EP2584057B1 - Procédé de fabrication de carbure cimenté ou poudre de cermet par un melangeur acoustique résonnant - Google Patents
Procédé de fabrication de carbure cimenté ou poudre de cermet par un melangeur acoustique résonnant Download PDFInfo
- Publication number
- EP2584057B1 EP2584057B1 EP11185483.2A EP11185483A EP2584057B1 EP 2584057 B1 EP2584057 B1 EP 2584057B1 EP 11185483 A EP11185483 A EP 11185483A EP 2584057 B1 EP2584057 B1 EP 2584057B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- powder
- powders
- slurry
- binder
- mixing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 title claims description 83
- 239000011195 cermet Substances 0.000 title claims description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000011230 binding agent Substances 0.000 claims description 36
- 239000002002 slurry Substances 0.000 claims description 36
- 238000002156 mixing Methods 0.000 claims description 32
- 239000000470 constituent Substances 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 26
- 238000003801 milling Methods 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 12
- 150000001247 metal acetylides Chemical class 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 7
- 238000001694 spray drying Methods 0.000 claims description 7
- 150000002739 metals Chemical class 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 239000000203 mixture Substances 0.000 description 32
- 238000009826 distribution Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000005245 sintering Methods 0.000 description 9
- 239000002202 Polyethylene glycol Substances 0.000 description 7
- 229920001223 polyethylene glycol Polymers 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 238000000498 ball milling Methods 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000005065 mining Methods 0.000 description 3
- 229910003470 tongbaite Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000010426 asphalt Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229940011182 cobalt acetate Drugs 0.000 description 2
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910009043 WC-Co Inorganic materials 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- -1 cobalt acetate Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009770 conventional sintering Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000011172 small scale experimental method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/08—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/50—Mixing liquids with solids
- B01F23/55—Mixing liquids with solids the mixture being submitted to electrical, sonic or similar energy
- B01F23/551—Mixing liquids with solids the mixture being submitted to electrical, sonic or similar energy using vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F31/00—Mixers with shaking, oscillating, or vibrating mechanisms
- B01F31/80—Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
- B22F3/15—Hot isostatic pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/026—Spray drying of solutions or suspensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/051—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2202/00—Treatment under specific physical conditions
- B22F2202/01—Use of vibrations
Definitions
- the present relates to a method of making a cemented carbide or cermet powder where the powder constituents are subjected to a non-milling mixing operation by using an acoustic mixer.
- Cemented carbide and cermet powders used for making sintered bodies for e.g. cutting tools, wear parts etc. are usually made by first forming a slurry by milling the powder constituents together with binder metal powders, organic binder (e.g. polyethylene glycol) and a milling liquid in either a ball mill or an attritor mill for several hours. The slurry is then usually subjected to a spray drying operation to form granulated cemented carbide or cermet powders which can be used to press green parts that are subsequently sintered.
- binder metal powders e.g. polyethylene glycol
- organic binder e.g. polyethylene glycol
- the main purpose of the milling operation is to obtain a good binder phase distribution and good wettability between the hard constituent grains and the binder phase powder.
- a good binder phase distribution and good wettability is essential for achieving cemented carbide and cermet materials of high quality. If the phase distribution or wettability is poor, pores and cracks will be formed in the final sintered body which is detrimental for the material.
- obtaining a good binder phase distribution and wettability is very difficult for these types of materials and requires a high input of energy, i.e. quite long milling times, usually 10-40 hours depending on the type of mill used and/or the grade produced.
- Ball mills and attritor mills both provide good, homogenous mixing of the powder constituents, binder metal powders and the organic binder. These processes provides a large energy input that can overcome the static friction and binding forces that is required to obtain a good binder phase distribution and good wettability.
- Such mills will subject the powders to a milling operation. Hence, the powders, both hard constituent powders and binder metal powders, will partly be grinded so that a fine fraction will be formed. This fine fraction can cause uncontrolled grain growth during the subsequent sintering. Hence, narrow sized raw material can be destroyed by milling.
