EP2599195A2 - Elektrische antriebsvorrichtung für ein luftfahrzeug - Google Patents

Elektrische antriebsvorrichtung für ein luftfahrzeug

Info

Publication number
EP2599195A2
EP2599195A2 EP11740869.0A EP11740869A EP2599195A2 EP 2599195 A2 EP2599195 A2 EP 2599195A2 EP 11740869 A EP11740869 A EP 11740869A EP 2599195 A2 EP2599195 A2 EP 2599195A2
Authority
EP
European Patent Office
Prior art keywords
rotor
electric drive
dynamoelectric machine
drive
planetary gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11740869.0A
Other languages
English (en)
French (fr)
Inventor
Jens Hamann
Markus KLÖPZIG
Olaf KÖRNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP11740869.0A priority Critical patent/EP2599195A2/de
Publication of EP2599195A2 publication Critical patent/EP2599195A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D35/00Transmitting power from power plant to propellers or rotors; Arrangements of transmissions
    • B64D35/02Transmitting power from power plant to propellers or rotors; Arrangements of transmissions characterised by the type of power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to an electric drive device for an aircraft, particularly a helicopter having at least ⁇ a rotor.
  • a rotor is the rotating (rotating) part of a machine, such as a helicopter or a Pro ⁇ pellerflugmaschines.
  • a rotor both the rotor blades and the rotor head to which these blades are fastened, as well as the co-rotating rotary ⁇ axis in its storage.
  • Rotors that power aircraft are also referred to as propellers or propellers.
  • a comparatively high specific power ie kW / kg, should be sought in order to increase the payload of the helicopter.
  • a high-torque electric motor which is constructed as a high-pole permanent magnet electric machine and a hollow cylindrical rotor made of soft iron, which is covered on both sides with permanent magnets and coaxially disposed between an outer and an inner stator and with an im Machine housing gela ⁇ gerten shaft is rotatably connected.
  • Such duplexes are of a variety of types
  • WO 09/143669 A1 discloses a helicopter with double rotors whose rotors are driven by electric motors.
  • a disadvantage of the hitherto known embodiments of the motors or the drives for helicopters is that the present concepts, in particular for helicopters, are of limited suitability due to the complex constructions and thus the weight of the drive. Assuming the present invention is based on the object ei ⁇ NEN drive for a rotor of an aircraft, in particular for a helicopter to provide giving a relatively high capacity with low weight of its drive from ⁇ .
  • the dynamoelectric machine is designed in a duplex arrangement, wherein a rotor located in an air gap has permanent magnets on a carrier device. with the stators of the dynamoelectric machine and / or the rotor having coolant,
  • a planetary gear is present, preferably in the axial extension of the dynamoelectric machine.
  • a dynamoelectric machine - an electric motor - in duplex arrangement and in particular a planetary gear are according to the invention in a common housing as a direct drive of a rotor of a helicopter or other aircraft, such. arranged a single or multi-engine Propel lerflugmaschine.
  • the planetary gear is stored together with the electric motor. This reduces the number of bearings and thus leads to a compact drive.
  • the size of an electric motor is determined by the required torque.
  • direct drive especially torque motors are particularly suitable.
  • To get a high out unused drive system it is necessary to Elektromo ⁇ tor at high speed, in particular with revolutions> 10,000 1 / min to operate. It is thus particularly advantageous to compactly assemble a torque motor with a planetary gear in order to obtain the required torque and the other required rotational speed, in particular for a rotor drive of a helicopter.
  • the electric motor is designed in a duplex arrangement. Since in a rotor is arranged in an air gap between an outer stator and an inner stator. In between, the runner is arranged.
  • the outer stator is cooled with higher demands on the utilization of the inner stator with a liquid, in particular oil.
  • the oil is additionally needed for lubrication of the planetary gear.
  • Oil is an electrical insulating material and can thus also directly around the winding of the stator.
  • the kuh ⁇ development by oil is therefore very effective because the heat for one is taken directly to the heat source as well as beneficial ⁇ way legally can form the lubricant for the planetary gear ⁇ simultaneously.
