EP2592691B1 - Antenne de réception pour signaux radio par satellite polarisés circulaires - Google Patents

Antenne de réception pour signaux radio par satellite polarisés circulaires Download PDF

Info

Publication number
EP2592691B1
EP2592691B1 EP13150259.3A EP13150259A EP2592691B1 EP 2592691 B1 EP2592691 B1 EP 2592691B1 EP 13150259 A EP13150259 A EP 13150259A EP 2592691 B1 EP2592691 B1 EP 2592691B1
Authority
EP
European Patent Office
Prior art keywords
loop
emitter
antenna
vertical
base surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13150259.3A
Other languages
German (de)
English (en)
Other versions
EP2592691A1 (fr
Inventor
Stefan Lindenmeier
Heinz Lindenmeier
Jochen Hopf
Leopold Reiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Delco Electronics Europe GmbH
Original Assignee
Delphi Delco Electronics Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Delco Electronics Europe GmbH filed Critical Delphi Delco Electronics Europe GmbH
Publication of EP2592691A1 publication Critical patent/EP2592691A1/fr
Application granted granted Critical
Publication of EP2592691B1 publication Critical patent/EP2592691B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/005Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with variable reactance for tuning the antenna

Definitions

  • the invention relates to an antenna for receiving circularly polarized satellite radio signals according to the preamble of claim 1 (see. K. HIROSE ET AL: "DOUBLE-LOOP ANTENNAS FOR A CIRCULARLY POLARIZED TILTED BEAM", ELECTRONICS & COMMUNICATIONS IN JAPAN, PART I - COMMUNICATIONS, WILEY, HOBOKEN, NJ, US, VOL. 86, No. 12, PART 01, 16 June 2003 (2003-06-16), pages 12-20, XP001171950, ISSN: 8756-6621 , DOI: 10.1002 / ECJA.10132).
  • Satellite radio signals are transmitted due to polarization rotations in the transmission path usually with circularly polarized electromagnetic waves.
  • program contents are transmitted, for example, in frequency bands closely spaced separate frequency bands. This is done in the example of SDARS satellite broadcasting at a frequency of about 2.33 GHz in two adjacent frequency bands each with a bandwidth of 4 MHz with a spacing of the center frequencies of 8 MHz.
  • the signals are emitted by different satellites with a circularly polarized in one direction electromagnetic wave.
  • circularly polarized antennas are used to receive in the corresponding direction of rotation.
  • Such antennas are for example off DE-A-4008505 and DE-A-10163793 known.
  • This satellite broadcasting system is additionally supported by the regional emission of terrestrial signals in another, arranged between the two satellite signals frequency band of the same bandwidth. Similar satellite broadcasting systems are currently in the planning.
  • the satellites of the Global Positioning System (GPS) also radiate circularly polarized waves in one direction at the frequency of approximately 1575 MHz, so that the antenna forms mentioned can basically be designed for this service.
  • the from the DE-A-4008505 known antenna is constructed on a substantially horizontally oriented conductive base and consists of crossed horizontal dipoles with V-shaped downwardly inclined, consisting of linear ladder parts Dipolhhann which are mechanically fixed at an azimuthal angle of 90 degrees to each other and at the top of a on the conductive base surface mounted linear vertical conductor are mounted.
  • the from the DE-A-10163793 known antenna is also constructed on a generally horizontally oriented conductive base and consists of crossed azimuthally mounted at 90 ° to each other frame structures. In both antennas, the mutually spatially offset by 90 ° antenna parts in the electrical phase are interconnected shifted by 90 ° to each other to generate the circular polarization. Similarly, patch antennas act. All of the prior art antennas are less efficient in terms of low elevation angle reception.
  • antenna forms are suitable for the reception of satellite signals, which are emitted by high-flying satellites - so-called HEOS.
  • HEOS high-flying satellites
  • the object of the invention is therefore to provide an antenna which, depending on their design, both for a particular powerful reception of low elevation angles in incident circularly polarized satellite signals, as well as for high-power reception of higher elevation angles in incident satellite signals with sufficient gain and high cross-polarization suppression over a large elevation angle range, and in particular the possibility of economical production ,
  • the advantage is associated with the reception of linearly vertically polarized and received at low elevation waves with azimuthally nearly homogeneous directional diagram with a particularly high profit.
  • the antenna can advantageously in combination with the above-described and from the DE-A-4008505 and the DE-A-10163793 known antennas and patch antennas according to the prior art to a directional antenna with adjustable or dynamically traceable azimuthal main direction in the radiation pattern are designed. This advantage is explained in more detail below.
  • Another advantage of an antenna according to the invention is its particularly simple manufacturability, which allows the realization by simple curved sheet metal structures.
  • the antenna for receiving circularly polarized satellite radio signals comprises at least one substantially horizontally oriented conductor loop arranged above a conductive base surface 6, with an arrangement for electromagnetic excitation of the conductor loop connected to an antenna connection 43.
  • the conductor loop is a ring line radiator 2 by a polygonal or circular closed loop in a horizontal plane with the height h above the conductive base. 6 designed to last.
  • the ring line radiator 2 forms a resonant structure and is electrically excitable by the electromagnetic excitation in such a way that the current distribution of a current line wave in a circulation direction, whose phase difference over the extended length of the ring line structure is just M * 2 ⁇ , is established on the ring line.
  • M is at least two and is an integer.
  • the particularly high radiation gain for circular polarization results for low elevation angles.
  • a plurality of radiators 4 extending vertically on the ring line radiator 2 and towards the conductive base surface are present, which are / are electromagnetically coupled to both the ring line radiator 2 and the electrically conductive base surface 6.
  • the height h is preferably less than 1/5 of the free space wavelength ⁇ to choose.