- EP 1 900 421 A1 discloses a process where the slurry is homogenized in a mixer comprising a rotor, a dispersing device and means to circulate the slurry.
- the dispersion device contains moving parts.
- WO 02/06545 discloses superhard filler hardmetal having a porosity rating of substantially A06, B00, C00 or better.
- the superhard filler hardmetal is formed by mechanically mixing (including ultrasonic mixing), shaping the mixture into a green body and consolidating the green body at a preselected temperature, superatmospheric pressure and time at temperature and time at superatmospheric pressure sufficient to form the superhard filler hardmetal.
- EP 1231288 discloses a method of manufacturing composite material. The method comprises a step of ultrasonic mixing.
- One object of the present invention is to obtain a homogenous powder blend without milling.
- Another object of the present invention is to obtain a powder blend where the grain size distribution of the raw materials can be maintained while still obtaining a homogenous powder blend.
- Another object of the present invention is to obtain a powder blend using a mixing process that does not contain any moving parts and is subjected to a minimum amount of wear.
- the present invention relates to the method defined in claim 1.
- This is a method of making a cemented carbide or cermet agglomerated powder without milling where the powder constituents are subjected to a non-milling operation, comprising the steps of first forming a slurry of one or more powders forming hard constituents, wherein said one or more powders forming the hard constituents is selected from borides, carbides, nitrides or carbonitrides of metals from groups 4, 5 and 6 of the periodic table metal binder powders and a mixing liquid. Then the slurry is mixed and dried to form an agglomerated powder. The mixing is done in a non-contact mixer wherein acoustic waves achieving resonance conditions are utilized. Those types of mixers are usually called resonant acoustic mixers.
- Acoustic mixers are known in the art, see e.g. WO 2008/088321 and US 7,188,993 . Such mixers use low-frequency, high intensity sound energy for mixing. They have shown good results when mixing fragile organic compounds but also other types of materials have been mixed. Acoustic mixers are non-contact mixers, i.e. they do not contain any mechanical means for mixing such as stirrers, baffles or impellars. Instead, the mixing is performed by creating micro-mixing zones throughout the entire mixing vessel by mechanical resonance applied to the materials to be mixed by the propagation of an acoustic pressure wave in the mixing vessel.
- the grain size of the powders forming hard constituents depends on the application for the alloy and is preferably from 0.2 to 30 ⁇ m. If not otherwise specified, all amounts in wt% given herein are the wt% of the total dry weight of the dry powder constituents.
- the binder metal powders can either be in a powder of one single binder metal, or a powder blend of two or more metals, or a powder of an alloy of two or more metals.
- the binder metals are selected from Cr, Mo, Fe, Co or Ni, preferably from Co, Cr or Ni.
- the grain size of the added binder metal powders is suitably between 0.5 to 3 ⁇ m, preferably between 0.5 to 1.5 ⁇ m.
- cemented carbide is a WC-Co based powder, which also can contain, in addition to WC and Co, additions such as grain growth inhibitors, cubic carbides etc. commonly used in the art of making cemented carbides.
- a cemented carbide powder is made of hard constituents suitably comprising WC with a grain size of between 0.5 to 2 ⁇ m, preferably between 0.5 to 0.9 ⁇ m.
- the binder metal content is suitably between 3 to 17 wt%, preferably 5 to 15 wt% of the total dry weight of the dry powder constituents.
- Cemented carbides made from these powders are commonly used in cutting tools such as inserts, drills end-mills etc.
- a cemented carbide powder is made of hard constituents suitably comprising WC having a grain size between 1 to 8 ⁇ m, preferably between 1.5 to 4 ⁇ m.
- the binder metal content is suitably between 3 to 30 wt%, preferably 5 to 20 wt% of the total dry weight of the dry powder constituents.
- Cemented carbides made from these powders are commonly used in tool forming tools and wear parts, e.g. buttons for drillbits mining or asphalt milling hot rolls , parts for mining applications, wire drawing etc.
