US20020007646A1 - Condenser - Google Patents

Condenser Download PDF

Info

Publication number
US20020007646A1
US20020007646A1 US09/884,802 US88480201A US2002007646A1 US 20020007646 A1 US20020007646 A1 US 20020007646A1 US 88480201 A US88480201 A US 88480201A US 2002007646 A1 US2002007646 A1 US 2002007646A1
Authority
US
United States
Prior art keywords
path
paths
cross
sectional area
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/884,802
Inventor
Hideaki Manaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Assigned to SHOWA DENKO K.K. reassignment SHOWA DENKO K.K. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MANAKA, HIDEAKI
Publication of US20020007646A1 publication Critical patent/US20020007646A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • F28F9/0212Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions the partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Valve Device For Special Equipments (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

A condenser includes a pair of headers 11 and a plurality of heat exchanging tubes 12 disposed between the headers 11 with their opposite ends connected to the headers 11. The plurality of heat exchanging tubes 12 are grouped into three paths P1-P3 by partitions 16. A refrigerant introduced from a refrigerant inlet 11 a provided at the lower portion of one of headers passes upwardly through the paths P1-P3 in sequence, and flows out of a refrigerant outlet 11 b provided at an upper portion of one of headers. The cross-sectional area of each path decreases stepwise towards a downstream side path, and the reduction rate of the cross-sectional are of the downstream side path of the adjacent two paths to the cross-sectional area of the upstream side path thereof is set to 20%. Thereby, the cooling performance can be achieved.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a condenser suitably used for, for example, a refrigeration system for car air-conditioners. [0002]
  • 2. Description of Related Art [0003]
  • As shown in FIG. 8, a conventional multi-flow type condenser for use in car air-conditioners includes a pair of [0004] vertical headers 1 and 1 disposed apart from each other and a plurality of horizontal flat tubes 2 as heat exchanging tubes disposed between the headers at certain intervals in the direction of up-and-down with their opposite ends connected with the headers. One of the headers 1 is provided with a refrigerant inlet 1 a at the upper end portion thereof, and the other header 1 is provided with a refrigerant outlet 1 b at the lower portion thereof. Furthermore, the headers 1 are provided with partitions 5 each disposed at a predetermined portion for dividing the inside of the header to thereby group the aforementioned plurality of flat tubes 2 into a plurality of paths P1 to P3.
  • Thus, in this condenser, the refrigerant introduced from the [0005] refrigerant inlet 1 a passes downwardly through each path P1 to P3 in sequence in a meandering manner, and then flows out of the refrigerant outlet 1 b. During passing through these paths, the refrigerant exchanges heat with the ambient air to be condensed into a liquefied refrigerant.
  • The inventors of the present application analyzed the stagnation of the liquefied refrigerant in the aforementioned condenser by using a thermography. According to the results of the analysis, as shown in FIGS. 9 and 10, the liquefied refrigerant RL tends to stagnate at the downstream lower portion in each path P[0006] 1-P3. In detail, in the conventional condenser, the liquefaction of refrigerant has already started at the end portion in the first path P1. Therefore, the liquefied refrigerant RL stays at the bottom of the header portion connecting the first and second paths P1 and P2, which may cause the so-called liquid stagnation. Since this stagnated liquefied refrigerant RL blockades the tube-inlets of the lower portion of the second path P2, only the liquefied refrigerant RL flows into the lower tubes 2 of the second path P2. Similarly, only the liquefied refrigerant RL flows into the lower tubes 2 of the third path P3. Since those portions through which only the liquefied refrigerant RL flows cannot perform efficient heat exchanging, an effective heat transfer area decreases, which causes deterioration in the refrigeration performance.
  • Furthermore, the liquefied refrigerant RL impedes the refrigerant circulation, resulting in an increased refrigerant flow resistance. [0007]
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a condenser having a decreased refrigerant flow resistance and an improved cooling performance. [0008]
  • According to a first aspect of the present invention, a condenser includes a pair of right and left headers, a plurality of heat exchanging tubes disposed between the headers with opposite ends thereof connected with the headers, at least one partition provided in one of the headers to group the plurality of heat exchanging tubes into a plurality of paths, a refrigerant inlet provided at a lower portion of one of the headers and a refrigerant outlet provided at an upper portion of one of the headers. A refrigerant introduced from the refrigerant inlet passes upwardly through the plurality of paths in sequence in a meandering manner, and flows out of the refrigerant outlet. A cross-sectional area of each of the paths decreases stepwise towards a downstream side of the paths for each path, and that a reduction rate of a cross-sectional area of a downstream side path of adjacent two paths to a cross-sectional area of an upstream side path thereof is 20% or more. [0009]
