EP2596224A1 - Antriebssystem für ein fahrzeug - Google Patents

Antriebssystem für ein fahrzeug

Info

Publication number
EP2596224A1
EP2596224A1 EP11729262.3A EP11729262A EP2596224A1 EP 2596224 A1 EP2596224 A1 EP 2596224A1 EP 11729262 A EP11729262 A EP 11729262A EP 2596224 A1 EP2596224 A1 EP 2596224A1
Authority
EP
European Patent Office
Prior art keywords
working medium
drive system
thermal energy
exhaust gas
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11729262.3A
Other languages
English (en)
French (fr)
Inventor
Jürgen Ringler
Marco Seifert
Wolfgang Strobl
Raymond Freymann
Andreas Eder
Matthias Linde
Johannes Liebl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP2596224A1 publication Critical patent/EP2596224A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B65/00Adaptations of engines for special uses not provided for in groups F02B61/00 or F02B63/00; Combinations of engines with other devices, e.g. with non-driven apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a drive system for a vehicle, having a mechanical and thermal energy-releasing internal combustion engine and a device for converting the thermal energy, according to the preamble of claim 1.
  • thermoelectric generator with which electrical energy can be obtained from the thermal energy present in the exhaust gas, for example according to the Seebeck effect, which is then no longer generated regeneratively with additional consumption of fuel got to.
  • EP 1573194 B1 discloses a heat engine which has a low-temperature circuit and a high-temperature circuit, each followed by switched relaxation device with the aid of the waste heat of the internal combustion engine generated mechanical work.
  • the object of the present invention is to refine the known drive system from the point of view of improving its overall efficiency.
  • the invention provides a drive system for a vehicle, comprising a mechanical and thermal energy releasing internal combustion engine and a device for converting the thermal energy, wherein the device for direct conversion of the thermal energy into electrical energy and for transmitting thermal energy to a for applying a Expansion device provided working medium is formed.
  • the device provided for utilizing the thermal energy dissipated by the internal combustion engine via the exhaust gas flow is designed both for directly converting the thermal energy into electrical energy and for transmitting thermal energy to a working medium, with which in turn Expander can be acted upon, so that with the device, the thermal energy can be converted into both electrical energy and into mechanical energy.
  • the heat present in the exhaust gas flow of the internal combustion engine can be advantageously used to generate both electric current which, for example, supports the on-board voltage network of the vehicle, as well
  • the overall efficiency of the drive system increases and it is additionally achieved the advantage of functional integration, since a vaporizer required for evaporation of the working medium is thus used simultaneously as a cooler for a component by means of which the thermal energy can be converted into electrical energy.
  • the component for converting the thermal energy into electrical energy may be a thermoelectric generator having surfaces heated by means of the thermal energy and surfaces cooled by means of the working medium such that the working medium assumes a vaporous state as a result of the application of heat.
  • the vaporous working medium after passage through the device provided according to the invention can then act on an expansion device, wherein the expansion device can be, for example, a piston machine with which a mechanically driven component is acted on the vehicle.
  • the device has a condensation device for the condensation of vaporous working medium after it has passed through an expansion device.
  • the then liquid working fluid is fed back to the device by means of a working medium in the circulation leading pump device, which then again using the residual energy available in the exhaust gas in the exhaust gas. stood convicted.
  • the device may be a heat exchanger which has first surfaces heated by the exhaust gas of the engine and second surfaces cooled by the working medium with thermoelectric pair of legs arranged therebetween and at least one inlet - for working fluid in the liquid state - and outlet - for Working medium in the vapor state - has and each having at least one inlet and outlet for the exhaust gas of the internal combustion engine, which enters the inlet, where the first surface is acted upon by the hot side of the pair of legs and discharged at a lower temperature at the outlet again.
  • the working medium is used for cooling the second surface and takes there thermal energy from the hot exhaust gas is largely isothermal and exits as a vapor phase from the device to be supplied to the above-mentioned expansion device.
  • the heat present in the exhaust gas for generating electrical and mechanical energy can be used combinatorially, whereby a total of the overall efficiency of the drive system according to the invention compared to known drive systems is significantly increased.
  • the invention also provides a method for utilizing the thermal energy contained in the exhaust gas of an internal combustion engine for conversion into electrical and mechanical energy by means of a thermoelectric generator and a steam Rankine process, wherein the heat absorption required for the evaporation of the working medium conducted in the steam cycle process is largely isothermal takes place and the heat is removed from the cold side of the heated exhaust gas thermoelectric generator. The transmitted from the exhaust of the engine to the working fluid