- a cemented carbide powder is made of hard constituents suitably comprising WC having a grain size between 4 to 25 ⁇ m, preferably between 4.5 to 20 ⁇ m.
- the binder metal content is suitably between 3 to 30 wt%, preferably 6 to 30 wt% of the total dry weight of the dry powder constituents.
- Cemented carbides made from these powders are commonly used in buttons for drillbits, mining or asphalt milling, hot rolls.
- cermet powder is herein meant a powder where the hard constituents comprising large amounts of TiCN and/or TiC.
- Cermets comprise carbonitride or carbide hard constituents embedded in a metallic binder phase.
- group VIa elements such as Mo, W and sometimes Cr, are added to facilitate wetting between binder and hard constituents and to strengthen the binder by means of solution hardening.
- Group IVa and/or Va elements i.e., Zr, Hf, V, Nb and Ta, can also be added in commercial alloys available today. All these additional elements are usually added as carbides, nitrides and/or carbonitrides.
- the grain size of the powders forming hard constituents is usually ⁇ 2 ⁇ m.
- An organic binder is also optionally added to the slurry in order to facilitate the granulation during the following spray drying operation but also to function as a pressing agent for any following pressing and sintering operations.
- the organic binder can be any binder commonly used in the art.
- the organic binder can e.g. be paraffin, polyethylene glycol (PEG), long chain fatty acids etc.
- the amount of organic binder is suitably between 15 and 25 vol% based on the total dry powder volume, the amount of organic binder is not included in the total dry powder volume.
- a mixing liquid is required. Any liquid commonly used as a milling liquid in conventional cemented carbide manufacturing can be used.
- the milling liquid is preferably water, alcohol or an organic solvent, more preferably water or a water and alcohol mixture and most preferably a water and ethanol mixture.
- the properties of the slurry are dependent on amount of grinding liquid added. Since the drying of the slurry requires energy, the amount of liquid should be minimized in order to keep costs down. However, enough liquid need to be added in order to achieve a pumpable slurry and avoid clogging of the system.
- Drying of the slurry is preferably done according to known techniques, in particular spray-drying.
- the slurry containing the powdered materials mixed with the organic liquid and possibly the organic binder is atomized through an appropriate nozzle in the drying tower where the small drops are instantaneously dried by a stream of hot gas, for instance in a stream of nitrogen, to form agglomerated granules.
- the formation of granules is necessary in particular for the automatic feeding of compacting tools used in the subsequent stage.
- other drying methods can also be used, like pan drying.
- Green bodies are subsequently formed from the dried powders/granules.
- Any kind of forming operation known in the art can be used, e.g. injection molding, extrusion, uniaxel pressing, multiaxel pressing etc. If injection moulding or extrusion is used, additional organic binders are also added to the powder mixture.
- the green bodies formed from the powders/granules made according to the present invention is subsequently sintered according to any conventional sintering methods e.g. vacuum sintering, Sinter HIP, plasma sintering etc..
- the sintering technique used for each specific slurry composition is preferably the technique that would have been used for that slurry composition when the slurry was made according to conventional methods, i.e. ball milling or attritor milling.
- Different slurries of cemented carbide were prepared by blending powders of hard constituents like WC and Cr 3 C 2 , Co and PEG with a liquid with an ethanol/water ratio of 90/10 by weight.
- the WC grain size and the Co grain size given is the Fisher grain size (FSSS).
- the composition of the dry constituents of the slurries and the properties of the raw material are shown in Table 1.
- the amount of Co, WC and Cr 3 C 2 given in wt% are based on the total dry powder constituents in the slurry.
- the amount of PEG is based on the total dry powder constituents of the slurry, where the amount of PEG is not included into the dry powder constituents of the slurry.
- the slurry with Composition 1 from Example 1 were then subjected to a mixing operation either using a Resodyn Acoustic Mixer (LabRAM) according to the invention or a conventional paint shaker (Natalie de Lux), the slurries were then pan dried at 90°C.
- the mixing conditions are displayed in Table 2.
- Table 2 Powders Composition Mixer Mixing time (s) Energy (G) Invention 1 Composition 1 RAM 300 95 Comparison 1 Composition 1 Natalie 300 N/A
- the powders were then first subjected to a conventional uniaxel pressing operation forming a green body which is subsequently subjected to a Sinter HIP operation at a sintering temperature of 1410°C.
- the properties of the sintered material made from the powders are displayed in Table 3.
- a slurry with Composition 1 made according to conventional techniques is included as Reference 1.
- the Reference 1 sample has been made according by first making a slurry through ball milling for 56 hours and then subjecting them to a spray drying operation. The powder was then pressed and sintered in the same way as the other samples.
- the average grain size for fine grained WC is not that affected by the ball milling. Where two values have been given, those represent measurements done on two different pieces from the same sintering batch.
- the cemented carbide made according to the invention obtains about the same properties as the Comparison 1 and the Reference 1 samples.
- the slurry with Composition 2a from Example 1 were subjected to a mixing operation either using a Resodyn Acoustic Mixer (LabRAM) or a conventional paint shaker (Natalie de Lux), the slurries were then pan dried at 90°C.
- the mixing conditions are displayed in Table 4.
- Table 4 Powders Composition Mixer Mixing time (s) Energy (G) Invention 2 Composition 2a RAM 300 95 Comparison 2 Composition 2a Natalie 300 N/A
- Example 2 The powders were then pressed and sintered in the same way as the samples in Example 2.
- the properties of the sintered material made from the powders are displayed in Table 5.
- a slurry with Composition 2b is included as Reference 2.
- the Reference 2 sample has been made from Composition 2b according to conventional techniques, i.e. ball milling for 20 hours and then subjecting them to a spray drying operation. The powder was then pressed and sintered in the same way as the other samples.
- the WC grain size prior to the ball milling step is 5 ⁇ m.
- the WC grain size is then drastically reduced by the milling operation.
- the WC grain size is approx. 2.7 ⁇ m. All values given herein on the WC grain size as measured on the sintered material is estimated from the Hc value.
- the cemented carbide made according to the invention obtains about the same properties as the Comparison 2 and Reference 2 samples.
- the narrow WC grain size distribution of the WC raw material is maintained in the sintered structure.
- Fig. 1 shows a SEM-image (Scanning Electron Microscope) of Invention 1.
- Figure 2 is showing a LOM-image (Light Optic Microscope) of the Reference 2 sample which clearly is affected by the milling which can be seen by the presence of a number of larger grains originating from the grain growth of the fine fraction of WC grains.
- composition 3a The slurry with composition 3a from Example 1 were subjected to a mixing operation either using a Resodyn Acoustic Mixer (LabRAM) the slurry were then pan dried at 90°C.
- the mixing conditions are displayed in Table 6.
- Table 6 Powders Composition Mixer Mixing time (s) Energy (G) Invention 3 Composition 3a RAM 300 95
- Table 7 Powders Density (g/cm 3 ) Com Hc (kA/m) porosity HV30 Invention 3 14.97 5.72 5.65 A02,B00,C00 1240 Reference 3 14.95 5.7 6.8 ⁇ A02 1280
- the cemented carbide made according to the invention obtains about the same properties as the Comparison 3 and Reference 3 samples. Also, it can be seen that about the same properties can be obtained for the Invention 3 where the WC is uncoated compared to Reference 3, where the WC has been coated with Co with use of the complex and expensive sol-gel process.
- the Examples show that the method according to the present invention can lead to products having the same properties as products been produced with conventional methods. Hence, considerable shorter milling times can be achieved leading to a decrease in energy consumption. Also, the complex sol-gel process commonly used for can be avoided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Claims (9)
- Procédé de fabrication d'une poudre agglomérée de carbure cémenté ou de cermet sans broyage, dans lequel les constituants de la poudre sont soumis à une opération de mélange sans broyage,
comprenant les étapes consistant à :former une bouillie d'une ou plusieurs poudres formant des constituants durs, des poudres de liants métalliques et un liquide de mélange, dans lequel lesdites une ou plusieurs poudres formant les constituants durs sont sélectionnés à partir des borures, des carbures, des nitrures ou des carbonitrures de métaux des groupes 4, 5 et 6 du tableau périodique,mélanger et sécher ladite bouillie, pour former une poudre agglomérée, dans lequel le mélange est réalisé dans un mélangeur acoustique à résonance, qui est un mélangeur sans contact, dans lequel des ondes acoustiques atteignant des conditions de résonance sont utilisées. - Procédé selon la revendication 1 dans lequel la bouillie contient un liant organique.
- Procédé selon l'une quelconque des revendications précédentes dans lequel le séchage est réalisé par séchage par pulvérisation.
- Procédé selon l'une quelconque des revendications précédentes dans lequel les poudres de liants métalliques sont une ou plusieurs poudres sélectionnées parmi Cr, Mo, Fe, Co ou Ni.
- Procédé selon l'une quelconque des revendications précédentes dans lequel une poudre de carbure cémenté est réalisée.
- Procédé selon la revendication 5 dans lequel les constituants durs comprennent du carbure de tungstène WC avec une taille de grain entre 0,5 et 2 µm, et une teneur en métal de liant entre 3 et 17 % en poids.
- Procédé selon la revendication 5 dans lequel les constituants durs comprennent du carbure de tungstène WC avec une taille de grain entre 1 et 8 µm, et une teneur en métal de liant entre 3 et 30 % en poids.
- Procédé selon la revendication 5 dans lequel les constituants durs comprennent du carbure de tungstène WC avec une taille de grain entre 4 et 25 µm, et une teneur en métal de liant entre 3 et 30 % en poids.
- Procédé selon l'une quelconque des revendications 1 à 4 dans lequel une poudre de cermet est réalisée.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES11185483.2T ES2599641T3 (es) | 2011-10-17 | 2011-10-17 | Método para producir un polvo de carburo cementado o de metal cerámico usando un mezclador acústico resonante |
EP11185483.2A EP2584057B1 (fr) | 2011-10-17 | 2011-10-17 | Procédé de fabrication de carbure cimenté ou poudre de cermet par un melangeur acoustique résonnant |
CN201280051186.2A CN103890204B (zh) | 2011-10-17 | 2012-10-17 | 通过使用共振声混合器制造硬质合金或金属陶瓷粉末的方法 |
KR1020197029813A KR20190120394A (ko) | 2011-10-17 | 2012-10-17 | 공진 음향 믹서를 사용함으로써 초경합금 또는 서멧 분말을 제조하는 방법 |
ES12772790.7T ES2613643T3 (es) | 2011-10-17 | 2012-10-17 | Método para producir un polvo de carburo cementado o de metal cerámico usando un mezclador acústico resonante |
PCT/EP2012/070557 WO2013057136A2 (fr) | 2011-10-17 | 2012-10-17 | Procédé de fabrication de carbure métallique ou de corps en cermet |
KR1020147013160A KR102229047B1 (ko) | 2011-10-17 | 2012-10-17 | 공진 음향 믹서를 사용함으로써 초경합금 또는 서멧 분말을 제조하는 방법 |
JP2014536215A JP6139538B2 (ja) | 2011-10-17 | 2012-10-17 | 超硬合金又はサーメット体を作成する方法 |
US14/352,314 US9777349B2 (en) | 2011-10-17 | 2012-10-17 | Method of making a cemented carbide or cermet body |
EP12772790.7A EP2768995B1 (fr) | 2011-10-17 | 2012-10-17 | Procédé de fabrication de carbure métallique ou de corps en cermet par un melangeur acoustique resonant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11185483.2A EP2584057B1 (fr) | 2011-10-17 | 2011-10-17 | Procédé de fabrication de carbure cimenté ou poudre de cermet par un melangeur acoustique résonnant |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2584057A1 EP2584057A1 (fr) | 2013-04-24 |
EP2584057B1 true EP2584057B1 (fr) | 2016-08-03 |
Family
ID=45065637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11185483.2A Active EP2584057B1 (fr) | 2011-10-17 | 2011-10-17 | Procédé de fabrication de carbure cimenté ou poudre de cermet par un melangeur acoustique résonnant |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2584057B1 (fr) |
ES (1) | ES2599641T3 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103890204B (zh) * | 2011-10-17 | 2016-11-16 | 山特维克知识产权股份有限公司 | 通过使用共振声混合器制造硬质合金或金属陶瓷粉末的方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7188993B1 (en) * | 2003-01-27 | 2007-03-13 | Harold W Howe | Apparatus and method for resonant-vibratory mixing |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE504244C2 (sv) | 1994-03-29 | 1996-12-16 | Sandvik Ab | Sätt att tillverka kompositmaterial av hårdämnen i en metallbindefas |