  • With this condenser, the gaseous refrigerant flowed out of the heat exchanging tubes constituting the upstream side path (lower side path) goes up vigorously in the refrigerant turning portion of the header connecting the adjacent paths, and the rising refrigerant flows into the heat exchanging tubes constituting the downstream side path (upper side path). Thus, the liquefied refrigerant is pushed up by the blow-up effect of this rising refrigerant, and flows into the heat exchanging tubes constituting the downstream side path (upper side path) smoothly. This prevents a stagnation of the liquefied refrigerant, which keeps a large effective heat transferring area of the heat exchanging portion and enables an equally distributed smooth refrigerant flow in each path. [0010]
  • It is preferable that the plurality of paths is comprised of three or more paths including a first path, a second path and a third path through which the refrigerant introduced from the refrigerant inlet passes in sequence, a reduction rate of a cross-sectional area of the second path to a cross-sectional area of the first path is 50% or more, and a reduction rate of a cross-sectional area of the third path to a cross-sectional area of the second path is 40% or more. In this case, the aforementioned refrigerant blow-up effect by the refrigerant turning portion connecting the adjacent paths can fully be obtained, which can assuredly prevent the stagnation of the liquefied refrigerant in the refrigerant turning portion. [0011]
  • According to a second aspect of the present invention, a condenser includes a plurality of paths arranged one on the other, each of the paths including a plurality of heat exchanging tubes, a header portion connected to corresponding ends of adjacent upper and lower paths, a refrigerant inlet provided at a lowermost path; and a refrigerant outlet provided at an uppermost path. A refrigerant introduced from the refrigerant inlet goes upwardly from the lowermost path towards the uppermost path while making a U-turn in the header portion, and flows out of the refrigerant outlet. Furthermore, a reduction rate of a cross-sectional area of a downstream side path of adjacent two paths to a cross-sectional area of an upstream side path thereof is 20% or more. [0012]
  • In this case too, the liquefied refrigerant is pushed up by the blow-up effect of the rising refrigerant, and flows into the heat exchanging tubes constituting the downstream side path (upper side path) smoothly. This prevents a stagnation of the liquefied refrigerant, which keeps a large effective heat transferring area of the heat exchanging portion and enables an equally distributed smooth refrigerant flow in each path. [0013]
  • According to a third aspect of the present invention, a condenser includes a first header portion with a refrigerant inlet, a lowermost first path including a plurality of heat exchanging tubes whose one end being connected with the first header portion, a final header portion with a refrigerant outlet, an uppermost final path including a plurality of heat exchanging tubes whose one end being connected with the final header portion, one or a plurality of middle paths each including a plurality of heat exchanging tubes, and a plurality of middle header portions each connecting corresponding one ends of adjacent paths. A refrigerant introduced from the refrigerant inlet flows upwardly through the plurality of paths in sequence in a meandering manner via each of the header portions, and flows out of the refrigerant. Furthermore, a reduction rate of a cross-sectional area of a downstream side path of adjacent two paths to a cross-sectional area of an upstream side path thereof is 20% or more. [0014]
  • With this condenser too, the liquefied refrigerant is pushed up by the blow-up effect of this rising refrigerant, and flows into the heat exchanging tubes constituting the downstream side path (upper side path) smoothly. This prevents a stagnation of the liquefied refrigerant, which keeps a large effective heat transferring area of the heat exchanging portion and enables an equally distributed smooth refrigerant flow in each path.[0015]
  • Other objects and the features will be apparent from the following detailed description of the present invention with reference to the attached drawings. [0016]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will be more fully described and better understood from the following description, taken with the appended drawings, in which: [0017]
  • FIG. 1 is a front view showing a condenser for use in car air-conditioners according to an embodiment of the present invention; [0018]
  • FIG. 2 is a schematic front view showing a refrigerant circuit arrangement of the condenser according to the embodiment; [0019]
  • FIG. 3 is an enlarged cross-sectional view showing a first refrigerant turning portion and therearound of the condenser according to the embodiment; [0020]
  • FIG. 4 is a schematic cross-sectional view showing a refrigerant circuit arrangement of a condenser for use in car air-conditioners according to a second embodiment of the present invention; [0021]
  • FIG. 5 is a schematic cross-sectional view showing a refrigerant circuit arrangement of a condenser for use in car air-conditioners according to a third embodiment of the present invention; [0022]
