EP2578929B1 - Arrangement of overhead elements on a projection lens of a motor vehicle headlamp - Google Patents
Arrangement of overhead elements on a projection lens of a motor vehicle headlamp Download PDFInfo
- Publication number
- EP2578929B1 EP2578929B1 EP12187226.1A EP12187226A EP2578929B1 EP 2578929 B1 EP2578929 B1 EP 2578929B1 EP 12187226 A EP12187226 A EP 12187226A EP 2578929 B1 EP2578929 B1 EP 2578929B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- light
- overhead
- elements
- interface
- headlamp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009826 distribution Methods 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 18
- 230000000694 effects Effects 0.000 claims description 14
- 230000003287 optical effect Effects 0.000 claims description 13
- 238000013461 design Methods 0.000 claims description 10
- 238000005286 illumination Methods 0.000 claims description 6
- 238000004088 simulation Methods 0.000 claims description 4
- 230000007704 transition Effects 0.000 claims description 4
- 230000004313 glare Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 5
- 230000004907 flux Effects 0.000 description 4
- 238000007620 mathematical function Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 241001620634 Roger Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/25—Projection lenses
- F21S41/275—Lens surfaces, e.g. coatings or surface structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/25—Projection lenses
- F21S41/255—Lenses with a front view of circular or truncated circular outline
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2102/00—Exterior vehicle lighting devices for illuminating purposes
- F21W2102/10—Arrangement or contour of the emitted light
- F21W2102/17—Arrangement or contour of the emitted light for regions other than high beam or low beam
- F21W2102/18—Arrangement or contour of the emitted light for regions other than high beam or low beam for overhead signs
Definitions
- the present invention relates to a method according to the preamble of claim 1 and a headlight according to the independent device claim.
- Such a method and such a headlight are from the DE 20 2005 004 080 U1 known.
- the 10 2009 020 593 A1 shows, in particular, a motor vehicle projection headlight, which is set up to project an edge, which limits a luminous flux of a light source of the headlight, as a light-dark boundary of a light distribution generated in advance by the headlight, and which has a projection lens with geometric overhead elements which are implemented as local deformations of an interface of the projection lens and which are set up to emit light above the light-dark boundary direct overhead area of the light distribution.
- the light-dark boundary of a low beam distribution delimits a lower, brightly illuminated area of the light distribution from an upper, darker area.
- the upper area is dimly illuminated in order to reduce glare to other road users, in particular oncoming traffic.
- illuminance levels are required for motor vehicle headlights. These are formulated separately for low and high beam using numerous measuring points.
- the present invention relates in particular to the measurement points prescribed for a low beam.
- a representation of measuring points for the illuminance can for example Automotive paperback, 24th edition, April 2002, ISBN 3-528-13876-9, page 816 be removed.
- This area of light distribution above the light-dark boundary is also referred to as the overhead or signlight area (derived from the visibility of the traffic signs).
- the legal measuring points in this area extend up to 4 ° above the horizon and are indicated by Characterized minimum or maximum values as well as so-called total values for the illuminance that is set in each of the measuring points.
- a local deformation of the lower lens area of the projection lens with an additional, horizontally scattering superstructure is also from the utility model DE 20 2005 004 080 known.
- Geometric surface modifications are also known, but they are not primarily aimed at illuminating overhead measurement points: These include, for example, lenses with horizontal and oblique wave structures. This is known both for the European ECE legal area and for the American SAE legal area. As an example, refer to the DE 40 31 352 A1 referred. Lenses with cylindrical elements are described in utility model G 90 00 395.
- additional reflective components in the projection system is possible, such as the use of reflective diaphragms arranged transversely to the direction of light.
- An example of a reflective additional component which is arranged directly behind the projection lens is the US 5,307,247 refer to.
- openings in the dipped beam can also be combined with additional, reflective components.
- An opening in the panel is, for example, in the KR 10 2009 0064 724 A and in the KR 10 2010 0069 471 A described.
- the appearance of the projection lens when it is switched on also plays an increasing role, so that solutions in which parts of the lens are illuminated in a precise, selective manner are not desired.
- the method aspects of the invention provide a modular principle that gradually leads to an overhead solution that can be individually adapted to each projection system.
- Suitable positions for the geometric elements are found first.
- the size and design of the geometric elements for generating overhead light can then be easily dimensioned precisely by means of lighting simulation and analysis. In this way, compliance with the required measurement values, maintaining the performance of the system and the homogeneity of the light distribution can be simultaneously optimized and achieved for each projection system.
- the invention is characterized by the characterizing features of claim 8.
- Fig. 1 shows in detail a schematic representation of an embodiment of a headlight 10 in a longitudinal section.
- the headlight 10 has a housing 12 with a light exit opening, which from a transparent cover 14 is covered.
- a projection module 16 is arranged in the housing 12.
- the projection module 16 has a light source 18 and a reflector 20, which reflects at least part of the light emanating from the light source 18 and bundles it into a focal region.
- the reflector 20 preferably has the shape of an ellipsoid of revolution or an ellipsoid-like free form deviating therefrom.
- the light source 18 is arranged in a first focal point F 1 of the reflector 20.
- a diaphragm arrangement 22 shields at least part of the luminous flux emanating from the reflector 20.
- the aperture 22 is shown in the Fig. 1 arranged in a plane that runs perpendicular to an optical axis 24 and through the second focal point F 2 of the reflector 20.
- the aperture 22 can also be arranged lying parallel to the optical axis 24 and have a light reflecting surface.
- the diaphragm can also have a certain extent parallel to the optical axis, so that it is to a certain extent a thick diaphragm. In any case, however, the diaphragm edge lying in the region of the second focal point F2 or a diaphragm edge lying in the region of a second focal plane is projected as a light-dark boundary into the apron of the headlight 10.
- the projection takes place through a projection lens 26.
- the projection lens 26 is attached to a front edge of the reflector 20 by means of a lens holder (not shown) which engages a collar 28.
- the lens 26 is made of any light-permeable material, for example a temperature-resistant plastic or glass, and has a substantially flat light entry interface 30 on the side facing the light source 18 and a convex light exit interface on its opposite side 32 on.
- the interface 30 can also be concave or convex.
- the light module 16 is used to generate a light distribution with a cut-off line, preferably a low beam distribution or a fog light distribution.
- the light-dark boundary results as a projection of the edge of the diaphragm arrangement 22 located in the region of the second focal point F2 of the reflector 20 in the light distribution generated by the light module 6 on the road.
- the direction x is essentially parallel to the direction of the optical axis 24, which corresponds to the main emission direction of the luminous flux, and, when the headlight 10 is installed, parallel to the longitudinal axis of the vehicle.
- the z direction is parallel to the vertical axis of the vehicle and points upwards.
- the y direction is accordingly perpendicular to the plane of the drawing and points into it.