DE60044202D1 (de) * | 1999-10-29 | 2010-05-27 | Sumitomo Electric Industries | Kompositmaterial mit ultraharten partikeln |
US6372012B1 (en) * | 2000-07-13 | 2002-04-16 | Kennametal Inc. | Superhard filler hardmetal including a method of making |
WO2004004881A1 (fr) * | 2002-07-09 | 2004-01-15 | Toshiba Plant Systems & Services Corporation | Appareil de melange de liquides et procede associe |
DE102006043581B4 (de) | 2006-09-12 | 2011-11-03 | Artur Wiegand | Verfahren und Vorrichtung zur Herstellung einer Hartmetall- oder Cermetmischung |
PL2112952T3 (pl) | 2007-01-12 | 2019-07-31 | Resodyn Acoustic Mixers, Inc. | Mieszanie rezonansowo-wibracyjne |
CN100500895C (zh) * | 2007-04-06 | 2009-06-17 | 北京科技大学 | 一种超细晶无粘结剂硬质合金制造方法 |
CN101687153A (zh) * | 2007-06-28 | 2010-03-31 | 宝洁公司 | 通过产生剪切和/或气穴进行混合的设备和方法以及用于设备的组件 |
CN101920336B (zh) * | 2010-09-19 | 2011-12-28 | 哈尔滨工业大学 | 稀土改性钴包覆碳化钨硬质合金复合粉末的制备方法 |
CN101967593A (zh) * | 2010-11-16 | 2011-02-09 | 西华大学 | 含有稀土的超细晶粒硬质合金材料及其制备方法 |
-
2011
- 2011-10-17 ES ES11185483.2T patent/ES2599641T3/es active Active
- 2011-10-17 EP EP11185483.2A patent/EP2584057B1/fr active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7188993B1 (en) * | 2003-01-27 | 2007-03-13 | Harold W Howe | Apparatus and method for resonant-vibratory mixing |
Non-Patent Citations (1)
Title |
---|
"Technology - Resonant Acoustic Mixing Technology Solves Mixing and Dispersion Problems Characteristic of other Commercial Mixers", 31 December 2009 (2009-12-31), pages 1, Retrieved from the Internet <URL:http://www.resodynmixers.com/technologies/> [retrieved on 20140306] * |
Also Published As
Publication number | Publication date |
---|---|
ES2599641T3 (es) | 2017-02-02 |
EP2584057A1 (fr) | 2013-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2768995B1 (fr) | Procédé de fabrication de carbure métallique ou de corps en cermet par un melangeur acoustique resonant | |
US6228139B1 (en) | Fine-grained WC-Co cemented carbide | |
CN103255331B (zh) | 具有细化结构的细晶硬质合金 | |
CN102534337B (zh) | 金属陶瓷体和制造金属陶瓷体的方法 | |
EP1925383B1 (fr) | Procédé pour la fabrication d'un corps fritté, mélange de poudre et corps fritté | |
EP2955241B1 (fr) | Procédé pour la fabrication de pièces en carbures cémentés ou en cermet | |
US11104980B2 (en) | Carbide with toughness-increasing structure | |
JP4970638B2 (ja) | 耐摩耗性を増加させた超硬合金ボディーの製造方法 | |
CN101353748A (zh) | 具有细化结构的细晶硬质合金 | |
EP2424672B1 (fr) | Procédé de broyage de mélanges de poudres de cermet ou de carbure cémenté | |
CN101899602B (zh) | 金属陶瓷体及其制造方法 | |
CN117580660A (zh) | 一种制备用于增材制造的粉末的方法 | |
EP2584057B1 (fr) | Procédé de fabrication de carbure cimenté ou poudre de cermet par un melangeur acoustique résonnant | |
EP3425072A1 (fr) | Particules composites, poudre composite, procédé de fabrication de particules composites et procédé de fabrication d'élément composite | |
CN116815031A (zh) | 一种多主元合金作黏结金属的细晶金属陶瓷及其制备方法 | |
CN116949334A (zh) | 一种无粘结相硬质合金及其制备方法和应用 | |
CN107916357A (zh) | 一种非均匀结构的梯度硬质合金及其制备方法 | |
EP1635992B1 (fr) | Procede de fabrication d'un element d'outil | |
EP2647731B1 (fr) | Procédé de fabrication de corps de carbure cimenté | |
Zhou et al. | Fabrication of Functionally Gradient Cemented Carbide with Ultrafine Grains |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20131024 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17Q | First examination report despatched |
Effective date: 20140319 |
|
17Q | First examination report despatched |
Effective date: 20140326 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602011028748 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C22C0029000000 Ipc: C22C0029080000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B22F 9/06 20060101ALI20160302BHEP Ipc: C22C 29/08 20060101AFI20160302BHEP Ipc: C22C 1/05 20060101ALI20160302BHEP Ipc: B22F 9/02 20060101ALI20160302BHEP Ipc: B01F 11/02 20060101ALI20160302BHEP Ipc: B22F 3/15 20060101ALI20160302BHEP Ipc: B01F 3/12 20060101ALI20160302BHEP |
|
INTG | Intention to grant announced |
Effective date: 20160404 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 817389 Country of ref document: AT Kind code of ref document: T Effective date: 20160815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011028748 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160803 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161103 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161203 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2599641 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161205 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161104 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011028748 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161103 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170504 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161017 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20111017 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20180913 AND 20180919 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160803 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602011028748 Country of ref document: DE Owner name: SANDVIK HYPERION AB, SE Free format text: FORMER OWNER: SANDVIK INTELLECTUAL PROPERTY AB, SANDVIKEN, SE Ref country code: DE Ref legal event code: R081 Ref document number: 602011028748 Country of ref document: DE Owner name: HYPERION MATERIALS & TECHNOLOGIES (SWEDEN) AB, SE Free format text: FORMER OWNER: SANDVIK INTELLECTUAL PROPERTY AB, SANDVIKEN, SE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 817389 Country of ref document: AT Kind code of ref document: T Owner name: SANDVIK HYPERION AB, SE Effective date: 20181121 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602011028748 Country of ref document: DE Owner name: HYPERION MATERIALS & TECHNOLOGIES (SWEDEN) AB, SE Free format text: FORMER OWNER: SANDVIK HYPERION AB, STOCKHOLM, SE Ref country code: DE Ref legal event code: R082 Ref document number: 602011028748 Country of ref document: DE Representative=s name: KRAUS & WEISERT PATENTANWAELTE PARTGMBB, DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: HC Ref document number: 817389 Country of ref document: AT Kind code of ref document: T Owner name: HYPERION MATERIALS & TECHNOLOGIES (SWEDEN) AB, SE Effective date: 20190207 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 817389 Country of ref document: AT Kind code of ref document: T Effective date: 20160803 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: HYPERION MATERIALS & TECHNOLOGIES (SWEDEN) AB Effective date: 20190613 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231027 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231102 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231027 Year of fee payment: 13 Ref country code: FR Payment date: 20231025 Year of fee payment: 13 Ref country code: DE Payment date: 20231027 Year of fee payment: 13 Ref country code: AT Payment date: 20231004 Year of fee payment: 13 |