  • FIG. 6 is a schematic cross-sectional view showing a refrigerant circuit arrangement of a condenser for use in car air-conditioners according to a comparative example; [0023]
  • FIG. 7 is a graph showing a relationship between a refrigerant flow resistance and a refrigerant circulation amount of the inventive and comparative condensers; [0024]
  • FIG. 8 is a partially omitted front view showing a conventional condenser for use in car air-conditioners; [0025]
  • FIG. 9 is a schematic front view showing a refrigerant circuit arrangement of the conventional condenser; and [0026]
  • FIG. 10 is a schematic cross-sectional view showing a first refrigerant turning portion and therearound of the conventional condenser.[0027]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIGS. 1 and 2 show a multi-flow type condenser for use in car air-conditioners according to an embodiment of the present invention. [0028]
  • As shown in these figures, this condenser has a pair of right and [0029] left headers 11 and 11 disposed at a certain distance. Between these headers 11 and 11, a plurality of flat tubes 12 as heat exchanging tubes are horizontally disposed at certain intervals in the vertical direction with their opposites ends connected to the headers 11 and 11. Furthermore, corrugate fins 13 are arranged between adjacent flat tubes 12 and disposed on the outermost flat tubes 12. Furthermore, on the outside of each outermost corrugate fin 13, a belt-shaped side plate 14 is disposed for protecting the outermost corrugated fin 13.
  • At the lower side of one of headers [0030] 11 (right header), a refrigerant inlet 11 a is provided. On the other hand, at the upper side of the other header 11 (left header), a refrigerant outlet 11 b is provided.
  • Furthermore, at a predetermined portion or each [0031] header 11, a partition 16 which divides the interior of the header 11 in the longitudinal direction thereof is provided, to thereby group the aforementioned plurality of flat tubes 12 into three paths, the first path P1 (lowermost path), the second path P2 (middle path) and the third path P3 (uppermost path).
  • The header portion of the [0032] left header 11 which connects the first path P1 with the second paths P1 and P2 constitutes a first refrigerant turning portion T1, and the header portion of the right header 11 which connects the second P2 with the third paths P3 constitutes a second refrigerant turning portion T2.
  • In the aforementioned embodiment, although the header portion constituting the turning portion T[0033] 1 or T2 is formed by dividing a single cylindrical header 11 with partition 16, the present invention is not limited to this. For example, each header portion constituting the turning portion T1 and T2 may be formed by a separate individual header pipe.
  • In this embodiment, each path P[0034] 1-P3 is decreased in cross-sectional area stepwise towards the downstream side path (upper side path) for each path. In the present invention, the reduction rate of the cross-sectional area of the downstream side path (upper side path) of the two adjacent paths to the upstream side path (lower side path) thereof should be set to 20% or more, and it is preferable that the reduction rate is set to 30% or more. The aforementioned reduction rate (%) can be obtained by the following formula: (1−PL/PU)×100(%), where “PU” is a cross-sectional area of the upstream side path and “PL” is that of the downstream side path. If the aforementioned reduction rate is smaller than 20%, an enough flow velocity (vigor) of the refrigerant cannot fully be secured in the refrigerant turning portion T1 and T2 in the header 11 between the adjacent paths, resulting in an inefficient refrigerant blow-up effect, which in turn may cause a liquefied refrigerant stagnation.
  • In the present invention, it is preferably that the aforementioned reduction rate is set to 25% or more in any two adjacent paths. It is more preferable that the reduction rate of the cross-sectional area of the second path to the cross-sectional area of the first path is 50% or more and that the reduction rate of the cross-sectional area of the third path to the cross-sectional area of the second path is 40% or more. [0035]
  • In the condenser of this embodiment, all of the [0036] flat tubes 12 have the same structure, and therefore the cross-sectional area of each path P1-P3 is in proportion to the number of tubes of each path P1-P3. Therefore, the reduction rate of the cross-sectional area between adjacent paths corresponds to the reduction rate of the number of tubes between the adjacent paths. In the condenser of this embodiment, as shown in FIG. 2, the first path P1 includes 22 flat tubes, the second path P2 includes 9 flat tubes and the third path P3 includes 5 flat tubes. Accordingly, the reduction rate of the cross-sectional areas between the first and second paths P1 and P2 is 59.1%, and that between the second and third paths P2 and P3 is 44.4%.
  • In the present invention, however, the reduction rate of the cross-sectional areas between adjacent paths may be set such that each path is constituted by the same number of tubes having different cross-sectional area. [0037]
