EP2606292B1 - Module de condenseur à réfrigérant - Google Patents

Module de condenseur à réfrigérant Download PDF

Info

Publication number
EP2606292B1
EP2606292B1 EP11749398.1A EP11749398A EP2606292B1 EP 2606292 B1 EP2606292 B1 EP 2606292B1 EP 11749398 A EP11749398 A EP 11749398A EP 2606292 B1 EP2606292 B1 EP 2606292B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
supercooling
cooling tubes
region
parallel portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11749398.1A
Other languages
German (de)
English (en)
Other versions
EP2606292A1 (fr
Inventor
Guillaume David
Uwe FÖRSTER
Matthias Jung
Andreas Kemle
Christoph Walter
Herbert Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Publication of EP2606292A1 publication Critical patent/EP2606292A1/fr
Application granted granted Critical
Publication of EP2606292B1 publication Critical patent/EP2606292B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0444Condensers with an integrated receiver where the flow of refrigerant through the condenser receiver is split into two or more flows, each flow following a different path through the condenser receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers

Definitions

  • the present invention relates to a refrigerant condenser assembly according to the preamble of claim 1 and a method for operating a refrigeration circuit of an automotive air conditioning system according to the preamble of claim 4.
  • a refrigerant condenser assembly according to the preamble of claim 1 is from document EP 1 577 629 known.
  • refrigerant condenser assemblies for an automotive air conditioning system
  • vaporous refrigerant is converted into a liquid state of aggregation, and then the liquid refrigerant is further "subcooled" in a subcooling region.
  • the refrigerant condenser assembly forms part of a refrigeration circuit of an automotive air conditioning system with an evaporator, an expansion device and a compressor.
  • the DE 10 2007 018 722 A1 shows a condenser for the air conditioning system of a motor vehicle having two manifolds and a container arranged adjacent to the one collecting tube for receiving the desiccant of the refrigerant of the air conditioner.
  • the refrigeration cycle of an automotive air conditioning system is reduced by up to 10%.
  • the performance of a refrigeration cycle in an automotive air conditioning system can be increased, among other things, that the already liquefied refrigerant is cooled more strongly at a subcooling region of the refrigerant condenser assembly.
  • the refrigerant in gaseous form enters the refrigerant condenser assembly at an inlet port and is cooled to a saturation temperature at an overheat region. Subsequently, the refrigerant flows in a condensation region and in this, the gaseous refrigerant is further cooled to a boiling temperature and liquefied with it. Subsequently, the liquid refrigerant flows into a supercooling zone and is cooled below the boiling point, for example to a temperature of 6 or 7 K below the boiling point of the refrigerant.
  • the refrigerant capacitor assembly within the motor vehicle a predetermined space, for example given by a certain depth, height and width available, so that although a greater cooling of the refrigerant at the subcooling by a larger surface at the subcooling and a larger space associated therewith
  • refrigerant condenser assembly is possible, but in general due to the predetermined dimensions of the space for the refrigerant condenser assembly no larger space is available.
  • the refrigerant R1234yf is sought to increase the subcooling, for example, 15 K.
  • the refrigerant R1234yf is sought to increase the subcooling, for example, 15 K.
  • more cooling tubes or proportionally more area required by the capacitor This has the consequence that less space is available for the condensation area, the cooling takes place at a higher saturation temperature and the associated saturation pressure increases. This causes a negative effect on the cooling capacity in the refrigerant circuit, which reduces or even nullifies the intended advantage.
  • the object of the present invention is to provide a refrigerant condenser assembly, a method of operating a refrigeration cycle of an automotive air conditioning system, and an automotive air conditioner in which the refrigerant is strongly cooled in a subcooling region of the refrigerant condenser assembly without substantially increasing the condensing pressure in the refrigerant condenser assembly and that the outlet port and the reservoir are disposed on different longitudinal sides of the refrigerant condenser assembly.
  • the subcooling region of the refrigerant condenser assembly is thus subdivided into a total of three subcooler parallel sections which are each connected to one another by a subcooling intermediate flow channel.
  • the refrigerant at the subcooling region can be cooled even further below the boiling point of the refrigerant.
  • the outlet port and the header tank are disposed on opposite longitudinal sides of the refrigerant condenser assembly.
  • a collecting container with a larger collection volume can preferably be made available be as in the prior art.
  • the inlet opening and outlet opening are preferably arranged on the same longitudinal side of the refrigerant condenser assembly.
  • the subcooling region of the refrigerant condenser assembly is thus subdivided into first and second and third subcooling parallel sections, and in the subcooling parallel sections, at least two cooling tubes are respectively hydraulically or fluidly urged in parallel with the refrigerant.
  • the refrigerant exiting from the first subcooler parallel section is introduced into and mixed in a first subcooling intermediate flow channel, and the refrigerant is introduced into the second subcooler parallel section from the first subcooling intermediate flow channel.
  • the refrigerant exiting from the second subcooler parallel portion is introduced into and mixed in a second subcool intermediate passage, and from the second subcool intermediate passage, the refrigerant is introduced into the third subcool parallel portion.
  • the refrigerant is discharged through the discharge port from the refrigerant condenser assembly.
  • the refrigerant can be cooled more advantageously at the subcooling, for example, to a temperature of 14 K below the boiling temperature of the refrigerant without thereby increasing the dimensions of the refrigerant condenser assembly and thus the refrigerant condenser assembly finds place in a given space of a motor vehicle.
  • the performance of a refrigeration circuit of an automotive air conditioning system can be improved and thereby the power reduction when using the new refrigerant R1234yf be at least partially compensated.
  • An increased pressure drop in the subcooling region, which is generated by the three subcooling parallel sections, is not detrimental to the performance of the refrigerant condenser assembly or reduces its performance. This is due to the fact that the pressure drop takes place after the wet steam area, while the system's high pressure is oriented at the saturation temperature before the subcooling area or after the condensation area.
  • the three subcooler parallel sections are flowed through from bottom to top.
  • the third subcooling parallel section is thus arranged geodetically higher than the second subcooling parallel section, while the second subcooling parallel section is arranged geodetically higher than the first subcooling parallel section.
  • the three subcooler parallel sections can also be flowed through from top to bottom.
  • one subcooler parallel section each has two, three or four cooling tubes acted upon in parallel and / or the surface of the cooling tubes and preferably the subcooling section headers is less than 50%, 40%, 35%, 30%, 25% or 15%.
  • the surface of the heat exchanger of the refrigerant condenser assembly and in particular the heat exchanger consists of the cooling tubes and preferably the headers.
  • At least two cooling tubes act as fluid-conducting parallel first parallel section
  • the refrigerant flowing out of the first parallel section opens into a first intermediate flow channel
  • the first intermediate flow channel opens into at least two cooling tubes as second parallel section.
  • a first and a second parallel section is arranged in the flow direction of the refrigerant before the first subcooler parallel section.
  • the overheating region and / or the condensation region are subdivided into the first and second parallel sections between which the refrigerant is conducted through the first intermediate flow channel.
  • the refrigerant flowing out of the second parallel section opens into a second intermediate flow channel and the second intermediate flow channel opens into at least two cooling tubes as the third parallel section.
  • the refrigerant condenser assembly is divided into a total of three parallel sections with at least two, preferably at least four or six or eight, cooling tubes, which are each fluid-conductively connected to each other through the intermediate flow channel.
  • a parallel section has a greater number of cooling tubes than a subcooler parallel section, and preferably the number of cooling tubes of a parallel section is two, three, five or seven cooling tubes greater than the number of cooling tubes of a subcooler parallel section.
  • the second parallel section opens into a second intermediate flow channel and the second intermediate flow channel opens into the collecting container.
  • the third parallel section opens into a third intermediate flow channel and the third intermediate flow channel opens into the collecting container.
  • exactly one parallel section may be provided so that it opens exactly one parallel section into the collecting container, such an arrangement not falling within the scope of the claims.
  • the sum of the flow cross-sectional areas of the cooling tubes of a subcooler parallel section is smaller than the product of 0.7 or 0.5 or 0.3 or 0.1 and the sum of the flow cross-sectional areas of the cooling tubes of a parallel section and / or the cooling tubes are formed as flat tubes and between the flat tubes corrugated ribs are arranged.
  • the flow cross-sectional area is the cross-sectional area of the cooling tubes for passing the refrigerant.
  • the refrigerant in the subcooling section is cooled by more than 7, 10, 12, or 14 K, and is preferably cooled by less than 30K or 20K. Due to the larger volumetric flow of the refrigerant in the cooling tubes of the subcooling region compared to a subcooling region having only exactly one subcooling parallel section and the associated greater flow velocity of the refrigerant in the subcooling region, a better heat transfer from the refrigerant to the air, which flows around the refrigerant condenser assembly, can thereby be achieved ,