  • thermoelectric leg pair Heat passes through a large temperature gradient in the largely isothermal heat absorption by the working medium. Due to the temperature gradient during heat transfer to the working medium, a loss of exergy occurs. By attaching thermoelectric material on the hot and cold side of the heat exchanger, this exergy loss can be partially prevented, in such a way that caused by the largely isothermal heat absorption temperature gradient between the exhaust gas and working fluid - ie between the hot and cold side of the heat exchanger - to drive the thermoelectric leg pair is used.
  • Figure 1 is a perspective view of an embodiment of a device provided in the drive system according to the invention for the conversion of thermal energy into electrical energy and the heat application of an Arbettsmediums.
  • Fig. 2 is a schematic representation of a drive system according to the present invention.
  • FIG. 3 shows a diagram with the transferred heat quantity on the x-axis to explain the mode of operation of the drive system according to the invention.
  • Fig. 1 of the drawing shows a device 1 which shows an essential part of the drive system 2 according to the invention, which is shown in a schematic representation in Fig. 2 of the drawing.
  • a heat exchanger 3 having an inlet 4 for the hot exhaust gas from the position shown in Fig. 2 of the drawings internal combustion engine 5.
  • the heat exchanger 3 has an outlet 6, not shown in greater detail in the selected perspective view, for the exhaust gas cooled in the heat exchanger 3.
  • exhaust gas mass flow 7 passes over the Inlet 4 in the heat exchanger 3 a.
  • the hot exhaust gas mass flow 7 heats first surfaces 8 arranged in the heat exchanger 3, which correspond to the hot side of the thermoelectric generator 10 formed by thermoelectric leg pairs.
  • the thermoelectric pair of legs, not shown, are arranged between the respective hot first surfaces 8 and respective cooled second surfaces 9.
  • the working medium enters the heat exchanger 3 as a liquid mass flow 12 at an inlet 12, which is not shown in more detail because of the perspective view, where it cools the respective second surfaces 9, absorbs heat from the hot exhaust gas mass flow 7 in a largely isothermal process of heat transfer. is evaporated and exits at an outlet 14 as a vaporous mass flow from the heat exchanger 3 again.
  • FIG. 2 of the drawing shows the internal combustion engine 5, from which the hot exhaust gas mass flow 7 enters the heat exchanger 3.
  • the vaporous working medium veriässt the heat exchanger 3 and is supplied via a schematically illustrated fluid line 16 of the expansion device 11, there relaxed under pressure loss and converted into symbolically represented by an arrow 17 mechanical energy.
  • This can be used, for example, to drive a mechanically actuated component of the vehicle, not shown, or be coupled into the driveline of the vehicle.
  • the working medium After leaving the expansion device 11, the working medium is supplied via a fluid line 18 to a condenser 19 and there converted into the liquid phase with the removal of heat, as shown by the arrow 26.
  • a pump device 21 Via a fluid line 20, a pump device 21 suck the liquid working fluid and perform over another fluid line 22 back to the heat exchanger 3 and in this way lead the working fluid in a circle, such as this is shown by the arrow 23.
  • Fig. 3 of the drawing shows a diagram for explaining the invention.
  • the hot exhaust gas mass flow 7 enters the heat exchanger 3 at a high temperature of, for example, 520 ° Celsius shown by the reference numeral 24, heats up the hot side of the thermoelectric generator 10 there - this can be done, for example, by coating surfaces of the heat transfer medium
  • Working medium required heat exchanger 3 are provided with thermoelekt- rischer material - and gives off on its way to the outlet 6 of the heat exchanger 3 heat.
  • the exhaust gas leaves the heat exchanger 3 with a temperature of about 200 ° C shown by the reference numeral 25. This heat is transferred largely isothermally to a working medium, the heat transfer takes place at the cooled by the working medium cold Flä-.
  • the drive system according to the invention allows the combinatorial use of residual energy present in the exhaust gas for the provision of electrical energy in the context of a thermoelectric process and for the provision of mechanical energy in the context of a steam Rankine process.
  • the drive system according to the invention thus makes it possible to use the residual energy present in the exhaust gas of the internal combustion engine for the provision of electrical energy and mechanical energy in a coupled process.
  • the predominantly isothermal heat absorption during evaporation of the working medium also serves as a very efficient cooling for the cold side of the thermoelectric generator, so that the waste heat available in the exhaust gas can be almost completely used for conversion into useful energy and the amount of with the Ab- the environment of dissipated energy can be significantly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Es wird ein Antriebssystem (1) vorgeschlagen für ein Fahrzeug, mit einer mechanische und thermische Energie frei setzenden Brennkraftmaschine (5) und einer Vorrichtung zur Wandlung der thermischen Energie, wobei die Vorrichtung (3) zur direkten Wandlung der thermischen Energie in elektrische Energie und zur Übertragung thermischer Energie auf ein zur Beaufschlagung einer Expansionseinrichtung (11) vorgesehenes Arbeitsmedium ausgebildet ist.