  • In the present invention, although the total number of the paths is not especially limited, it is preferable that the total number is set to 2 to 5, more preferably 3 or 4. The most suitable total number is 3. If the total number of paths is set too much, the reduction rate of the cross-sectional areas between adjacent paths, i.e., the reduction rate of the tube number between the adjacent paths in the aforementioned embodiment, becomes too small, which causes a trouble in securing the aforementioned reduction rate. Thus, an effective refrigerant blow-up effect may not be obtained. [0038]
  • Furthermore, in the present invention, it is preferable that the cross-sectional area of each path is decreased stepwise for every path towards the downstream side (upper side). However, the heat exchange core may include adjacent paths each having the same cross-sectional area. Therefore, it should be understood that the present invention covers such a condenser including adjacent paths each having the same cross-sectional area, unless otherwise clearly defined. [0039]
  • Returning to the condenser of the aforementioned embodiment, the refrigerant introduced from the [0040] refrigerant inlet 11 a passes upwardly through the first to third paths P1-P3 in sequence in a meandering manner, and flows out of the refrigerant outlet 11 b. While passing through these paths, the refrigerant exchanges heat with the ambient air to be gradually condensed and liquefied.
  • At this time, the liquefaction of the gaseous refrigerant introduced from the [0041] refrigerant inlet 11 a starts at the end portion of the first path P1, for example, and the liquefied refrigerant RL flows out of the tube-outlets of the first path P1 and tends to flow downwards in the first refrigerant turning portion T1, as shown in FIG. 3. On the other hand, the gaseous refrigerant RG flows out of the tube-outlets of the first path P1, and goes up vigorously in the first turning portion T1. This rising gaseous refrigerant RG pushes up the aforementioned liquefied refrigerant RL. Thus, the liquefied refrigerant RL goes up in the first refrigerant turning portion T1 together with the gaseous refrigerant RG, and this rising mixture of refrigerant will be evenly distributed into each flat tube 12 constituting the second path P2 smoothly.
  • In this embodiment, since the cross-sectional area of the second path P[0042] 2 is set to the aforementioned specific reduction rate to that of the first path P1, the flow velocity of the gaseous refrigerant rising in the first refrigerant turning portion T1 between the first and second paths P1 and P2 can be secured enough. Therefore, a sufficient blow-up effect in the refrigerant turning portion T1 can be obtained by the rising refrigerant, which in turn can prevent assuredly the stagnation of the liquefied refrigerant RL in the bottom portion of the refrigerant turning portion T1.
  • Regarding the refrigerant which will flow into the third path P[0043] 3 through the second refrigerant turning portion T2 from the second path P2, a similar phenomenon can be observed. The gaseous refrigerant RG which goes up vigorously in the second refrigerant turning portion T2 will push up the liquefied refrigerant RL which tends to flow down, and therefore this rising refrigerant can flow into each flat tube 12 constituting the third path P3 smoothly. As a result, a liquid stagnation by the liquefied refrigerant can be prevented.
  • Thus, according to the condenser of this embodiment, since a stagnation of the liquefied refrigerant can be prevented, the whole core surface can be used effectively as a heat exchanging portion, resulting in an improved cooling performance. [0044]
  • Furthermore, since the refrigerant will not stagnate and will pass through the whole region of each path in an evenly distributed manner, the refrigerant flow resistance can be reduced, resulting in a further enhanced heat exchanging performance. [0045]
  • Next, examples according to the present invention and a comparative example will be explained. [0046]
  • FIRST EXAMPLE
  • A condenser was manufactured in accordance with the aforementioned embodiment shown in FIGS. 1 and 2. This condenser has three paths, i.e., the lowermost first path P[0047] 1, the middle second path P2 and the uppermost third path P3. The first, second and third paths P1, P2 and P3 include twenty-two (22) tubes, nine (9) tubes and five (5) tubes, respectively. In this condenser, the reduction rate of the cross-sectional area of the second path P2 to that of the first path P1 is 59.1%, and the reduction rate of the cross-sectional area of the third path P3 to that of the second path P2 is 44.4%
  • SECOND EXAMPLE
  • As shown in FIG. 4, a condenser having three paths, i.e., the lowermost first path P[0048] 1, the middle second path P2 and the uppermost third path P3, was manufactured. The first, second and third paths P1, P2 and P3 include eighteen (1 a) tubes, nine (9) tubes and five (5) tubes, respectively. Another structure is the same as the condenser of the first example. In this condenser, the reduction rate of the cross-sectional area of the second path P2 to that of the first path P1 is 50%, and the reduction rate of the cross-sectional area of the third path P3 to that of the second path P2 is 44.4%
  • In the second embodiment shown in FIG. 4, the same or corresponding reference numeral as in the first example are allotted to the same portion or corresponding portion (Similarly, the same or corresponding reference numeral will be allotted in the following third example shown in FIG. 5 and the following comparative example shown in FIG. 6). [0049]
  • THIRD EXAMPLE