- the light exit interface 32 has a partial region 58 of the interface with a grouping of up to twenty individual overhead elements 34, which are implemented in the form of local deformations of the interface, here in the form of projections .
- Another grouping of such or similar overhead elements is the subject of Fig. 1 also arranged laterally approximately at the level of the optical axis 24 in a partial region 54 of the interface 32.
- Figure 2 shows a cross section through a single overhead element 34 of the lower grouping in the partial area 58 according to Figure 1 as he is with one in the drawing plane of the Fig. 1 performed cut results qualitatively.
- the cross section of the individual overhead element 34 is divided into a first section 42, which lies between points 38 and 40, and a second section 46 between points 40 and 44.
- Below the vertical extension or length of the individual overhead element is the distance between points 38 and 44 in the Fig. 2 Roger that.
- the curvature of the first section 42 corresponds to the curvature of a cylinder jacket.
- the surface of the individual overhead element 34 belonging to the section 42 corresponds to part of an outer surface of an imaginary cylinder, the axis of which, when the headlight 10 is installed in the vehicle, lies parallel to the base area of the vehicle within the lens 26.
- the contour of section 42 can also be generated as a spline function or as a comparable mathematical function or as a combination of such functions.
- a continuously differentiable course of the edge curve resulting from the cut with a curvature that is variable in the z direction is preferred.
- the first section 42 produces the desired deflection effect.
- Section 46 only serves to implement a continuously differentiable and thus edgeless transition between the first section 42 of the individual overhead element 34 and the remaining interface 32 of the lens 26.
- each such grouping can itself be regarded as an overhead element.
- the desired deflecting effect is obtained by comparing the light bundle 48 which passes through the interface of the lens 26 in the region of the overhead element 34 with the light bundles 50, 52 pass through areas of the interface 32 adjacent to the overhead element 34, clearly. In comparison to the light beams 50 and 52, a part 48 ′ of the light beam 48 experiences a deflection in the z direction when it passes through the interface 32.
- This deflection deflects the light bundle 48 'beyond the light-dark boundary, while the part 48 "of the light bundle 48 is deflected into the low-beam light distribution.
- the light bundles 50, 52 illuminate the area below the light-dark boundary.
- the lens 26 According to the division of the areas of the overhead elements 34 and the remaining light exit interface of the lens 26, preferably less than one percent to less than five percent of the light passing through the lens 26 is scattered into the overhead region, while the remaining ones are scattered more than ninety-five to more than ninety-nine percent are used to illuminate the area below the cut-off line.
- a maximum deflection of a light beam 48 'deflected by an overhead element 34 is at least five degrees with respect to an adjacent light beam 50, 52 which is not deflected by the overhead element 34.
- the invention has been explained using the example of a light exit interface of a projection lens 26.
- the locally selectively deflecting effect can also be generated by an appropriate configuration of the light entry interface 30 of the lens 26.
- the distracting effect may also be achieved by distributing overhead elements on the light entry interface the cover plate can be realized.
- a new analysis method is used to define subareas on the interface of the projection lens 26 which are suitable for the positioning of overhead elements. These subareas should have dimensions that are as small as possible and thus attract little attention aesthetically. They should preferably be arranged below in the z direction and / or outside in the y direction.
- an interface of the projection lens 26, for example the light exit interface 32 is mathematically broken down into small segments. These segments are specifically examined for their suitability for the positioning of overhead elements 34. In this sense, suitability arises in particular from the fact that such segments illuminate the surroundings of the light-dark boundary. At the end of the analysis, exact statements are made for the ideal positioning of the geometric elements. This procedure prevents undesirable side effects on the homogeneity of the light distribution or the performance of the projection system.
- Fig. 3 shows a top view of a light exit interface 32 of a projection lens 26 with a preferred arrangement of partial areas 54, 56 and 58.
- Two symmetrically arranged partial areas 54 and 56 and a central area 58 arranged below are preferably defined.
- This arrangement results in an inconspicuous, wanted and aesthetically appealing appearance of the entire lens 26, so that here there is a further degree of design freedom, or so that the lens 26 can be regarded as a design element.
- the deliberately chosen appearance of the symmetrical arrangement of the partial areas 54 and 56 also avoids, in particular, an impression of a defective lens, as can be awakened, for example, in the case of an overhead element running across the lens in the form of a cylinder part volume.
- the subareas are in particular arranged in such a way that effects on the low beam distribution below the light / dark boundary, from which the overhead light is ultimately extracted, are minimal.
- the homogeneity of the light distribution remains largely unaffected.
- partial areas 54, 56, 58 are thus defined on the interface of the projection lens, but these do not necessarily have to be arranged as it is in FIG Fig. 3 is shown. It is essential that the partial areas 54, 56, 58 are suitable for an arrangement of overhead elements 34, the suitability resulting from the fact that the partial areas 54, 56, 58 have dimensions that are as small as possible and that a luminous flux that passes through these partial areas 54, 56, 58 passes through, can be deflected without disturbing effects on the rest of the light distribution in the overhead area of the light distribution above the light-dark boundary.
- the subregions are those regions on the projection lens 26 which are traversed by light which would be used to generate the light-dark boundary if there are no overhead elements 34, that is to say that Illumination of the bright area at or just below the cut-off would contribute.
- the interface for example the light exit interface 32 of the projection lens 26, is broken down mathematically into small segments. These segments are then specifically examined for their suitability for the positioning of overhead elements.
- three sub-areas 54, 56, 58 are defined, two sub-areas 54, 56 of the three sub-areas being arranged symmetrically to an imaginary plane containing the optical axis 24 of the headlight 10 and perpendicular to the horizon and thus oriented vertically when the headlight is oriented in this way that it generates a light distribution with a rule-compliant, at least partially parallel light-dark boundary.
- this is the xz level.
- the third region 58 is arranged in a lower half of the interface 32 such that it is divided into two equal halves by the vertically oriented imaginary plane 39, so that there is also a symmetry of the arrangement with respect to the plane 39 mentioned .
- the individual overhead elements 34 which are grouped together in such a partial area, can also be arranged rotated relative to one another.
- the two partial regions 54, 56 arranged symmetrically to one another with respect to a symmetry plane lying centrally between them and parallel to the xz plane preferably have a width of 4 to 5 mm with a length of approximately 10 mm.
- the lower middle region is preferably approximately 6 mm long and approximately 2.5 mm high. This applies to a lens 26 with a diameter of approximately 60 to 75 mm. With these values, the area occupied by overhead elements 34 is only about 3% of the light exit area 32 of the projection lens 26 projected into the plane. This is significantly less than with the uniform distribution according to FIG DE 10 2009 020 593 A1 .
- this area share is less than 5%. It generally applies to the partial areas that their width is preferably between two mm and ten mm, and their length is preferably between one and twenty mm.
- the two partial regions 54, 56 arranged laterally symmetrically to one another are rotated about an axis of rotation that is parallel to the optical axis and runs through the respective partial region 54 or 56 in such a way that they illuminate light in the Claim 5 described alignment of the headlamp not only deflect upwards, but also to the side.