  • the refrigerant is R1234yf or R134a.
  • the refrigeration medium condenser assembly has a closure device formed on the collecting container for closing a closure opening of the collecting container.
  • a dryer and / or a filter are arranged in the collecting container.
  • FIG. 1 and 2 a refrigerant condenser assembly 1 is shown in a perspective view.
  • the refrigerant condenser assembly 1 is part of an automotive air conditioning system with an evaporator and a compressor (not shown).
  • By horizontally arranged cooling tubes 2 as flat tubes 3 flows to be condensed and cooled refrigerant ( Fig. 1 and 2 ).
  • the cooling tubes 2 open at their respective ends in a vertical manifold 5, that is, there are two manifolds 5 respectively at the ends of the cooling tubes 2.
  • the collecting tube 5 has cooling tube openings through which the ends of the cooling tubes 2 project into the collecting tube 5.
  • baffles (not shown) are formed with which a certain flow path of the refrigerant can be achieved through the cooling tubes 2, so that the refrigerant through the cooling tubes 2 according to the flow diagram in Fig. 3 flows through the cooling tubes 2.
  • the cooling tubes 2 meandering corrugated fins 4 are arranged, which are in thermal communication with the cooling tubes 2 by means of heat conduction. This increases the area available for cooling the refrigerant.
  • the cooling tubes 2, the corrugated fins 4 and the two manifolds 5 are generally made of metal, in particular aluminum, and are materially connected to one another as a solder joint.
  • a fastening device 8 is arranged, with which the refrigerant condenser assembly can be attached to a motor vehicle, in particular to a body of a motor vehicle.
  • a collecting container 6 is arranged on a first longitudinal side ( Fig. 1 . 2 ).
  • the collecting container 6 is by means of two overflow openings (not shown) in fluid communication with the collecting tube 5 and thus also indirectly in fluid communication with the cooling tubes 2.
  • a dryer and a filter (not shown) is arranged in the collecting container 6.
  • the dryer is hygroscopic and can absorb water or moisture from the refrigerant.
  • the collecting container 6 is mechanically connected to the collecting tube 5 at the lower and upper ends with a concave support region. At the lower end of the collecting container 6 is closed by a closure device 7 fluid-tight.
  • the removable closure device 7 allows an exchange of the dryer and the filter in the collecting container 6.
  • the refrigerant condenser assembly 1 has an inlet port 9 for introducing the refrigerant R1234yf into the refrigerant condenser assembly 1, and an outlet port 10 for discharging the refrigerant from the refrigerant condenser assembly 1 (FIG. Fig. 1 and 3 ).
  • the ends of the cooling tubes 2 terminate in the manifolds 5.
  • baffles or flow guide plates, not shown, are arranged with the help of which a certain predetermined flow diagram of the refrigerant can be achieved, ie with which flow path, the refrigerant flows through the plurality of superimposed cooling tubes 2 of the refrigerant condenser assembly 1. This in Fig.
  • a first intermediate flow passage 20, a second intermediate flow passage 22, a third intermediate flow passage 24 and a first sub-cooling intermediate flow passage 15th and a second sub-cooling intermediate passage 17, which in Fig. 3 are shown are thus formed within the manifolds 5 of the flow guide plates, not shown.
  • the refrigerant condenser assembly 1 constitutes a heat exchanger for transferring heat from the refrigerant to air surrounding and circulating around the refrigerant condenser assembly 1.
  • the heat exchanger is essentially formed by the cooling tubes 2 and the two manifolds 5.
  • the heat exchanger as part of the refrigerant condenser assembly 1 in this case has an inlet opening 9 through which gaseous refrigerant is passed from a compressor, not shown, to the refrigerant condenser assembly 1.
  • the gaseous refrigerant is thereby cooled at an overheating region 11 to a saturation temperature, ie at the saturation temperature occurs in accordance with the existing pressure, a condensation of the refrigerant.
  • condensation region 12 connects, in which the refrigerant is condensed and thus liquefied.
  • the refrigerant liquefied in the condensation region 12 is supplied as a liquid to the subcooling region 13 and cooled in the subcooling region 13 below the boiling temperature of the refrigerant.
  • condensation region 12 and subcooling region 13 may differ slightly during operation of an automotive air conditioning system, so that, for example, in modification of the illustration in Fig. 3 the overheating region 11 is slightly larger and thereby the condensation region 12 becomes smaller, so that, for example, a second parallel section 21 also partially forms the overheating region 11.
  • the overheating region 11 is formed by the first parallel section 19.
  • the first parallel section 19 has eleven cooling tubes, which are connected in parallel or flow through in a fluid-conducting or hydraulic manner. After flowing out of the refrigerant from the eleven cooling tubes 2 of the first parallel section 19, the refrigerant is introduced into the first intermediate flow passage 20 and introduced from the first intermediate flow passage 20 into the second parallel section 21.
  • the second parallel section 21 has eight cooling tubes 2, through which the refrigerant flows simultaneously in parallel. The refrigerant flowing out of the second parallel section 21 is introduced into the second intermediate flow passage 22 and introduced therefrom into the third parallel section 23 with likewise eight cooling tubes 2.
  • the refrigerant flowing out of the third parallel portion 23 is introduced into the third intermediate flow passage 24, and then, after passing through the reservoir 6, is supplied to the subcooling portion 13 of the refrigerant condenser assembly 1.
  • the subcooling region 13 comprises a first subcooler parallel section 14, a second subcooler parallel section 16 and a third subcooler parallel section 18.
  • the three subcool parallel sections 14, 16 and 18 each have three cooling tubes 2.
  • the first subcooler parallel section 14 is connected to the second subcooler parallel section 16 through the first subcooling intermediate flow channel 15 and analogously, the second subcooling parallel section 16 is connected to the third subcooling parallel section 18 through the second subcooling intermediate flow channel 17.
  • the parallel sections 19, 21 and 23 and the subcooler parallel sections 14, 16 and 18 are fluidly connected in series and the cooling tubes 2 at the parallel sections 19, 21 and 23 and the subcool parallel sections 14, 16 and 18 are hydraulically or fluid-conducting connected in parallel.
  • the entire refrigerant passed through the refrigerant condenser assembly 1 thus flows through the respective parallel sections 19, 21 and 23 and the subcooler parallel sections 14, 16 and 18.
  • the subcooler parallel sections 14, 16 and 18 have a significantly smaller number of cooling tubes 2 than the parallel sections 19, 21 and 23. Due to the fluid-conducting or hydraulic circuit of the refrigerant condenser assembly 1 is thus the refrigerant at the subcooler parallel sections 14, 16 and 18, a much smaller flow cross-sectional area than at the parallel sections 19, 21 and 23, because the cooling tubes 2 have the same flow cross-sectional area.
  • a greater flow velocity of the refrigerant or a larger volume flow of the refrigerant occurs at the subcool parallel sections 14, 16 and 18 than at a subcooling region with only exactly one subcool parallel section. Due to this larger flow rate or the larger volume flow of the refrigerant to the subcooling region 13, the heat transfer from the refrigerant to the air in the subcooling region 13 can be increased and thereby more heat is transferred from the refrigerant to the air flowing around the refrigerant condenser assembly 1 and thus the refrigerant in the Subcooler 13 are cooled more below the boiling temperature of the refrigerant, for example, cooled to 14 K below the boiling temperature of the refrigerant become.
  • the pressure drop in the refrigerant condenser assembly 1 is not or only very slightly increased, so that the high pressure at the inlet opening 9 only slightly increases and thus the performance increase of the refrigerant circuit due to the greater cooling at the subcooling region 13 substantially larger is, as the power reduction due to the eventual increase of the high pressure at the inlet opening 9 is.
  • the refrigerant is discharged through the outlet opening 10 from the refrigerant condenser assembly. Due to the formation of three subcool parallel sections, the outlet opening is arranged on a second longitudinal side of the refrigerant condenser assembly. Thus, outlet port and sump 6 are disposed on different longitudinal sides of the refrigerant condenser assembly.
  • the subcooling region 13 has only the first and second subcooler parallel sections 14, 16 and not the third subcooler parallel section 18. In an additional embodiment, not shown, the subcooling region 13 may also be divided into a total of four or five subcooler parallel sections. However, the subcooling region 13 preferably has an odd number of subcooling parallel portions, so that the sump 6 and the outlet port 10 are disposed on different sides of the refrigerant-capacitor assembly.
  • the flow velocity or the volume flow at the subcooling region 13 is due to greatly increased, so that a greater undercooling or cooling of the refrigerant at the subcooling 13 can be achieved without the refrigerant capacitor assembly 1 requires more space or surface, because due to the greater flow rate, the heat transfer from the refrigerant to the air per surface unit of Refrigerant capacitor assembly 1, in particular on the cooling tubes 2, the corrugated fins 4 or the manifolds 5 as a heat exchanger of the refrigerant condenser assembly 1, is increased.
  • the COP of a refrigeration circuit with the refrigerant condenser assembly 1 can be increased without requiring additional space for the refrigerant condenser assembly 1.
  • the reduction in COP due to the use of the refrigerant R1234yf can be at least partially compensated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Claims (5)

  1. Module de condenseur à fluide frigorigène (1) prévu pour un système de climatisation d'un véhicule automobile et comprenant :
    - une ouverture d'entrée (9) servant à l'introduction d'un fluide frigorigène,
    - une ouverture de sortie (10) servant à l'évacuation d'un fluide frigorigène,
    - des tubes de refroidissement (2) servant à la circulation d'un fluide frigorigène,
    - deux tubes collecteurs (5) servant à la communication fluidique des tubes de refroidissement (2),
    - un bac collecteur (6) comprenant au moins une ouverture de trop-plein au moyen de laquelle le bac collecteur (6) est en communication fluidique avec les tubes de refroidissement (2) et / ou avec le tube collecteur (5), où le bac collecteur est disposé sur un premier grand côté du module de condenseur à fluide frigorigène,
    les tubes de refroidissement (2) présentent une zone de surchauffe (11) servant au refroidissement du fluide frigorigène à l'état de vapeur, une zone de condensation (12) servant à la condensation du fluide frigorigène et une zone de surrefroidissement (13) servant au refroidissement du fluide frigorigène liquide,
    où, dans la zone de surrefroidissement (13), au moins deux tubes de refroidissement (2) faisant circuler le fluide et servant de première partie parallèle de surrefroidissement (14) sont alimentés parallèlement en fluide frigorigène, où le fluide frigorigène sortant de la première partie parallèle de surrefroidissement (14) débouche dans un premier conduit d'écoulement intermédiaire de surrefroidissement (15), et le premier conduit d'écoulement intermédiaire de surrefroidissement (15) débouche dans au moins deux tubes de refroidissement (2) servant de deuxième partie parallèle de surrefroidissement (16), où, dans la zone de surrefroidissement (13), la deuxième partie parallèle de surrefroidissement (16) débouche dans un deuxième conduit d'écoulement intermédiaire de surrefroidissement (17), et le deuxième conduit d'écoulement intermédiaire de surrefroidissement (17) débouche dans au moins deux tubes de refroidissement (2) servant de troisième partie parallèle de surrefroidissement (18), de sorte que l'ouverture de sortie (10) est disposée sur un deuxième grand côté du module de condenseur à fluide frigorigène, où, dans la direction d'écoulement du fluide frigorigène, en amont de la première partie parallèle de surrefroidissement (14), au moins deux tubes de refroidissement (2) faisant circuler le fluide et servant de première partie parallèle (19) sont alimentés parallèlement, où le fluide frigorigène sortant de la première partie parallèle (19) débouche dans un premier conduit d'écoulement intermédiaire (20), et le premier conduit d'écoulement intermédiaire (20) débouche dans au moins deux tubes de refroidissement (2) servant de deuxième partie parallèle (21), et la deuxième partie parallèle (21) débouche dans un deuxième conduit d'écoulement intermédiaire (22), et le deuxième conduit d'écoulement intermédiaire (22) débouche dans le bac collecteur (6) (14),
    caractérisé en ce que la somme des surfaces des sections transversales d'écoulement des tubes de refroidissement (2) d'une partie parallèle de surrefroidissement (14, 16, 18) est inférieure au produit de 0,7 ou de 0,5 ou de 0,3 ou de 0,1, et de la somme des surfaces des sections transversales d'écoulement des tubes de refroidissement (2) de la partie parallèle respective (19, 21, 23), et où les tubes de refroidissement (2) sont conçus comme des tubes plats (3), et des ailettes ondulées (4) sont disposées entre les tubes plats.
  2. Module de condenseur à fluide frigorigène selon la revendication 1, caractérisé en ce qu'une partie parallèle de surrefroidissement (14, 16, 18) présente à chaque fois deux, trois ou quatre tubes de refroidissement (2) alimentés parallèlement et / ou la surface des tubes de refroidissement (2) et, de préférence, des tubes collecteurs (5) de la zone de surrefroidissement (13), est inférieure à 50 %, à 40 %, à 35 %, à 30 %, à 25 % ou à 15 % de la surface de l'échangeur de chaleur du module de condenseur à fluide frigorigène (1), et l'échangeur de chaleur se compose en particulier des tubes de refroidissement (2) et, de préférence, des tubes collecteurs (5).
  3. Module de condenseur à fluide frigorigène selon une ou plusieurs des revendications précédentes, caractérisé en ce que la troisième partie parallèle de surrefroidissement (18) est disposée en étant à un niveau géodésiquement plus élevé que celui de la deuxième partie parallèle de surrefroidissement (16), et la deuxième partie parallèle de surrefroidissement est disposée en étant à un niveau géodésiquement plus élevé que celui de la première partie parallèle de surrefroidissement (14).
  4. Procédé de fonctionnement d'un circuit de refroidissement d'un système de climatisation d'un véhicule automobile, ledit procédé comprenant les étapes consistant :
    - à faire circuler le fluide frigorigène à travers des conduites d'un circuit de fluide frigorigène,
    - à comprimer le fluide frigorigène gazeux dans un compresseur, de sorte que la pression du fluide frigorigène gazeux est augmentée,
    - à refroidir et à condenser le fluide frigorigène gazeux dans un module de condenseur à fluide frigorigène (1), lequel fluide frigorigène gazeux est en circulation à travers des tubes de refroidissement (2), tandis que le fluide frigorigène gazeux, dans une zone de surchauffe (11), est refroidi à une température de saturation, puis, dans une zone de condensation (12), le fluide frigorigène gazeux est refroidi et liquéfié à une température d'ébullition et, dans une zone de surrefroidissement (13), le fluide frigorigène liquide est refroidi au-dessous de la température d'ébullition,
    - à détendre le fluide frigorigène liquide au niveau d'un détendeur, de sorte que la pression du fluide frigorigène liquide est réduite,
    - à chauffer et à évaporer le fluide frigorigène dans un évaporateur,
    - à faire circuler, jusqu'au compresseur, le fluide frigorigène gazeux sortant de l'évaporateur,
    caractérisé
    en ce que, dans la zone de surrefroidissement (13), le fluide frigorigène est en circulation parallèlement à travers au moins deux tubes de refroidissement (2) d'une première partie parallèle de surrefroidissement (14), le fluide frigorigène sortant de la première partie parallèle de surrefroidissement (14) est en circulation dans un premier conduit d'écoulement intermédiaire de surrefroidissement (15), et le fluide frigorigène en circulation à travers le premier conduit d'écoulement intermédiaire de surrefroidissement (15) est en circulation ensuite parallèlement à travers au moins deux tubes de refroidissement (2) d'une deuxième partie parallèle de surrefroidissement (16), et la deuxième partie parallèle de surrefroidissement (16) débouche dans un deuxième conduit d'écoulement intermédiaire de surrefroidissement (17), et le deuxième conduit d'écoulement intermédiaire de surrefroidissement (17) débouche dans au moins deux tubes de refroidissement (2) servant de troisième partie parallèle de surrefroidissement (18) et / ou, dans la zone de surrefroidissement (13), le fluide frigorigène est en circulation à travers des tubes de refroidissement (2) ayant une surface de section transversale d'écoulement plus petite que celle du fluide frigorigène qui est en circulation à travers les tubes de refroidissement (2) de la zone de surchauffe et / ou de la zone de condensation (12), de sorte que le fluide frigorigène en circulation à travers les tubes de refroidissement (2) dans la zone de surrefroidissement (13) présente une vitesse d'écoulement plus élevée que celle du fluide frigorigène en circulation à travers les tubes de refroidissement (2) dans la zone de surchauffe (11) et / ou dans la zone de condensation (12), où la vitesse d'écoulement du fluide frigorigène, dans les tubes de refroidissement (2) de la zone de surrefroidissement (13), est 1,2 fois ou 1,5 fois ou 2 fois plus élevée que la vitesse d'écoulement du fluide frigorigène dans les tubes de refroidissement (2) de la zone de surchauffe (11) et / ou de la zone de condensation (12).
  5. Système de climatisation d'un véhicule automobile comprenant :
    - un module de condenseur à fluide frigorigène (1),
    - un évaporateur,
    - un compresseur,
    - de préférence une soufflante,
    - de préférence un carter servant au logement de la soufflante et de l'évaporateur,
    caractérisé
    en ce que le module de condenseur à fluide frigorigène (1) est conçu selon l'une quelconque ou plusieurs des revendications 1 à 3 et / ou en ce qu'un procédé selon la revendication 4 peut être mis en œuvre par le système de climatisation du véhicule automobile.
EP11749398.1A 2010-08-19 2011-08-19 Module de condenseur à réfrigérant Active EP2606292B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010039511A DE102010039511A1 (de) 2010-08-19 2010-08-19 Kältemittelkondensatorbaugruppe
PCT/EP2011/064320 WO2012022806A1 (fr) 2010-08-19 2011-08-19 Module de condenseur à réfrigérant

Publications (2)

Publication Number Publication Date
EP2606292A1 EP2606292A1 (fr) 2013-06-26
EP2606292B1 true EP2606292B1 (fr) 2019-10-23

Family

ID=44532844

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11749398.1A Active EP2606292B1 (fr) 2010-08-19 2011-08-19 Module de condenseur à réfrigérant

Country Status (5)

Country Link
US (1) US9970694B2 (fr)
EP (1) EP2606292B1 (fr)
CN (1) CN203286816U (fr)
DE (1) DE102010039511A1 (fr)
WO (1) WO2012022806A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013204294A1 (de) * 2013-03-12 2014-10-02 Behr Gmbh & Co. Kg Kondensatorbaugruppe für Kältemittel
DE102013211963A1 (de) 2013-06-24 2014-12-24 Behr Gmbh & Co. Kg Kondensatorbaugruppe
JP6494916B2 (ja) * 2014-03-07 2019-04-03 三菱重工サーマルシステムズ株式会社 熱交換器およびそれを用いた空気調和機
US9970689B2 (en) * 2014-09-22 2018-05-15 Liebert Corporation Cooling system having a condenser with a micro-channel cooling coil and sub-cooler having a fin-and-tube heat cooling coil
CN105716331B (zh) * 2014-12-02 2019-01-22 东南大学 一种提高有机朗肯循环效率的变流道式换热器
CN115962589B (zh) * 2023-02-17 2024-06-14 珠海格力电器股份有限公司 换热器和制冷系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482112A (en) 1986-07-29 1996-01-09 Showa Aluminum Kabushiki Kaisha Condenser
JPH11304293A (ja) 1997-07-10 1999-11-05 Denso Corp 冷媒凝縮器
JPH11211277A (ja) 1998-01-22 1999-08-06 Showa Alum Corp サブクールシステムコンデンサ
US20020007646A1 (en) * 2000-06-20 2002-01-24 Showa Denko K.K. Condenser
JP2002187424A (ja) 2000-12-19 2002-07-02 Denso Corp 車両用凝縮器
JP2003021432A (ja) 2001-07-09 2003-01-24 Zexel Valeo Climate Control Corp コンデンサ
TWI280340B (en) * 2002-02-20 2007-05-01 Showa Denko Kk Heat exchanger with receiver tank, receiver tank connecting member, receiver tank mounting structure of heat exchanger and refrigeration system
KR100872468B1 (ko) * 2002-05-24 2008-12-08 한라공조주식회사 다단 기액분리형 응축기
GB0326443D0 (en) 2003-11-13 2003-12-17 Calsonic Kansei Uk Ltd Condenser
EP1577629A1 (fr) * 2004-03-18 2005-09-21 Behr Lorraine S.A.R.L. Bouchon de fermeture, distributeur et échangeur de chaleur
EP1887295B1 (fr) * 2006-08-11 2017-07-26 VALEO AUTOSYSTEMY Sp. Z. o.o. Condenseur avec un bouteille améliorée
DE102007018722A1 (de) 2007-03-23 2008-09-25 Modine Manufacturing Co., Racine Kondensator
JP2008281326A (ja) * 2007-04-11 2008-11-20 Calsonic Kansei Corp 冷凍装置及び該冷凍装置に用いる熱交換器
FR2915793B1 (fr) * 2007-05-03 2015-05-01 Valeo Systemes Thermiques Echangeur de chaleur ameliore pour circuit de climatisation de vehicule automobile
US20100122545A1 (en) * 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Tetrafluoropropene compositions and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102010039511A1 (de) 2012-02-23
US20130219932A1 (en) 2013-08-29
WO2012022806A1 (fr) 2012-02-23
US9970694B2 (en) 2018-05-15
EP2606292A1 (fr) 2013-06-26
CN203286816U (zh) 2013-11-13

Similar Documents

Publication Publication Date Title
DE10060104B4 (de) Kältemittelverflüssiger zur Nutzung für eine Kraftfahrzeugklimaanlage
EP2606292B1 (fr) Module de condenseur à réfrigérant
DE102007054345A1 (de) Kühlmodul
DE102012215411A1 (de) Verdampfer mit Kältespeicherfunktion
DE112014001028T5 (de) Stapelwärmetauscher
DE102004043471A1 (de) Wärmeaustauschermodul
DE10123347B4 (de) Wärmeaustauscher mit Phasen-Änderung von Kältemittel
DE102016100192B4 (de) Vorrichtung zur Wärmeübertragung
EP2612095B1 (fr) Ensemble condenseur de fluide frigorigène
DE102020202313A1 (de) Wärmeübertrager
DE102011080673B4 (de) Kältemittelkondensatorbaugruppe
WO2011134786A1 (fr) Système d'échangeur de chaleur
EP2606291B1 (fr) Module de condenseur à réfrigérant
DE102004047304A1 (de) Unterkühlender Kondensator
WO2013092644A2 (fr) Échangeur de chargeur
DE102020121275B4 (de) Wärmeübertrager eines Kältemittelkreislaufes einer Fahrzeugklimaanlage
DE102005028510A1 (de) Verstellbarer innerer Wärmeübertrager
DE112016002286T5 (de) Wärmetauscher mit Flüssigkeitsbehälter
WO2012098261A2 (fr) Module condenseur de fluide frigorigène
EP2818817B1 (fr) Composant de condensateur
WO2012140116A2 (fr) Module de condensateur de fluide réfrigérant
DE102022212155A1 (de) Wärmeübertrager
WO2004005826A1 (fr) Echangeur de chaleur
DE102021213376A1 (de) Wärmeübertrager und Kältemittelkreislauf mit einem Wärmeübertrager
DE102022201204A1 (de) Wärmeübertragermodul

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130319

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JUNG, MATTHIAS

Inventor name: HOFMANN, HERBERT

Inventor name: KEMLE, ANDREAS

Inventor name: FOERSTER, UWE

Inventor name: DAVID, GUILLAUME

Inventor name: WALTER, CHRISTOPH

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

17Q First examination report despatched

Effective date: 20160420

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190402

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JUNG, MATTHIAS

Inventor name: FOERSTER, UWE

Inventor name: KEMLE, ANDREAS

Inventor name: WALTER, CHRISTOPH

Inventor name: DAVID, GUILLAUME

Inventor name: HOFMANN, HERBERT

INTG Intention to grant announced

Effective date: 20190709

INTC Intention to grant announced (deleted)
GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20190910

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016198

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1194089

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191023

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200124

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016198

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

26N No opposition filed

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200819

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200819

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200819

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1194089

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230821

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Free format text: CASE NUMBER:

Effective date: 20240521