  • As shown in FIG. 5, a condenser having four paths, i.e., the lowermost first path P[0050] 1, the lower middle second path P2, the upper middle third path P3 and the uppermost fourth path P4, was manufactured. The first, second, third and fourth paths P1, P2, P3 and P4 include thirteen (13) tubes, nine (9) tubes, six (6) tubes and four (4) tubes, respectively. Another structure is the same as the condenser of the first example. In this condenser, the reduction rate of the cross-sectional area of the second path P2 to that of the first path P1 is 30.8%, the reduction rate of the cross-sectional area of the third path P3 to that of the second path P2 is 33.3% and the reduction rate of the cross-sectional area of the fourth path P4 to that of the third path P3 is 33.3%. In FIG. 5, the reference numeral T4 denotes a fourth refrigerant turning portion (the same numeral will be used in FIG. 6)
  • COMPARATIVE EXAMPLE
  • As shown in FIG. 6, a condenser having four paths, i.e., the uppermost first path P[0051] 1, the upper middle second path P2, the lower middle third path P3 and the lowermost fourth path P4, was manufactured. The first, second, third and fourth paths P1, P2, P3 and P4 include thirteen (13) tubes, nine (9) tubes, six (6) tubes and four (4) tubes, respectively. Another structure is the same as the condenser of the first example. This condenser according to the comparative example has a symmetrical configuration rotated by 180 degrees to the aforementioned condenser according to the third example. Accordingly, in this condenser, the reduction rate of the cross-sectional area of the second path P2 to that of the first path P1 is 30.8%, the reduction rate of the cross-sectional area of the third path P3 to that of the second path P2 is 33.3% and the reduction rate of the cross-sectional area of the fourth path P4 to that of the third path P3 is 33.3%.
  • <Evaluation on a Stagnated Liquid Refrigerant>[0052]
  • In the aforementioned examples and comparative example, it was observed whether or not a liquefied refrigerant (low-temperature refrigerant) stagnates based on the temperature distribution of a thermography image. According to the observation, in the condensers of the first to third examples, the refrigerant temperature decreased gradually towards the downstream portion in each path, there was no variation in temperature distribution, and no stagnation of a liquefied refrigerant was observed. Furthermore, in the condenser according to the comparative example, a low-temperature region existed in the lower portion in each path, and a stagnation of the liquefied refrigerant was observed in the lower portion. [0053]
  • <Evaluation on Refrigerant Flow Resistance>[0054]
  • The relation between the refrigerant flow resistance (kPa) and the refrigerant circulation amount (kg/h) in each condenser of the aforementioned examples and comparative example were measured. The measured results are shown in the graph of FIG. 7. In this graph, “A[0055] 1,” “A2,” and “A3” denote the first, second and third examples, respectively, and “B” denotes the comparative example.
  • As will be apparent from this graph, in the condenser according to the first to third examples A[0056] 1-A3, the refrigerant flow resistance to a predetermined refrigerant circulation amount was decreased as compared with the condenser according to the comparative example.
  • Among these three examples, especially the first and second examples A[0057] 1 and A2 were able to reduce flow resistance remarkably. The reason is considered as follows: since the reduction rate of the cross-sectional area of the second path P2 to the cross-sectional area of the first path P1 is set to 50% or more and the reduction rate of the cross-sectional area of the third path P3 to the cross-sectional area of the second path P2 is set to 40% or more, the refrigerant blow-up effect between adjacent paths could fully be obtained and therefore the circulation of the refrigerant could be performed much more smoothly.
  • Therefore, between adjacent paths, when the refrigerant flowed out of the upstream side path (lower side path) goes up and flows into the downstream side path (upper side path), the liquefied refrigerant is pushed up by the blow-up effect of the rising refrigerant and introduced into the downstream side path (upper side path). As a result, a stagnation of the liquid refrigerant can be prevented, securing an enough effective area of the heat exchanging portion, which enables an enhanced cooling performance. Furthermore, since the liquefied refrigerant passes through the entire region of each path without stagnating therein, the refrigerant flow resistance can be reduced, resulting in an enhanced performance. In cases where the reduction rate of the cross-sectional area between the predetermined adjacent paths is specified, the aforementioned effects can be obtained assuredly. [0058]
  • This application claims priority to Japanese Patent Application No. 2000-183966 filed on Jun. 20, 2000, the disclosure of which is incorporated by reference in its entirety. [0059]
  • The terms and descriptions in this specification are used only for explanatory purposes and the present invention is not limited to these terms and descriptions. It should be appreciated that there are many modifications and substitutions without departing from the spirit and the scope of the present invention which is defined by the appended claims. A present invention permits any design-change, unless it deviates from the soul, if it is within the limits by which the claim was performed. [0060]