  • only one oil circuit is necessary, which includes the stators and the transmission. Recooling of the oil takes place via heat exchangers in and / or on the aircraft.
  • the stators are thus provided with an encapsulation comprising at least the winding of the stators or the entire stator, inter alia, with winding, laminated core and winding head.
  • the cooling of the occupied with the permanent magnet rotor by pumping air through the air gap of the Elect ⁇ romotors.
  • the rotor rotates in the vacuum of the electric motor to avoid the air friction losses.
  • the permanent magnets are layered structure.
  • the winding of the stators is advantageously carried out as a polyphase winding in each case as a three-phase winding ⁇ leads.
  • the rotor is hollow, since the inner stator is located in its interior.
  • this hollow mold serving as a support device for permanent magnets is a bell shape, which is designed in particular in the region of the active part of the inner and outer stator as a hollow cylinder.
  • the permanent magnets are arranged both on the outer circumferential surface and on the inner circumferential surface of the hollow cylinder.
  • the bell, on which the permanent magnets are arranged at least two ⁇ divided, which substantially facilitates, for example, the mounting of the rotor between the inner and outer stator.
  • the Rushing ⁇ tion has internal, ie an internal stator electromagnetically associated permanent magnets on, as well as external, ie an external stator electromagnetically ⁇ table associated permanent magnets on.
  • At least one bearing is designed as a magnetic bearing.
  • FIG. 1 shows a helicopter 20 shown in principle with a main rotor 23 and a tail rotor 22 which is attached to a tail boom 21.
  • "X" here is the off ⁇ section referred to which a drive 1 of the main rotor is arranged 23rd
  • a rotor 6 of a vertically mounted dynamoelectric machine 2 has an inner side as well as on its Au ⁇ hseite its carrier device 14, permanent magnets 13.
  • the permanent magnets 13 advantageously, the permanent magnets ⁇ te are arranged either only on the inside of the carrier device 14 of the rotor. 6
  • the permanent magnets 13 are arranged on the inner side of the support device 14, while the permanent magnets 13, which interact substantially with the outside lie ing stator 4 are located on the outside of the support device 14 in axially extending pockets.
  • the permanent magnets 13 are each layered in order to reduce the eddy current losses. Furthermore, the permanent magnets 13 on their axial course of the Läu ⁇ fers 6 are skewed consider and / or staggered attached to obtain an equalization of the output torque of the drive.
  • the inner stator 5 and the outer stator 4 are stationary and each have a layered sheet ⁇ packet, preferably made of sandwich sheets on.
  • the carrier device 14 of the rotor 6 is advantageously constructed in several parts, by the magnetically active part, on the permanent magnets 13 are arranged as a hollow cylinder is formed.
  • the number of poles of the inner stator 5 and the outer stator 4 facing sides of the rotor 6 is preferably the same.
  • a bearing of the rotor 6 is provided both in this case on the side facing away from the drive 1 side of the dynamoelectric machine 2, as well as on the main rotor 23 side facing.
  • the bearing between dynamoelectric machine 2 and planetary gear 3 thus forms a common storage of planetary gear 3 and dynamoelectric machine 2, in duplex arrangement.
  • dynamoelectric machine 2 and planetary gear 3 are arranged in a housing. This simplistic ⁇ fanned the structure of the drive 1 and thus allows a trailing closing preliminary manufacturing of this drive. 1
  • both the internal and the external stator 4, 5 have oil cooling. Accordingly, of course, the air gap 12 of the dynamoelectric machine 2, in which the rotor 6 moves, by suitable measures, for example ⁇ se by sealing measures such as a Can 10, 11 givesschot- tet. Of the Can 10, 11, at least the winding system with its winding heads 8 is included and thus cooled.
  • the can also includes the laminated core of the stators 4, 5 winding head 8 and winding system.
  • a not shown Olkühlniklauf is advantageous ⁇ legally, at least partially guided over the planetary gear 3 and there, inter alia, the lubrication and cooling of the gears.
  • the air frictional losses of the rotor 6 within the air gap 12 of the drive ⁇ in duplex arrangement further Ren, in the air gap 12 is preferably a vacuum vorgese ⁇ hen.

