EP2606292B1 - Coolant condenser assembly - Google Patents

Coolant condenser assembly Download PDF

Info

Publication number
EP2606292B1
EP2606292B1 EP11749398.1A EP11749398A EP2606292B1 EP 2606292 B1 EP2606292 B1 EP 2606292B1 EP 11749398 A EP11749398 A EP 11749398A EP 2606292 B1 EP2606292 B1 EP 2606292B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
supercooling
cooling tubes
region
parallel portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11749398.1A
Other languages
German (de)
French (fr)
Other versions
EP2606292A1 (en
Inventor
Guillaume David
Uwe FÖRSTER
Matthias Jung
Andreas Kemle
Christoph Walter
Herbert Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Publication of EP2606292A1 publication Critical patent/EP2606292A1/en
Application granted granted Critical
Publication of EP2606292B1 publication Critical patent/EP2606292B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0444Condensers with an integrated receiver where the flow of refrigerant through the condenser receiver is split into two or more flows, each flow following a different path through the condenser receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers

Definitions

  • the present invention relates to a refrigerant condenser assembly according to the preamble of claim 1 and a method for operating a refrigeration circuit of an automotive air conditioning system according to the preamble of claim 4.
  • a refrigerant condenser assembly according to the preamble of claim 1 is from document EP 1 577 629 known.
  • refrigerant condenser assemblies for an automotive air conditioning system
  • vaporous refrigerant is converted into a liquid state of aggregation, and then the liquid refrigerant is further "subcooled" in a subcooling region.
  • the refrigerant condenser assembly forms part of a refrigeration circuit of an automotive air conditioning system with an evaporator, an expansion device and a compressor.
  • the DE 10 2007 018 722 A1 shows a condenser for the air conditioning system of a motor vehicle having two manifolds and a container arranged adjacent to the one collecting tube for receiving the desiccant of the refrigerant of the air conditioner.
  • the refrigeration cycle of an automotive air conditioning system is reduced by up to 10%.
  • the performance of a refrigeration cycle in an automotive air conditioning system can be increased, among other things, that the already liquefied refrigerant is cooled more strongly at a subcooling region of the refrigerant condenser assembly.
  • the refrigerant in gaseous form enters the refrigerant condenser assembly at an inlet port and is cooled to a saturation temperature at an overheat region. Subsequently, the refrigerant flows in a condensation region and in this, the gaseous refrigerant is further cooled to a boiling temperature and liquefied with it. Subsequently, the liquid refrigerant flows into a supercooling zone and is cooled below the boiling point, for example to a temperature of 6 or 7 K below the boiling point of the refrigerant.
  • the refrigerant capacitor assembly within the motor vehicle a predetermined space, for example given by a certain depth, height and width available, so that although a greater cooling of the refrigerant at the subcooling by a larger surface at the subcooling and a larger space associated therewith
  • refrigerant condenser assembly is possible, but in general due to the predetermined dimensions of the space for the refrigerant condenser assembly no larger space is available.
  • the refrigerant R1234yf is sought to increase the subcooling, for example, 15 K.
  • the refrigerant R1234yf is sought to increase the subcooling, for example, 15 K.
  • more cooling tubes or proportionally more area required by the capacitor This has the consequence that less space is available for the condensation area, the cooling takes place at a higher saturation temperature and the associated saturation pressure increases. This causes a negative effect on the cooling capacity in the refrigerant circuit, which reduces or even nullifies the intended advantage.
  • the object of the present invention is to provide a refrigerant condenser assembly, a method of operating a refrigeration cycle of an automotive air conditioning system, and an automotive air conditioner in which the refrigerant is strongly cooled in a subcooling region of the refrigerant condenser assembly without substantially increasing the condensing pressure in the refrigerant condenser assembly and that the outlet port and the reservoir are disposed on different longitudinal sides of the refrigerant condenser assembly.
  • the subcooling region of the refrigerant condenser assembly is thus subdivided into a total of three subcooler parallel sections which are each connected to one another by a subcooling intermediate flow channel.
  • the refrigerant at the subcooling region can be cooled even further below the boiling point of the refrigerant.
  • the outlet port and the header tank are disposed on opposite longitudinal sides of the refrigerant condenser assembly.
  • a collecting container with a larger collection volume can preferably be made available be as in the prior art.
  • the inlet opening and outlet opening are preferably arranged on the same longitudinal side of the refrigerant condenser assembly.
  • the subcooling region of the refrigerant condenser assembly is thus subdivided into first and second and third subcooling parallel sections, and in the subcooling parallel sections, at least two cooling tubes are respectively hydraulically or fluidly urged in parallel with the refrigerant.
  • the refrigerant exiting from the first subcooler parallel section is introduced into and mixed in a first subcooling intermediate flow channel, and the refrigerant is introduced into the second subcooler parallel section from the first subcooling intermediate flow channel.
  • the refrigerant exiting from the second subcooler parallel portion is introduced into and mixed in a second subcool intermediate passage, and from the second subcool intermediate passage, the refrigerant is introduced into the third subcool parallel portion.
  • the refrigerant is discharged through the discharge port from the refrigerant condenser assembly.
  • the refrigerant can be cooled more advantageously at the subcooling, for example, to a temperature of 14 K below the boiling temperature of the refrigerant without thereby increasing the dimensions of the refrigerant condenser assembly and thus the refrigerant condenser assembly finds place in a given space of a motor vehicle.
  • the performance of a refrigeration circuit of an automotive air conditioning system can be improved and thereby the power reduction when using the new refrigerant R1234yf be at least partially compensated.
  • An increased pressure drop in the subcooling region, which is generated by the three subcooling parallel sections, is not detrimental to the performance of the refrigerant condenser assembly or reduces its performance. This is due to the fact that the pressure drop takes place after the wet steam area, while the system's high pressure is oriented at the saturation temperature before the subcooling area or after the condensation area.
  • the three subcooler parallel sections are flowed through from bottom to top.
  • the third subcooling parallel section is thus arranged geodetically higher than the second subcooling parallel section, while the second subcooling parallel section is arranged geodetically higher than the first subcooling parallel section.
  • the three subcooler parallel sections can also be flowed through from top to bottom.
  • one subcooler parallel section each has two, three or four cooling tubes acted upon in parallel and / or the surface of the cooling tubes and preferably the subcooling section headers is less than 50%, 40%, 35%, 30%, 25% or 15%.
  • the surface of the heat exchanger of the refrigerant condenser assembly and in particular the heat exchanger consists of the cooling tubes and preferably the headers.
  • At least two cooling tubes act as fluid-conducting parallel first parallel section
  • the refrigerant flowing out of the first parallel section opens into a first intermediate flow channel
  • the first intermediate flow channel opens into at least two cooling tubes as second parallel section.
  • a first and a second parallel section is arranged in the flow direction of the refrigerant before the first subcooler parallel section.
  • the overheating region and / or the condensation region are subdivided into the first and second parallel sections between which the refrigerant is conducted through the first intermediate flow channel.
  • the refrigerant flowing out of the second parallel section opens into a second intermediate flow channel and the second intermediate flow channel opens into at least two cooling tubes as the third parallel section.
  • the refrigerant condenser assembly is divided into a total of three parallel sections with at least two, preferably at least four or six or eight, cooling tubes, which are each fluid-conductively connected to each other through the intermediate flow channel.
  • a parallel section has a greater number of cooling tubes than a subcooler parallel section, and preferably the number of cooling tubes of a parallel section is two, three, five or seven cooling tubes greater than the number of cooling tubes of a subcooler parallel section.
  • the second parallel section opens into a second intermediate flow channel and the second intermediate flow channel opens into the collecting container.
  • the third parallel section opens into a third intermediate flow channel and the third intermediate flow channel opens into the collecting container.
  • exactly one parallel section may be provided so that it opens exactly one parallel section into the collecting container, such an arrangement not falling within the scope of the claims.
  • the sum of the flow cross-sectional areas of the cooling tubes of a subcooler parallel section is smaller than the product of 0.7 or 0.5 or 0.3 or 0.1 and the sum of the flow cross-sectional areas of the cooling tubes of a parallel section and / or the cooling tubes are formed as flat tubes and between the flat tubes corrugated ribs are arranged.
  • the flow cross-sectional area is the cross-sectional area of the cooling tubes for passing the refrigerant.
  • the refrigerant in the subcooling section is cooled by more than 7, 10, 12, or 14 K, and is preferably cooled by less than 30K or 20K. Due to the larger volumetric flow of the refrigerant in the cooling tubes of the subcooling region compared to a subcooling region having only exactly one subcooling parallel section and the associated greater flow velocity of the refrigerant in the subcooling region, a better heat transfer from the refrigerant to the air, which flows around the refrigerant condenser assembly, can thereby be achieved ,
  • the refrigerant is R1234yf or R134a.
  • the refrigeration medium condenser assembly has a closure device formed on the collecting container for closing a closure opening of the collecting container.
  • a dryer and / or a filter are arranged in the collecting container.
  • FIG. 1 and 2 a refrigerant condenser assembly 1 is shown in a perspective view.
  • the refrigerant condenser assembly 1 is part of an automotive air conditioning system with an evaporator and a compressor (not shown).
  • By horizontally arranged cooling tubes 2 as flat tubes 3 flows to be condensed and cooled refrigerant ( Fig. 1 and 2 ).
  • the cooling tubes 2 open at their respective ends in a vertical manifold 5, that is, there are two manifolds 5 respectively at the ends of the cooling tubes 2.
  • the collecting tube 5 has cooling tube openings through which the ends of the cooling tubes 2 project into the collecting tube 5.
  • baffles (not shown) are formed with which a certain flow path of the refrigerant can be achieved through the cooling tubes 2, so that the refrigerant through the cooling tubes 2 according to the flow diagram in Fig. 3 flows through the cooling tubes 2.
  • the cooling tubes 2 meandering corrugated fins 4 are arranged, which are in thermal communication with the cooling tubes 2 by means of heat conduction. This increases the area available for cooling the refrigerant.
  • the cooling tubes 2, the corrugated fins 4 and the two manifolds 5 are generally made of metal, in particular aluminum, and are materially connected to one another as a solder joint.
  • a fastening device 8 is arranged, with which the refrigerant condenser assembly can be attached to a motor vehicle, in particular to a body of a motor vehicle.
  • a collecting container 6 is arranged on a first longitudinal side ( Fig. 1 . 2 ).
  • the collecting container 6 is by means of two overflow openings (not shown) in fluid communication with the collecting tube 5 and thus also indirectly in fluid communication with the cooling tubes 2.
  • a dryer and a filter (not shown) is arranged in the collecting container 6.
  • the dryer is hygroscopic and can absorb water or moisture from the refrigerant.
  • the collecting container 6 is mechanically connected to the collecting tube 5 at the lower and upper ends with a concave support region. At the lower end of the collecting container 6 is closed by a closure device 7 fluid-tight.
  • the removable closure device 7 allows an exchange of the dryer and the filter in the collecting container 6.
  • the refrigerant condenser assembly 1 has an inlet port 9 for introducing the refrigerant R1234yf into the refrigerant condenser assembly 1, and an outlet port 10 for discharging the refrigerant from the refrigerant condenser assembly 1 (FIG. Fig. 1 and 3 ).
  • the ends of the cooling tubes 2 terminate in the manifolds 5.
  • baffles or flow guide plates, not shown, are arranged with the help of which a certain predetermined flow diagram of the refrigerant can be achieved, ie with which flow path, the refrigerant flows through the plurality of superimposed cooling tubes 2 of the refrigerant condenser assembly 1. This in Fig.
  • a first intermediate flow passage 20, a second intermediate flow passage 22, a third intermediate flow passage 24 and a first sub-cooling intermediate flow passage 15th and a second sub-cooling intermediate passage 17, which in Fig. 3 are shown are thus formed within the manifolds 5 of the flow guide plates, not shown.
  • the refrigerant condenser assembly 1 constitutes a heat exchanger for transferring heat from the refrigerant to air surrounding and circulating around the refrigerant condenser assembly 1.
  • the heat exchanger is essentially formed by the cooling tubes 2 and the two manifolds 5.
  • the heat exchanger as part of the refrigerant condenser assembly 1 in this case has an inlet opening 9 through which gaseous refrigerant is passed from a compressor, not shown, to the refrigerant condenser assembly 1.
  • the gaseous refrigerant is thereby cooled at an overheating region 11 to a saturation temperature, ie at the saturation temperature occurs in accordance with the existing pressure, a condensation of the refrigerant.
  • condensation region 12 connects, in which the refrigerant is condensed and thus liquefied.
  • the refrigerant liquefied in the condensation region 12 is supplied as a liquid to the subcooling region 13 and cooled in the subcooling region 13 below the boiling temperature of the refrigerant.
  • condensation region 12 and subcooling region 13 may differ slightly during operation of an automotive air conditioning system, so that, for example, in modification of the illustration in Fig. 3 the overheating region 11 is slightly larger and thereby the condensation region 12 becomes smaller, so that, for example, a second parallel section 21 also partially forms the overheating region 11.
  • the overheating region 11 is formed by the first parallel section 19.
  • the first parallel section 19 has eleven cooling tubes, which are connected in parallel or flow through in a fluid-conducting or hydraulic manner. After flowing out of the refrigerant from the eleven cooling tubes 2 of the first parallel section 19, the refrigerant is introduced into the first intermediate flow passage 20 and introduced from the first intermediate flow passage 20 into the second parallel section 21.
  • the second parallel section 21 has eight cooling tubes 2, through which the refrigerant flows simultaneously in parallel. The refrigerant flowing out of the second parallel section 21 is introduced into the second intermediate flow passage 22 and introduced therefrom into the third parallel section 23 with likewise eight cooling tubes 2.
  • the refrigerant flowing out of the third parallel portion 23 is introduced into the third intermediate flow passage 24, and then, after passing through the reservoir 6, is supplied to the subcooling portion 13 of the refrigerant condenser assembly 1.
  • the subcooling region 13 comprises a first subcooler parallel section 14, a second subcooler parallel section 16 and a third subcooler parallel section 18.
  • the three subcool parallel sections 14, 16 and 18 each have three cooling tubes 2.
  • the first subcooler parallel section 14 is connected to the second subcooler parallel section 16 through the first subcooling intermediate flow channel 15 and analogously, the second subcooling parallel section 16 is connected to the third subcooling parallel section 18 through the second subcooling intermediate flow channel 17.
  • the parallel sections 19, 21 and 23 and the subcooler parallel sections 14, 16 and 18 are fluidly connected in series and the cooling tubes 2 at the parallel sections 19, 21 and 23 and the subcool parallel sections 14, 16 and 18 are hydraulically or fluid-conducting connected in parallel.
  • the entire refrigerant passed through the refrigerant condenser assembly 1 thus flows through the respective parallel sections 19, 21 and 23 and the subcooler parallel sections 14, 16 and 18.
  • the subcooler parallel sections 14, 16 and 18 have a significantly smaller number of cooling tubes 2 than the parallel sections 19, 21 and 23. Due to the fluid-conducting or hydraulic circuit of the refrigerant condenser assembly 1 is thus the refrigerant at the subcooler parallel sections 14, 16 and 18, a much smaller flow cross-sectional area than at the parallel sections 19, 21 and 23, because the cooling tubes 2 have the same flow cross-sectional area.
  • a greater flow velocity of the refrigerant or a larger volume flow of the refrigerant occurs at the subcool parallel sections 14, 16 and 18 than at a subcooling region with only exactly one subcool parallel section. Due to this larger flow rate or the larger volume flow of the refrigerant to the subcooling region 13, the heat transfer from the refrigerant to the air in the subcooling region 13 can be increased and thereby more heat is transferred from the refrigerant to the air flowing around the refrigerant condenser assembly 1 and thus the refrigerant in the Subcooler 13 are cooled more below the boiling temperature of the refrigerant, for example, cooled to 14 K below the boiling temperature of the refrigerant become.
  • the pressure drop in the refrigerant condenser assembly 1 is not or only very slightly increased, so that the high pressure at the inlet opening 9 only slightly increases and thus the performance increase of the refrigerant circuit due to the greater cooling at the subcooling region 13 substantially larger is, as the power reduction due to the eventual increase of the high pressure at the inlet opening 9 is.
  • the refrigerant is discharged through the outlet opening 10 from the refrigerant condenser assembly. Due to the formation of three subcool parallel sections, the outlet opening is arranged on a second longitudinal side of the refrigerant condenser assembly. Thus, outlet port and sump 6 are disposed on different longitudinal sides of the refrigerant condenser assembly.
  • the subcooling region 13 has only the first and second subcooler parallel sections 14, 16 and not the third subcooler parallel section 18. In an additional embodiment, not shown, the subcooling region 13 may also be divided into a total of four or five subcooler parallel sections. However, the subcooling region 13 preferably has an odd number of subcooling parallel portions, so that the sump 6 and the outlet port 10 are disposed on different sides of the refrigerant-capacitor assembly.
  • the flow velocity or the volume flow at the subcooling region 13 is due to greatly increased, so that a greater undercooling or cooling of the refrigerant at the subcooling 13 can be achieved without the refrigerant capacitor assembly 1 requires more space or surface, because due to the greater flow rate, the heat transfer from the refrigerant to the air per surface unit of Refrigerant capacitor assembly 1, in particular on the cooling tubes 2, the corrugated fins 4 or the manifolds 5 as a heat exchanger of the refrigerant condenser assembly 1, is increased.
  • the COP of a refrigeration circuit with the refrigerant condenser assembly 1 can be increased without requiring additional space for the refrigerant condenser assembly 1.
  • the reduction in COP due to the use of the refrigerant R1234yf can be at least partially compensated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