Claims (20)

What is claimed is:
1. A condenser, comprising:
a pair of right and left headers;
a plurality of heat exchanging tubes disposed between said headers with opposite ends thereof connected with said headers;
at least one partition provided in one of said headers to group said plurality of heat exchanging tubes into a plurality of paths;
a refrigerant inlet provided at a lower portion of one of said headers; and
a refrigerant outlet provided at an upper portion of one of said headers;
wherein a refrigerant introduced from said refrigerant inlet passes upwardly through said plurality of paths in sequence in a meandering manner, and flows out of said refrigerant outlet,
wherein a cross-sectional area of each of said paths decreases stepwise towards a downstream side of said paths for each path, and
wherein a reduction rate of a cross-sectional area of a downstream side path of adjacent two paths to a cross-sectional area of an upstream side path thereof is 20% or more.
2. The condenser as recited in claim 1, wherein said headers are disposed vertically, and wherein said plurality of heat exchanging tubes are disposed horizontally at predetermined intervals.
3. The condenser as recited in claim 2, wherein said cross-sectional area of said downstream side path is smaller than that of said upstream side path in any adjacent two paths.
4. The condenser as recited in claim 1, wherein said plurality of paths comprise three or more paths including a first path, a second path and a third path through which said refrigerant introduced from said refrigerant inlet passes in sequence, wherein a reduction rate of a cross-sectional area of said second path to a cross-sectional area of said first path is 50% or more, and wherein a reduction rate of a cross-sectional area of said third path to a cross-sectional area of said second path is 40% or more.
5. The condenser as recited in claim 2, wherein said plurality of paths comprise three or more paths including a first path, a second path and a third path through which said refrigerant introduced from said refrigerant inlet passes in sequence, wherein a reduction rate of a cross-sectional area of said second path to a cross-sectional area of said first path is 50% or more, and wherein a reduction rate of a cross-sectional area of said third path to a cross-sectional area of said second path is 40% or more.
6. The condenser as recited in claim 1, wherein said plurality of heat exchanging tubes are grouped into 2 to 5 paths.
7. The condenser as recited in claim 4, wherein said plurality of heat exchanging tubes are grouped into 3 paths.
8. The condenser as recited in claim 5, wherein said plurality of heat exchanging tubes are grouped into 3 paths.
9. The condenser as recited in claim 4, wherein each of said reduction rates is attained by decreasing the number of said heat exchanging tubes constituting each of said paths.
10. The condenser as recited in claim 5, wherein each of said reduction rates is attained by decreasing the number of said heat exchanging tubes constituting each of said paths.
11. A condenser, comprising:
a plurality of paths arranged one on the other, each of said paths including a plurality of heat exchanging tubes;
a header portion connected to corresponding ends of adjacent upper and lower paths;
a refrigerant inlet provided at a lowermost path; and
a refrigerant outlet provided at an uppermost path,
wherein a refrigerant introduced from said refrigerant inlet goes upwardly from said lowermost path towards said uppermost path while making a U-turn in said header portion, and flows out of said refrigerant outlet, and
wherein a reduction rate of a cross-sectional area of a downstream side path of adjacent two paths to a cross-sectional area of an upstream side path thereof is 20% or more.
12. The condenser as recited in claim 11, wherein said plurality of paths comprises three or more paths including a first path, a second path and a third path through which said refrigerant introduced from said refrigerant inlet passes in sequence, wherein a reduction rate of a cross-sectional area of said second path to a cross-sectional area of said first path is 50% or more, and wherein a reduction rate of a cross-sectional area of said third path to a cross-sectional area of said second path is 40% or more.
13. The condenser as recited in claim 11, wherein said plurality of paths are 2 to 5 paths.
14. The condenser as recited in claim 11, wherein said plurality of paths are 3 paths.
15. The condenser as recited in claim 12, wherein said plurality of paths are 3 paths.
16. The condenser as recited in claim 11, wherein each of said reduction rates is attained by decreasing the number of said heat exchanging tubes constituting each of said paths.
17. The condenser as recited in claim 12, wherein each of said reduction rates is attained by decreasing the number of said heat exchanging tubes constituting each of said paths.
18. A condenser, comprising:
a first header portion with a refrigerant inlet;
a lowermost first path including a plurality of heat exchanging tubes whose one end being connected with said first header portion;
a final header portion with a refrigerant outlet;
an uppermost final path including a plurality of heat exchanging tubes whose one end being connected with said final header portion;
one or a plurality of middle paths each including a plurality of heat exchanging tubes; and
a plurality of middle header portions each connecting corresponding one ends of adjacent paths,
wherein a refrigerant introduced from said refrigerant inlet flows upwards through said plurality of paths in sequence in a meandering manner via each of said header portions, and flows out of said refrigerant, and
wherein a reduction rate of a cross-sectional area of a downstream side path of adjacent two paths to a cross-sectional area of a upstream side path thereof is 20% or more.
19. The condenser as recited in claim 18, wherein said plurality of paths include three or more paths including a first path, a second path and a third path through which said refrigerant introduced from said refrigerant inlet passes in sequence, wherein a reduction rate of a cross-sectional area of said second path to a cross-sectional area of said first path is 50% or more, and wherein a reduction rate of a cross-sectional area of said third path to a cross-sectional area of said second path is 40% or more.
20. The condenser as recited in claim 19, wherein each of said reduction rates is attained by decreasing the number of said heat exchanging tubes constituting each of said paths.
US09/884,802 2000-06-20 2001-06-19 Condenser Abandoned US20020007646A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-183966 2000-06-20
JP2000183966 2000-06-20