Abstract

Die Erfindung betrifft einen elektrischen Antrieb (1) für ein Luftfahrzeug, insbesondere für einen Hubschrauber (20) mit zumindest einem Rotor (23), der direkt durch eine dynamoelektrische Maschine (2) angetrieben ist, wobei die dynamoelektrische Maschine (2) in einer Duplexanordnung ausgeführt ist, wobei ein in einem Luftspalt (12) befindlicher Läufer (6) Permanentmagnete (13) auf einer Trägervorrichtung (14) aufweist, wobei die Statoren (4,5) der dynamoelektrischen Maschine (2) und/oder der Läufer (6) Kühlmittel aufweisen, - zwischen angetriebenem Rotor und dynamoelektrischer Maschine (2), insbesondere ein Planetengetriebe (3) vorhanden ist, vorzugsweise in axialer Verlängerung der dynamoelektrischen Maschine (2).

Description

Beschreibung
Elektrische Antriebsvorrichtung für ein Luftfahrzeug Die Erfindung betrifft eine elektrische Antriebsvorrichtung für ein Luftfahrzeug, insbesondere einen Hubschrauber mit zu¬ mindest einem Rotor.
Ein Rotor ist dabei der sich drehende (rotierende) Teil einer Maschine, beispielsweise eines Hubschraubers oder eines Pro¬ pellerflugzeugs. Dabei versteht man unter einem Rotor sowohl die Rotorblätter als auch den Rotorkopf, an dem diese Rotorblätter befestigt sind, ebenso auch die mitrotierende Dreh¬ achse in ihrer Lagerung.
Rotoren, die Flugzeuge antreiben, werden auch als Luftschrauben oder Propeller bezeichnet. Insbesondere bei Hubschraubern ist eine vergleichsweise hohe spezifische Leistung, also kW/kg, anzustreben, um die Traglast des Hubschraubers zu er- höhen.
Aus der DE 39 15 526 AI ist ein Duplexelektromotor bekannt, bei dem ein Hohlrotor von außen und von Innen in Rotation versetzt wird und so eine vergleichsweise höhere Leistung ge- genüber herkömmlichen Elektromotoren erzielt werden soll.
Aus der DE 198 56 647 AI ist ein elektrischer Hochmomentmotor bekannt, der als hochpolige dauermagneterregte elektrische Maschine aufgebaut ist und einen hohlzylindrischen Läufer aus Weicheisen aufweist, der beidseitig mit Permanentmagneten belegt ist und koaxial zwischen einem äußeren und einem inneren Stator angeordnet ist und mit einer im Maschinengehäuse gela¬ gerten Welle drehbar verbunden ist. Derartige Duplexausführungen sind aus einer Vielzahl von
Druckschriften bekannt. Beispielsweise aus der CN 1909340 A, der CN 201113670 Y, der WO 2007/024224 AI oder aus der JP 3237295 A. Aus der EP 1 612 415 A2 ist ein Windgenerator in Duplexanord- nung und einem daran gekoppelten Getriebe bekannt.
Aus der WO 09/143669 AI ist ein Hubschrauber mit Doppelroto- ren bekannt, dessen Rotoren durch Elektromotoren angetrieben werden .
Aus der WO 2010/029113 A2 ist ein elektrisches Antriebssystem mit einem Rotorring bekannt, an welchem Magneten angeordnet sind, das zum Antrieb von Luftsportgeräten dient.
Aus der EP 1 931 015 A2 ist ein Startergenerator für Luftfahrzeuge in Duplexanordnung bekannt. Aus der US 4 259 809 ist eine Antriebsvorrichtung für ein Flugzeug bekannt, bei dem ein Antrieb über ein Planetenge¬ triebe einen Propeller bewegt.
Nachteilig bei den bisher bekannten Aus führungs formen der Mo- toren oder der Antriebe für Hubschrauber ist, dass die vorliegenden Konzepte, insbesondere für Hubschrauber aufgrund der aufwändigen Konstruktionen und damit des Gewichts des Antriebs nur bedingt geeignet sind. Ausgehend davon liegt der Erfindung die Aufgabe zugrunde, ei¬ nen Antrieb für einen Rotor eines Luftfahrzeugs, insbesondere für einen Hubschrauber zu schaffen, der eine vergleichsweise hohe Leistung bei geringem Eigengewicht seines Antriebs ab¬ gibt .
Die Lösung der gestellten Aufgabe gelingt durch einen elektrischer Antrieb für ein Luftfahrzeug, insbesondere für einen Hubschrauber mit zumindest einem Rotor, der direkt durch eine dynamoelektrische Maschine angetrieben ist, wobei
- die dynamoelektrische Maschine in einer Duplexanordnung ausgeführt ist, wobei ein in einem Luftspalt befindlicher Läufer Permanentmagnete auf einer Trägervorrichtung auf- weist, wobei die Statoren der dynamoelektrischen Maschine und/oder der Läufer Kühlmittel aufweisen,
zwischen angetriebenem Rotor und dynamoelektrischer Maschine, insbesondere ein Planetengetriebe vorhanden ist, vorzugsweise in axialer Verlängerung der dynamoelektrischen Maschine.
Eine dynamoelektrische Maschine - ein Elektromotor - in Duplexanordnung und insbesondere ein Planetengetriebe sind erfindungsgemäß in einem gemeinsamen Gehäuse als Direktantrieb eines Rotors eines Hubschraubers oder eines anderen Luftfahrzeugs, wie z.B. einem ein- oder mehrmotorigen Propel lerflugzeug angeordnet. Das Planetengetriebe ist mit dem Elektromotor gemeinsam gelagert. Dies reduziert die Anzahl der Lagerstellen und führt so zu einem kompakten Antrieb.
Die Größe eines Elektromotors wird durch das erforderliche Drehmoment bestimmt. Dazu sind Direktantrieb, insbesondere Torquemotoren besonders geeignet. Um ein hoch ausgenutztes Antriebssystem zu erhalten, ist es notwendig, den Elektromo¬ tor hochtourig, insbesondere mit Umdrehungen > 10.000 1/min zu betreiben. Besonders vorteilhaft ist es somit einen Tor- quemotor mit einem Planetengetriebe kompakt zusammenzufügen, um zum einen das erforderliche Drehmoment und zum anderen di erforderliche Drehzahl, insbesondere für einen Rotorantrieb eines Hubschraubers zu erhalten.
Um die Ausnutzung des Elektroantriebs zusätzlich zu steigern ist der Elektromotor in einer Duplexanordnung ausgeführt. Da bei ist ein Läufer in einem Luftspalt zwischen einem außenliegenden Stator und einem innenliegenden Stator angeordnet. Dazwischen ist der Läufer angeordnet.
Um nun die Ausnutzung zu steigern, wird zumindest der äußere Stator bei höheren Ansprüchen an die Ausnutzung auch der innere Stator mit einer Flüssigkeit, insbesondere Öl gekühlt. Das Öl wird zusätzlich für die Schmierung des Planetengetrie bes benötigt. Öl ist ein elektrischer Isolierstoff und kann somit auch direkt die Wicklung des Stators umspülen. Die Küh¬ lung durch Öl ist somit sehr effektiv, da die Wärme zum einen direkt an der Wärmequelle aufgenommen wird, als auch vorteil¬ hafterweise gleichzeitig den Schmierstoff für das Planetenge¬ triebe bilden kann. Somit ist nur ein Ölkreislauf notwendig, der die Statoren und das Getriebe umfasst. Eine Rückkühlung des Öls erfolgt über Wärmetauscher in und/oder am Luftfahrzeug. Die Statoren sind somit mit einer Kapselung versehen, die zumindest die Wicklung der Statoren oder den gesamten Stator u.a. mit Wicklung, Blechpaket und Wickelkopf umfasst. Die Kühlung des mit Permanentmagneten besetzten Läufers erfolgt durch Förderung von Luft durch den Luftspalt des Elekt¬ romotors .
In einer weiteren Ausführung dreht der Läufer im Vakuum des Elektromotors, um die Luftreibungsverluste zu vermeiden.
Um die Verluste, insbesondere die Wirbelstromverluste im Läu¬ fer weiter zu reduzieren, sind die Permanentmagnete geschichtet aufgebaut.
Die Wicklung der Statoren ist dabei als polyphasige Wicklung vorteilhafterweise jeweils als dreiphasige Wicklung ausge¬ führt .
Der Läufer ist hohl ausgebildet, da sich in seinem inneren der innenliegende Stator befindet. Vorzugsweise stellt diese Hohlform die als Trägervorrichtung für Permanentmagnete dient eine Glockenform dar, die insbesondere im Bereich der Aktivteils des innen- und außenliegenden Stators als Hohlzylinder ausgeführt ist. Dabei sind die Permanentmagnete sowohl an der äußeren Mantelfläche als auch an der inneren Mantelfläche des Hohlzylinders angeordnet. Vorteilhafterweise ist die Glocke, an der die Permanentmagnete angeordnet sind, zumindest zwei¬ geteilt, was beispielsweise die Montage des Läufers zwischen innenliegenden und außenliegenden Stator wesentlich erleichtert . Auf der Umfangsflache einer Trägervorrichtung oder in axial verlaufenden Taschen der Trägervorrichtung des Läufers, die aus Weicheisen bestehen oder Aramide in Form von Fasern aufweist, sind Permanentmagnete vorgesehen. Die Trägervorrich¬ tung weist innenliegende, also einem innenliegenden Stator elektromagnetisch zugeordnet Permanentmagnete auf, als auch außenliegende, also einem außenliegenden Stator elektromagne¬ tisch zugeordnete Permanentmagnete auf.
Um den Wirkungsgrad der gesamten Antriebsanordnung Elektromo- tor-Planetengetriebe weiter zu steigern und weniger wartungs- intensiv zu gestalten, wird vorteilhafterweise zumindest eine Lagerung als Magnetlagerung ausgeführt .
Mit den vorgestellten Merkmalen ergibt sich nunmehr ein Antrieb eines Rotors für einen Hubschrauber mit einem spezifischen Leistungsgewicht von 8KW/kg.
Die Erfindung sowie weitere vorteilhafte Ausgestaltungen der Erfindung werden anhand eines Ausführungsbeispiels näher be¬ schrieben. Darin zeigen;
FIG 1 einen prinzipiell dargestellten Hubschrauber,
FIG 2 Antrieb eines Hauptrotors.
FIG 1 zeigt einen prinzipiell dargestellten Hubschrauber 20 mit einem Hauptrotor 23 und einem Heckrotor 22, der an einem Heckausleger 21 angebracht ist. Mit „X" ist dabei der Aus¬ schnitt bezeichnet, an dem ein Antrieb 1 des Hauptrotors 23 angeordnet ist.
FIG 2 zeigt in einem prinzipiellen Längsschnitt eines An¬ triebs 1 eines Hauptrotors 23 eines Hubschraubers 20. Ein Läufer 6 einer vertikal aufgestellten dynamoelektrischen Maschine 2 weist auf einer Innenseite als auch auf seiner Au¬ ßenseite seiner Trägervorrichtung 14 Permanentmagnete 13 auf. Um auch bei erhöhten Fliehkräften die Permanentmagnete 13 halten zu können, sind vorteilhafterweise die Permanentmagne¬ te entweder nur auf der Innenseite der Trägervorrichtung 14 des Läufers 6 angeordnet.
Alternativ dazu sind die Permanentmagnete 13 auf der Innen seite der Trägervorrichtung 14 angeordnet, während sich di Permanentmagnete 13, die im Wesentlichen mit dem außen lie genden Stator 4 wechselwirken an der Außenseite der Träger Vorrichtung 14 in axial verlaufenden Taschen befinden.
Die Permanentmagnete 13 sind jeweils geschichtet aufgebaut, um die Wirbelstromverluste zu reduzieren. Des Weiteren sind die Permanentmagnete 13 über ihren axialen Verlauf des Läu¬ fers 6 betrachte geschrägt und/oder gestaffelt angebracht, um eine Vergleichmäßigung des abgegebenen Drehmoments des Antriebs zu erhalten.
Diese Permanentmagnete 13 wechselwirken mit dem Wicklungssys¬ tem des jeweils zugewandten Stator 4,5, so dass der Antrieb 1 ein vergleichsweise hohes Drehmoment entfaltet. Über ein in axialer Verlängerung der dynamoelektrischen Maschine 2 angeordnetes Planetengetriebe 3 wird nunmehr ein Rotor eines nicht näher dargestellten Hubschraubers über eine Rotorwelle 9 angetrieben.
Alternativ zu einem klassischen Planetengetriebe aus Zahnrä¬ dern, wird ein Getriebe mit der gleichen Funktionalität, näm¬ lich Erhöhung der Drehzahl, durch Permanentmagnete realisiert. Dies vermeidet Getriebegeräusche und es sind keine Verschleißteile zu warten und auszutauschen.
Der innenliegende Stator 5 als auch der außenliegende Stator 4 sind stationär und weisen jeweils ein geschichtetes Blech¬ paket, vorzugsweise aus Sandwichblechen auf.
Die Trägervorrichtung 14 des Läufers 6 ist vorteilhafterweise mehrteilig aufgebaut, indem der magnetisch aktive Teil, an dem die Permanentmagnete 13 angeordnet sind als Hohlzylinder ausgebildet ist. Die Polzahl der dem innenliegenden Stator 5 und dem außenliegenden Stator 4 zugewandten Seiten des Läufers 6 ist dabei vorzugsweise gleich.
Eine Lagerung des Läufers 6 ist sowohl in diesem Fall an der vom Antrieb 1 abgewandten Seite der dynamoelektrischen Maschine 2, als auch auf der dem Hauptrotor 23 zugewandten Seite vorgesehen. Die Lagerung zwischen dynamoelektrischer Ma- schine 2 und Planetengetriebe 3 bildet somit eine gemeinsame Lagerung von Planetengetriebe 3 und dynamoelektrischer Maschine 2, in Duplexanordnung .
Vorzugsweise sind dabei dynamoelektrische Maschine 2 als auch Planetengetriebe 3 in einem Gehäuse angeordnet. Dies verein¬ facht den Aufbau des Antriebs 1 und gestattet somit eine ab¬ schließende Vorabfertigung dieses Antriebs 1.
Um die Effizienz des Antriebs 1 weiter zu steigern, weist so- wohl der innenliegende als auch der außenliegende Stator 4,5 eine Ölkühlung auf. Demzufolge ist selbstverständlich der Luftspalt 12 der dynamoelektrischen Maschine 2, in dem sich der Läufer 6 bewegt, durch geeignete Maßnahmen, beispielswei¬ se durch Abdichtungsmaßnahmen wie eine Can 10, 11 abgeschot- tet. Von der Can 10, 11 ist zumindest das Wicklungssystem mit seinen Wickelköpfen 8 umfasst und damit gekühlt.
In einer weiteren Aus führungs form umfasst die Can auch das Blechpaket der Statoren 4,5, Wickelkopf 8 und Wicklungssys- tem.
Ein nicht näher dargestellter Olkühlkreislauf wird vorteil¬ hafterweise zumindest zum Teil auch über das Planetengetriebe 3 geführt und dient dort u.a. der Schmierung und Kühlung der Zahnräder.
Um die Luftreibungsverluste des Läufers 6 innerhalb des Luft¬ spaltes 12 des Antriebs in Duplexanordnung weiter zu reduzie- ren, ist in dem Luftspalt 12 vorzugsweise ein Vakuum vorgese¬ hen .
Mit dem beschrieben Antrieb 1 ist nunmehr ein Antriebssystem für einen Hubschrauber 20 mit ca. 200 bis 300 KW bei ca. 2500 1/min geschaffen bei einem spezifischen Leistungsgewicht von ca. 8 KW/ kg.

Claims

Patentansprüche
1. Elektrischer Antrieb (1) für ein Luftfahrzeug, insbesonde¬ re für einen Hubschrauber (20) mit zumindest einem Rotor (23), der direkt durch eine dynamoelektrische Maschine (2) angetrieben ist, wobei
die dynamoelektrische Maschine (2) in einer Duplexanord- nung ausgeführt ist, wobei ein in einem Luftspalt (12) be¬ findlicher Läufer (6) Permanentmagnete (13) auf einer Trä- gervorrichtung (14) aufweist, wobei die Statoren (4,5) der dynamoelektrischen Maschine (2) und/oder der Läufer (6) Kühlmittel aufweisen,
zwischen angetriebenem Rotor und dynamoelektrischer Maschine (2), insbesondere ein Planetengetriebe (3) vorhanden ist, vorzugsweise in axialer Verlängerung der dynamoelekt¬ rischen Maschine (2) .
2. Elektrischer Antrieb (1) nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass Planetengetriebe (3) und dynamoelektrische Maschine (2) zumindest eine gemeinsame La¬ gerung aufweisen.
3. Elektrischer Antrieb (1) nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass die Träger- Vorrichtung (14) des Läufers (6) Weicheisen und/oder Aramid aufweist .
4. Elektrischer Antriebs (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Trägervorrichtung (14) des Läufers (6) mehrteilig aufgebaut ist.
5. Elektrischer Antrieb (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Antrieb (1) zumindest ein Magnetlager aufweist.
6. Elektrischer Antrieb (1) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass zumindest ein Stator (4,5) einen Ölkreislauf zur Kühlung vorsieht .
7. Elektrischer Antrieb (1) nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , dass die Kühlung zumindest die Wicklung des Stators erfasst.
8. Elektrischer Antrieb (1) nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass der Ölkreislauf neben einem Stator (4,5) auch das Planetengetriebe (3) erfasst.
EP11740869.0A 2010-07-30 2011-07-22 Elektrische antriebsvorrichtung für ein luftfahrzeug Withdrawn EP2599195A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11740869.0A EP2599195A2 (de) 2010-07-30 2011-07-22 Elektrische antriebsvorrichtung für ein luftfahrzeug

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10171433A EP2413483A1 (de) 2010-07-30 2010-07-30 Elektrische Antriebsvorrichtung für ein Luftfahrzeug
PCT/EP2011/062633 WO2012013594A2 (de) 2010-07-30 2011-07-22 Elektrische antriebsvorrichtung für ein luftfahrzeug
EP11740869.0A EP2599195A2 (de) 2010-07-30 2011-07-22 Elektrische antriebsvorrichtung für ein luftfahrzeug

Publications (1)

Publication Number Publication Date
EP2599195A2 true EP2599195A2 (de) 2013-06-05

Family

ID=43530693

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10171433A Withdrawn EP2413483A1 (de) 2010-07-30 2010-07-30 Elektrische Antriebsvorrichtung für ein Luftfahrzeug
EP11740869.0A Withdrawn EP2599195A2 (de) 2010-07-30 2011-07-22 Elektrische antriebsvorrichtung für ein luftfahrzeug

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10171433A Withdrawn EP2413483A1 (de) 2010-07-30 2010-07-30 Elektrische Antriebsvorrichtung für ein Luftfahrzeug

Country Status (6)

Country Link
US (1) US20130126669A1 (de)
EP (2) EP2413483A1 (de)
CN (1) CN103026600B (de)
BR (1) BR112013002327A8 (de)
RU (1) RU2547938C2 (de)
WO (1) WO2012013594A2 (de)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206144A1 (de) 2012-04-16 2013-10-17 Siemens Aktiengesellschaft Antriebsvorrichtung für einen Kraftwagen
FR2993727B1 (fr) 2012-07-19 2017-07-21 Eurocopter France Machine electrique reversible pour aeronef
GB2515766A (en) * 2013-07-02 2015-01-07 David Rodger Reducing bearing forces in an electrical machine
US9957040B2 (en) 2013-08-28 2018-05-01 Sikorsky Aircraft Corporation Propeller gearbox oil cooler for a rotary wing aircract
DE102013219724A1 (de) * 2013-09-30 2015-04-02 Siemens Aktiengesellschaft Elektrisch angetriebenes Flugzeug
JP6393916B2 (ja) * 2014-02-20 2018-09-26 北田回転機関合同会社 電気回転機
DE102015105787A1 (de) * 2015-04-15 2016-10-20 Johann Schwöller Elektroantrieb für ein Luftfahrzeug und Hybridsystem für ein Luftfahrzeug
CA2932102C (en) 2015-06-10 2024-04-30 Rolls-Royce Corporation Fault identification and isolation in an electric propulsion system
EP3104519B1 (de) 2015-06-11 2021-08-04 Rolls-Royce North American Technologies, Inc. Variierende mengen von motorpolen zur rauschverminderung
US11186363B2 (en) 2015-10-21 2021-11-30 Sikorsky Aircraft Corporation Electric propulsion system for a rotary wing aircraft
US9828089B2 (en) * 2016-01-29 2017-11-28 Sikorsky Aircraft Corporation Rotor drive systems for rotorcraft
WO2018029227A1 (de) * 2016-08-10 2018-02-15 Siemens Aktiengesellschaft Stationäres hubschrauber-trainingsgerät
CN109792198A (zh) * 2016-09-23 2019-05-21 卓胜镐 不间断电动机
US10752343B2 (en) * 2016-10-18 2020-08-25 Sikorsky Aircraft Corporation Electric propulsion system for a rotary wing aircraft
DE102016223038A1 (de) 2016-11-22 2018-05-24 Volkswagen Aktiengesellschaft Kühleinrichtung für elektrische Maschine
US10577090B2 (en) * 2017-02-16 2020-03-03 Sikorsky Aircraft Corporation Electric propulsion system with overrunning clutch for a rotary-wing aircraft
GB201708289D0 (en) 2017-05-24 2017-07-05 Rolls Royce Plc Preventing electrical breakdown
GB201708297D0 (en) * 2017-05-24 2017-07-05 Rolls Royce Plc Preventing electrical breakdown
US10676182B2 (en) 2017-07-20 2020-06-09 Sikorsky Aircraft Corporation Tilting coaxial rotor for a rotary wing aircraft
US10974824B2 (en) 2017-07-20 2021-04-13 Sikorsky Aircraft Corporation Electric powered direct drive rotor motor
US10443620B2 (en) * 2018-01-02 2019-10-15 General Electric Company Heat dissipation system for electric aircraft engine
US10407166B2 (en) 2018-01-08 2019-09-10 Sikorsky Aircraft Corporation Yaw moment supplement for directional control
DE102018202172A1 (de) * 2018-02-13 2019-08-14 Siemens Aktiengesellschaft Antriebsvorrichtung für ein Luftfahrzeug mit elektrischer Maschine und Kühleinrichtung
CN109263863A (zh) * 2018-08-23 2019-01-25 陈国宝 风洞推进器
US11735988B2 (en) * 2019-01-31 2023-08-22 General Electric Company Dual rotor electric machine
CH715823A1 (de) * 2019-02-07 2020-08-14 Kopter Group Ag Antriebseinheit, insbesondere für den Hauptrotor eines Drehflüglers.
GB202019212D0 (en) * 2020-12-07 2021-01-20 J And M Ferranti Tech Limited Propulsion systems for aircraft
CN114838037B (zh) * 2022-04-20 2022-10-25 北京理工大学 一种轮毂电液复合驱动总成及控制方法
DE102022118426A1 (de) 2022-07-22 2024-01-25 Auma Riester Gmbh & Co. Kg Planetengetriebe
US11787551B1 (en) 2022-10-06 2023-10-17 Archer Aviation, Inc. Vertical takeoff and landing aircraft electric engine configuration
CN117780894B (zh) * 2024-02-23 2024-05-03 北京中科科美科技股份有限公司 一种真空设备中高扭矩密封传动装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479409A (en) 1977-12-07 1979-06-25 Mabuchi Motor Co Rotary unit
DE3915526A1 (de) 1989-02-13 1990-08-16 Rolf Hopf Duplexelektromotor
JPH03237295A (ja) 1990-02-09 1991-10-23 Shimadzu Corp ターボ分子ポンプ
KR0130534B1 (ko) * 1994-07-12 1998-04-09 김광호 세탁기용 리니어 모터
US6308912B1 (en) * 1997-10-21 2001-10-30 Natural Colour Kari Kirjavainen Oy Rotorcraft
DE19856647B4 (de) 1998-12-09 2007-03-01 Canders, Wolf-R., Prof. Dr.-Ing. Elektrischer Hochmomentmotor
RU2266236C2 (ru) * 2003-09-09 2005-12-20 Хамин Иван Никифорович Летательный аппарат с электроприводом
US7154191B2 (en) 2004-06-30 2006-12-26 General Electric Company Electrical machine with double-sided rotor
US7839048B2 (en) * 2004-09-27 2010-11-23 General Electric Company Electrical machine with double-sided stator
CN1909340A (zh) 2005-08-01 2007-02-07 张孟杰 增效永磁发电机
EP1917709A1 (de) 2005-08-24 2008-05-07 Kuhlmann-Wilsdorf Motors, LLC Mp-a- und mp-t-maschinen, mehrpolmaschinen für wechsel- und dreiphasenstrom
US7750521B2 (en) 2006-12-07 2010-07-06 General Electric Company Double-sided starter/generator for aircrafts
CN201113670Y (zh) 2007-10-25 2008-09-10 新疆金风科技股份有限公司 双定子半直驱式永磁同步风力发电机
DE202008002249U1 (de) * 2008-02-18 2008-04-17 Dill, Hans-Dieter Fluggerät mit einer Brennkraftmaschine sowie einem Elektro-Antriebsmotor
CN201206076Y (zh) * 2008-03-20 2009-03-11 浙江西子富沃德电机有限公司 双定子永磁同步无齿轮曳引机
WO2009143669A1 (zh) 2008-05-27 2009-12-03 Tian Yu 飞行器及其动力驱动系统
CN101337501B (zh) * 2008-08-12 2011-05-18 卢旻 一种车轮、车辆、火车、飞行车和直升机
CA2734784C (en) * 2008-08-22 2015-04-14 Flsmidth A/S Heavy-duty drive arrangement and mill driven thereby
DE202008012191U1 (de) 2008-09-15 2008-11-27 Geiger Engineering Elektrisches Antriebssystem
US8183802B2 (en) * 2009-01-05 2012-05-22 Eric Stephane Quere Composite electromechanical machines with controller
US20110042967A1 (en) * 2009-08-19 2011-02-24 Winter Curt B Electric generator driven by combustion engine and having fluid cooling
JP5477161B2 (ja) * 2010-05-20 2014-04-23 株式会社デンソー ダブルステータ型モータ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2012013594A2 *

Also Published As

Publication number Publication date
WO2012013594A3 (de) 2012-04-26
EP2413483A1 (de) 2012-02-01
BR112013002327A2 (pt) 2016-05-24
BR112013002327A8 (pt) 2016-10-18
CN103026600B (zh) 2016-03-09
RU2547938C2 (ru) 2015-04-10
WO2012013594A2 (de) 2012-02-02
US20130126669A1 (en) 2013-05-23
CN103026600A (zh) 2013-04-03
RU2013108825A (ru) 2014-09-10

Similar Documents

Publication Publication Date Title
EP2599195A2 (de) Elektrische antriebsvorrichtung für ein luftfahrzeug
EP3507889B1 (de) Rotor für eine elektrische maschine
DE102009060199A1 (de) Elektrische Rotationsmaschine mit variablem Magnetfluss
DE102005060180A1 (de) Elektrische Maschinen und Anordnungen mit einem jochlosen Stator mit modularen Blechstapeln
EP2995820B1 (de) Vakuumpumpe mit geschweisstem motorrotor und mit v-förmig angeordneten magneten
EP1560315A3 (de) Elektrische Antriebseinheit für ein Kraftfahrzeug
EP3504774B1 (de) Kurzschlussläufer für eine asynchronmaschine
DE102014224476A1 (de) Elektrische Antriebseinheit, Hybridantriebseinrichtung und Fahrzeug
EP2413482A1 (de) Fluggerät
DE102012208550A1 (de) Generator einer getriebelosen Windenergieanlage
DE112016006235T5 (de) Elektrische Rotationsmaschine mit verbesserter Kühlung
WO2015086355A1 (de) Aufladevorrichtung für einen verbrennungsmotor eines kraftfahrzeugs und verfahren zur herstellung der aufladevorrichtung
DE102007031507A1 (de) Bürstenlose Wechselstrommaschine für Fahrzeuge
DE60201937T2 (de) Elektrische Maschine mit äusserem Läufer
EP3451507A1 (de) Elektrische rotierende maschine für einen gondelantrieb
DE102009010162A1 (de) Elektromaschine für ein Wellenarray
DE19821632A1 (de) Asynchronmaschine mit Erregung durch rotierenden Permanentmagnetring
WO2008074574A1 (de) Elektrische maschine
EP1759987A2 (de) Elektrischer Bootsantrieb
DE102014001922A1 (de) Motorenreihe und Verfahren zur Schaffung der Motorenreihe
DE102021213812A1 (de) Rotor für eine elektrische Maschine mit einem radialen Kühlkanal im Blechpaket
WO2009068356A1 (de) Elektrische maschine
DE102011085878A1 (de) Elektrische Maschine
EP3107192B1 (de) Vakuumpumpe
EP4008898A1 (de) Generator-getriebe-anordnung einer windkraftanlage mit bremse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121213

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20190118

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190529