Description

Antriebssystem für ein Fahrzeug
Die vorliegende Erfindung betrifft ein Antriebssystem für ein Fahrzeug, mit einer mechanische und thermische Energie frei setzenden Brennkraftmaschine und einer Vorrichtung zur Wandlung der thermischen Energie, nach dem Oberbegriff des Anspruchs 1.
Bekannte Brennkraftmaschinen von Fahrzeugen weisen einen Wirkungsgrad auf, der trotz vielfacher Anstrengungen und sukzessiven Verbesserungen, wie beispielsweise voll variablen Ventilsteuerungen, Verbrennung mit Luftüberschuss und dergleichen im Bereich von maximal 40 % liegt, so dass im Umkehrschluss ein Großteil der im Kraftstoff gebundenen Energie als Abwärme an die Umgebung verloren geht. Ein großer Teil davon wird über das Abgas dissipiert.
Um diesem Umstand Rechnung zu tragen, wurden bereits Zusatzapplikationen am Fahrzeug vorgeschlagen, mit denen die im Abgas vorhandene Restenergie genutzt werden kann, um beispielsweise in elektrische Energie gewandelt das Bordspannungsnetz des Fahrzeugs zu unterstützen oder in mechanische Energie gewandelt zum Antrieb des Fahrzeugs in den Triebstrang eingekoppelt zu werden. Ein Vertreter der zuerst genannten Gattung der Zusatzapplikationen ist der ther- moelektrische Generator, mit dem aus der im Abgas vorhandenen thermischen Energie, beispielsweise nach dem Seebeck-Effekt, elektrische Energie gewonnen werden kann, die dann nicht mehr generatorisch unter zusätzlichem Verbrauch von Kraftstoff erzeugt werden muss.
Eine andere Zgsatzapplikation wird in der auf die Anmelderin zurückgehenden EP 1573194 B1 beschrieben, die eine Wärmekraftmaschine offenbart, die über einen Niedertemperaturkreislauf und einen Hochtemperaturkreislauf mit jeweils nachge- schalteter Entspannungseinrichtung unter Zuhilfenahme der Abwärme der Brennkraftmaschine mechanische Arbeit generiert.
Mit beiden Zusatzapplikationen kann der Gesamtwirkungsgrad des Antriebssys- tems bereits gesteigert werden, trotzdem besitzt das Antriebssystem Potenzial für weitere Verbesserungen, die bislang noch nicht erschlossen worden sind.
Ausgehend hiervon liegt der vorliegenden Erfindung die Aufgabe zu Grunde, das bekannte Antriebssystem unter dem Gesichtspunkt der Verbesserung seiner Ge- samteffizienz weiterzubilden.
Die Erfindung weist zur Lösung dieser Aufgabe die im Anspruch 1 angegebenen Merkmale auf. Vorteilhafte Ausgestaltungen hiervon sind in den weiteren Ansprüchen beschrieben.
Die Erfindung sieht ein Antriebssystem für ein Fahrzeug vor, mit einer mechanische und thermische Energie frei setzenden Brennkraftmaschine und einer Vorrichtung zur Wandlung der thermischen Energie, wobei die Vorrichtung zur direkten Wandlung der thermischen Energie in elektrische Energie und zur Übertragung thermischer Energie auf ein zur Beaufschlagung einer Expansionseinrichtung vorgesehenes Arbeitsmedium ausgebildet ist.
Es heißt dies mit anderen Worten, dass die zur Nutzung der von der Brennkraftmaschine über den Abgasstrom dissipierten thermischen Energie vorgesehene Vorrichtung sowohl zur direkten Wandlung der thermischen Energie in elektrische Energie als auch zur Übertragung von thermischer Energie auf ein Arbeitsmedium ausgebildet ist, mit dem wiederum eine Expansionseinrichtung beaufschlagt werden kann, so dass mit der Vorrichtung die thermische Energie sowohl in elektrische Energie als auch, in mechanische Energie umgewandelt werden kann.
Damit kann in vorteilhafter Weise die im Abgasstrom der Brennkraftmaschine vorhandene Wärme dazu genutzt werden, sowohl elektrischen Strom zu erzeugen, der beispielsweise das Bordspannungsnetz des Fahrzeugs unterstützt, als auch mechanische Energie bereitzustellen, die beispielsweise zum Antrieb des Fahrzeugs in den Triebstrang eingekoppelt werden kann oder zum Antrieb eines mechanisch betätigten Bauteils am Fahrzeug genutzt werden kann. Damit steigt der Gesamtwirkungsgrad des Antriebssystems an und es wird zusätzlich der Vorteil einer Funktionsintegration erreicht, da ein zum Verdampfen des Arbeitsmediums erforderlicher Verdampfer damit gleichzeitig als Kühler für ein Bauteil verwendet wird, mittels dem die thermische Energie in elektrische Energie umgewandelt werden kann.
Bei dem Bauteil zur Wandlung der thermischen Energie in elektrische Energie kann es sich um einen thermoelektrischen Generator handeln, der mittels der thermischen Energie beheizte Flächen, und mittels des Arbeitsmediums gekühlte Flächen besitzt derart, dass das Arbeitsmedium infolge der Wärmebeaufschlagung einen dampfförmigen Zustand einnimmt.
Hierdurch wird die bereits vorstehend erläuterte Funktionsintegration erreicht, die es ermöglicht, ansonsten als eigenständige diskrete Einheiten notwendige Bauteile, wie beispielsweise den Verdampfer und den Kühler, gemeinsam mit nur einem Bauteil darzustellen.
Das nach dem Durchtritt durch die nach der Erfindung vorgesehene Vorrichtung dampfförmige Arbeitsmedium kann dann eine Expansionseinrichtung beaufschlagen, wobei es sich bei der Expansionseinrichtung beispielsweise um eine Kolben- maschine handeln kann, mit der ein mechanisch angetriebenes Bauteil am Fahrzeug beaufschlagt wird.
Nach einer Weiterbildung der Erfindung ist es vorgesehen, dass die Vorrichtung eine Kondensationseinrichtung zur Kondensation von dampfförmigem Arbeitsme- dium nach dessen Durchtritt durch eine Expansionseinrichtung besitzt. Das dann flüssige Arbeitsmedium wird mittels einer das Arbeitsmedium im Kreislauf führenden Pumpeneinrichtung wieder der Vorrichtung zugeführt, die es dann wieder unter Ausnutzung der im Abgas vorhandenen Restenergie in den dampfförmigen Zu- stand überführt.
Nach einer Ausführungsform kann es sich bei der Vorrichtung um einen Wärmetauscher handeln, der vom Abgas der Brennkraftmaschine beheizte erste Flächen und vom Arbeitsmedium gekühlte zweite Flächen mit dazwischen angeordneten thermoelektrischen Schenkelpaaren aufweist und jeweils mindestens einen Einläse - für Arbeitsmedium im flüssigen Zustand - und Auslass - für Arbeitsmedium im dampfförmigen Zustand - besitzt und jeweils mindestens einen Einlass und Auslass für das Abgas der Brennkraftmaschine aufweist, welches in den Einlass eintritt, dort die erste Fläche mit der heißen Seite der Schenkelpaare beaufschlagt und mit niedrigerer Temperatur am Auslass wieder ausgetragen wird.
Das Arbeitsmedium wird zur Kühlung der zweiten Fläche benutzt und nimmt dort thermische Energie aus dem heißen Abgas weitgehend isotherm auf und tritt als dampfförmige Phase aus der Vorrichtung aus, um der vorstehend bereits genannten Expansionseinrichtung zugeführt zu werden. Auf diese Weise kann die im Abgas vorhandene Wärme zur Erzeugung elektrischer und mechanischer Energie kombinatorisch genutzt werden, wodurch insgesamt der Gesamtwirkungsgrad des erfindungsgemäßen Antriebssystems verglichen mit bekannten Antriebssystemen deutlich gesteigert wird.
Die Erfindung schafft auch ein Verfahren zur Nutzung der im Abgas einer Brennkraftmaschine enthaltenen thermischen Energie zur Umwandlung in elektrische und mechanische Energie mittels eines thermoelektrischen Generators und eines Dampf-Rankine-Prozesses, wobei die zur Verdampfung des im Dampfkreispro- zess geführten Arbeitsmediums erforderliche Wärmeaufnahme weitgehend isotherm stattfindet und die Wärme der kalten Seite des vom Abgas erwärmten thermoelektrischen Generators entzogen wird. Die vom Abgas der Brennkraftmaschine auf das Arbeitsmedium übertragene
Wärme durchläuft bei der weitgehend isothermen Wärmeaufnahme durch das Arbeitsmedium ein großes Temperaturgefälle. Durch das Temperaturgefälle bei der Wärmeübertragung auf das Arbeitsmedium ereignet sich ein Verlust an Exergie. Durch Anbringen von thermoelektrischem Material an der heißen und kalten Seite des Wärmeübertragers lässt sich dieser Exergieverlust teilweise verhindern, in der Art, dass das durch die weitgehend isotherme Wärmeaufnahme entstehende Temperaturgefälle zwischen Abgas und Arbeitsmedium - also zwischen heißer und kalter Seite des Wärmeübertragers - zum Antrieb der thermoelektrischen Schenkelpaare genutzt wird.
Die Erfindung wird im Folgenden anhand der Zeichnung näher erläutert. Diese zeigt in:
Fig. 1 eine perspektivische Darstellung einer Ausführungsform einer im erfindungsgemäßen Antriebssystem vorgesehenen Vorrichtung für die Umwandlung thermischer Energie in elektrische Energie und die Wärmebeaufschlagung eines Arbettsmediums;
Fig. 2 eine schematische Darstellung eines Antriebssystems nach der vorliegenden Erfindung; und
Fig. 3 ein Diagramm mit der übertragenen Wärmemenge auf der x-Achse zur Er- läuterung der Funktionsweise des erfindungsgemäßen Antriebssystems.
Fig. 1 der Zeichnung zeigt eine Vorrichtung 1 , die einen wesentlichen Bestandteil des erfindungsgemäßen Antriebssystems 2 zeigt, welches in einer schematischen Darstellung in Fig. 2 der Zeichnung gezeigt ist.
Bei der in Fig. 1 dargestellten Vom'chtung handelt es sich um einen Wärmetauscher 3, der einen Einlass 4 für das heiße Abgas aus der in Fig. 2 der Zeichnung dargestellten Brennkraftmaschine 5 aufweist. An der dem Einlass 4 gegenüberliegenden Stirnfläche besitzt der Wärmetauscher 3 einen, bei der gewählten per- spektivischen Darstellung nicht näher ersichtlichen, Auslass 6 für das im Wärmetauscher 3 gekühlte Abgas.
Der aus der Brennkraftmaschine 5 stammende Abgasmassenstrom 7 tritt über den Einlass 4 in den Wärmetauscher 3 ein. Der heiße Abgasmassenstrom 7 heizt im Wärmetauscher 3 angeordnete erste Flächen 8 auf, die der heißen Seite des von thermoelektrischen Schenkelpaaren gebildeten thermoelektrischen Generators 10 entsprechen. Die nicht näher dargestellten thermoelektrischen Schenkelpaare sind zwischen den jeweiligen heißen ersten Flächen 8 und jeweiligen gekühlten zweiten Flächen 9 angeordnet.
Die Kühlung der jeweiligen zweiten. Flächen 9 erfolgt dabei über ein Arbeitsmedium der in Fig. 2 der Zeichnung dargestellten Expansionseinrichtung 11 in der Form beispielsweise einer Kolbenmaschine.
Das Arbeitsmedium tritt als flüssiger Massenstrom 12 an einem aufgrund der perspektivischen Darstellung nicht näher ersichtlichen Einlass 12 in den Wärmetauscher 3 ein, kühlt dort die jeweiligen zweiten Flächen 9, nimmt vom heißen Ab- gasmassenstrom 7 in einem weitgehend isotherm ablaufenden Prozess der Wärmeübertragung Wärme auf, wird verdampft und tritt an einem Auslass 14 als dampfförmiger Massenstrom aus dem Wärmetauscher 3 wieder aus.
Fig. 2 der Zeichnung zeigt die Brennkraftmaschine 5, von der ausgehend der hei- ße Abgasmassenstrom 7 in den Wärmetauscher 3 eintritt. Das dampfförmige Arbeitsmedium veriässt den Wärmetauscher 3 und wird über eine schematisch dargestellte Fluidleitung 16 der Expansionseinrichtung 11 zugeführt, dort unter Druckverlust entspannt und in durch einen Pfeil 17 symbolisch dargestellte mechanische Energie konvertiert. Diese kann beispielsweise zum Antrieb eines mechanisch be- tätigten Bauteils des nicht näher dargestellten Fahrzeugs verwendet werden oder in den Triebstrang des Fahrzeugs eingekoppelt werden.
Das Arbeitsmedium wird nach dem Verlassen der Expansionseinrichtung 11 über eine Fluidleitung 18 einem Kondensator 19 zugeführt und dort unter Abfuhr von Wärme - wie dies durch den Pfeil 26 dargestellt ist - in die flüssige Phase konvertiert. Über eine Fluidleitung 20 kann eine Pumpeneinrichtung 21 das flüssige Arbeitsmedium ansaugen und über eine weitere Fluidleitung 22 wieder dem Wärmetauscher 3 zuführen und auf diese Weise das Arbeitsmedium im Kreis führen, wie dies durch den Pfeil 23 dargestellt ist.
Fig. 3 der Zeichnung zeigt ein Diagramm zur Erläuterung der Erfindung. Der heiße Abgasmassenstrom 7 tritt mit einer durch das Bezugszeichen 24 dargestellten hohen Temperatur von beispielsweise 520° Celsius in den Wärmetauscher 3 ein, heizt dort die heiße Seite des thermoelektrischen Generators 10 auf - dieser kann beispielsweise durch eine Beschichtung von Flächen des für die Wärmeübertragung auf das Arbeitsmedium erforderlichen Wärmetauschers 3 mit thermoelekt- rischem Material bereitgestellt werden - und gibt auf seinem Weg zum Auslass 6 des Wärmetauschers 3 Wärme ab. Schließlich verläset das Abgas den Wärmetauscher 3 mit einer durch das Bezugszeichen 25 dargestellten Temperatur von etwa 200° Celsius. Diese Wärme wird weitgehend isotherm auf ein Arbeitsmedium übertragen, die Wärmeübertragung findet an der durch das Arbeitsmedium gekühlten kalten Flä- .che 9 des Wärmetauschers 3 statt und das Arbeitsmedium wird hier unter Überdruck verdampft. Das dampfförmige Arbeitsmedium treibt die in Fig. 2 der Zeichnung dargestellte Expansionseinrichtung 11 an und wird hierbei abgekühlt. Das erfindungsgemäße Antriebssystem ermöglicht die kombinatorische Nutzung der im Abgas vorhandenen Restenergie zur Bereitstellung von elektrischer Energie im Rahmen eines thermoelektrischen Prozesses und zur Bereitstellung von mechanischer Energie im Rahmen eines Dampf-Rankine-Prozesses.
Das erfindungsgemäße Antriebssystem ermöglicht es somit, die im Abgas der Brennkraftmaschine vorhandene Restenergie zur Bereitstellung elektrischer Energie und mechanischer Energie in einem gekoppelten Prozess zu nutzen. Die überwiegend isotherme Wärmeaufnahme beim Verdampfen des Arbeitsmediums dient gleichzeitig als sehr effiziente Kühlung für die kalte Seite des thermoelektrischen Generators, so dass die im Abgas verfügbare Abwärme fast vollständig zur Umwandlung in Nutzenergie genutzt werden kann und die Menge an mit dem Ab- die Umwelt dissipierter Energie deutlich verringert werden kann.
Hinsichtlich vorstehend im Einzelnen nicht näher erläuterter Merkmale der Erfindung wird im Übrigen ausdrücklich auf die Ansprüche und die Zeichnung verwie- sen.
Bezugszeichenliste
1. Vorrichtung
2. Antriebssystem
3. Wärmetauscher
4. Einlass
5. Brennkraftmaschine
6. Auslass
7. Abgasmassenstrom
8. erste Fläche
9. zweite Fläche
10. thermoelektrischer Generator
11. Expansionseinrichtung
12. Einlass
13. flüssiger Massenstrom Arbeitsmedium
14. Auslass
15. dampfförmiger Massenstrom Arbeitsmedium
16. Fluidleitung
17. mechanische Energie
18. Fluidleitung
19. Kondensator
20. Fluidleitung
21. Pumpe
22. Fluidleitung
23. Pfeil
24. Temperatur am Abgaseinlass
25. Temperatur am Abgasauslaß
26. Pfeil

Claims

Patentansprüche
1. Antriebssystem (2) für ein Fahrzeug, mit einer mechanische und thermische Energie frei setzenden Brennkraftmaschine (5) und einer Vorrichtung (1 , 3) zur Wandlung der thermischen Energie, dadurch gekennzeichnet, dass die Vorrichtung (3) zur direkten Wandlung der thermischen Energie in elektrische Energie und zur Übertragung thermischer Energie auf ein zur Beaufschlagung einer Ex- pansionseinrichtung (11) vorgesehenes Arbeitsmedium ausgebildet ist.
2. Antriebssystem nach Anspruch 1 , dadurch gekennzeichnet, dass die Vorrichtung (3) einen thermpelektrischen Generator (10) aufweist mit mittels der thermischen Energie beheizten Flächen (8) und mittels des Arbeitsmediums gekühlten Flächen (9) derart, dass das Arbeitsmedium infolge der Wärmebeaufschlagung einen dampfförmigen Zustand einnimmt.
3. Antriebssystem nach einem der vorstehenden Ansprüche, gekennzeichnet durch eine von dampfförmigem Arbeitsmedium zur Abgabe mechanischer Energie beaufschlagte Expansionseinrichtung (11 ).
4. Antriebssystem nach einem der vorstehenden Ansprüche, gekennzeichnet durch eine Kondensationseinrichtung (19) zur Kondensation von dampfförmigem Arbeitsmedium nach dessen Durchtritt durch eine Expansionseinrichtung (11 ).
5. Antriebssystem nach einem der vorstehenden Ansprüche, gekennzeichnet durch eine das Arbeitsmedium im Kreislauf führende Pumpeneinrichtung (21 ).
6. Antriebssystem nach einem der vorstehenden Ansprüche, dadurch gekenn- zeichnet, dass die Vorrichtung (3) von Abgas der Brennkraftmaschine (5) beheizte erste Flächen (8) und vom Arbeitsmedium gekühlte zweite Flächen (9) mit dazwischen angeordneten thermoelektrischen Schenkelpaaren aufweist und jeweils mindestens einen Einlass (12) und Auslass (14) für Arbeitsmedium besitzt und jeweils mindestens einen Einlass (4) und Auslass (6) für Abgas aufweist.
7. Verfahren zur Nutzung der im Abgas einer Brennkraftmaschine (5) enthaltenen thermischen Energie zur Umwandlung in elektrische und mechanische Energie mittels eines thermoelektrischen Generators (10) und eines Dampf-Rankine- Prozesses, wobei die zur Verdampfung des im Dampfkreisprozess geführten Ar- beitsmediumS' erforderliche Wärmeaufnahme weitgehend isotherm stattfindet und die Wärme der kalten Seite des vom Abgas erwärmten thermoelektrischen Generators (10) entzogen wird.
EP11729262.3A 2010-07-23 2011-07-01 Antriebssystem für ein fahrzeug Withdrawn EP2596224A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010038314A DE102010038314A1 (de) 2010-07-23 2010-07-23 Antriebssystem für ein Fahrzeug
PCT/EP2011/003268 WO2012010253A1 (de) 2010-07-23 2011-07-01 Antriebssystem für ein fahrzeug

Publications (1)

Publication Number Publication Date
EP2596224A1 true EP2596224A1 (de) 2013-05-29

Family

ID=44627847

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11729262.3A Withdrawn EP2596224A1 (de) 2010-07-23 2011-07-01 Antriebssystem für ein fahrzeug

Country Status (5)

Country Link
US (1) US20130133321A1 (de)
EP (1) EP2596224A1 (de)
JP (1) JP5826268B2 (de)
DE (1) DE102010038314A1 (de)
WO (1) WO2012010253A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013011519A1 (de) * 2013-07-09 2015-01-15 Volkswagen Ag Wärmetauschvorrichtung und Antriebseinheit für ein Kraftfahrzeug
DE102014216449A1 (de) * 2014-08-19 2016-02-25 Siemens Aktiengesellschaft Thermoelektrische Vorrichtung
GB201718253D0 (en) * 2017-11-03 2017-12-20 Univ Oxford Innovation Ltd Energy recovery system, vehicle, and method of recovering energy
DE102019201685A1 (de) * 2019-02-08 2020-08-13 Volkswagen Aktiengesellschaft Antriebseinheit für ein Kraftfahrzeug mit kombinierter Anordnung einer Kreisprozessvorrichtung und eines thermoelektrischen Generators

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033887A2 (en) * 2002-10-10 2004-04-22 Hunt Robert D Hybrid energy combustion engine system and method

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899359A (en) * 1970-07-08 1975-08-12 John Z O Stachurski Thermoelectric generator
DE3005112A1 (de) * 1980-02-12 1981-08-20 Kurt Dipl.-Ing. 6380 Bad Homburg Bojak Thermoelektrischer generator vorzugsweise fuer wasser-elektrolyse funktionell kombiniert mit waermetauscher-systemen
JPS59158303A (ja) * 1983-02-28 1984-09-07 Hitachi Ltd 循環量制御方法およびその装置
JPH0843555A (ja) * 1994-07-29 1996-02-16 Seiko Instr Inc 電子時計
JP3881872B2 (ja) * 2001-11-15 2007-02-14 本田技研工業株式会社 内燃機関
DE10259488A1 (de) * 2002-12-19 2004-07-01 Bayerische Motoren Werke Ag Wärmekraftmaschine
JP2005061260A (ja) * 2003-08-08 2005-03-10 Denso Corp 廃熱回収システム
US20060112693A1 (en) * 2004-11-30 2006-06-01 Sundel Timothy N Method and apparatus for power generation using waste heat
JP2006177265A (ja) * 2004-12-22 2006-07-06 Denso Corp 熱電発電装置
DE102006019282A1 (de) * 2006-04-26 2007-10-31 Bayerische Motoren Werke Ag Abgasrückführsystem für eine Brennkraftmaschine
DE102006043139B4 (de) * 2006-09-14 2015-02-12 Man Truck & Bus Ag Vorrichtung zur Gewinnung von mechanischer oder elektrischer Energie aus der Abwärme eines Verbrennungsmotors eines Kraftfahrzeugs
JP4871844B2 (ja) * 2007-02-14 2012-02-08 日本碍子株式会社 廃熱回収装置
JP5422383B2 (ja) * 2007-07-09 2014-02-19 株式会社東芝 熱電変換モジュールとそれを用いた熱交換器、熱電温度調節装置および熱電発電装置
US7950230B2 (en) * 2007-09-14 2011-05-31 Denso Corporation Waste heat recovery apparatus
JP2009081287A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 熱電変換モジュールとそれを用いた熱交換器、熱電温度調節装置および熱電発電装置
DE102007054197A1 (de) * 2007-11-14 2009-05-20 Bayerische Motoren Werke Aktiengesellschaft Antriebssystem für ein Fahrzeug
JP2010065587A (ja) * 2008-09-10 2010-03-25 Sanden Corp 廃熱利用装置
FR2959272B1 (fr) * 2010-04-22 2013-07-05 Inst Francais Du Petrole Circuit ferme fonctionnant selon un cycle de rankine et procede utilisant un tel circuit
US20130088099A1 (en) * 2010-06-09 2013-04-11 Hitachi, Ltd. Generator and Electricity-Generating System
IT1402363B1 (it) * 2010-06-10 2013-09-04 Turboden Srl Impianto orc con sistema per migliorare lo scambio termico tra sorgente di fluido caldo e fluido di lavoro
JP2011256856A (ja) * 2010-06-11 2011-12-22 Kazuhiko Nagashima 熱機関における熱位置変換エネルギーの回収法及び回収装置
DE102011081565A1 (de) * 2011-08-25 2013-02-28 Siemens Aktiengesellschaft Gasturbinenanordnung, Kraftwerk und Verfahren zu dessen Betrieb
FR2981982B1 (fr) * 2011-10-28 2013-11-01 IFP Energies Nouvelles Procede de controle d'un circuit ferme fonctionnant selon un cycle rankine et circuit utilisant un tel procede

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033887A2 (en) * 2002-10-10 2004-04-22 Hunt Robert D Hybrid energy combustion engine system and method

Also Published As

Publication number Publication date
JP5826268B2 (ja) 2015-12-02
JP2013535608A (ja) 2013-09-12
US20130133321A1 (en) 2013-05-30
WO2012010253A1 (de) 2012-01-26
DE102010038314A1 (de) 2012-01-26

Similar Documents

Publication Publication Date Title
DE2810191B2 (de) Verfahren und Vorrichtung zum Wärmeentzug aus mindestens einem strömenden Wärmeträgermedium
DE102007062598A1 (de) Nutzung einer Verlustwärme einer Verbrennungskraftmaschine
DE102011119977A1 (de) Vorrichtung und Verfahren zur Nutzung der Abwärme einer Brennkraftmaschine, insbesondere zur Nutzung der Abwärme eines Fahrzeugmotors
DE102009035522A1 (de) Verfahren und Vorrichtung zur verbesserten Energieausnutzung der Wärmeenergie von Brennkraftmaschinen
DE102010033124A1 (de) Brennkraftmaschine mit einer Wärmerückgewinnungsvorrichtung und Verfahren zum Betrieb einer Brennkraftmaschine
DE102010047518A1 (de) Vorrichtung zur Energierückgewinnung aus einem Abgasstrom einer Verbrennungskraftmaschine
DE102010049916A1 (de) Verfahren und Vorrichtung zur Abwärmenutzung aus einem Abgasstrom einer Verbrennungskraftmaschine
EP2596224A1 (de) Antriebssystem für ein fahrzeug
DE102015016783A1 (de) Vorrichtung zur Gewinnung von Energie aus Abwärme einer Verbrennungskraftmaschine eines Kraftfahrzeugs
DE102009050263A1 (de) System mit einem Rankine-Kreislauf
DE102009024772A1 (de) Fluidenergiemaschinenanordnung für ein Fahrzeug und Verfahren zum Betreiben einer Fluidenergiemaschinenanordnung
DE102010025186A1 (de) Abwärmenutzungsvorrichtung, Brennkraftmaschine und Kraftfahrzeug
EP1861587A2 (de) Verfahren und vorrichtungen zur verbesserung des wirkungsgrades von energieumwandlungseinrichtungen
DE10358233A1 (de) Luftspeicherkraftanlage
DE102016218764A1 (de) Brennkraftmaschine eines Kraftfahrzeugs mit einer Abwärmenutzungseinrichtung
DE102007049366A1 (de) Vorrichtung und Verfahren zur Gewinnung von mechanischer Energie aus heißen Gasströmen insbesondere eines Verbrennungsmotors
WO2008055720A2 (de) Arbeitsmedium für dampfkreisprozesse
WO2011045047A2 (de) (o) rc-verfahren für die abwärmenachverstromung bei biomasseverbrennung, sowie entsprechende einrichtung
DE102010011737B4 (de) Verfahren und Vorrichtung zur Energieumwandlung
DE4015104A1 (de) Kombinierte waermekraftanlage
EP2449228A2 (de) Verfahren zum betrieb eines kraftwerks mit einer gasturbinenanlage
DE102013021394A1 (de) Abwärmenutzungsanordnung eines Kraftfahrzeuges sowie Verfahren zur Nutzung von Abwärme eines Kraftfahrzeuges in einer Abwärmenutzungsanordnung
DE102010025185A1 (de) Abwärmenutzungsvorrichtung
EP3152487B1 (de) Anordnung mit mehreren wärmeübertragern und verfahren zum verdampfen eines arbeitsmediums
DE102016205267B4 (de) Vorrichtung zur Energierückgewinnung an einem Verbrennungsmotor mit Abgasturbolader als Wärmequelle für einen Dampfkraftmaschinenkreislauf und Verfahren zum Betrieb der Vorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161021

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210122