  • Another very important advantage of the present invention results from the property that in addition to the horizontally polarized ring line emitter 2 at a plurality of ring line coupling points 7 more emitters 4 are present, which has a perpendicular to the polarization of the ring line emitter 2 polarization. In the presence of terrestrially vertically polarized signals, these emitters can advantageously also be used to receive these signals.
  • Azimuthal is generally aimed at broadcasting.
  • the distribution of the currents on an antenna in receive mode depends on the terminator at the antenna junction.
  • the distribution of the currents on the antenna conductors relative to the supply current at the antenna connection point is independent of the source resistance of the supplying signal source and is thus clearly linked to the directional diagram and the polarization of the antenna.
  • FIG. 1 shows the basic form of an antenna with a designed as a resonant structure circular ring radiator 2 for generating a circularly polarized field.
  • the elongated length of the ring line in a basic form of the ring line radiator 2 is chosen such that it substantially corresponds to an integer multiple of the full line wavelength, ie M * ⁇ , where M represents an integer and M assumes at least the value 2.
  • a further advantage of an antenna of this kind is that the phase of the circular polarization is rotated with the azimuthal angle of the propagation vector in M-times and thus in at least 2-fold dependence.
  • an antenna of this type can be combined with a crossed radiator 24 of the same center Z according to the prior art to a directional antenna with an azimuthal main direction.
  • the directivity with azimuthal main direction results from the combination of the radiation diagram of the crossed radiator 24 with simple dependence of the phase of the azimuthal and the radiation diagram of the ring line radiator.
  • the directional antenna can be easily formed with a directional pattern with azimuthal main direction.
  • Such crossed radiator 24 are, as already stated, for Example off DE-A-4008505 and DE-A-10163793 known.
  • the from the DE-A-4008505 known antenna is constructed on a substantially horizontally oriented conductive surface and consists of crossed horizontal dipoles, which are mechanically fixed at an azimuthal angle of 90 degrees to each other and attached to the upper end of a fixed to the conductive base linear vertical conductor.
  • the from the DE-A-10163793 known antenna is also constructed on a generally horizontally oriented conductive base and consists of crossed azimuthally mounted at 90 ° to each other frame structures.
  • the mutually spatially offset by 90 ° antenna parts in the electrical phase are interconnected shifted by 90 ° to each other to generate the circular polarization.
  • the effect of all these crossed emitters is essentially based on the fact that the individual antenna parts are placed at a right angle "crossed" and perpendicular to the ground plane levels and offset the antenna parts of the different planes to produce the circular polarization by 90 ° in phase are interconnected.
  • the effect of patch antennas can also be represented in a similar way.
  • a ring line emitter 2 according to the invention has the particular advantage that it can be provided as a basic form for a single antenna system, which by additional placement with a crossed emitter - such as from DE-A-10163793 , of the DE-A-4008505 or as a readily available patch antenna - can be supplemented to a directional antenna that can be tracked in the main direction of the radiation or to an antenna diversity system.
  • a crossed emitter - such as from DE-A-10163793 , of the DE-A-4008505 or as a readily available patch antenna - can be supplemented to a directional antenna that can be tracked in the main direction of the radiation or to an antenna diversity system.
  • the ring line emitter 2 is designed to extend in a horizontal plane with the height h over the conductive base 6, so that it forms an electrical line with respect to the conductive base 6 with a characteristic impedance resulting from the height h and the effective diameter of the im Essentially results in a wire-shaped loop conductor.
  • a support of vertical components of the electric radiation field is carried out according to the invention by vertical radiators 4, which allow the emission of vertical electric field components, and on the excitation 3 of the ring line radiator 2 takes place in the example shown.
  • Generation of the signals which are different in phase by 90 ° for feeding in at the base points of the vertical radiators 4 can take place, for example, by means of a power divider and phase shift network 31 and in each case via a corresponding matching network 25.
  • the electromagnetic excitation 3 takes place in such a way that equally large signals are fed between the lower ends of the vertical radiator 4 and the electrically conductive base, which are each shifted by 360 ° / 4 to each other in phase.
  • the electromagnetic excitation 3 is designed as a ramp-shaped directional coupling conductor 12 with a preferably horizontal extent of substantially ⁇ / 4. This is designed substantially as a linear conductor, which advantageously extends in a plane which includes one side of the ring line radiator 2 and which is oriented perpendicular to the electrically conductive base surface 6.
  • the linear conductor starting from the antenna connection 5 located on the conductive base 6, leads via a vertical feed line 4 to a coupling end spacing 16 to one of the corners of the ring line emitter 2 and is substantially below an adjacent corner from there in accordance with a ramp function led to the base 6 and connected to this via the ground terminal 11 conductive.
  • the adaptation to the antenna connector 5 can be easily made.
  • the particular advantage of this arrangement consists in the contactless coupling of the excitation 3 to the square-shaped ring line radiator 2, which according to the invention enables a particularly simple production of the antenna.
  • Particularly advantageous embodiments of antennas according to the invention are those arrangements in which to the Ring line radiator 2 of the elongated length L at substantially similar distances L / N to each other ring line coupling points 7 are designed and to each of which a vertical radiator 4 is coupled, which on the other hand are coupled via ground connection points 11 to the electrically conductive base 6.
  • FIG. 4 shows an arrangement of this kind, wherein the versatile design excitation 3 is indicated in a general form.
  • electromagnetic coupling that is preferably galvanic or capacitive coupling of the antenna parts, consisting of the ring line structure 2 and the circle group of the vertical radiator 4 at the ring line crosspoints 7, the antenna parts are coupled together in such a way that the antenna parts constructively to a circular contribute to polarized field.
  • the ring line emitter 2 acts as a radiating element which generates a circularly polarized field with a main beam direction at medium elevation angles. This field is superimposed on the electromagnetic field generated by the vertical radiators 4.
  • the electromagnetic field generated by the circle group of the vertical radiator 4 in diagonal elevation is also circularly polarized with the azimuth substantially independent main beam direction. At very low elevation, this field is vertically polarized and substantially azimuthally independent as well.
  • the mode of operation of the resonant structure according to the invention is described below with reference to FIG. 4 explained in more detail.
  • the resonant structure is connected via an excitation 3 in such a way with the antenna terminal 5, that the line wave on the loop emitter 2 propagates substantially only in one direction of rotation, so that in the direction of rotation of the ring structure, a period of the line shaft is included.
  • the ring structure with N vertical radiators can be divided into N segments.
  • I ⁇ 2 I ⁇ 1 • exp j M ⁇ 2 ⁇ ⁇ / N
  • the vertical radiators 4 together with the reactances X form in their equivalent circuit diagram a filter consisting of a series inductance, a parallel capacitance and a further series inductance.
  • the parallel capacitance is selected by setting the reactances X so that the filter is adapted on both sides to the conductor impedance of the annular line.
  • the resonant structure thus consists of N conductor segments of length L / N and in each case a filter connected thereto. each Filter causes a phase rotation ⁇ .
  • the antenna is also particularly suitable for receiving signals from low-flying satellites.
  • the antenna can also be advantageously used for satellite broadcasting systems in which terrestrial, vertically polarized signals are also transmitted in support of the reception.
  • the vertical radiator 4 as in FIG. 5 coupled via horizontal radiator elements 14 to the loop coupling points 7.
  • the Horizontal radiator elements 14 can be flexibly used for further shaping of the vertical radiation pattern of the antenna.
  • FIG. 6 illustrated circular structure with equidistant over the circumference of the ring line radiator 2 formed ring line crosspoints 7 and there galvanically connected vertical radiators 4, each with one at the base point to the ground terminal point 11 introduced capacity 15 as a reactance circuit 13.
  • the excitation 3 of this resonant structure can be designed in different ways and is therefore in FIG. 6 not shown.
  • FIG. 7 is one of the vertical radiator 4 of a rectangular shaped ring line radiator 2 with the reactance circuit 13 realized as a capacitor 15 not to the ground terminal 11 on the electrically conductive base 6 but to the formed on the level of the conductive base 6 connection to the matching network 25 and thus coupled to the antenna connector 5.
  • the reactance circuit 13 realized as a capacitor 15 not to the ground terminal 11 on the electrically conductive base 6 but to the formed on the level of the conductive base 6 connection to the matching network 25 and thus coupled to the antenna connector 5.
  • the design of the characteristic impedance can be carried out in a known manner, for example by selecting the effective diameter of the substantially linear ring line emitter 2, or as exemplified by an additional conductor 19 reducing the characteristic impedance.
  • the support of Unidirectionality of the wave propagation on the ring line emitter 2 is achieved by alternately different design of the characteristic impedance of the circulating successive sections between two adjacent loop cross-coupling point 7a - 7b and 7b - 7c, etc.
  • the fine-tuning of the unidirectionality of the wave propagation is also done by slightly different choice of the lengths of the sections with length differences between 5 and 10%.
  • the electromagnetic excitation 3 is designed by partial coupling 20 to one of the vertical radiator 4 at one of the loop coupling points 7.
  • the unidirectional effect of the electromagnetic excitation 3 with respect to the wave propagation is given by partial coupling to a vertical radiator 4 via a coupling conductor 23 guided in parallel to a part of the ring-shaped radiator 2 and the other end of the coupling conductor 23 is to a vertical radiator running to the conductive base 6 4e connected, the latter being connected via a matching network 25 to the antenna connection 5.
  • the matching network 25 is designed in the form of a parallel to the electrically conductive base surface 6 high-impedance transmission line over about 1 ⁇ 4 of the wavelength advantageously.
  • an essential feature of an antenna according to the present invention is the possibility for particularly low-cost production.
  • an outstandingly advantageous form of the antenna with square ring-shaped radiator 2 is similar in nature to that in FIG. 7 designed and in FIG. 9 for reasons of clarity with only four vertical radiators 4a - 4d shown.
  • the ring line emitter 2 with the vertical emitters 4a, 4b, 4c, 4d, together with the flat capacitance electrodes 32a, 32b, 32c, 32d individually shaped at their lower end can be made, for example, from a continuous, stamped and formed sheet metal part.
  • the characteristic impedance of the parts of the Ring line radiator 2 can be designed individually by choosing the width of the connectors.
  • the electrically conductive base 6 is preferably designed as a conductive coated circuit board.
  • the reactance circuits 13 realized as capacitances 15 are formed in such a way that the capacitance electrodes 32a, 32b, 32c, 32d are provided by interposing a dielectric plate 33 located between them and the electrically conductive base 6 for coupling three vertical radiators 4a, 4b, 4c the electrically conductive base 6 are designed.
  • this is designed as a planar counterelectrode 34 isolated from the conductive layer of the printed circuit board.
  • the sheet-metal part, the dielectric plate 33 and the electrically conductive base 6 embodied as a printed circuit board can be connected to one another by way of example by low-cost adhesive bonding and thus without costly soldering.
  • the connection to a receiver can be realized in a known manner, for example by connecting a microstrip line or a coaxial line, starting from the antenna connection 5.
  • FIG. 10 instead of a dielectric plate 33 between the lower ends of the vertical radiators 4a, 4b, 4c, 4d and the electrically conductive base 6 designed as a conductive coated printed circuit board, a further conductive coated, dielectric circuit board is inserted.
  • the conductive base 6 extending substantially in a base plane E1 at the location of the ring conduit radiator 2 is formed as a conductive cavity 38 opened upwards.
  • This cavity 38 is thus an effective part of the conductive base 6 and consists of a cavity base surface 39 in a base surface plane E2 located at a distance h1 parallel to and below the surface plane E1.
  • the cavity base surface 39 is connected to the planar part of the conductive base 6 via the cavity side surfaces 40.
  • the ring line emitter 2 is introduced into the cavity 38 in a further horizontal ring line plane E at the height h extending above the cavity base surface 39.
  • the environment of the ring line radiator 2 with the cavity basically has a narrowing the frequency bandwidth of the antenna 1 effect, which is essentially determined by the cavity spacing 41 between the ring line radiator 2 and the cavity 38. Therefore, the conductive cavity base surface 39 should be at least large enough to at least cover the vertical projection surface of the loop emitter 2 to the base surface plane E2 located below the conductive base. In an advantageous embodiment of the invention, however, the cavity base surface 39 is larger and selected in such a way that the cavity side surfaces 40 can be designed as vertical surfaces and while a sufficient cavity spacing 41 between the ring line radiator 2 and the cavity 38 is given ,
  • the base surface plane E2 is advantageous to choose the base surface plane E2 to be approximately as large as the vertical projection surface of the ring line radiator 2 to the base surface plane E2 and make the cavity side surfaces 40 along a contour inclined from a vertical line.
  • the inclination of this contour is to be selected in such a way that given the required frequency bandwidth of the antenna 1, a sufficiently large cavity spacing 41 between the ring line emitter 2 and the cavity 38 is provided at each location.
  • the loop level E is approximately the same height as the base plane E1 results for the above example of SDARS satellite broadcasting at a frequency of about 2, 33 GHz in two adjacent frequency bands each with a bandwidth of 4 MHz approximately the following advantageous dimensions for compliance with the necessary cavity spacing 41 between the ring line radiator 2 and the cavity 38.
  • the inclination of the cavity side surfaces 40 is selected in each case in the manner that at a vertical distance z above the cavity base surface 39 of the horizontal Distance d between the vertical connecting line between ring line radiator 2 and cavity base surface 39 and the nearest cavity side surface 40 assumes at least half the vertical distance z.
  • the frequency bandwidth of the antenna 1 increases the further the cavity 38 is opened upwards.
  • the necessary frequency bandwidth is also ensured.
  • the height h of the ring line plane E is greater than the depth of the cavity base surface 39, as shown in FIG. 12a is shown. That is, h is larger than h1 and the antenna 1 is not fully integrated with the vehicle body.
  • the reactance circuit 13 is designed multi-frequency in such a way that both the resonance of the ring line emitter 2 and the required direction of the line shaft on the ring line emitter 2 is given in separate frequency bands.
  • ring line emitters 2 offer the advantage of a particularly space-saving design.
  • a plurality of ring line radiators for the different frequencies of several radio services can be designed around a common center Z. Due to their different resonant frequencies, the different ring line radiators influence only slightly, so that small distances between the ring lines of the ring radiators 2 can be designed.
  • FIG. 13 is in the center Z of a ring line radiator 2, which is exemplified by two ⁇ / 4-spaced crosspoints 7, similar to in FIG Fig. 2 is electrically excited, introduced a crossed radiator 24 with congruent center Z, which by definition also has an azimuthal circular diagram with circular polarization at its radiator connection point 26.
  • the ring line emitter 2 and the crossed emitter are combined with the same center Z, so that the phase reference points of the two emitters are congruent in the common center Z.
  • a directional antenna with a predetermined azimuthal main direction and elevation can be designed according to the invention. This is done by the different azimuthal dependence of the phases of the circularly polarized waves of the two emitters on the azimuthal angle of the propagation vector, depending on the phase position of the M current waves on the ring line emitter 2, the radiation depending on the azimuth angle of the propagation vector partially superimposed supportive or attenuating ,
  • a controllable phase shifter 42 and a summation network 44 thus formed in an advantageous manner in the azimuthal directional diagram of Combined antenna arrangement at the directional antenna terminal 43 from a main direction of the radiation, which is dependent on the setting of the phase rotation member 39.
  • This property allows z. B. the advantageous tracking of the main beam direction in mobile satellite reception.
  • the reactance circuits 45a-45h are designed in such a way that, when fed in at the radiator junction 46, the current distribution of a current line wave is established whose phase difference over one revolution is just 2 * 2 ⁇ .
  • the stretched length of the ring line radiator 2a can also be shorter by a shortening factor k ⁇ 1 than the corresponding dual wavelength 2 ⁇ .
  • the phase difference of 2 * 2 ⁇ on the ring line by increasing the line inductance and / or the line capacitance to the conductive base 6 done.
  • the ring line sections of the ring line radiator 2 can be selected substantially shorter than a quarter wavelength up to ⁇ / 8.
  • FIG. 15 shows a plan view of the directional antenna in FIG. 14 , wherein the ring line radiator 2 is formed as a substantially regular octagon and the crossed radiator 24 is located centrally in the interior of the ring line radiator 2.
  • the ring line coupling points 7 are each formed at the corners of the octagonal ring line radiator 2.
  • To each of the vertical radiator 4 are connected.
  • the summation network 44 as summation and selection network 44a, it is possible to select separately between the received signals of the two emitters 2, 24 and the weighted superimposition-possibly with different weightings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Claims (13)