Die vorliegende Erfindung betrifft eine Kältemittelkondensatorbaugruppe gemäß dem Oberbegriff des Anspruches 1 und ein Verfahren zum Betreiben eines Kältekreises einer Kraftfahrzeugklimaanlage gemäß dem Oberbegriff des Anspruches 4. Eine Kältemittelkondensator baugruppe gemäß dem Oberbegriff von Anspruch 1 ist aus Dokument EP 1 577 629 bekannt.The present invention relates to a refrigerant condenser assembly according to the preamble of claim 1 and a method for operating a refrigeration circuit of an automotive air conditioning system according to the preamble of claim 4. A refrigerant condenser assembly according to the preamble of claim 1 is from document EP 1 577 629 known.

In Kältemittelkondensatorbaugruppen für eine Kraftfahrzeugklimaanlage wird dampfförmiges Kältemittel in einen flüssigen Aggregatzustand übergeführt und anschließend das flüssige Kältemittel weiter in einem Unterkühlungsbereich "unterkühlt". Die Kältemittelkondensatorbaugruppe bildet einen Teil eines Kältekreises einer Kraftfahrzeugklimaanlage mit einem Verdampfer, einem Expansionsorgan und einem Verdichter.In refrigerant condenser assemblies for an automotive air conditioning system, vaporous refrigerant is converted into a liquid state of aggregation, and then the liquid refrigerant is further "subcooled" in a subcooling region. The refrigerant condenser assembly forms part of a refrigeration circuit of an automotive air conditioning system with an evaporator, an expansion device and a compressor.

Die DE 10 2007 018 722 A1 zeigt einen Kondensator für die Klimaanlage eines Kraftfahrzeuges, der zwei Sammelrohre aufweist und einen neben dem einen Sammelrohr angeordneten Behälter zur Aufnahme des Trocknungsmittels des Kältemittels der Klimaanlage.The DE 10 2007 018 722 A1 shows a condenser for the air conditioning system of a motor vehicle having two manifolds and a container arranged adjacent to the one collecting tube for receiving the desiccant of the refrigerant of the air conditioner.

Beim Einsatz des neuen Kältemittels R1234yf im Vergleich zum bisherigen Kältemittel R134a kommt es aufgrund veränderter Stoffeigenschaften des neuen Kältemittels R1234yf zu einer Leistungsminderung des Kältekreises einer Kraftfahrzeugklimaanlage im Bereich von bis zu 10 %. Die Leistung eines Kältekreises in einer Kraftfahrzeugklimaanlage kann unter anderem dadurch erhöht werden, dass an einem Unterkühlungsbereich der Kältemittelkondensatorbaugruppe das bereits verflüssigte Kältemittel stärker abgekühlt wird.When using the new refrigerant R1234yf in comparison to the previous refrigerant R134a, due to changed material properties of the new refrigerant R1234yf, the refrigeration cycle of an automotive air conditioning system is reduced by up to 10%. The performance of a refrigeration cycle in an automotive air conditioning system can be increased, among other things, that the already liquefied refrigerant is cooled more strongly at a subcooling region of the refrigerant condenser assembly.