Publications (1)

Publication Number Publication Date
US20020007646A1 true US20020007646A1 (en) 2002-01-24

Family

ID=18684466

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/884,802 Abandoned US20020007646A1 (en) 2000-06-20 2001-06-19 Condenser

Country Status (5)

Country Link
US (1) US20020007646A1 (en)
EP (1) EP1167910B1 (en)
AT (1) ATE317100T1 (en)
DE (1) DE60116922T2 (en)
ES (1) ES2257360T3 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070044948A1 (en) * 2005-08-31 2007-03-01 Jing-Ron Lu Water-cooled cooler for CPU of PC
US20100165572A1 (en) * 2003-03-19 2010-07-01 American Power Conversion Corporation Data center cooling
US20110108259A1 (en) * 2009-11-06 2011-05-12 Twin Air B.V. Holland Oil Cooler For A Motorized Vehicle
US20120000635A1 (en) * 2009-03-13 2012-01-05 Carrier Corporation Manifold assembly for distributing a fluid to a heat exchanger
US20120255703A1 (en) * 2009-10-19 2012-10-11 Sharp Kabushiki Kaisha Heat exchanger and air conditioner incorporating same
DE102011007216A1 (en) * 2011-04-12 2012-10-18 Behr Gmbh & Co. Kg Refrigerant condenser assembly
JP2013002774A (en) * 2011-06-20 2013-01-07 Sharp Corp Parallel flow type heat exchanger and air conditioner with the same
US20130213922A1 (en) * 2003-04-15 2013-08-22 Nestle Waters Management & Technology Container for product with thin wall
US20130219932A1 (en) * 2010-08-19 2013-08-29 Behr Gmbh & Co. Kg Coolant condenser assembly
US20150040603A1 (en) * 2012-01-30 2015-02-12 Valeo Systemes Thermiques Assembly Including A Heat Exchanger And A Mounting On Which Said Exchanger Is Mounted
US20160109192A1 (en) * 2013-05-24 2016-04-21 Sanden Holdings Corporation Interior heat exchanger
CN105727683A (en) * 2016-05-09 2016-07-06 洛阳瑞昌石油化工设备有限公司 Flue gas condensation and electrostatic treatment device and treatment technology
US20160327343A1 (en) * 2015-05-08 2016-11-10 Lg Electronics Inc. Heat exchanger of air conditioner
WO2018148760A1 (en) 2017-02-13 2018-08-16 Evapco, Inc. Multi-cross sectional fluid path condenser
US20180299205A1 (en) * 2015-10-12 2018-10-18 Charbel Rahhal Heat exchanger for residential hvac applications
CN110382977A (en) * 2017-02-13 2019-10-25 艾威普科公司 More cross section fluid path condensers
CN113707969A (en) * 2020-05-08 2021-11-26 恒大新能源技术(深圳)有限公司 Liquid cooling plate, battery pack and flow control method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004001786A1 (en) * 2004-01-12 2005-08-04 Behr Gmbh & Co. Kg Heat exchanger, especially for supercritical refrigeration cycle
EP1557630A1 (en) 2004-01-23 2005-07-27 BEHR Lorraine S.A.R.L. Heat exchanger
FR2915793B1 (en) * 2007-05-03 2015-05-01 Valeo Systemes Thermiques IMPROVED HEAT EXCHANGER FOR AIR CONDITIONING CIRCUIT FOR MOTOR VEHICLE
FR2928448B1 (en) * 2008-03-04 2015-05-01 Valeo Systemes Thermiques IMPROVED GAS COOLER
DE102008038498A1 (en) * 2008-08-20 2010-02-25 Behr Gmbh & Co. Kg Heat exchanger for a motor vehicle
JP5732258B2 (en) * 2010-02-16 2015-06-10 株式会社ケーヒン・サーマル・テクノロジー Capacitor
JP5717474B2 (en) * 2010-04-16 2015-05-13 株式会社ケーヒン・サーマル・テクノロジー Capacitor
JP5717475B2 (en) * 2010-04-16 2015-05-13 株式会社ケーヒン・サーマル・テクノロジー Capacitor
JP5609916B2 (en) * 2012-04-27 2014-10-22 ダイキン工業株式会社 Heat exchanger
DE102013204294A1 (en) * 2013-03-12 2014-10-02 Behr Gmbh & Co. Kg Condenser assembly for refrigerant

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482112A (en) * 1986-07-29 1996-01-09 Showa Aluminum Kabushiki Kaisha Condenser
US5529116A (en) * 1989-08-23 1996-06-25 Showa Aluminum Corporation Duplex heat exchanger
US5682944A (en) * 1992-11-25 1997-11-04 Nippondenso Co., Ltd. Refrigerant condenser
EP0769666B1 (en) * 1995-10-18 2003-03-12 Calsonic Kansei Corporation Condenser structure with a liquid tank
JP3131774B2 (en) * 1997-09-26 2001-02-05 漢拏空調株式会社 Multi-flow condenser for vehicle air conditioner