  1. Antenne pour la réception de signaux radio polarisés circulaires par satellite, comportant au moins une boucle conductrice orientée sensiblement horizontalement et agencée au-dessus d'une surface de base (6) conductrice, comprenant un dispositif destiné à l'excitation électromagnétique de la boucle conductrice et relié à une borne d'antenne (43), présentant les caractéristiques suivantes :
    - la boucle conductrice est configurée sous forme d'émetteur à ligne annulaire (2) par une ligne annulaire fermée polygonale ou circulaire d'une longueur (L) dans un plan sensiblement horizontal à la hauteur h au-dessus de la surface de base (6) conductrice,
    - l'émetteur à ligne annulaire (2) constitue une structure de résonance et il est excitable par voie électrique par l'excitation électromagnétique de telle sorte que la distribution du courant sur la ligne annulaire s'établit selon une onde conductrice continue dans une seule direction de révolution, dont la différence de phases sur une révolution correspond exactement à M*2π, M étant un nombre entier et ayant au moins la valeur M = 2,
    - il existe un autre émetteur (24) dont le centre coïncide avec le centre de l'émetteur à ligne annulaire (2) et qui est excitable de telle sorte que sa phase de la polarisation circulaire tourne simplement avec l'angle azimutal du vecteur de propagation, donc de l'angle 2π à une révolution azimutale complète, et dont les signaux de réception sont superposés des signaux de réception de l'émetteur à ligne annulaire (2) dans un réseau additif (44) pour concevoir une antenne directive présentant un diagramme de directivité à direction principale optionnelle,
    - caractérisée en ce que
    - l'autre émetteur (24) est un émetteur croisé constitué par une antenne de type patch pour polarisation circulaire,
    - pour soutenir les parts orientées verticalement du champ électromagnétique, sur l'étendue de la longueur (L) de l'émetteur à ligne annulaire (2), plusieurs (N) émetteurs verticaux (4) sont accouplés à des distances en longueur (L/N) étendues approximativement de longueur égale, sous forme de tronçons partiels de la structure et en éloignement les uns des autres d'une part via des points de couplage de ligne annulaire (7) à l'émetteur à ligne annulaire (2) et d'autre part via des points de mise à la masse (11).
  2. Antenne selon la revendication 1, caractérisée en ce que la longueur étendue L de la ligne annulaire de l'émetteur à ligne annulaire (2) en résonance est raccourcie par l'effet des émetteurs verticaux (4) à partir d'environ M fois la longueur d'onde conductrice approximativement jusqu'à la moitié de ladite longueur.
  3. Antenne selon la revendication 1 ou 2, caractérisée en ce que pour la génération d'une onde conductrice continue sur l'émetteur à ligne annulaire (2), il est prévu N points de couplage de ligne annulaire (7) distants les uns des autres sensiblement de L/N le long de la structure de ligne annulaire, et l'excitation électromagnétique est réalisée du fait que par le branchement d'émetteurs verticaux (4), s'étendant vers la surface de base conductrice, aux points de couplage (7) de la ligne annulaire fermée, il est possible d'appliquer des signaux de même taille qui sont décalés en phase les uns par rapport aux autres de M*360°/N.
  4. Antenne selon l'une des revendications 1, 2 ou 3, caractérisé en ce que l'émetteur à ligne annulaire (2) est réalisé pour M = 2 sous forme d'anneau conducteur fermé avec des tronçons partiels rectilignes de la longueur d'arête sensiblement de L/8 au-dessus de la surface de base (6) conductrice à une distance h au-dessus de la surface de base (6) conductrice, et pour la génération d'une onde conductrice continue sur l'émetteur à ligne annulaire (2) ainsi que pour le couplage sans contact physique à l'émetteur à ligne annulaire (2) l'excitation électromagnétique est réalisée par un conducteur de couplage directif en rampe (12) d'une extension horizontale avantageuse sensiblement de L/8, qui, à partir de la borne d'antenne (5) située sur la surface de base (6) conductrice, débouche en un intervalle de couplage (10) à l'une des extrémités du tronçon partiel de l'émetteur à ligne annulaire (2) via une ligne d'alimentation verticale (4) et y tombe alors sur la surface de base (6) sensiblement selon une fonction de rampe approximativement au-dessous de l'extrémité d'un tronçon partiel adjacent, et se relie de façon conductrice à celle-ci via un point de mise à la masse (11).
  5. Antenne selon la revendication 4, caractérisée en ce que pour la génération de la résonance de l'émetteur à ligne annulaire (2), à un emplacement d'interruption, l'un au moins des émetteurs verticaux (4) est équipé d'un circuit à réactance à faible perte (13) de la réactance X nécessaire à cet effet.
  6. Antenne selon la revendication 5, caractérisée en ce que le couplage de l'émetteur vertical (4) au point de mise à la masse (11) est cependant réalisé par voie capacitive, et la réactance X nécessaire du circuit à réactance à faible perte (13) est donnée par la configuration de ce couplage capacitif.
  7. Antenne selon l'une des revendications 1 à 6, caractérisée en ce que l'excitation électromagnétique est donnée par le branchement à l'un des émetteurs verticaux (4) avec un circuit à réactance (13) réalisé sous forme de capacité (15), de telle sorte que l'émetteur vertical (4) n'est pas couplé au point de mise à la masse (11) à la surface de base (6) électriquement conductrice, mais à la borne d'antenne (5) réalisée sur le plan de la surface de base (6) conductrice.
  8. Antenne selon l'une des revendications 1 à 7, caractérisée en ce que le renfort de l'unidirectionalité de la propagation d'onde sur l'émetteur à ligne annulaire (2) est donné par des réalisations différentes alternantes des impédances caractéristiques des tronçons partiels successifs dans le sens de révolution entre un point de couplage adjacent de ligne annulaire, en association avec l'ajustage fin de l'unidirectionalité de la propagation d'onde par des longueurs légèrement différentes des tronçons partiels.
  9. Antenne selon l'une des revendications 6 à 8, caractérisée en ce que les circuits à réactance (13) réalisés sous forme de capacités (15) sont réalisés de telle sorte que les émetteurs verticaux (4) sont conformés, à leur extrémité inférieure, en électrodes de capacité de forme surfacique (32a, 32b, 32c, 32d) conçues individuellement, et par interposition d'une plaque diélectrique (33) située entre celles-ci et la surface de base (6) conductrice réalisée sous forme de carte à circuit revêtue de façon conductrice de l'électricité, les capacités (15) sont réalisées pour coupler trois émetteurs verticaux (4a, 4b, 4c) à la surface de base (6) électriquement conductrice, et afin de coupler par voie capacitive le quatrième émetteur vertical (4d) à la borne d'antenne (5), celle-ci est réalisée comme contre-électrode (34) de forme surfacique, isolée de la couche conductrice.
  10. Antenne selon la revendication 1, caractérisée en ce que la différence de phases de l'onde conductrice qui se propage dans une seule direction de révolution sur l'émetteur à ligne annulaire (2) réalisé pour M = 2 s'élève exactement à 2*2π sur une révolution, et à son emplacement de branchement d'émetteur (46) les signaux de réception sont amenés via un élément de rotation de phase (42) contrôlable et alimentés au réseau additif (44), et ils sont ajoutés ici de façon pondérée aux signaux de réception de l'émetteur croisé (24), alimentés également au réseau additif (44), à son emplacement de branchement d'émetteur (28), pour réaliser la direction principale du diagramme de directivité azimutale, de sorte que par un réglage variable de l'élément de rotation de phase (42) la direction principale azimutale de l'antenne directive à la borne d'antenne directive (43) est réglée de façon variable.
  11. Antenne selon la revendication 10, caractérisée en ce que l'émetteur à ligne annulaire (2) pour M = 2 est amené sous forme d'anneau conducteur fermé régulier sensiblement octogonal de la longueur d'arête sensiblement de L/8 à la distance h au-dessus de la surface de base (6) conductrice, aux coins duquel sont réalisés des points de couplage de ligne annulaire (7) respectifs pour coupler les émetteurs verticaux (4).
  12. Antenne selon la revendication 11, caractérisée en ce que par la réalisation du réseau additif (44) sous forme de réseau additif et sélectif (44a) aussi bien les signaux de réception des deux émetteurs (2, 24) séparément que des superpositions respectives de pondérations différentes des signaux de réception des deux émetteurs (2, 24) sont disponibles au choix dans le sens d'un procédé de diversité de commutation, et donc la diversité des signaux de réception recevables à la borne d'antenne directive (43) est augmentée.
  13. Antenne selon l'une des revendications 1 à 12, caractérisée en ce que pour réaliser une antenne multi-bande, il est prévu, outre l'émetteur à ligne annulaire (2) réalisé pour une première fréquence et ayant le centre Z, au moins un autre émetteur à ligne annulaire (2) de centre coïncident, qui est réalisé selon les revendications 1 à 13, mais pour la résonance à une autre fréquence.
EP13150259.3A 2010-08-31 2011-03-10 Antenne de réception pour signaux radio par satellite polarisés circulaires Active EP2592691B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010035934A DE102010035934A1 (de) 2010-08-31 2010-08-31 Empfangsantenne für zirkular polarisierte Satellitenfunksignale
EP11157768.0A EP2424036B1 (fr) 2010-08-31 2011-03-10 Antenne de réception pour signaux radio par satellite polarisés circulaires