In einer Kältemittelkondensatorbaugruppe tritt das Kältemittel in Gasform an einer Einlassöffnung in die Kältemittelkondensatorbaugruppe ein und wird an einem Überhitzungsbereich auf eine Sättigungstemperatur abgekühlt. Anschließend strömt das Kältemittel in einen Kondensationsbereich und in diesem wird das gasförmige Kältemittel weiter auf eine Siedetemperatur abgekühlt und damit verflüssigt. Anschließend strömt das flüssige Kältemittel in einen Unterkühlungsberelch und wird unterhalb der Siedetemperatur, beispielsweise auf eine Temperatur von 6 oder 7 K unterhalb der Siedetemperatur, des Kältemittels abgekühlt. Durch eine stärkere Abkühlung des Kältemittels in dem Unterkühlungsbereich unterhalb der Siedetemperatur des Kältemittels kann eine höhere Leistung des Kältekreises erreicht werden. Im Allgemeinen steht jedoch der Kältemittelkondensatorbaugruppe innerhalb des Kraftfahrzeuges ein vorgegebener Bauraum, beispielsweise vorgegeben durch eine gewisse Bautiefe, Bauhöhe und Baubreite zur Verfügung, so dass zwar eine stärkere Abkühlung des Kältemittels am Unterkühlungsbereich durch eine größere Oberfläche an dem Unterkühlungsbereich und einem damit verbundenen größerem Bauraum der Kältemittelkondensatorbaugruppe zwar möglich ist, jedoch im Allgemeinen aufgrund der vorgegebenen Abmessungen des Bauraumes für die Kältemittelkondensatorbaugruppe kein größerer Bauraum zur Verfügung steht.In a refrigerant condenser assembly, the refrigerant in gaseous form enters the refrigerant condenser assembly at an inlet port and is cooled to a saturation temperature at an overheat region. Subsequently, the refrigerant flows in a condensation region and in this, the gaseous refrigerant is further cooled to a boiling temperature and liquefied with it. Subsequently, the liquid refrigerant flows into a supercooling zone and is cooled below the boiling point, for example to a temperature of 6 or 7 K below the boiling point of the refrigerant. By a greater cooling of the refrigerant in the subcooling below the boiling temperature of the refrigerant, a higher power of the refrigerant circuit can be achieved. In general, however, the refrigerant capacitor assembly within the motor vehicle, a predetermined space, for example given by a certain depth, height and width available, so that although a greater cooling of the refrigerant at the subcooling by a larger surface at the subcooling and a larger space associated therewith Although refrigerant condenser assembly is possible, but in general due to the predetermined dimensions of the space for the refrigerant condenser assembly no larger space is available.

Zur Leistungssteigerung des Kältemittelkreislaufs beziehungsweise zur Kompensation der Minderleistung des Kältemittels, insbesondere des Kältemittels R1234yf wird angestrebt, die Unterkühlung auf beispielsweise 15 K zu erhöhen. Hierfür werden mehr Kühlrohre beziehungsweise anteilig mehr Fläche vom Kondensator benötigt. Dies hat zur Folge, dass für den Kondensationsbereich weniger Fläche zur Verfügung steht, die Abkühlung auf einer höheren Sättigungstemperatur erfolgt und der zugehörige Sättigungsdruck ansteigt. Dies bewirkt im Kältemittelkreislauf einen negativen Effekt auf die Kälteleistung, was den angestrebten Vorteil mindert oder sogar zunichte macht.To increase the performance of the refrigerant circuit or to compensate for the reduced power of the refrigerant, in particular the refrigerant R1234yf is sought to increase the subcooling, for example, 15 K. For this purpose, more cooling tubes or proportionally more area required by the capacitor. This has the consequence that less space is available for the condensation area, the cooling takes place at a higher saturation temperature and the associated saturation pressure increases. This causes a negative effect on the cooling capacity in the refrigerant circuit, which reduces or even nullifies the intended advantage.

Hierzu schlägt die US 6 470 704 B2 einen Unterkühlungsbereich vor, der in einen ersten und einen zweiten Unterkühlparallelabschnitt unterteilt ist. Der Nachteil an dieser Anordnung liegt daran, dass Auslassöffnung und Sammelbehälter auf der gleichen Seite der Kältemittelkondensatorbaugruppe angeordnet sind. In vielen Einbausituationen ist es wünschenswert, dass Auslassöffnung und Sammelbehälter auf verschiedenen Längsseiten der Kältemittelkondensatorbaugruppe angeordnet sind.For this the beats US Pat. No. 6,470,704 B2 a subcooling section, which is divided into a first and a second subcooler parallel section. The disadvantage of this arrangement is that the outlet opening and the collecting container are arranged on the same side of the refrigerant condenser assembly. In many installation situations, it is desirable for the outlet port and sump to be disposed on different longitudinal sides of the refrigerant condenser assembly.

Die Aufgabe der vorliegenden Erfindung besteht deshalb darin, eine Kältemittelkondensatorbaugruppe, ein Verfahren zum Betreiben eines Kältekreises einer Kraftfahrzeugklimaanlage und eine Kraftfahrzeugklimaanlage zur Verfügung zu stellen, bei der das Kältemittel in einem Unterkühlungsbereich der Kältemittelkondensatorbaugruppe stark abgekühlt wird, ohne dass in der Kältemittelkondensatorbaugruppe der Kondensationsdruck wesentlich ansteigt und dass Auslassöffnung und Sammelbehälter auf verschiedenen Längsseiten der Kältemittelkondensatorbaugruppe angeordnet sind.Therefore, the object of the present invention is to provide a refrigerant condenser assembly, a method of operating a refrigeration cycle of an automotive air conditioning system, and an automotive air conditioner in which the refrigerant is strongly cooled in a subcooling region of the refrigerant condenser assembly without substantially increasing the condensing pressure in the refrigerant condenser assembly and that the outlet port and the reservoir are disposed on different longitudinal sides of the refrigerant condenser assembly.

Diese Aufgabe wird gelöst mit einer Kältemittelkondensatorbaugruppe nach Anspruch 1 bzw. mit einem Verfahren nach Anspruch 4.This object is achieved with a refrigerant condenser assembly according to claim 1 or with a method according to claim 4.

Der Unterkühlungsbereich der Kältemittelkondensatorbaugruppe ist damit in insgesamt drei Unterkühlparallelabschnitte unterteilt die jeweils durch einen Unterkühlzwischenströmungskanal miteinander verbunden sind. Dadurch kann das Kältemittel an dem Unterkühlungsbereich noch weiter unterhalb der Siedetemperatur des Kältemittels abgekühlt werden.The subcooling region of the refrigerant condenser assembly is thus subdivided into a total of three subcooler parallel sections which are each connected to one another by a subcooling intermediate flow channel. As a result, the refrigerant at the subcooling region can be cooled even further below the boiling point of the refrigerant.

Ferner sind durch die drei Unterkühlparallelabschnitte die Auslassöffnung und der Sammelbehälter auf gegenüberliegenden Längsseiten der Kältemittelkondensatorbaugruppe angeordnet. Somit kann bevorzugt ein Sammelbehälter mit einem größeren Sammelvolumen zur Verfügung gestellt werden, als gemäß dem Stand der Technik. Bevorzugt sind weiterhin Einlassöffnung und Auslassöffnung auf derselben Längsseite der Kältemittelkondensatorbaugruppe angeordnet.Further, through the three subcooler parallel sections, the outlet port and the header tank are disposed on opposite longitudinal sides of the refrigerant condenser assembly. Thus, a collecting container with a larger collection volume can preferably be made available be as in the prior art. Furthermore, the inlet opening and outlet opening are preferably arranged on the same longitudinal side of the refrigerant condenser assembly.

Der Unterkühlungsbereich der Kältemittelkondensatorbaugruppe ist somit in einen ersten und zweiten und dritten Unterkühlparallelabschnitt unterteilt und in den Unterkühlparallelabschnitten sind jeweils wenigstens zwei Kühlrohre hydraulisch bzw. fluidleitend parallel beaufschlagt mit dem Kältemittel. Dabei wird das Kältemittel, welches aus dem ersten Unterkühlparallelabschnitt austritt in einen ersten Unterkühlzwischenströmungskanal eingeleitet und in diesem vermischt und aus dem ersten Unterkühlzwischenströmungskanal wird das Kältemittel in den zweiten Unterkühlparallelabschnitt eingeleitet. Anschließend wird das Kältemittel, welches aus dem zweiten Unterkühlparallelabschnitt austritt in einen zweiten Unterkühlzwischenströmungskanal eingeleitet und in diesem vermischt und aus dem zweiten Unterkühlzwischenströmungskanal wird das Kältemittel in den dritten Unterkühlparallelabschnitt eingeleitet. Anschließend wird das Kältemittel durch die Auslassöffnung aus der Kältemittelkondensatorbaugruppe ausgeleitet. Damit kann in vorteilhafter Weise am Unterkühlungsbereich das Kältemittel stärker abgekühlt werden, beispielsweise auf eine Temperatur von 14 K unterhalb der Siedetemperatur des Kältemittels, ohne dass dabei die Abmessungen der Kältemittelkondensatorbaugruppe zu erhöhen sind und damit die Kältemittelkondensatorbaugruppe in einen vorgegebenen Bauraum eines Kraftfahrzeuges Platz findet. Damit kann die Leistung eines Kältekreises einer Kraftfahrzeugklimaanlage verbessert werden und dadurch die Leistungsminderung beim Einsatz des neuen Kältemittels R1234yf wenigstens teilweise ausgeglichen werden.The subcooling region of the refrigerant condenser assembly is thus subdivided into first and second and third subcooling parallel sections, and in the subcooling parallel sections, at least two cooling tubes are respectively hydraulically or fluidly urged in parallel with the refrigerant. In this case, the refrigerant exiting from the first subcooler parallel section is introduced into and mixed in a first subcooling intermediate flow channel, and the refrigerant is introduced into the second subcooler parallel section from the first subcooling intermediate flow channel. Subsequently, the refrigerant exiting from the second subcooler parallel portion is introduced into and mixed in a second subcool intermediate passage, and from the second subcool intermediate passage, the refrigerant is introduced into the third subcool parallel portion. Subsequently, the refrigerant is discharged through the discharge port from the refrigerant condenser assembly. Thus, the refrigerant can be cooled more advantageously at the subcooling, for example, to a temperature of 14 K below the boiling temperature of the refrigerant without thereby increasing the dimensions of the refrigerant condenser assembly and thus the refrigerant condenser assembly finds place in a given space of a motor vehicle. Thus, the performance of a refrigeration circuit of an automotive air conditioning system can be improved and thereby the power reduction when using the new refrigerant R1234yf be at least partially compensated.

Ein erhöhter Druckabfall im Unterkühlungsbereich, der durch die drei Unterkühlparallelabschnitte erzeugt wird, ist für die Leistung der Kältemittelkondensatorbaugruppe hierbei nicht schädlich beziehungsweise leistungsmindernd. Dies ist darauf zurückzuführen, dass der Druckabfall nach dem Nassdampfgebiet stattfindet, während sich der Hochdruck des Systems an der Sättigungstemperatur vor dem Unterkühlungsbereich beziehungsweise nach dem Kondensationsbereich orientiert.An increased pressure drop in the subcooling region, which is generated by the three subcooling parallel sections, is not detrimental to the performance of the refrigerant condenser assembly or reduces its performance. This is due to the fact that the pressure drop takes place after the wet steam area, while the system's high pressure is oriented at the saturation temperature before the subcooling area or after the condensation area.

Bevorzugt und insbesondere für die Ausnutzung des Füllvolumens eines seitlich angeordneten Sammelbehälters werden die drei Unterkühlparallelabschnitte von unten nach oben durchströmt. Der dritte Unterkühlparallelabschnitt ist somit geodätisch höher als der zweite Unterkühlparallelabschnitt angeordnet, während der zweite Unterkühlparallelabschnitt geodätisch höher als der erste Unterkühlparallelabschnitt angeordnet ist. Alternativ können selbstverständlich die drei Unterkühlparallelabschnitte auch von oben nach unten durchströmt werden.Preferably, and in particular for the utilization of the filling volume of a laterally arranged collecting container, the three subcooler parallel sections are flowed through from bottom to top. The third subcooling parallel section is thus arranged geodetically higher than the second subcooling parallel section, while the second subcooling parallel section is arranged geodetically higher than the first subcooling parallel section. Alternatively, of course, the three subcooler parallel sections can also be flowed through from top to bottom.

In einer weiteren Ausgestaltung weist je ein Unterkühlparallelabschnitt zwei, drei oder vier parallel beaufschlagte Kühlrohre auf und/oder die Oberfläche der Kühlrohre und vorzugsweise der Sammelrohre des Unterkühlungsbereiches beträgt weniger als 50 %, 40 %, 35 %, 30 %, 25 % oder 15 % der Oberfläche des Wärmeübertragers der Kältemittelkondensatorbaugruppe und insbesondere besteht der Wärmeübertrager aus den Kühlrohren und vorzugsweise den Sammelrohren.In a further refinement, one subcooler parallel section each has two, three or four cooling tubes acted upon in parallel and / or the surface of the cooling tubes and preferably the subcooling section headers is less than 50%, 40%, 35%, 30%, 25% or 15%. the surface of the heat exchanger of the refrigerant condenser assembly and in particular the heat exchanger consists of the cooling tubes and preferably the headers.

Gemäß der Erfindung sind in Strömungsrichtung des Kältemittels vor dem ersten Unterkühlparallelabschnitt wenigstens zwei Kühlrohre als erster Parallelabschnitt fluidleitend parallel beaufschlagt, das aus dem ersten Parallelabschnitt ausströmende Kältemittel mündet in einen ersten Zwischenströmungskanal und der erste Zwischenströmungskanal mündet in wenigstens zwei Kühlrohre als zweiter Parallelabschnitt. In Strömungsrichtung des Kältemittels vor dem ersten Unterkühlparallelabschnitt, d. h. vor dem Unterkühlungsbereich der Kältemittelkondensatorbaugruppe, d. h. damit am Überhitzungsbereich und/oder am Kondensationsbereich der Kältemittelkondensatorbaugruppe, ist damit ein erster und ein zweiter Parallelabschnitt angeordnet. Damit sind der Überhitzungsbereich und/oder der Kondensationsbereich in den ersten und zweiten Parallelabschnitt unterteilt zwischen denen das Kältemittel durch den ersten Zwischenströmungskanal geleitet wird.According to the invention, in the flow direction of the refrigerant upstream of the first subcooler parallel section, at least two cooling tubes act as fluid-conducting parallel first parallel section, the refrigerant flowing out of the first parallel section opens into a first intermediate flow channel and the first intermediate flow channel opens into at least two cooling tubes as second parallel section. In the flow direction of the refrigerant before the first subcooler parallel section, ie before the subcooling of the refrigerant condenser assembly, ie thus the overheating area and / or at the condensation region of the refrigerant condenser assembly, thus a first and a second parallel section is arranged. Thus, the overheating region and / or the condensation region are subdivided into the first and second parallel sections between which the refrigerant is conducted through the first intermediate flow channel.

In einer ergänzenden Ausführungsform mündet in Strömungsrichtung des Kältemittels vor dem ersten Unterkühlparallelabschnitt das aus dem zweiten Parallelabschnitt ausströmende Kältemittel in einen zweiten Zwischenströmungskanal und der zweite Zwischenströmungskanal mündet in wenigstens zwei Kühlrohre als dritter Parallelabschnitt. Vor dem Unterkühlungsbereich, d. h. damit am Überhitzungsbereich und/oder am Kondensationsbereich der Kältemittelkondensatorbaugruppe, ist somit die Kältemittelkondensatorbaugruppe in insgesamt drei Parallelabschnitte mit wenigstens zwei, vorzugsweise wenigstens vier oder sechs oder acht, Kühlrohre unterteilt, die jeweils durch den Zwischenströmungskanal miteinander fluidleitend verbunden sind. Vorzugsweise weist dabei ein Parallelabschnitt eine größere Anzahl an Kühlrohren auf als ein Unterkühlparallelabschnitt und vorzugsweise ist die Anzahl der Kühlrohre eines Parallelabschnittes um zwei, drei, fünf oder sieben Kühlrohre größer als die Anzahl der Kühlrohre eines Unterkühlparallelabschnittes.In a supplementary embodiment, in the flow direction of the refrigerant before the first subcooler parallel section, the refrigerant flowing out of the second parallel section opens into a second intermediate flow channel and the second intermediate flow channel opens into at least two cooling tubes as the third parallel section. Before the subcooling area, d. H. Thus, at the overheating region and / or at the condensation region of the refrigerant condenser assembly, thus the refrigerant condenser assembly is divided into a total of three parallel sections with at least two, preferably at least four or six or eight, cooling tubes, which are each fluid-conductively connected to each other through the intermediate flow channel. Preferably, a parallel section has a greater number of cooling tubes than a subcooler parallel section, and preferably the number of cooling tubes of a parallel section is two, three, five or seven cooling tubes greater than the number of cooling tubes of a subcooler parallel section.

Gemäß der Erfindung mündet der zweite Parallelabschnitt in einen zweiten Zwischenströmungskanal und der zweite Zwischenströmungskanal mündet in den Sammelbehälter. Vorzugsweise mündet der dritte Parallelabschnitt in einen dritten Zwischenströmungskanal und der dritte Zwischenströmungskanal mündet in den Sammelbehälter. Weist der Überhitzungs- und/oder Kondensationsbereich der Kältemittelkondensatorbaugruppe den ersten und zweiten Parallelabschnitt auf, wird somit das aus dem zweiten Parallelabschnitt ausgeleitete Kältemittel in den Sammelbehälter und anschließend in den ersten Unterkühlparallelabschnitt eingeleitet oder der Überhitzungs- und/oder Kondensationsbereich weist drei Parallelabschnitte auf, wird das aus dem dritten Parallelabschnitt ausgeleitete Kältemittel in den Sammelbehälter und anschließend in den ersten Unterkühlparallelabschnitt eingeleitet. Dies gilt auch analog, sofern der Überhitzungs- und/oder Kondensationsbereich in mehr als drei Parallelabschnitte, beispielsweise vier oder fünf Parallelabschnitte, unterteilt ist.According to the invention, the second parallel section opens into a second intermediate flow channel and the second intermediate flow channel opens into the collecting container. Preferably, the third parallel section opens into a third intermediate flow channel and the third intermediate flow channel opens into the collecting container. If the overheating and / or condensation region of the refrigerant condenser assembly has the first and second parallel sections, the refrigerant discharged from the second parallel section is thus introduced into the collecting vessel and subsequently into the first subcooler parallel section introduced or the superheating and / or condensation region has three parallel sections, the discharged from the third parallel section refrigerant is introduced into the sump and then into the first subcooler parallel section. This also applies analogously if the overheating and / or condensation region is subdivided into more than three parallel sections, for example four or five parallel sections.

Alternativ kann genau ein Parallelabschnitt vorgesehen sein, so dass dieser genau eine Parallelabschnitt in den Sammelbehälter mündet, wobei eine solche Anordnung nicht unter den Schutzbereich der Ansprüche fällt.Alternatively, exactly one parallel section may be provided so that it opens exactly one parallel section into the collecting container, such an arrangement not falling within the scope of the claims.

Durch intensive Messungen hat sich herausgestellt, dass folgendes Verhältnis der Kühlrohranzahl zu bevorzugen ist:

  • Überhitzungsbereich: 15 Kühlrohre
  • Kondensationsbereich: 12 Kühlrohre (wobei der Kondensationsbereich in einen ersten Parallelabschnitt mit 7 Kühlrohren und einen zweiten Parallelabschnitt mit 5 Kühlrohren unterteilt ist)
  • Unterkühlungsbereich: 9 Kühlrohre (wobei der Unterkühlungsbereich in einen ersten, zweiten und dritten Unterkühlparallelabschnitt mit jeweils 3 Kühlrohren unterteilt ist).
Through intensive measurements, it has been found that the following ratio of cooling tube number is preferable:
  • Overheating range: 15 cooling tubes
  • Condensation area: 12 cooling tubes (the condensation area being divided into a first parallel section with 7 cooling tubes and a second parallel section with 5 cooling tubes)
  • Subcooling area: 9 cooling tubes (wherein the subcooling area is divided into first, second and third subcooler parallel sections each having 3 cooling tubes).

In einer Variante ist die Summe der Strömungsquerschnittsflächen der Kühlrohre eines Unterkühlparallelabschnittes kleiner als das Produkt aus 0,7 oder 0,5 oder 0,3 oder 0,1 und der Summe der Strömungsquerschnittsflächen der Kühlrohre eines Parallelabschnittes und/oder die Kühlrohre sind als Flachrohre ausgebildet und zwischen den Flachrohren sind Wellrippen angeordnet. Die Strömungsquerschnittsfläche ist die Querschnittsfläche der Kühlrohre zum Durchleiten des Kältemittels.In one variant, the sum of the flow cross-sectional areas of the cooling tubes of a subcooler parallel section is smaller than the product of 0.7 or 0.5 or 0.3 or 0.1 and the sum of the flow cross-sectional areas of the cooling tubes of a parallel section and / or the cooling tubes are formed as flat tubes and between the flat tubes corrugated ribs are arranged. The flow cross-sectional area is the cross-sectional area of the cooling tubes for passing the refrigerant.

Zweckmäßig wird das Kältemittel in dem Unterkühlungsbereich um mehr als 7, 10, 12 oder 14 K abgekühlt und wird vorzugsweise um weniger als 30 K oder 20 K abgekühlt. Aufgrund des größeren Volumenstromes des Kältemittels in den Kühlrohren des Unterkühlungsbereiches im Vergleich zu einem Unterkühlungsbereich mit lediglich genau einem Unterkühlparallelabschnitt und der damit verbundenen größeren Strömungsgeschwindigkeit des Kältemittels im Unterkühlungsbereich kann dadurch eine bessere Wärmeübertragung von dem Kältemittel auf die Luft, welche die Kältemittelkondensatorbaugruppe umströmt, erreicht werden.Conveniently, the refrigerant in the subcooling section is cooled by more than 7, 10, 12, or 14 K, and is preferably cooled by less than 30K or 20K. Due to the larger volumetric flow of the refrigerant in the cooling tubes of the subcooling region compared to a subcooling region having only exactly one subcooling parallel section and the associated greater flow velocity of the refrigerant in the subcooling region, a better heat transfer from the refrigerant to the air, which flows around the refrigerant condenser assembly, can thereby be achieved ,

In einer zusätzlichen Ausführungsform ist das Kältemittel R1234yf oder R134a.In an additional embodiment, the refrigerant is R1234yf or R134a.

In einer Variante weist die Kältomittelkondensatorbaugruppe eine an dem Sammelbehälter ausgebildete Verschlusseinrichtung zum Verschließen einer Verschlussöffnung des Sammelbehälters auf.In a variant, the refrigeration medium condenser assembly has a closure device formed on the collecting container for closing a closure opening of the collecting container.

Vorzugsweise sind im Sammelbehälter ein Trockner und/oder ein Filter angeordnet.Preferably, a dryer and / or a filter are arranged in the collecting container.

Im Nachfolgenden wird ein Ausführungsbeispiel der Erfindung unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben. Es zeigt:

Fig. 1
eine perspektivische Ansicht einer Kältemittelkondensatorbaugruppe,
Fig. 2
eine perspektivische Teilansicht der Kältemittelkondensatorbaugruppe gemäß Fig. 1 und
Fig. 3
ein Strömungsschaltbild des Kältemittels in der Kältemittelkondensatorbaugruppe gemäß Fig. 1.
In the following, an embodiment of the invention will be described in more detail with reference to the accompanying drawings. It shows:
Fig. 1
a perspective view of a refrigerant condenser assembly,
Fig. 2
a partial perspective view of the refrigerant condenser assembly according to Fig. 1 and
Fig. 3
a flow diagram of the refrigerant in the refrigerant condenser assembly according to Fig. 1 ,

In Figur 1 und 2 ist eine Kältemittelkondensatorbaugruppe 1 in einer perspektivischen Ansicht dargestellt. Die Kältemittelkondensatorbaugruppe 1 ist Bestandteil einer Kraftfahrzeugklimaanlage mit einem Verdampfer und einem Verdichter (nicht dargestellt). Durch horizontal angeordnete Kühlrohre 2 als Flachrohre 3 strömt zu kondensierendes und zu kühlendes Kältemittel (Fig. 1 und 2). Die Kühlrohre 2 münden an ihren jeweiligen Enden in ein vertikales Sammelrohr 5, d. h. es sind zwei Sammelrohre 5 jeweils an den Enden der Kühlrohre 2 vorhanden. In Fig. 2 ist nur ein Sammelrohr 5 dargestellt. Das Sammelrohr 5 weist hierfür Kühlrohröffnungen auf, durch welche die Enden der Kühlrohre 2 in das Sammelrohr 5 ragen. Innerhalb der Sammelrohre 5 sind Leitbleche (nicht dargestellt) ausgebildet mit denen ein bestimmter Strömungsweg des Kältemittels durch die Kühlrohre 2 erreicht werden kann, so dass das Kältemittel durch die Kühlrohre 2 gemäß dem Strömungsschaltbild in Fig. 3 durch die Kühlrohre 2 strömt.In FIG. 1 and 2 a refrigerant condenser assembly 1 is shown in a perspective view. The refrigerant condenser assembly 1 is part of an automotive air conditioning system with an evaporator and a compressor (not shown). By horizontally arranged cooling tubes 2 as flat tubes 3 flows to be condensed and cooled refrigerant ( Fig. 1 and 2 ). The cooling tubes 2 open at their respective ends in a vertical manifold 5, that is, there are two manifolds 5 respectively at the ends of the cooling tubes 2. In Fig. 2 only one manifold 5 is shown. For this purpose, the collecting tube 5 has cooling tube openings through which the ends of the cooling tubes 2 project into the collecting tube 5. Within the manifolds 5 baffles (not shown) are formed with which a certain flow path of the refrigerant can be achieved through the cooling tubes 2, so that the refrigerant through the cooling tubes 2 according to the flow diagram in Fig. 3 flows through the cooling tubes 2.

Zwischen den Kühlrohren 2 sind mäanderförmige Wellrippen 4 angeordnet, welche mit den Kühlrohren 2 in thermischer Verbindung mittels Wärmeleitung stehen. Dadurch wird die Fläche vergrößert, welche zum Kühlen des Kältemittels zur Verfügung steht. Die Kühlrohre 2, die Wellrippen 4 und die beiden Sammelrohre 5 bestehen im Allgemeinen aus Metall, insbesondere Aluminium, und sind stoffschlüssig als Lötverbindung miteinander verbunden. In vier Eckbereichen der Kältemittelkondensatorbaugruppe 1 ist eine Befestigungseinrichtung 8 angeordnet, mit der die Kältemittelkondensatorbaugruppe an einem Kraftfahrzeug, insbesondere an einer Karosserie eines Kraftfahrzeuges, befestigt werden kann.Between the cooling tubes 2 meandering corrugated fins 4 are arranged, which are in thermal communication with the cooling tubes 2 by means of heat conduction. This increases the area available for cooling the refrigerant. The cooling tubes 2, the corrugated fins 4 and the two manifolds 5 are generally made of metal, in particular aluminum, and are materially connected to one another as a solder joint. In four corner regions of the refrigerant condenser assembly 1, a fastening device 8 is arranged, with which the refrigerant condenser assembly can be attached to a motor vehicle, in particular to a body of a motor vehicle.

An dem Sammelrohr 5 ist, ebenfalls vertikal ausgerichtet, ein Sammelbehälter 6 an einer ersten Längsseite angeordnet (Fig. 1, 2). Der Sammelbehälter 6 steht mittels zweier Überströmöffnungen (nicht dargestellt) in Fluidverbindung mit dem Sammelrohr 5 und damit auch mittelbar in Fluidverbindung mit den Kühlrohren 2. In dem Sammelbehälter 6 ist ein Trockner und ein Filter (nicht dargestellt) angeordnet. Der Trockner ist hygroskopisch und kann Wasser bzw. Feuchtigkeit aus dem Kältemittel aufnehmen. Der Sammelbehälter 6 ist am unteren und oberen Ende mit dem Sammelrohr 5 mechanisch mit einem konkaven Auflagebereich verbunden. Am unteren Ende ist der Sammelbehälter 6 von einer Verschlusseinrichtung 7 fluiddicht verschlossen. Die abnehmbare Verschlusseinrichtung 7 ermöglicht einen Austausch des Trockners und des Filters in dem Sammelbehälter 6.At the manifold 5, also vertically aligned, a collecting container 6 is arranged on a first longitudinal side ( Fig. 1 . 2 ). The collecting container 6 is by means of two overflow openings (not shown) in fluid communication with the collecting tube 5 and thus also indirectly in fluid communication with the cooling tubes 2. In the collecting container 6, a dryer and a filter (not shown) is arranged. The dryer is hygroscopic and can absorb water or moisture from the refrigerant. The collecting container 6 is mechanically connected to the collecting tube 5 at the lower and upper ends with a concave support region. At the lower end of the collecting container 6 is closed by a closure device 7 fluid-tight. The removable closure device 7 allows an exchange of the dryer and the filter in the collecting container 6.

Die Kältemittelkondensatorbaugruppe 1 weist eine Einlassöffnung 9 zum Einleiten des Kältemittels R1234yf in die Kaltemittelkondensatorbaugruppe 1 auf und eine Auslassöffnung 10 zum Ausleiten des Kältemittels aus der Kältemittelkondensatorbaugruppe 1 (Fig. 1 und 3). Die Enden der Kühlrohre 2 enden dabei in den Sammelrohren 5. In den Sammelrohren 5 sind nicht dargestellte Leitbleche bzw. Strömungsführungsbleche angeordnet, mit Hilfe denen ein bestimmtes vorgegebenes Strömungsschaltbild des Kältemittels erzielt werden kann, d. h. mit welchem Strömungsweg das Kältemittel durch die Vielzahl von übereinander angeordneten Kühlrohren 2 der Kältemittelkondensatorbaugruppe 1 strömt. Das in Fig. 3 dargestellte Strömungsschaltbild dient nur zur anschaulichen Darstellung des Strömungsweges des Kältemittels durch die Kühlrohre 2 und stellt nicht die geometrische Ausrichtung der Kühlrohre 2 zueinander in der Kältemittelkondensatorbaugruppe 1 dar. Ein erster Zwischenströmungskanal 20, ein zweiter Zwischenströmungskanal 22, ein dritter Zwischenströmungskanal 24 sowie ein erster Unterkühlzwischenströmungskanal 15 und ein zweiter Unterkühlzwischenströmungskanal 17, welche in Fig. 3 dargestellt sind, werden somit innerhalb der Sammelrohre 5 von den nicht dargestellten Strömungsleitblechen gebildet.The refrigerant condenser assembly 1 has an inlet port 9 for introducing the refrigerant R1234yf into the refrigerant condenser assembly 1, and an outlet port 10 for discharging the refrigerant from the refrigerant condenser assembly 1 (FIG. Fig. 1 and 3 ). The ends of the cooling tubes 2 terminate in the manifolds 5. In the manifolds 5 baffles or flow guide plates, not shown, are arranged with the help of which a certain predetermined flow diagram of the refrigerant can be achieved, ie with which flow path, the refrigerant flows through the plurality of superimposed cooling tubes 2 of the refrigerant condenser assembly 1. This in Fig. 3 shown flow diagram is only for illustrative representation of the flow path of the refrigerant through the cooling tubes 2 and does not represent the geometric orientation of the cooling tubes 2 to each other in the refrigerant condenser 1. A first intermediate flow passage 20, a second intermediate flow passage 22, a third intermediate flow passage 24 and a first sub-cooling intermediate flow passage 15th and a second sub-cooling intermediate passage 17, which in Fig. 3 are shown are thus formed within the manifolds 5 of the flow guide plates, not shown.

Die Kältemittelkondensatorbaugruppe 1 stellt einen Wärmeübertrager zur Übertragung von Wärme von dem Kältemittel auf Luft dar, welche die Kältemittelkondensatorbaugruppe 1 umgibt und diese umströmt. Dabei wird der Wärmeübertrager im Wesentlichen von den Kühlrohren 2 und den beiden Sammelrohren 5 gebildet. Der Wärmeübertrager als Teil der Kältemittelkondensatorbaugruppe 1 weist dabei eine Einlassöffnung 9 auf, durch welche gasförmiges Kältemittel von einem nicht dargestellten Verdichter zu der Kältemittelkondensatorbaugruppe 1 geleitet wird. Das gasförmige Kältemittel wird dabei an einem Überhitzungsbereich 11 auf eine Sättigungstemperatur abgekühlt, d. h. an der Sättigungstemperatur tritt entsprechend dem vorhandenen Druck eine Kondensation des Kältemittels ein. In der Strömungsrichtung des Kältemittels nach dem Überhitzungsbereich 11 schließt sich ein Kondensationsbereich 12 an, in welchem das Kältemittel kondensiert und somit verflüssigt wird. Das im Kondensationsbereich 12 verflüssigte Kältemittel wird als Flüssigkeit dem Unterkühlungsbereich 13 zugeführt und im Unterkühlungsbereich 13 unterhalb der Siedetemperatur des Kältemittels abgekühlt. Die in Fig. 3 vorgegebene klare Trennung in Überhitzungsbereich 11, Kondensationsbereich 12 und Unterkühlungsbereich 13 kann dabei beim Betrieb einer Kraftfahrzeugklimaanlage geringfügig abweichen, so dass beispielsweise in Abänderung von der Darstellung in Fig. 3 der Überhitzungsbereich 11 geringfügig größer ist und dadurch der Kondensationsbereich 12 kleiner wird, so dass beispielsweise ein zweiter Parallelabschnitt 21 auch teilweise den Überhitzungsbereich 11 bildet. Dies gilt in analoger Weise für die Trennung zwischen dem Kondensationsbereich 12 und dem Unterkühlungsbereich 13, der sich entweder in einen ersten Unterkühlparallelabschnitt 14 verschieben kann in Strömungsrichtung des Kältemittels oder in einen dritten Paralletabschnitt 23 entgegen der Strömungsrichtung des Kältemittels zurück verschieben kann.The refrigerant condenser assembly 1 constitutes a heat exchanger for transferring heat from the refrigerant to air surrounding and circulating around the refrigerant condenser assembly 1. In this case, the heat exchanger is essentially formed by the cooling tubes 2 and the two manifolds 5. The heat exchanger as part of the refrigerant condenser assembly 1 in this case has an inlet opening 9 through which gaseous refrigerant is passed from a compressor, not shown, to the refrigerant condenser assembly 1. The gaseous refrigerant is thereby cooled at an overheating region 11 to a saturation temperature, ie at the saturation temperature occurs in accordance with the existing pressure, a condensation of the refrigerant. In the flow direction of the refrigerant after the overheating region 11, a condensation region 12 connects, in which the refrigerant is condensed and thus liquefied. The refrigerant liquefied in the condensation region 12 is supplied as a liquid to the subcooling region 13 and cooled in the subcooling region 13 below the boiling temperature of the refrigerant. In the Fig. 3 given clear separation in the overheating region 11, condensation region 12 and subcooling region 13 may differ slightly during operation of an automotive air conditioning system, so that, for example, in modification of the illustration in Fig. 3 the overheating region 11 is slightly larger and thereby the condensation region 12 becomes smaller, so that, for example, a second parallel section 21 also partially forms the overheating region 11. This applies analogously to the separation between the condensation region 12 and the subcooling region 13, which can either shift into a first subcooling parallel section 14 in the flow direction of the refrigerant or in a third parallet section 23 against the flow direction of the refrigerant.

Der Überhitzungsbereich 11 ist von dem ersten Parallelabschnitt 19 gebildet. Der erste Parallelabschnitt 19 weist dabei elf Kühlrohre auf, die fluidleitend bzw. hydraulisch parallel geschalten sind bzw. durchströmt werden. Nach dem Ausströmen des Kältemittels aus den elf Kühlrohren 2 des ersten Parallelabschnittes 19 wird das Kältemittel in den ersten Zwischenströmungskanal 20 eingeleitet und von dem ersten Zwischenströmungskanal 20 in den zweiten Parallelabschnitt 21 eingeleitet. Der zweite Parallelabschnitt 21 weist acht Kühlrohre 2 auf, durch welche das Kältemittel gleichzeitig parallel strömt. Das aus dem zweiten Parallelabschnitt 21 ausströmende Kältemittel wird in den zweiten Zwischenströmungskanal 22 eingeleitet und von diesem in den dritten Parallelabschnitt 23 mit ebenfalls acht Kühlrohren 2 eingeleitet.The overheating region 11 is formed by the first parallel section 19. The first parallel section 19 has eleven cooling tubes, which are connected in parallel or flow through in a fluid-conducting or hydraulic manner. After flowing out of the refrigerant from the eleven cooling tubes 2 of the first parallel section 19, the refrigerant is introduced into the first intermediate flow passage 20 and introduced from the first intermediate flow passage 20 into the second parallel section 21. The second parallel section 21 has eight cooling tubes 2, through which the refrigerant flows simultaneously in parallel. The refrigerant flowing out of the second parallel section 21 is introduced into the second intermediate flow passage 22 and introduced therefrom into the third parallel section 23 with likewise eight cooling tubes 2.

Das aus dem dritten Parallelabschnitt 23 ausströmende Kältemittel wird in den dritten Zwischenströmungskanal 24 eingeleitet und wird anschließend, nachdem es den Sammelbehälter 6 durchströmt hat, dem Unterkühlungsbereich 13 der Kältemittelkondensatorbaugruppe 1 zugeführt. Der Unterkühlungsbereich 13 umfasst einen ersten Unterkühlparallelabschnitt 14, einen zweiten Unterkühlparallelabschnitt 16 und einen dritten Unterkühlparallelabschnitt 18. Die drei Unterkühlparallelabschnitte 14, 16 und 18 weisen dabei jeweils drei Kühlrohre 2 auf. Der erste Unterkühlparallelabschnitt 14 ist mit dem zweiten Unterkühlparallelabschnitt 16 durch den ersten Unterkühlzwischenströmungskanal 15 verbunden und in analoger Weise ist der zweite Unterkühlparallelabschnitt 16 mit dem dritten Unterkühlparallelabschnitt 18 durch den zweiten Unterkühlzwischenströmungskanal 17 verbunden. Damit sind in der Kältemittelkondensatorbaugruppe 1 die Parallelabschnitte 19, 21 und 23 sowie die Unterkühlparallelabschnitte 14, 16 und 18 fluidleitend in Reihe geschaltet und die Kühlrohre 2 an den Parallelabschnitten 19, 21 und 23 sowie an den Unterkühlparallelabschnitten 14, 16 und 18 sind hydraulisch bzw. fluidleitend parallel geschaltet.The refrigerant flowing out of the third parallel portion 23 is introduced into the third intermediate flow passage 24, and then, after passing through the reservoir 6, is supplied to the subcooling portion 13 of the refrigerant condenser assembly 1. The subcooling region 13 comprises a first subcooler parallel section 14, a second subcooler parallel section 16 and a third subcooler parallel section 18. The three subcool parallel sections 14, 16 and 18 each have three cooling tubes 2. The first subcooler parallel section 14 is connected to the second subcooler parallel section 16 through the first subcooling intermediate flow channel 15 and analogously, the second subcooling parallel section 16 is connected to the third subcooling parallel section 18 through the second subcooling intermediate flow channel 17. Thus, in the refrigerant condenser assembly 1, the parallel sections 19, 21 and 23 and the subcooler parallel sections 14, 16 and 18 are fluidly connected in series and the cooling tubes 2 at the parallel sections 19, 21 and 23 and the subcool parallel sections 14, 16 and 18 are hydraulically or fluid-conducting connected in parallel.

Das gesamte durch die Kältemittelkondensatorbaugruppe 1 geleitete Kältemittel durchströmt somit jeweils die Parallelabschnitte 19, 21 und 23 sowie die Unterkühlparallelabschnitte 14, 16 und 18. Dabei weisen die Unterkühlparallelabschnitte 14, 16 und 18 eine wesentlich geringere Anzahl an Kühlrohren 2 auf als die Parallelabschnitte 19, 21 und 23. Aufgrund der fluidleitenden bzw. hydraulischen Schaltung der Kältemittelkondensatorbaugruppe 1 steht damit dem Kältemittel an den Unterkühlparallelabschnitten 14, 16 und 18 eine wesentlich geringere Strömungsquerschnittsfläche zur Verfügung als an den Parallelabschnitten 19, 21 und 23, weil die Kühlrohre 2 die gleiche Strömungsquerschnittsfläche aufweisen. Dadurch tritt an den Unterkühlparallelabschnitten 14, 16 und 18 eine größere Strömungsgeschwindigkeit des Kältemittels bzw. ein größerer Volumenstrom des Kältemittels auf als an einem Unterkühlungsbereich mit lediglich genau einem Unterkühlparallelabschnitt. Aufgrund dieser größeren Strömungsgeschwindigkeit bzw. des größeren Volumenstromes des Kältemittels an dem Unterkühlungsbereich 13 kann die Wärmeübertragung von dem Kältemittel auf die Luft im Unterkühlungsbereich 13 erhöht werden und dadurch mehr Wärme von dem Kältemittel auf die die Kältemittelkondensatorbaugruppe 1 umströmende Luft übertragen werden und somit das Kältemittel im Unterkühlungsbereich 13 stärker unter die Siedetemperatur des Kältemittels abgekühlt werden, beispielsweise um 14 K unterhalb der Siedetemperatur des Kältemittels abgekühlt werden. Damit kann in vorteilhafter Weise der COP eines Kältekreises erhöht werden. Aufgrund der ausreichend dimensionierten Strömungsquerschnittsfläche am Unterkühlungsbereich 13 wird der Druckabfall in der Kältemittelkondensatorbaugruppe 1 nicht oder nur sehr geringfügig erhöht, so dass dadurch der Hochdruck an der Einlassöffnung 9 nur geringfügig ansteigt und somit die Leistungssteigerung des Kältekreises aufgrund der größeren Abkühlung an dem Unterkühlungsbereich 13 wesentlich größer ist, als die Leistungsminderung aufgrund des evtl. Anstieges des Hochdruckes an der Einlassöffnung 9 ist. Nach Durchströmen des Unterkühlungsbereiches 13 wird das Kältemittel durch die Auslassöffnung 10 aus der Kältemittelkondensatorbaugruppe ausgeleitet. Durch die Ausbildung von drei Unterkühlparallelabschnitten ist die Auslassöffnung an einer zweiten Längsseite der Kältemittelkondensatorbaugruppe angeordnet. Somit sind Auslassöffnung und Sammelbehälter 6 an verschiedenen Längsseiten der Kältemittelkondensatorbaugruppe angeordnet.The entire refrigerant passed through the refrigerant condenser assembly 1 thus flows through the respective parallel sections 19, 21 and 23 and the subcooler parallel sections 14, 16 and 18. The subcooler parallel sections 14, 16 and 18 have a significantly smaller number of cooling tubes 2 than the parallel sections 19, 21 and 23. Due to the fluid-conducting or hydraulic circuit of the refrigerant condenser assembly 1 is thus the refrigerant at the subcooler parallel sections 14, 16 and 18, a much smaller flow cross-sectional area than at the parallel sections 19, 21 and 23, because the cooling tubes 2 have the same flow cross-sectional area. As a result, a greater flow velocity of the refrigerant or a larger volume flow of the refrigerant occurs at the subcool parallel sections 14, 16 and 18 than at a subcooling region with only exactly one subcool parallel section. Due to this larger flow rate or the larger volume flow of the refrigerant to the subcooling region 13, the heat transfer from the refrigerant to the air in the subcooling region 13 can be increased and thereby more heat is transferred from the refrigerant to the air flowing around the refrigerant condenser assembly 1 and thus the refrigerant in the Subcooler 13 are cooled more below the boiling temperature of the refrigerant, for example, cooled to 14 K below the boiling temperature of the refrigerant become. This can be increased advantageously the COP of a refrigerant circuit. Due to the adequately dimensioned flow cross-sectional area at the subcooling region 13, the pressure drop in the refrigerant condenser assembly 1 is not or only very slightly increased, so that the high pressure at the inlet opening 9 only slightly increases and thus the performance increase of the refrigerant circuit due to the greater cooling at the subcooling region 13 substantially larger is, as the power reduction due to the eventual increase of the high pressure at the inlet opening 9 is. After flowing through the subcooling region 13, the refrigerant is discharged through the outlet opening 10 from the refrigerant condenser assembly. Due to the formation of three subcool parallel sections, the outlet opening is arranged on a second longitudinal side of the refrigerant condenser assembly. Thus, outlet port and sump 6 are disposed on different longitudinal sides of the refrigerant condenser assembly.

In einem weiteren Ausführungsbeispiel (nicht dargestellt und nicht unter den Schutzbereich der Ansprüche fallend) weist der Unterkühlungsbereich 13 nur den ersten und zweiten Unterkühlparallelabschnitt 14, 16 und nicht den dritten Unterkühlparallelabschnitt 18 auf. In einem zusätzlichen nicht dargestellten Ausführungsbeispiel kann der Unterkühlungsbereich 13 auch in insgesamt vier oder fünf Unterkühlparallelabschnitte unterteilt sein. Bevorzugt weist der Unterkühlungsbereich 13 jedoch eine ungerade Anzahl von Unterkühlparallelabschnitten auf, so dass Sammelbehälter 6 und Auslassöffnung 10 an verschiedenen Seiten der Kältemittel-kondensatorbaugruppe angeordnet sind.In a further embodiment (not shown and not falling within the scope of the claims), the subcooling region 13 has only the first and second subcooler parallel sections 14, 16 and not the third subcooler parallel section 18. In an additional embodiment, not shown, the subcooling region 13 may also be divided into a total of four or five subcooler parallel sections. However, the subcooling region 13 preferably has an odd number of subcooling parallel portions, so that the sump 6 and the outlet port 10 are disposed on different sides of the refrigerant-capacitor assembly.

Insgesamt betrachtet sind mit der erfindungsgemäßen Kältemittelkondensatorbaugruppe 1 wesentliche Vorteile verbunden. Die Strömungsgeschwindigkeit bzw. der Volumenstrom an dem Unterkühlungsbereich 13 wird aufgrund des vorgegebenen Strömungsschaltbildes stark erhöht, so dass dadurch eine stärkere Unterkühlung oder Abkühlung des Kältemittels am Unterkühlungsbereich 13 erreicht werden kann, ohne dass die Kältemittelkondensatorbaugruppe 1 mehr Bauraum oder Oberfläche benötigt, weil aufgrund der größeren Strömungsgeschwindigkeit die Wärmeübertragung von dem Kältemittel auf die Luft je Oberflächeneinheit der Kältemittelkondensatorbaugruppe 1, insbesondere an den Kühlrohren 2, den Wellrippen 4 oder den Sammelrohren 5 als Wärmeübertrager der Kältemittelkondensatorbaugruppe 1, erhöht wird. Dadurch kann bei einem unveränderten Bauraum für die Kältemittelkondensatorbaugruppe 1 der COP eines Kältekreises mit der Kältemittelkondensatorbaugruppe 1 erhöht werden, ohne dass zusätzlicher Bauraum für die Kältemittelkondensator-baugruppe 1 erforderlich ist. Damit kann die Verringerung des COP aufgrund der Verwendung des Kältemittels R1234yf wenigstens teilweise ausgeglichen werden.Overall, significant advantages are associated with the inventive refrigerant capacitor assembly 1. The flow velocity or the volume flow at the subcooling region 13 is due to greatly increased, so that a greater undercooling or cooling of the refrigerant at the subcooling 13 can be achieved without the refrigerant capacitor assembly 1 requires more space or surface, because due to the greater flow rate, the heat transfer from the refrigerant to the air per surface unit of Refrigerant capacitor assembly 1, in particular on the cooling tubes 2, the corrugated fins 4 or the manifolds 5 as a heat exchanger of the refrigerant condenser assembly 1, is increased. As a result, with an unchanged installation space for the refrigerant condenser assembly 1, the COP of a refrigeration circuit with the refrigerant condenser assembly 1 can be increased without requiring additional space for the refrigerant condenser assembly 1. Thus, the reduction in COP due to the use of the refrigerant R1234yf can be at least partially compensated.

BezugszelchenlisteBezugszelchenliste

11
KältemittelkondensatorbaugruppeRefrigerant condenser assembly
22
Kühlrohrcooling pipe
33
Flachrohrflat tube
44
Wellrippecorrugated fin
55
Sammelrohrmanifold
66
SammelbehälterClippings
77
Verschlusseinrichtung am SammelbehälterClosing device on the collecting container
88th
Befestigungseinrichtungfastening device
99
Einlassöffnunginlet port
1010
Auslassöffnungoutlet
1111
Überhitzungsbereichoverheating area
1212
Kondensationsbereichcondensation region
1313
UnterkühlungsbereichSupercooling region
1414
Erster UnterkühlparallelabschnittFirst subcooler parallel section
1515
Erster UnterkühlzwischenströmungskanalFirst subcooler intermediate flow channel
1616
Zweiter UnterkühlparallelabschnittSecond subcooler parallel section
1717
Zweiter UnterkühlzwischenströmungskanalSecond subcooler intermediate flow channel
1818
Dritter UnterkühlparallelabschnittThird subcooler parallel section
1919
Erster ParallelabschnittFirst parallel section
2020
Erster ZwischenströmungskanalFirst intermediate flow channel
2121
Zweiter ParallelabschnittSecond parallel section
2222
Zweiter ZwischenströmungskanalSecond intermediate flow channel
2323
Dritter ParallelabschnittThird parallel section
2424
Dritter ZwischenströmungskanalThird intermediate flow channel

Claims (5)