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100165572A1 (en) * 2003-03-19 2010-07-01 American Power Conversion Corporation Data center cooling
US20130213922A1 (en) * 2003-04-15 2013-08-22 Nestle Waters Management & Technology Container for product with thin wall
US20070044948A1 (en) * 2005-08-31 2007-03-01 Jing-Ron Lu Water-cooled cooler for CPU of PC
US20120000635A1 (en) * 2009-03-13 2012-01-05 Carrier Corporation Manifold assembly for distributing a fluid to a heat exchanger
US9562722B2 (en) * 2009-03-13 2017-02-07 Carrier Corporation Manifold assembly for distributing a fluid to a heat exchanger
US20120255703A1 (en) * 2009-10-19 2012-10-11 Sharp Kabushiki Kaisha Heat exchanger and air conditioner incorporating same
US20110108259A1 (en) * 2009-11-06 2011-05-12 Twin Air B.V. Holland Oil Cooler For A Motorized Vehicle
US9970694B2 (en) * 2010-08-19 2018-05-15 Mahle International Gmbh Coolant condenser assembly
US20130219932A1 (en) * 2010-08-19 2013-08-29 Behr Gmbh & Co. Kg Coolant condenser assembly
DE102011007216A1 (en) * 2011-04-12 2012-10-18 Behr Gmbh & Co. Kg Refrigerant condenser assembly
JP2013002774A (en) * 2011-06-20 2013-01-07 Sharp Corp Parallel flow type heat exchanger and air conditioner with the same
US20150040603A1 (en) * 2012-01-30 2015-02-12 Valeo Systemes Thermiques Assembly Including A Heat Exchanger And A Mounting On Which Said Exchanger Is Mounted
US9834061B2 (en) * 2012-01-30 2017-12-05 Valeo Systemes Thermiques Assembly including a heat exchanger and a mounting on which said exchanger is mounted
US20160109192A1 (en) * 2013-05-24 2016-04-21 Sanden Holdings Corporation Interior heat exchanger
US20160327343A1 (en) * 2015-05-08 2016-11-10 Lg Electronics Inc. Heat exchanger of air conditioner
CN106123403A (en) * 2015-05-08 2016-11-16 Lg电子株式会社 The heat exchanger of air conditioner
US20180299205A1 (en) * 2015-10-12 2018-10-18 Charbel Rahhal Heat exchanger for residential hvac applications
CN105727683A (en) * 2016-05-09 2016-07-06 洛阳瑞昌石油化工设备有限公司 Flue gas condensation and electrostatic treatment device and treatment technology
WO2018148760A1 (en) 2017-02-13 2018-08-16 Evapco, Inc. Multi-cross sectional fluid path condenser
US20180238644A1 (en) * 2017-02-13 2018-08-23 Evapco, Inc. Multi-cross sectional fluid path condenser
CN110382977A (en) * 2017-02-13 2019-10-25 艾威普科公司 More cross section fluid path condensers
EP3580505A4 (en) * 2017-02-13 2020-12-16 Evapco, Inc. Multi-cross sectional fluid path condenser
RU2769608C2 (en) * 2017-02-13 2022-04-04 Эвапко, Инк. Condenser with fluid medium flow channel with several cross sections
CN113707969A (en) * 2020-05-08 2021-11-26 恒大新能源技术(深圳)有限公司 Liquid cooling plate, battery pack and flow control method

Also Published As

Publication number Publication date
ES2257360T3 (en) 2006-08-01
DE60116922D1 (en) 2006-04-13
EP1167910A2 (en) 2002-01-02
DE60116922T2 (en) 2006-09-14
EP1167910A3 (en) 2003-11-26
EP1167910B1 (en) 2006-02-01
ATE317100T1 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
US20020007646A1 (en) Condenser
US7640970B2 (en) Evaporator using micro-channel tubes
US10393416B2 (en) Evaporator
US6769269B2 (en) Multistage gas and liquid phase separation condenser
CA2240756C (en) Multistage gas and liquid phase separation type condenser
JP5486782B2 (en) Evaporator
CN103890532B (en) Flat tube fin heat exchanger and method of manufacture
US20110132585A1 (en) Heat exchanger tube configuration for improved flow distribution
US20060054310A1 (en) Evaporator using micro-channel tubes
EP0414433A2 (en) Duplex heat exchanger
US20050061488A1 (en) Automotive heat exchanger
EP2865983B1 (en) Heat-exchanger header and heat exchanger provided therewith
KR20060086708A (en) Heat exchanger
JPH09280755A (en) Tubular heat exchanger
JP6842915B2 (en) Evaporator
JP3122578B2 (en) Heat exchanger
US20060144051A1 (en) Evaporator designs for achieving high cooling performance at high superheats
US20160061496A1 (en) Heat exchanger with reduced length distributor tube
JP2018087646A5 (en)
US11867466B2 (en) Compact heat exchanger assembly for a refrigeration system
JP2018087646A (en) Evaporator
JP2002081797A (en) Condenser
JP2001133076A (en) Heat exchanger
CN107806723B (en) Shell-tube condenser
JPH085198A (en) Air conditioning heat exchanger

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHOWA DENKO K.K., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MANAKA, HIDEAKI;REEL/FRAME:012162/0572

Effective date: 20010830

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION