwards Lifesciences Corporation Transapical delivery system for heart valves
US20110022165A1 (en) 2009-07-23 2011-01-27 Edwards Lifesciences Corporation Introducer for prosthetic heart valve
US8801706B2 (en) 2009-08-27 2014-08-12 Medtronic, Inc. Paravalvular leak closure devices and methods
US20110082538A1 (en) 2009-10-01 2011-04-07 Jonathan Dahlgren Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
US8277502B2 (en) 2009-10-29 2012-10-02 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
US9504562B2 (en) 2010-01-12 2016-11-29 Valve Medical Ltd. Self-assembling modular percutaneous valve and methods of folding, assembly and delivery
US9107749B2 (en) 2010-02-03 2015-08-18 Edwards Lifesciences Corporation Methods for treating a heart
US8926693B2 (en) 2010-02-17 2015-01-06 Medtronic, Inc. Heart valve delivery catheter with safety button
US20110208293A1 (en) 2010-02-23 2011-08-25 Medtronic, Inc. Catheter-Based Heart Valve Therapy System with Sizing Balloon
US9226826B2 (en) 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
US9522062B2 (en) 2010-02-24 2016-12-20 Medtronic Ventor Technologies, Ltd. Mitral prosthesis and methods for implantation
US9072603B2 (en) 2010-02-24 2015-07-07 Medtronic Ventor Technologies, Ltd. Mitral prosthesis and methods for implantation
US8795354B2 (en) 2010-03-05 2014-08-05 Edwards Lifesciences Corporation Low-profile heart valve and delivery system
CA2791390C (en) 2010-03-05 2019-04-16 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
WO2011111047A2 (en) 2010-03-10 2011-09-15 Mitraltech Ltd. Prosthetic mitral valve with tissue anchors
US9320597B2 (en) 2010-03-30 2016-04-26 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with recapturing feature and method
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US8491650B2 (en) 2010-04-08 2013-07-23 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system and method with stretchable stability tube
US8512400B2 (en) 2010-04-09 2013-08-20 Medtronic, Inc. Transcatheter heart valve delivery system with reduced area moment of inertia
US8926692B2 (en) 2010-04-09 2015-01-06 Medtronic, Inc. Transcatheter prosthetic heart valve delivery device with partial deployment and release features and methods
US8512401B2 (en) 2010-04-12 2013-08-20 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with funnel recapturing feature and method
US20110251676A1 (en) 2010-04-12 2011-10-13 Medtronic Vascular, Inc. Sheath for Controlled Delivery of a Heart Valve Prosthesis
US8579963B2 (en) 2010-04-13 2013-11-12 Medtronic, Inc. Transcatheter prosthetic heart valve delivery device with stability tube and method
US20110257721A1 (en) 2010-04-15 2011-10-20 Medtronic, Inc. Prosthetic Heart Valves and Delivery Methods
US8623075B2 (en) 2010-04-21 2014-01-07 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system and method with controlled expansion of prosthetic heart valve
US8740976B2 (en) 2010-04-21 2014-06-03 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with flush report
US8876892B2 (en) 2010-04-21 2014-11-04 Medtronic, Inc. Prosthetic heart valve delivery system with spacing
EP3581151B1 (en) 2010-04-21 2021-03-10 Medtronic, Inc. Prosthetic valve with sealing members
US9629719B2 (en) 2010-04-23 2017-04-25 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8623079B2 (en) 2010-04-23 2014-01-07 Medtronic, Inc. Stents for prosthetic heart valves
US8568474B2 (en) 2010-04-26 2013-10-29 Medtronic, Inc. Transcatheter prosthetic heart valve post-dilatation remodeling devices and methods
JP5688865B2 (en) 2010-04-27 2015-03-25 メドトロニック,インコーポレイテッド Transcatheter prosthetic heart valve delivery device with passive trigger release
US9795482B2 (en) 2010-04-27 2017-10-24 Medtronic, Inc. Prosthetic heart valve devices and methods of valve repair
WO2011139747A1 (en) 2010-04-27 2011-11-10 Medtronic Inc. Transcatheter prosthetic heart valve delivery device with biased release features
US8974475B2 (en) 2010-04-30 2015-03-10 Medtronic, Inc. Methods and devices for cardiac valve repair or replacement
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US9561102B2 (en) 2010-06-02 2017-02-07 Medtronic, Inc. Transcatheter delivery system and method with controlled expansion and contraction of prosthetic heart valve
US9132009B2 (en) 2010-07-21 2015-09-15 Mitraltech Ltd. Guide wires with commissural anchors to advance a prosthetic valve
US8992604B2 (en) 2010-07-21 2015-03-31 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US9326853B2 (en) 2010-07-23 2016-05-03 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
WO2012027384A2 (en) 2010-08-23 2012-03-01 Edwards Lifesciences Corporation Color-coded prosthetic valve system and methods for using the same
US10105224B2 (en) 2010-09-01 2018-10-23 Mvalve Technologies Ltd. Cardiac valve support structure
US9918833B2 (en) 2010-09-01 2018-03-20 Medtronic Vascular Galway Prosthetic valve support structure
EP2618784B1 (en) 2010-09-23 2016-05-25 Edwards Lifesciences CardiAQ LLC Replacement heart valves and delivery devices
US8845720B2 (en) 2010-09-27 2014-09-30 Edwards Lifesciences Corporation Prosthetic heart valve frame with flexible commissures
US8568475B2 (en) 2010-10-05 2013-10-29 Edwards Lifesciences Corporation Spiraled commissure attachment for prosthetic valve
CN103153232B (en) 2010-10-21 2016-09-21 美敦力公司 There is the mitral of low ventricle profile
US9078750B2 (en) 2010-11-30 2015-07-14 Edwards Lifesciences Corporation Ergonomic mitral heart valve holders
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9289282B2 (en) 2011-05-31 2016-03-22 Edwards Lifesciences Corporation System and method for treating valve insufficiency or vessel dilatation
EP3417813B1 (en) 2011-08-05 2020-05-13 Cardiovalve Ltd Percutaneous mitral valve replacement
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US20140350660A1 (en) 2011-12-01 2014-11-27 Graeme Cocks Endoluminal Prosthesis
US20130304197A1 (en) 2012-02-28 2013-11-14 Mvalve Technologies Ltd. Cardiac valve modification device
US8926694B2 (en) 2012-03-28 2015-01-06 Medtronic Vascular Galway Limited Dual valve prosthesis for transcatheter valve implantation
US8628571B1 (en) 2012-11-13 2014-01-14 Mitraltech Ltd. Percutaneously-deliverable mechanical valve

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12016772B2 (en) 2020-09-28 2024-06-25 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods

Also Published As

Publication number Publication date
US8992604B2 (en) 2015-03-31
WO2012011108A2 (en) 2012-01-26
WO2012011108A3 (en) 2013-12-27
EP2611389A4 (en) 2017-08-02
US20120022640A1 (en) 2012-01-26
EP3906895A1 (en) 2021-11-10
EP2611389A2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
US11426155B2 (en) Helical anchor implantation
EP2611389B1 (en) Percutaneous mitral valve replacement and sealing
US9017399B2 (en) Techniques for percutaneous mitral valve replacement and sealing
US11701226B2 (en) Prosthetic heart valves and apparatus and methods for delivery of same
CN111200995B (en) Prosthetic spacer device for heart valves
US11318012B2 (en) Apparatus and methods for delivery of prosthetic mitral valve
US20230036649A1 (en) Methods and apparatus for engaging a valve prosthesis with tissue
US11191639B2 (en) Prosthetic heart valves with tether coupling features
US20200030092A1 (en) Mitral Valve Prosthesis and Methods for Implantation
US20200038184A1 (en) Delivery systems with tethers for prosthetic heart valve devices and associated methods
US20190209316A1 (en) Heart valve prosthesis
EP4183372A1 (en) Prosthetic valve for avoiding obstruction of outflow
US20150045880A1 (en) Implant for rotation-based anchoring
WO2013177684A1 (en) Methods and apparatus for loading a prosthesis onto a delivery system
US20230248352A1 (en) Helical anchor implantation
US20230355379A1 (en) Method and apparatus for treating cardiovascular valve dysfunction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130221

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HACOHEN, GIL

Inventor name: REICH, TAL

Inventor name: MILLER, ERAN

Inventor name: GROSS, YOSSI

Inventor name: ZIPORY, YUVAL

DAX Request for extension of the european patent (deleted)
R17D Deferred search report published (corrected)

Effective date: 20131227

A4 Supplementary search report drawn up and despatched

Effective date: 20170629

RIC1 Information provided on ipc code assigned before grant

Ipc: A61F 2/24 20060101AFI20170623BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MITRALTECH LTD.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARDIOVALVE LTD

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200608

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210129

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1407838

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011071332

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210707

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1407838

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211007

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211007

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211008

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011071332

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210721

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

26N No opposition filed

Effective date: 20220408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210721

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110721

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 13

Ref country code: GB

Payment date: 20230720

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 13

Ref country code: DE

Payment date: 20230719

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707