  1. A refrigerant condenser assembly (1) for a motor vehicle air-conditioning system, comprising
    - an inlet opening (9) for the introduction of a refrigerant,
    - an outlet opening (10) for the discharge of a refrigerant,
    - cooling tubes (2) for conducting a refrigerant,
    - two collecting tubes (5) for fluidically connecting the cooling tubes (2),
    - a collecting tank (6) having at least one flow transfer opening via which the collecting tank (6) is fluidically connected to the cooling tubes (2) and/or to the collecting tube (5), wherein the collecting tank is arranged at a first longitudinal side of the refrigerant condenser assembly,
    - wherein the cooling tubes (2) have a superheat region (11) for cooling the vaporous refrigerant, a condensation region (12) for condensing the refrigerant, and a supercooling region (13) for cooling the liquid refrigerant, wherein,
    in the supercooling region (13), at least two cooling tubes (2) as a first supercooling parallel portion (14) are charged with the refrigerant in parallel in terms of fluid conduction, the refrigerant flowing out of the first supercooling parallel portion (14) issues into a first supercooling intermediate flow duct (15), and the first supercooling intermediate flow duct (15) issues into at least two cooling tubes (2) as a second supercooling parallel portion (16), wherein, in the supercooling region (13), the second supercooling parallel portion (16) issues into a second supercooling intermediate flow duct (17) and the second supercooling intermediate flow duct (17) issues into at least two cooling tubes (2) as a third supercooling parallel portion (18), such that the outlet opening (10) is arranged on a second longitudinal side of the refrigerant condenser assembly, wherein, upstream of the first supercooling parallel portion (14) as viewed in the flow direction of the refrigerant, at least two cooling tubes (2) as a first parallel portion (19) are charged in parallel in terms of fluid conduction, the refrigerant flowing out of the first parallel portion (19) issues into a first intermediate flow duct (20), and the first intermediate flow duct (20) issues into at least two cooling tubes (2) as a second parallel portion (21) and the second parallel portion (21) issues into a second intermediate flow duct (22) and the second intermediate flow duct (22) issues into the collecting tank (6) (14), characterised in that the sum total of the flow cross-sectional areas of the cooling tubes (2) of a supercooling parallel portion (14, 16, 18) is less than the product of 0.7 or 0.5 or 0.3 or 0.1 and the sum total of the flow cross-sectional areas of the cooling tubes (2) of the respective parallel portion (19, 21, 23), and wherein the cooling tubes (2) are formed as flat tubes (3) and corrugated fins (4) are arranged between the flat tubes.
  2. The refrigerant condenser assembly as claimed in claim 1, characterised in that in each case one supercooling parallel portion (14, 16, 18) has two, three or four cooling tubes (2) which are charged in parallel, and/or the surface area of the cooling tubes (2) and preferably of the collecting tubes (5) of the supercooling region (13) amounts to less than 50%, 40%, 35%, 30%, 25% or 15% of the surface area of the heat exchanger of the refrigerant condenser assembly (1), and in particular, the heat exchanger is composed of the cooling tubes (2) and preferably the collecting tubes (5).
  3. The refrigerant condenser assembly as claimed in one or more of the preceding claims, characterised in that the third supercooling parallel portion (18) is arranged geodetically higher than the second supercooling parallel portion (16), and the second supercooling parallel portion is arranged geodetically higher than the first supercooling parallel portion (14).
  4. A method for operating a refrigeration circuit of a motor vehicle air-conditioning system, having the steps:
    - conducting refrigerant through lines of a refrigerant circuit,
    - compressing the gaseous refrigerant in a compressor, such that the pressure of the gaseous refrigerant is increased,
    - cooling and condensing the gaseous refrigerant in a refrigerant condenser assembly (1), which refrigerant is conducted through cooling tubes (2), by virtue of the gaseous refrigerant being cooled to a saturation temperature in a superheat region (11), the gaseous refrigerant subsequently being cooled to a boiling temperature and liquefied in a condensation region (12), and the liquid refrigerant being cooled below the boiling temperature in a supercooling region (13),
    - expanding the liquid refrigerant at an expansion element such that the pressure of the liquid refrigerant is reduced,
    - heating and evaporating the refrigerant in an evaporator,
    - conducting the gaseous refrigerant emerging from the evaporator to the compressor,
    characterised in that,
    in the supercooling region (13), the refrigerant is conducted in parallel through at least two cooling tubes (2) of a first supercooling parallel portion (14), the refrigerant flowing out of the first supercooling parallel portion (14) is conducted into a first supercooling intermediate flow duct (15), and the refrigerant conducted through the first supercooling intermediate flow duct (15) is subsequently conducted in parallel through at least two cooling tubes (2) of a second supercooling parallel portion (16), and the second supercooling parallel portion (16) issues into a second supercooling intermediate flow duct (17), and the second supercooling intermediate flow duct (17) issues into at least two cooling tubes (2) as a third supercooling parallel portion (18), and/or, in the supercooling region (13), the refrigerant is conducted through cooling tubes (2) with a smaller flow cross-sectional area than the refrigerant that is conducted through the cooling tubes (2) of the superheat region and/or of the condensation region (12), such that the refrigerant conducted through the cooling tubes (2) in the supercooling region (13) has a greater volume flow rate than the refrigerant conducted through the cooling tubes (2) in the superheat region (11) and/or in the condensation region (12), wherein the volume flow rate of the refrigerant in the cooling tubes (2) of the supercooling region (13) is 1.2 or 1.5 or 2 times greater than the volume flow rate of the refrigerant in the cooling tubes (2) of the superheat region (11) and/or of the condensation region (12).
  5. A motor vehicle air-conditioning system, comprising
    - a refrigerant condenser assembly (1),
    - an evaporator,
    - a compressor,
    - preferably a fan,
    - preferably a housing for accommodating the fan and the evaporator,
    characterised in that
    the refrigerant condenser assembly (1) is designed as claimed in one or more of claims 1 to 3 and/or a method as claimed in claim 4 can be implemented by the motor vehicle air-conditioning system.
EP11749398.1A 2010-08-19 2011-08-19 Coolant condenser assembly Active EP2606292B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010039511A DE102010039511A1 (en) 2010-08-19 2010-08-19 Refrigerant condenser assembly
PCT/EP2011/064320 WO2012022806A1 (en) 2010-08-19 2011-08-19 Coolant condenser assembly

Publications (2)

Publication Number Publication Date
EP2606292A1 EP2606292A1 (en) 2013-06-26
EP2606292B1 true EP2606292B1 (en) 2019-10-23

Family

ID=44532844

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11749398.1A Active EP2606292B1 (en) 2010-08-19 2011-08-19 Coolant condenser assembly

Country Status (5)

Country Link
US (1) US9970694B2 (en)
EP (1) EP2606292B1 (en)
CN (1) CN203286816U (en)
DE (1) DE102010039511A1 (en)
WO (1) WO2012022806A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013204294A1 (en) * 2013-03-12 2014-10-02 Behr Gmbh & Co. Kg Condenser assembly for refrigerant
DE102013211963A1 (en) 2013-06-24 2014-12-24 Behr Gmbh & Co. Kg capacitor assembly
JP6494916B2 (en) * 2014-03-07 2019-04-03 三菱重工サーマルシステムズ株式会社 Heat exchanger and air conditioner using the same
US9970689B2 (en) * 2014-09-22 2018-05-15 Liebert Corporation Cooling system having a condenser with a micro-channel cooling coil and sub-cooler having a fin-and-tube heat cooling coil
CN105716331B (en) * 2014-12-02 2019-01-22 东南大学 A kind of variable flow channel type heat exchanger improving Organic Rankine Cycle efficiency
CN115962589B (en) * 2023-02-17 2024-06-14 珠海格力电器股份有限公司 Heat exchanger and refrigeration system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482112A (en) 1986-07-29 1996-01-09 Showa Aluminum Kabushiki Kaisha Condenser
JPH11304293A (en) 1997-07-10 1999-11-05 Denso Corp Refrigerant condenser
JPH11211277A (en) 1998-01-22 1999-08-06 Showa Alum Corp Subcool system condenser
US20020007646A1 (en) * 2000-06-20 2002-01-24 Showa Denko K.K. Condenser
JP2002187424A (en) 2000-12-19 2002-07-02 Denso Corp Condenser for vehicle
JP2003021432A (en) 2001-07-09 2003-01-24 Zexel Valeo Climate Control Corp Condenser
TWI280340B (en) * 2002-02-20 2007-05-01 Showa Denko Kk Heat exchanger with receiver tank, receiver tank connecting member, receiver tank mounting structure of heat exchanger and refrigeration system
KR100872468B1 (en) * 2002-05-24 2008-12-08 한라공조주식회사 Multistage gas and liquid phase separation type condenser
GB0326443D0 (en) 2003-11-13 2003-12-17 Calsonic Kansei Uk Ltd Condenser
EP1577629A1 (en) * 2004-03-18 2005-09-21 Behr Lorraine S.A.R.L. Cap, header and heat exchanger
EP1887295B1 (en) * 2006-08-11 2017-07-26 VALEO AUTOSYSTEMY Sp. Z. o.o. Condenser with an improved tank
DE102007018722A1 (en) 2007-03-23 2008-09-25 Modine Manufacturing Co., Racine capacitor
JP2008281326A (en) * 2007-04-11 2008-11-20 Calsonic Kansei Corp Refrigerating unit and heat exchanger used for the refrigerating unit
FR2915793B1 (en) * 2007-05-03 2015-05-01 Valeo Systemes Thermiques IMPROVED HEAT EXCHANGER FOR AIR CONDITIONING CIRCUIT FOR MOTOR VEHICLE
US20100122545A1 (en) * 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Tetrafluoropropene compositions and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102010039511A1 (en) 2012-02-23
US20130219932A1 (en) 2013-08-29
WO2012022806A1 (en) 2012-02-23
US9970694B2 (en) 2018-05-15
EP2606292A1 (en) 2013-06-26
CN203286816U (en) 2013-11-13

Similar Documents

Publication Publication Date Title
DE10060104B4 (en) Refrigerant liquefier for use in an automotive air conditioning system
EP2606292B1 (en) Coolant condenser assembly
DE102007054345A1 (en) cooling module
DE102012215411A1 (en) Evaporator with cold storage function
DE112014001028T5 (en) Stack heat exchanger
DE102004043471A1 (en) heat exchange module
DE10123347B4 (en) Heat exchanger with phase change of refrigerant
DE102016100192B4 (en) Device for heat transfer
EP2612095B1 (en) Coolant condenser assembly
DE102020202313A1 (en) Heat exchanger
DE102011080673B4 (en) Refrigerant condenser assembly
WO2011134786A1 (en) Heat exchanger arrangement
EP2606291B1 (en) Coolant condenser assembly
DE102004047304A1 (en) Subcooling condenser
WO2013092644A2 (en) Heat exchanger
DE102020121275B4 (en) Heat exchanger of a refrigerant circuit of a vehicle air conditioning system
DE102005028510A1 (en) Adjustable internal heat exchanger
DE112016002286T5 (en) Heat exchanger with liquid container
WO2012098261A2 (en) Refrigerant condenser assembly
EP2818817B1 (en) Condenser module
WO2012140116A2 (en) Refrigerant condenser assembly
DE102022212155A1 (en) Heat exchanger
WO2004005826A1 (en) Heat exchanger
DE102021213376A1 (en) Heat exchanger and refrigerant circuit with a heat exchanger
DE102022201204A1 (en) heat exchanger module

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130319

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JUNG, MATTHIAS

Inventor name: HOFMANN, HERBERT

Inventor name: KEMLE, ANDREAS

Inventor name: FOERSTER, UWE

Inventor name: DAVID, GUILLAUME

Inventor name: WALTER, CHRISTOPH

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

17Q First examination report despatched

Effective date: 20160420

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190402

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JUNG, MATTHIAS

Inventor name: FOERSTER, UWE

Inventor name: KEMLE, ANDREAS

Inventor name: WALTER, CHRISTOPH

Inventor name: DAVID, GUILLAUME

Inventor name: HOFMANN, HERBERT

INTG Intention to grant announced

Effective date: 20190709

INTC Intention to grant announced (deleted)
GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20190910

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016198

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1194089

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191023

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200124

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016198

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

26N No opposition filed

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200819

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200819

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200819

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1194089

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230821

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Free format text: CASE NUMBER:

Effective date: 20240521