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP11157768.0 Division 2011-03-10
EP11157768.0A Division-Into EP2424036B1 (fr) 2010-08-31 2011-03-10 Antenne de réception pour signaux radio par satellite polarisés circulaires
EP11157768.0A Division EP2424036B1 (fr) 2010-08-31 2011-03-10 Antenne de réception pour signaux radio par satellite polarisés circulaires

Publications (2)

Publication Number Publication Date
EP2592691A1 EP2592691A1 (fr) 2013-05-15
EP2592691B1 true EP2592691B1 (fr) 2014-07-23

Family

ID=44675410

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11157768.0A Active EP2424036B1 (fr) 2010-08-31 2011-03-10 Antenne de réception pour signaux radio par satellite polarisés circulaires
EP13150259.3A Active EP2592691B1 (fr) 2010-08-31 2011-03-10 Antenne de réception pour signaux radio par satellite polarisés circulaires

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11157768.0A Active EP2424036B1 (fr) 2010-08-31 2011-03-10 Antenne de réception pour signaux radio par satellite polarisés circulaires

Country Status (3)

Country Link
US (1) US8643556B2 (fr)
EP (2) EP2424036B1 (fr)
DE (1) DE102010035934A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458680B1 (fr) * 2009-09-10 2016-07-27 Delphi Delco Electronics Europe GmbH Antenne pour la réception de signaux satellite circulaires polarisés
RU2505893C2 (ru) * 2012-04-27 2014-01-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Однонаправленная коническая антенна
RU2505892C2 (ru) * 2012-04-27 2014-01-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Многорезонансная однонаправленная вибраторная антенна
DE102012014913A1 (de) 2012-07-29 2014-05-15 Heinz Lindenmeier Elektrisch kleiner Strahler für vertikal polarisierte Funksignale
WO2014110508A1 (fr) * 2013-01-11 2014-07-17 Chi-Chih Chen Antennes à ultralarge bande et à entrée multiple sortie multiple
DE102016207434B4 (de) 2016-04-07 2017-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Antennenvorrichtung
DE102016010200A1 (de) 2016-05-04 2017-11-09 Heinz Lindenmeier Antenne unter einer schalenförmigen Antennenschutzhaube für Fahrzeuge
DE102016005556A1 (de) 2016-05-06 2017-11-09 Heinz Lindenmeier Satellitenempfangsantenne unter einer Antennenschutzhaube
JP7224716B2 (ja) * 2017-03-29 2023-02-20 株式会社ヨコオ アンテナ装置
DE102017003072A1 (de) 2017-03-30 2018-10-04 Heinz Lindenmeier Antenne für den Empfang zirkular polarisierter Satellitenfunksignale für die Satelliten-Navigation auf einem Fahrzeug

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6602498A (fr) * 1966-02-25 1967-08-28
US4555708A (en) * 1984-01-10 1985-11-26 The United States Of America As Represented By The Secretary Of The Air Force Dipole ring array antenna for circularly polarized pattern
US4680548A (en) * 1984-10-09 1987-07-14 General Electric Company Radio frequency field coil for NMR
DE4002899A1 (de) * 1990-02-01 1991-08-08 Bosch Gmbh Robert Fahrzeugantenne aus einer elektrisch leitenden wand mit einem ringspalt
DE4008505A1 (de) 1990-03-16 1991-09-19 Lindenmeier Heinz Antenne fuer die mobile satellitenkommunikation
IT1289333B1 (it) * 1996-06-21 1998-10-02 Alfa Accessori Antenna per la ricezione e la trasmissione in polarizzazione circolare
DE10163793A1 (de) 2001-02-23 2002-09-05 Heinz Lindenmeier Flachantenne für die mobile Satellitenkommunikation
US6559804B2 (en) * 2001-09-28 2003-05-06 Mitsumi Electric Co., Ltd. Electromagnetic coupling type four-point loop antenna
US6816122B2 (en) * 2002-01-29 2004-11-09 Mitsumi Electric Co., Ltd. Four-point feeding loop antenna capable of easily obtaining an impedance match
US7187336B2 (en) * 2005-06-27 2007-03-06 Harris Corporation Rotational polarization antenna and associated methods
JP2007221185A (ja) 2006-02-14 2007-08-30 Mitsumi Electric Co Ltd 円偏波アンテナ
EP2034557B1 (fr) * 2007-09-06 2012-02-01 Delphi Delco Electronics Europe GmbH Antenne pour la réception de satellites
JP4724766B2 (ja) * 2009-01-16 2011-07-13 株式会社日本自動車部品総合研究所 軸モードヘリカルアンテナ、およびこれを用いた車載アンテナ
EP2458680B1 (fr) * 2009-09-10 2016-07-27 Delphi Delco Electronics Europe GmbH Antenne pour la réception de signaux satellite circulaires polarisés

Also Published As

Publication number Publication date
US20120050120A1 (en) 2012-03-01
US8643556B2 (en) 2014-02-04
DE102010035934A1 (de) 2012-03-01
EP2424036B1 (fr) 2018-08-22
EP2424036A2 (fr) 2012-02-29
EP2592691A1 (fr) 2013-05-15
EP2424036A3 (fr) 2012-06-06

Similar Documents

Publication Publication Date Title
EP2296227B1 (fr) Antenne pour la réception de signaux satellite circulaires polarisés
EP2592691B1 (fr) Antenne de réception pour signaux radio par satellite polarisés circulaires
EP2226895B1 (fr) Antenne pour la réception circulaire dans un sens de rotation de la polarisation de signaux radio par satellite rayonnés
EP2664025B1 (fr) Antenne de réception multibande pour la réception combinée de signaux satellites et de signaux radiophoniques à émission terrestre
EP2256864B1 (fr) Antenne destinée à la polarisation circulaire et dotée d'une surface de base conductrice
DE69936657T2 (de) Zirkularpolarisierte dielektrische resonatorantenne
DE69608132T2 (de) Schlitzspiralantenne mit integrierter symmetriereinrichtung und integrierter zuleitung
DE102005010894B4 (de) Planare Mehrbandantenne
DE102008003532A1 (de) Antenne für den Satellitenempfang
DE112013006167B4 (de) Antenne für einen Satellitennavigationsempfänger
WO2003065505A1 (fr) Ensemble antenne rayonnante a double polarisation
EP3159967B1 (fr) Antenne multibande gnss
EP3178129B1 (fr) Antenne unipolaire à bande large à structure multiple pour deux bandes de fréquence séparées par un espace blanc dans la plage d'ondes décimétriques, destinée à des véhicules
WO2017174736A1 (fr) Dispositif d'antenne
DE102007004612A1 (de) Antennenvorrichtung zum Senden und Empfangen von elektromagnetischen Signalen
DE20221946U1 (de) Kombi-Antennenanordnung zum Empfang terrestrischer sowie Satelliten-Signale
EP3474374B1 (fr) Dispositif d'antenne pour signaux satellites polarisés circulairement sur un véhicule
WO2019115363A1 (fr) Antenne à fentes
EP1969674A1 (fr) Ensemble antenne et son utilisation
EP2034557B1 (fr) Antenne pour la réception de satellites
DE69008170T2 (de) Zirkular polarisierte Rundum-Antenne mit grösstem Gewinn in horizontaler Richtung.
EP3483983A1 (fr) Antenne réceptrice pour la navigation par satellite sur un véhicule
EP2546925B1 (fr) Module d'antenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2424036

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131024

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140226

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 2424036

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 679328

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011003859

Country of ref document: DE

Effective date: 20140904

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140723

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141023

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141024

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141124

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141023

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141123

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011003859

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150310

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150310

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 679328

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160310

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200323

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200320

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210310

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240528

Year of fee payment: 14