- the optical axis runs in the Fig. 3 parallel to the x direction.
- the subregions 54 and 56 are thus preferably with overhead elements, for example with overhead elements 34 which are shown in FIG Fig. 2 illustrated type proves that these overhead elements deflect light passing through them so that this light has propagation direction components 60, 62, respectively.
- propagation direction components are distinguished by the fact that they not only have an upward component (in the z direction), but also that they have directional components that point laterally, ie in the positive and / or negative y direction.
- the width of the overhead lighting in the y direction required for conformity with the rules is thereby achieved, so that all prescribed measuring points are illuminated.
- each group preferably contains a number of individual overhead elements, which is between 1 and 20.
- the overhead elements 34 preferably have a geometry which, due to their far-reaching adaptability, enables a defined generation of overhead light. At the same time, the maximum values (glare values) to be observed are taken into account through targeted light control, so that the legal requirements can be safely met.
- the overhead elements are at least C1 continuous, i.e. at least once continuously differentiable and therefore without Step or kink in the interface, so integrated into the surface of the projection lens 26. In series production, this leads to an improved tool life.
- the dimensioning of the geometric elements to be used in the partial areas defined in the first step takes place by means of simulation and subsequent analysis. Due to the precisely defined geometry of the overhead elements 34, their effect can be predicted with good accuracy. This makes it easy to adapt the elements 34 to precise targets. This saves a considerable amount of time when determining the size, number and alignment of the overhead elements.
- Smaller surface sections 42 of the front surface of the projection lens 26 are specifically tilted in the vertical direction relative to their previous orientation.
- a z component of a surface normal of the surface section or surface area is enlarged.
- the light that passes through these surface sections or surface areas experiences a significant increase compared to its previous direction, i.e. an increase in the z component of its direction of propagation, and then illuminates the overhead area of the light distribution as a desired consequence. This light is taken from the low beam distribution that occurs without such a tilt.
- the vertical deflection angle is varied within the tilted surface sections to cover the entire overhead measurement range. This creates a flat and homogeneous, albeit comparatively weak Illuminated area in which all overhead measurement points are located.
- the maximum light deflection achieved by the overhead elements is at least 4 °, but can also be up to 10 °.
- the surface sections 42 tilted against the surface 32 of the projection lens 26 are generally realized by cylinder sections. However, they can also be limited by comparable or different mathematical functions or, for example, spline surfaces or a combination of them.
- the tilted individual surfaces are integrated into the surface of the projection lens by clever rounding, which lies between points 40 and 44.
- Various rounding surfaces or free-form surfaces defined by mathematical functions can be used. Areas defined by spline functions can also be used; other defined areas are also possible.
- the rounding is realized in particular in that an at least once continuously differentiable transition is generated between the base surface 32 of the projection lens 26 and the light-deflecting surface sections or the overhead elements.
- This soft integration into the projection lens 26 improves the service life of the lens tool, since there are no sharp edges that could be worn out.
- the basic appearance and the functional principle of the overhead elements is described in the Figure 2 shown.
- the arrangement and grouping of the overhead elements is not limited to an arrangement in a pattern of three sub-areas.
- different positioning, number and size of the above described overhead elements 34 suitable to generate a sufficient amount of overhead light, without having to put up with a disturbing influence on the rest of the light distribution.
- each of these areas Fig. 3 at least one single overhead element 34 is placed.
- occupying each sub-area with only up to ten individual overhead elements 34 is preferred, the number of individual overhead elements in the sub-areas arranged symmetrically to one another preferably being the same.
- two groups are placed in the two lateral areas of the projection lens (based on the vertical axis) and the third group in the central area, preferably further below.
- the two lateral areas with overhead elements can additionally be rotated about their center, the axis of rotation running parallel to the optical axis of the projection system.
- the angle of rotation can be optimally adjusted.
- the light passing through is not only deflected upwards, but also deliberately deflected to the side.
- the lighting of With regard to the permissible illuminance measurement points limited to a higher limit (glare values) are significantly reduced.
- the overhead measuring points on the side are illuminated more intensely, so that the efficiency of the overhead elements increases.
- the overhead elements Due to the compactness of the overhead elements within their subareas, they can be arranged on the surface of the projection lens in such a way that the required light can be removed without disruptive effects on the rest of the light distribution. Areas that only have a slight mixing of the light or are relevant for the performance of the projection system can be left out: In this way, for example, inhomogeneities or darkening in the area directly in front of the vehicle and in the side areas of the light distribution are prevented.
- the group of overhead elements 34 which is integrated centrally and preferably below in the partial area 58 of the front surface of the lens, is of particular importance Fig. 3 this is the group of individual overhead elements 34 arranged in the partial area 58. These support the elements 34 arranged laterally in the partial areas 54 and 56 by making an additional contribution to the required overhead light.
- a very small height of the individual elements is achieved in the direction of their surface normals. This height is preferably in the range from 0.02 to 0.2 mm. In individual cases, the use of only one element per group may be sufficient; the division is not necessary here. This configuration is preferred if only a correspondingly small area is required for the overhead elements.
- the desired appearance is enhanced by the arrangement of the two lateral overhead areas 54, 56, which runs symmetrically to the vertical axis, and the central additional area 58, which also contains a grouping of individual overhead elements 34.
- FIG Fig. 4 An overall resulting light distribution with an overhead component generated according to the invention is shown in FIG Fig. 4 shown.
- H denotes a horizontal and V a vertical.
- the H direction thus corresponds to the y direction also used here and the V direction corresponds to the z direction.
- the numbers are given in degrees.
- the closed curves are lines of the same illuminance, the illuminance decreasing from the inside to the outside.
- the overhead measurement points M1-M6 to be illuminated with a minimum amount of light are safely in the sufficiently illuminated overhead area.
- the light level below the measuring points M4, M5, M6 does not rise any further, so that the maximum values (glare values) permitted there are reliably maintained.
- the essence of the invention presented here relates to the described method for arranging and designing lens structures for generating overhead values.
- the invention is not limited to the generation of a special overhead light distribution.
- the method is intended to determine the position, the dimensions and the number of overhead elements.
- the light source 18 itself and the reflector 20 and the diaphragm 22 of the low-beam light distribution must be taken into account.
- Halogen and gas discharge lamps and semiconductor light sources come into question as light sources.
- Preferred positions of the overhead structures are areas on the lens which are traversed by light which serves to generate the light-dark boundary.
- the surface structures according to the invention can be made using the known lens structures (wave structures, grain patterns, rhombuses) DE102008023551 ), especially those combined to influence the light-dark boundary.
- the structures for generating the overhead values are not superimposed on the other structures. Instead, the overhead structures described here are retained and the other structures are trimmed accordingly.
- the lens front surface is computationally divided into small, individual segments of a suitable size in a first step.
- these segments are each 5 x 5 mm in size.
- a separate simulation is carried out for each segment of the surface of the projection lens. Only the light that passes through the currently examined segment of the projection lens is considered. The result is the associated light distribution for each segment. It is thus known in each case at which location of the light distribution how much light arrives from the relevant segment.
- this segment is suitable for integrating overhead elements.
- all lens areas are divided into areas that can be used for overhead lighting and areas that cannot be used.
- Usable areas are areas that bring light to or near the cut-off line. Areas that cannot be used illuminate this In front of the vehicle or illuminate the side area of the light distribution or are essential for the performance of the projection system. In this sense, if you arranged non-usable areas of overhead elements, the homogeneity of the light distribution and the performance of the projection system would be impaired.
- the fourth step now follows, in which the geometry and the properties of the overhead elements are defined.
- the definition of the geometry of the overhead individual elements and the grouping of such overhead elements is preferably carried out according to the following aspects:
- the height of the area to be illuminated ie the distance from the lower edge to the upper edge of the overhead light strip, is set via the radius of the cylinder on which it is based.
- the optimal vertical positioning of the overhead area is achieved by vertical displacement of the cylinder axis of the overhead individual elements.
- the entire light band can be precisely adjusted in its vertical position. Overall, it can be moved up or down to optimally illuminate the specified measuring points.
- a vertical shift is understood to mean a shift parallel to the vertical axis of the vehicle. In the figures, this is the z direction.
- the amount of light required for the overhead light can easily be precisely targeted by varying the number of individual overheand elements and by extending the individual elements laterally dimension. The larger the area of the overhead elements, the more overhead light is generated.
- the additional relief of the glare values is achieved by suitable positioning of the overhead individual elements and additionally by rotating the overhead elements.
- the individual overhead elements are positioned such that they are only arranged in non-critical areas of the projection lens. These are the appropriate areas mentioned above.
- a lateral deflection is additionally generated by the rotation on the surface of the projection lens 32, whereas when several individual overhead elements 34 are aligned one above the other in a vertical row, so to speak, the light is deflected only in the vertical direction.
- several such individual overhead elements 34 are preferably arranged in a row next to one another or one above the other.
- These individual overhead elements are preferably combined in groups, as is the case, for. B. from the top view of a projection lens 26 according to Figure 3 can be seen.
- the grouping in the partial area 58 shows a side-by-side arrangement in which several individual overhead elements 34 are arranged side by side in the y-direction.
- the two other groups, which lie in the partial areas 54 and 56, each each show groups of overhead elements 34, which have been rotated somewhat out of the z direction.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Description
Die vorliegende Erfindung betrifft ein Verfahren nach dem Oberbegriff des Anspruchs 1 sowie einen Scheinwerfer nach dem unabhängigen Vorrichtungsanspruch.The present invention relates to a method according to the preamble of claim 1 and a headlight according to the independent device claim.
Ein solches Verfahren und ein solcher Scheinwerfer sind aus der
Die
Die Hell-Dunkel-Grenze einer Abblendlichtverteilung grenzt einen unteren, hell beleuchteten Bereich der Lichtverteilung von einem oberen, dunkleren Bereich ab. Der obere Bereich wird bekanntlich schwächer beleuchtet, um eine Blendung anderer Verkehrsteilnehmer, insbesondere des Gegenverkehrs, zu verringern.The light-dark boundary of a low beam distribution delimits a lower, brightly illuminated area of the light distribution from an upper, darker area. As is known, the upper area is dimly illuminated in order to reduce glare to other road users, in particular oncoming traffic.
Im ECE-Gesetzesraum werden für Kfz-Scheinwerfer bestimmte, ortsabhängige Beleuchtungsstärken gefordert. Diese werden für Abblend- und Fernlicht gesondert anhand zahlreicher Messpunkte ausformuliert. Die vorliegende Erfindung betrifft insbesondere die für ein Abblendlicht vorgeschriebenen Messpunkte. Eine Darstellung von Messpunkten für die Beleuchtungsstärken kann zum Beispiel dem
Neben vorgegebenen Beleuchtungsstärken des auf die Straße auftreffenden Lichtes, also des zur Beleuchtung des unterhalb der Hell-Dunkel-Grenze liegenden hellen Bereichs der Lichtverteilung, sind auch spezielle Anforderungen für Beleuchtungsstärken oberhalb der Hell-Dunkel-Grenze zu erfüllen. Dieser oberhalb der Hell-Dunkel-Grenze liegende Bereich der Lichtverteilung wird auch als Overhead- oder Signlight-Bereich (von der Sichtbarkeit der Verkehrszeichen abgeleitet) bezeichnet.In addition to predefined illuminance levels of the light striking the street, that is to say the light area of the light distribution below the light-dark boundary, special requirements for illuminance levels above the light-dark limit must also be met. This area of light distribution above the light-dark boundary is also referred to as the overhead or signlight area (derived from the visibility of the traffic signs).
Die gesetzlichen Messpunkte in diesem Bereich erstrecken sich bis zu 4° oberhalb des Horizontes und werden durch Mindest- beziehungsweise durch Maximalwerte sowie sogenannte Summenwerte für die sich jeweils in den Messpunkten einstellende Beleuchtungsstärke charakterisiert.The legal measuring points in this area extend up to 4 ° above the horizon and are indicated by Characterized minimum or maximum values as well as so-called total values for the illuminance that is set in each of the measuring points.
Projektionssysteme mit Abblendlichtfunktion verfügen systembedingt über sehr wenig Licht oberhalb der Hell-Dunkel-Grenze, da dieser Overhead-Bereich durch die bei Projektionssystemen verwendete Blende effektiv abgeschattet wird. Es ist diese Blende, deren Kante als Hell-Dunkel-Grenze in die Lichtverteilung vor dem Scheinwerfer, also insbesondere vor dem Fahrzeug, projiziert wird.Due to the system, projection systems with low beam function have very little light above the cut-off line, since this overhead area is effectively shadowed by the aperture used in projection systems. It is this diaphragm, the edge of which is projected as a light-dark boundary into the light distribution in front of the headlight, in particular in front of the vehicle.
Wegen der effektiven Abschattung sind besondere Maßnahmen zur ausreichenden Beleuchtung dieser Messpunkte mit geeigneten Lichtmengen notwendig. Dabei ist gleichzeitig auf die Einhaltung vorgeschriebener Maximalwerte in der Nähe der Hell-Dunkel-Grenze zu achten. Diese Maximalwerte werden auch als so genannte Blendwerte bezeichnet.Because of the effective shading, special measures are necessary to adequately illuminate these measuring points with suitable amounts of light. At the same time, attention must be paid to compliance with the prescribed maximum values near the cut-off line. These maximum values are also referred to as so-called glare values.
Bei bekannten Vorrichtungen wird dies dadurch erreicht, dass auf der vorderen (Lichtaustritts-) oder rückwärtigen (Lichteintritts-) Grenzfläche der Projektionslinse lokale Deformationen angeordnet sind, die durch ihre zusätzliche prismatische, das heißt Licht-brechende Wirkung Licht in die Signlight-Messpunkte ablenken. Dies ist beispielsweise aus der
Auch eine lokale Deformation des unteren Linsenbereiches der Projektionslinse mit einer zusätzlichen, horizontal streuenden Überstruktur ist aus dem Gebrauchsmuster
Bekannt ist es auch, die Linsenrückfläche mit prismatisch ablenkenden Elementen zur Erzeugung von Licht für einen Nebenleuchtbereich zu versehen, wie dies der
Weiterhin sind geometrische Oberflächenmodifikationen bekannt, die sich allerdings nicht primär auf die Beleuchtung von Overhead-Messpunkten richten: Dazu zählen etwa Linsen mit horizontal und schräg verlaufenden Wellenstrukturen. Dies ist sowohl für den europäischen ECE-Gesetzesraum als auch für den amerikanischen SAE - Gesetzesraum bekannt. Als Beispiel wird auf die
Außerdem ist der Einsatz von reflektierenden Zusatzbauteilen im Projektionssystem möglich, wie beispielsweise ein Einsatz von quer zur Lichtrichtung angeordneten, reflektierenden Blenden. Ein Beispiel für ein reflektierendes Zusatzbauteil, welches direkt hinter der Projektionslinse angeordnet wird, ist der
Denkbar sind auch weitere Lösungen, wie Öffnungen in der Abblendlichtblende. Solche Öffnungen können teilweise auch mit zusätzlichen, reflektierenden Bauteilen kombiniert werden. Eine Öffnung in der Blende wird beispielsweise in der
Jede Deformation einer Lichteintrittsgrenzfläche oder einer Lichtaustrittsgrenzfläche der Projektionslinse, die zur Erzeugung von Overheadlicht dient, ist visuell deutlich wahrnehmbar, da die Erzeugung von Overheadlicht relativ große Ablenkwinkel von wenigstens mehreren Grad erfordert. Eine makroskopische, "unsichtbare" Lösung auf der Projektionslinse kann es demnach nicht geben.Any deformation of a light entry interface or a light exit interface of the projection lens, which is used to generate overhead light, is clearly perceptible, since the generation of overhead light requires relatively large deflection angles of at least several degrees. There can therefore be no macroscopic, "invisible" solution on the projection lens.
Dies ist vor dem Hintergrund von Bedeutung, dass bei aktuellen Scheinwerfern zunehmend Designaspekte in den Mittelpunkt rücken. Das heißt, dass die Akzeptanz bisher bekannter Overhead-Lösungen auf Projektionslinsen auf der Seite der Abnehmer von Scheinwerfern abnimmt. Das Erscheinungsbild von Scheinwerfern wird also von Kundenseite zunehmend kritischer beurteilt, so dass an das Aussehen und zum Teil auch an die Funktion der Scheinwerfer zunehmend deutlich höhere Anforderungen gestellt werden.This is important in view of the fact that design is increasingly becoming the focus of current headlights. This means that the acceptance of previously known overhead solutions on projection lenses is decreasing on the side of headlamp customers. The appearance of headlamps is being assessed more and more critically by customers, so that the appearance and, in part, also the function of the headlamps are subject to increasingly higher demands.
Auch das Aussehen der Projektionslinse im eingeschalteten Zustand spielt eine zunehmende Rolle, so dass Lösungen, bei denen ein scharfes, punktuelles Aufleuchten von Teilen der Linse erzeugt wird, nicht gewünscht werden.The appearance of the projection lens when it is switched on also plays an increasing role, so that solutions in which parts of the lens are illuminated in a precise, selective manner are not desired.
Dementsprechend sind viele bisherige Lösungen nicht mehr verwendbar, da sie von Kundenseite nicht mehr akzeptiert werden.Accordingly, many previous solutions can no longer be used because they are no longer accepted by customers.
Von Gesetzesseite ist momentan eine Verschärfung der Vorschriften für Overhead-Werte zu erwarten, die mit den bisherigen Lösungen teilweise nicht erfüllbar sind. So werden einerseits höhere Lichtmengen an einzelnen Messpunkten im Overhead-Bereich vorgeschrieben. Andererseits wird parallel dazu gefordert, die Blendwerte innerhalb der bisher erlaubten Grenzen zu halten. Darüber hinaus sind neue, definiert zu beleuchtende Messpunkte eingeführt worden. Bisherige Lösungen führen bei einer Steigerung des Overheadlichtniveaus auch entsprechend zu einer Erhöhung der Blendwerte über die erlaubten Grenzen hinaus, so dass solche Scheinwerfer unter Umständen nicht mehr zugelassen werden können.Legislation is currently expected to tighten the regulations for overhead values, some of which cannot be met with previous solutions. On the one hand, higher amounts of light are prescribed at individual measuring points in the overhead area. On the other hand, there is a parallel requirement to keep the glare values within the previously permitted limits. In addition, new measuring points to be illuminated have been introduced. Previous solutions lead to an increase in the glare values beyond the permitted limits if the overhead light level increases, so that such headlights may no longer be permitted.
Weiterhin ergeben sich durch bisherige Lösungen teilweise Nebenwirkungen in der Lichtverteilung: Da für den Overhead-Anteil aus der normalen Abblendlichtverteilung Licht entnommen werden muss, kann dies zu Inhomogenitäten innerhalb der Lichtverteilung auf der Straße führen, die als Löcher, also als deutlich sichtbare dunklere Stellen wahrgenommen werden.Furthermore, previous solutions sometimes result in side effects in the light distribution: Since light has to be taken from the normal low beam distribution for the overhead portion, this can lead to inhomogeneities within the light distribution on the street, which are perceived as holes, i.e. as clearly visible dark spots will.
Bisherige Lösungen für Overheadlicht weisen darüber hinaus den Nachteil auf, dass sie meistens nur mit einem spezifischen Projektionssystem kompatibel sind. Werden diese Lösungen bei einem anderen Projektionssystem angewendet, werden in der Regel die Zielvorgaben hinsichtlich zu erreichender Messwerte, Neutralität gegenüber der Leistungsfähigkeit und Homogenität der Lichtverteilung nicht erreicht. Die Overhead-Lösung passt dann nicht.Previous solutions for overhead light also have the disadvantage that they are usually only compatible with a specific projection system. If these solutions are used in another projection system, the targets regarding measured values to be achieved, neutrality with regard to the performance and homogeneity of the light distribution are generally not achieved. The overhead solution then does not fit.
Die hier vorgeschlagene Erfindung zeichnet sich in ihren Verfahrensaspekten durch die kennzeichnenden Merkmale des Anspruchs 1 aus.The process aspects of the invention proposed here are distinguished by the characterizing features of claim 1.
Im Ergebnis liefert die Erfindung in ihren Verfahrensaspekten ein Baukastenprinzip, das schrittweise zu einer individuell auf jedes Projektionssystem anpassbaren Overhead-Lösung führt.As a result, the method aspects of the invention provide a modular principle that gradually leads to an overhead solution that can be individually adapted to each projection system.
Dabei werden zunächst geeignete Positionen für die geometrischen Elemente gefunden. Größe und Ausgestaltung der geometrischen Elemente zur Erzeugung von Overheadlicht lassen sich anschließend leicht durch lichttechnische Simulation und Analyse zielgenau dimensionieren. So lässt sich für jedes Projektionssystem simultan die Einhaltung der geforderten Messwerte, die Erhaltung der Leistungsfähigkeit des Systems und der Homogenität der Lichtverteilung optimieren und erreichen.Suitable positions for the geometric elements are found first. The size and design of the geometric elements for generating overhead light can then be easily dimensioned precisely by means of lighting simulation and analysis. In this way, compliance with the required measurement values, maintaining the performance of the system and the homogeneity of the light distribution can be simultaneously optimized and achieved for each projection system.
Zur Erzeugung von Licht im Overhead-Bereich des Abblendlichtes von Projektionssystemen werden zu diesem Zweck exakt anpassbare, geometrische Elemente auf der Oberfläche der Projektionslinse vorgeschlagen, die durch ihre geringe Größe ein ästhetisch ansprechendes und gewolltes Erscheinungsbild aufweisen.
In ihren Vorrichtungsaspekten zeichnet sich die Erfindung durch die kennzeichnenden Merkmale des Anspruchs 8 aus.For the purpose of generating light in the overhead area of the low beam of projection systems, exactly adaptable, geometric elements on the surface of the projection lens are proposed for this purpose, which due to their small size have an aesthetically pleasing and desired appearance.
In its device aspects, the invention is characterized by the characterizing features of
Durch die zwei symmetrisch angeordneten Teilbereiche sowie den einen zentral unten angeordneten Teilbereich wird ein unauffälliges, gewolltes und insbesondere durch seine Symmetrie ästhetisch ansprechendes Erscheinungsbild der gesamten Linse erzielt, so dass die Linse als Design-Element angesehen werden kann. Das bewusst gewählte Erscheinungsbild der Overhead-Geometrien vermeidet, insbesondere durch seine Symmetrie, den subjektiven Eindruck einer defekten Linse.Due to the two symmetrically arranged partial areas and the one centrally arranged partial area, an inconspicuous, wanted and in particular aesthetically appealing appearance of the entire lens is achieved due to its symmetry, so that the lens can be regarded as a design element. The consciously chosen appearance of the overhead geometries avoids the subjective impression of a defective lens, especially due to its symmetry.
Weitere Vorteile ergeben sich aus den abhängigen Ansprüchen, der Beschreibung und den beigefügten Figuren.Further advantages result from the dependent claims, the description and the attached figures.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.It goes without saying that the features mentioned above and those yet to be explained below can be used not only in the combination indicated in each case, but also in other combinations or on their own without departing from the scope of the present invention.
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Dabei bezeichnen gleiche Bezugszeichen in den verschiedenen Figuren jeweils gleiche Elemente. Es zeigen, jeweils in schematischer Form:
- Fig. 1
- eine Schnittdarstellung eines Kraftfahrzeugscheinwerfers als technisches Umfeld der Erfindung;
- Fig. 2
- einen Querschnitt durch eine Ausgestaltung eines Overhead-Elements aus der
Fig. 1 ; - Fig. 3
- eine Draufsicht auf eine mit Overhead-Elementen ausgestattete Projektionslinse; und
- Fig. 4
- eine Lichtverteilung mit Overheadlicht, das mit einem nach dem erfindungsgemäßen Verfahren erzeugten Scheinwerfer erzeugt worden ist.
- Fig. 1
- a sectional view of a motor vehicle headlight as a technical environment of the invention;
- Fig. 2
- a cross section through an embodiment of an overhead element from the
Fig. 1 ; - Fig. 3
- a plan view of a projection lens equipped with overhead elements; and
- Fig. 4
- a light distribution with overhead light, which has been generated with a headlight generated according to the inventive method.
Die Projektion erfolgt durch eine Projektionslinse 26. Die Projektionslinse 26 ist in dem dargestellten Ausführungsbeispiel mittels eines an einem Kragen 28 angreifenden Linsenhalters (nicht dargestellt) an einem vorderen Rand des Reflektors 20 befestigt. Die Linse 26 besteht aus einem beliebigen lichtdurchlässigen Material, bspw. aus einem temperaturbeständigen Kunststoff oder Glas und weist an der der Lichtquelle 18 zugewandten Seite eine im wesentlichen ebene Lichteintritts-Grenzfläche 30 und an ihrer gegenüberliegenden Seite eine konvexe Lichtaustritts-Grenzfläche 32 auf. Selbstverständlich kann die Grenzfläche 30 auch konkav oder konvex ausgebildet sein.The projection takes place through a
Das Lichtmodul 16 dient zur Erzeugung einer Lichtverteilung mit Hell-Dunkel-Grenze, vorzugsweise einer Abblendlichtverteilung oder einer Nebellichtverteilung. Die Hell-Dunkel-Grenze ergibt sich als Projektion der im Bereich des zweiten Brennpunktes F2 des Reflektors 20 liegenden Kante der Blendenanordnung 22 in der vom Lichtmodul 6 auf der Fahrbahn erzeugten Lichtverteilung. Die Richtung x ist im Wesentlichen parallel zur Richtung der optischen Achse 24, die der Hauptabstrahlrichtung des Lichtstroms entspricht und, bei eingebautem Scheinwerfer 10, parallel zur Längsachse des Fahrzeugs. Die z-Richtung ist parallel zur Hochachse des Fahrzeugs und weist nach oben. Die y-Richtung steht entsprechend senkrecht auf der Zeichnungsebene und weist in diese hinein. In der unteren Hälfte der Projektionslinse 26 weist die Lichtaustritts-Grenzfläche 32 einen Teilbereich 58 der Grenzfläche mit einer Gruppierung von einem bis zu zwanzig einzelnen Overhead-Elementen 34 auf, die in Form von lokalen Deformationen der Grenzfläche, hier in Form von Vorsprüngen, verwirklicht sind. Eine weitere Gruppierung solcher oder ähnlicher Overhead-Elemente ist beim Gegenstand der
Alternativ kann die Kontur des Abschnitts 42 auch als Spline-Funktion oder als vergleichbare mathematische Funktion oder als Kombination solcher Funktionen erzeugt werden. Bevorzugt ist ein stetig differenzierbarer Verlauf der sich bei dem Schnitt ergebenden Randkurve bei in z-Richtung variabler Krümmung.Alternatively, the contour of
Der erste Abschnitt 42 erzeugt die gewünschte Ablenkwirkung. Der Abschnitt 46 dient lediglich zur Realisierung eines stetig differenzierbaren und damit kantenlosen Übergangs zwischen dem ersten Abschnitt 42 des einzelnen Overhead-Elements 34 und der übrigen Grenzfläche 32 der Linse 26.The
Einzelne Overhead-Elemente 34 werden durch Nebeneinanderanordnung und/oder durch Übereinanderanordnung zu Gruppierungen in Teilbereichen 54, 56, 58 der Grenzfläche gruppiert. Jede solche Gruppierung kann wegen ihrer räumlichen Begrenztheit selbst wieder als Overhead-Element betrachtet werden. Die gewünschte ablenkende Wirkung wird durch den Vergleich des Lichtbündels 48, das durch die Grenzfläche der Linse 26 im Bereich des Overhead-Elements 34 hindurchtritt, mit den Lichtbündeln 50, 52, die durch zum Overhead-Element 34 benachbarte Bereiche der Grenzfläche 32 hindurchtreten, deutlich. Im Vergleich zu den Lichtbündeln 50 und 52 erfährt ein Teil 48' des Lichtbündels 48 beim Durchtritt durch die Grenzfläche 32 eine Ablenkung in z-Richtung. Durch diese Ablenkung wird das Lichtbündel 48' über die Hell-Dunkel-Grenze hinaus abgelenkt, während der Teil 48" des Lichtbündels 48 in die Abblendlichtlichtverteilung abgelenkt wird. Die Lichtbündel 50, 52 beleuchten den Bereich unterhalb der Hell-Dunkel-Grenze.Individual
Entsprechend der Aufteilung der Flächen der Overhead-Elemente 34 und der übrigen Lichtaustritts-Grenzfläche der Linse 26 werden bevorzugt weniger als ein Prozent bis zu weniger als fünf Prozent des durch die Linse 26 hindurchtretenden Lichts in den Overhead-Bereich gestreut, während die verbleibenden mehr als fünfundneunzig bis mehr als neunundneunzig Prozent zur Beleuchtung des Bereichs unterhalb der Hell-Dunkel-Grenze dienen.According to the division of the areas of the
In einer bevorzugten Ausgestaltung beträgt eine maximale Ablenkung eines durch ein Overhead-Element 34 abgelenkten Lichtstrahls 48' gegenüber einem benachbarten Lichtstrahl 50, 52, der nicht durch das Overhead-Element 34 abgelenkt wird, mindestens fünf Grad.In a preferred embodiment, a maximum deflection of a light beam 48 'deflected by an
Bis hierher wurde die Erfindung am Beispiel einer Lichtaustritts-Grenzfläche einer Projektionslinse 26 erläutert. Alternativ oder ergänzend kann die örtlich selektiv ablenkende Wirkung aber auch durch eine entsprechende Ausgestaltung der Lichteintritts-Grenzfläche 30 der Linse 26 erzeugt werden. Bei Fahrzeugscheinwerfern, deren Lichtmodul 16 nicht schwenkbar ist, kann die ablenkende Wirkung gegebenenfalls auch durch eine Verteilung von Overhead-Elementen auf der Lichteintritts-Grenzfläche der Abdeckscheibe realisiert werden.So far, the invention has been explained using the example of a light exit interface of a
Im folgenden wird beschrieben, wie in sukzessiven Einzelschritten und damit sozusagen nach einem Baukastenprinzip eine Positionierung und Ausgestaltung von adaptierbaren geometrischen Overhead-Elementen 34 auf der Oberfläche, zum Beispiel auf der Lichtaustrittsgrenzfläche 32 einer Projektionslinse 26 erfolgt, um genau definiertes Licht im Overhead-Bereich zu erzeugen. Dieses Verfahren ist prinzipiell auf jedes Projektionssystem anwendbar.The following describes how successive individual steps, and thus, so to speak, according to a modular principle, are used to position and design adaptable geometric
Mittels eines neuen Analyseverfahrens werden im ersten Schritt Teilbereiche auf der Grenzfläche der Projektionslinse 26 definiert, die sich für die Positionierung von Overhead-Elementen eignen. Diese Teilbereiche sollen möglichst kleine Abmessungen aufweisen und damit ästhetisch wenig auffallen. Sie sollen bevorzugt in z-Richtung unten und/oder in y-Richtung außen angeordnet sein.In a first step, a new analysis method is used to define subareas on the interface of the
Zur Definition der Teilbereiche wird eine Grenzfläche der Projektionslinse 26, zum Beispiel die Lichtaustrittsgrenzfläche 32, rechnerisch in kleine Segmente zerlegt. Diese Segmente werden gezielt auf ihre Eignung für die Positionierung von Overhead-Elementen 34 untersucht. Eine Eignung ergibt sich in diesem Sinne insbesondere dadurch, dass solche Segmente die Umgebung der Hell-Dunkel-Grenze beleuchten. Am Ende der Analyse werden dadurch exakte Aussagen für die ideale Positionierung der geometrischen Elemente gewonnen. Unerwünschte Nebenwirkungen auf die Homogenität der Lichtverteilung oder die Leistungsfähigkeit des Projektionssystems werden durch dieses Vorgehen unterbunden.To define the subareas, an interface of the
Die Teilbereiche werden insbesondere so angeordnet, dass Auswirkungen auf die sich unterhalb der Hell-Dunkel-Grenze einstellende Abblendlichtverteilung, der das Overheadlicht letztlich entnommen wird, minimal sind. Die Homogenität der Lichtverteilung bleibt weitestgehend unberührt.The subareas are in particular arranged in such a way that effects on the low beam distribution below the light / dark boundary, from which the overhead light is ultimately extracted, are minimal. The homogeneity of the light distribution remains largely unaffected.
Es werden also in dem ersten Schritt Teilbereiche 54, 56, 58 auf der Grenzfläche der Projektionslinse definiert, die aber nicht zwangsläufig so angeordnet sein müssen, wie es in der
Erfindungsgemäß sind die Teilbereiche, zum Beispiel die dargestellten Teilbereiche 54, 56, 58 solche Bereiche auf der Projektionslinse 26, die von Licht durchquert werden, das bei nicht vorhandenen Overhead-Elementen 34 zur Erzeugung der Hell-Dunkel-Grenze dienen würde, also das zur Beleuchtung des hellen Bereichs an oder knapp unter der Hell-Dunkel-Grenze beitragen würde.
Für die Definition der Bereiche wird in dem ersten Schritt die Grenzfläche, zum Beispiel die Lichtaustritts-Grenzfläche 32 der Projektionslinse 26 rechnerisch in kleine Segmente zerlegt. Diese Segmente werden dann gezielt auf ihre Eignung für die Positionierung von Overhead-Elementen untersucht.According to the invention, the subregions, for example the
For the definition of the areas, the interface, for example the
Erfindungsgemäß werden drei Teilbereiche 54, 56, 58 definiert, wobei zwei Teilbereiche 54, 56 der drei Teilbereiche symmetrisch zu einer die optische Achse 24 des Scheinwerfers 10 enthaltenden und rechtwinklig zum Horizont und damit vertikal ausgerichteten gedachten Ebene angeordnet sind, wenn der Scheinwerfer so ausgerichtet ist, dass er eine Lichtverteilung mit einer regelkonformen, zumindest teilweise parallel zum Horizont liegenden Hell-Dunkel-Grenze erzeugt. In der
Bei auf Zylinderflächen basierenden ablenkenden Flächen bedeutet dies, dass die Achsen der zu verschiedenen einzelnen zusammengruppierten Overheasd-Elemente zugehörigen Zylinder nicht parallel zueinander ausgerichtet sind, wie es in der
Die beiden in Bezug auf eine mittig zwischen ihnen und parallel zur x-z-Ebene liegende Symmetrieebene symmetrisch zueinander angeordneten Teilbereiche 54, 56 haben bevorzugt eine Breite von 4 bis 5 mm bei einer Länge von ungefähr 10 mm. Der untere mittlere Bereich ist bevorzugt ca. 6 mm lang und ca. 2,5 mm hoch. Dies gilt für eine Linse 26 mit einem Durchmesser von ca. 60 bis 75 mm. Mit diesen Werten beträgt die mit Overhead-Elementen 34 besetzte Fläche nur etwa 3% der in die Ebene projizierten Lichtaustrittsfläche 32 der Projektionslinse 26. Dies ist wesentlich weniger als bei der gleichmäßigen Verteilung nach der
Bevorzugt ist auch, dass die beiden seitlich symmetrisch zueinander angeordneten Teilbereiche 54, 56 um eine jeweils zur optischen Achse parallele und durch den jeweiligen Teilbereich 54 oder 56 hindurch laufende Drehachse so verdreht angeordnet sind, dass sie Licht bei der im Anspruch 5 beschriebenen Ausrichtung des Scheinwerfers nicht nur nach oben, sondern auch zur Seite ablenken. Die optische Achse verläuft in der
In diesen im ersten Schritt definierten Teilbereichen 54, 56, 58 werden im zweiten Schritt einzelne Overhead-Elemente 34 und/oder Gruppen einzelner Overhead-Elemente angeordnet. Jede Gruppe enthält bevorzugt eine Zahl von einzelnen Overheadelementen, die zwischen 1 und 20 liegt. Die Overhead-Elemente 34 besitzen bevorzugt eine Geometrie, die durch ihre weitreichende Anpassbarkeit eine definierte Erzeugung von Overheadlicht ermöglicht. Gleichzeitig werden durch gezielte Lichtlenkung die einzuhaltenden Maximalwerte (Blendwerte) berücksichtigt, so dass die gesetzlichen Anforderungen sicher eingehalten werden können.In these
Eine gezielte Anpassung der Geometrie der Overhead-Elemente ist durch die große Zahl von Freiheitsgraden in der geometrischen Gestaltung besser als bisher möglich. Die Overhead-Elemente sind mindestens C1-stetig, also mindestens einmal stetig differenzierbar und damit ohne Stufe oder Knick in die Grenzfläche, also in die Oberfläche der Projektionslinse 26 integriert. In der Serienfertigung führt dies zu einer verbesserten Standzeit im Werkzeug.A targeted adaptation of the geometry of the overhead elements is possible better than before due to the large number of degrees of freedom in the geometric design. The overhead elements are at least C1 continuous, i.e. at least once continuously differentiable and therefore without Step or kink in the interface, so integrated into the surface of the
Die Dimensionierung der in die im ersten Schritt definierten Teilbereiche einzusetzenden geometrischen Elemente, seien es die Teilbereiche 54, 56, 58 oder andere im ersten Schritt definierte Teilbereiche, erfolgt mittels Simulation und nachfolgender Analyse. Durch die exakt definierte Geometrie der Overhead-Elemente 34 kann deren Wirkung mit guter Genauigkeit vorhergesagt werden. So ist eine leichte Anpassung der Elemente 34 an präzise Zielvorgaben möglich. Hierdurch wird eine erhebliche Zeitersparnis bei der Festlegung der Größe, Zahl und der Ausrichtung der Overhead-Elemente erzielt.The dimensioning of the geometric elements to be used in the partial areas defined in the first step, be it the
Dabei werden gezielt kleinere Oberflächenabschnitte 42 der Vorderfläche der Projektionslinse 26 relativ zu ihrer vorherigen Ausrichtung in vertikaler Richtung verkippt. Mit anderen Worten, eine z-Komponente einer Flächennormale des Oberflächenabschnitts oder Oberflächenbereichs wird vergrößert. Das Licht, welches durch diese Oberflächenabschnitte, respektive Oberflächenbereiche hindurchtritt, erfährt gegenüber seiner vorherigen Richtung eine deutliche Anhebung, also eine Vergrößerung der z-Komponente seiner Propagationsrichtung und beleuchtet dann als erwünschte Folge den Overhead-Bereich der Lichtverteilung. Dieses Licht wird dabei aus der sich ohne eine solche Verkippung einstellenden Abblendlichtverteilung entnommen.
Der vertikale Ablenkungswinkel wird innerhalb der verkippten Oberflächenabschnitte variiert, um den gesamten Overhead-Messbereich abzudecken. Dadurch entsteht ein flächig und homogen, wenn auch vergleichsweise schwach beleuchteter Bereich, in dem alle Overhead-Messpunkte liegen. Die maximale Lichtablenkung, die durch die Overhead-Elemente erzielt wird, liegt bei mindestens 4°, kann aber auch bis zu 10° betragen.The vertical deflection angle is varied within the tilted surface sections to cover the entire overhead measurement range. This creates a flat and homogeneous, albeit comparatively weak Illuminated area in which all overhead measurement points are located. The maximum light deflection achieved by the overhead elements is at least 4 °, but can also be up to 10 °.
Die gegen die Oberfläche 32 der Projektionslinse 26 verkippten Flächenabschnitte 42 werden im Allgemeinen durch Zylinderabschnitte verwirklicht. Sie können aber auch durch vergleichbare oder anders geartete mathematische Funktionen oder beispielsweise Splineflächen oder eine Kombination aus ihnen begrenzt werden. Die Integration der verkippten Einzelflächen in die Oberfläche der Projektionslinse erfolgt durch geschickte Verrundungen, die zwischen den Punkten 40 und 44 liegen. Dabei können verschiedene, durch mathematische Funktionen definierte Verrundungsflächen oder auch Freiformflächen zum Einsatz kommen. Auch durch Splinefunktionen definierte Flächen können dazu eingesetzt werden, anders definierte Flächen sind ebenso möglich.The
Die Verrundung wird insbesondere dadurch verwirklicht, dass ein mindestens einmal stetig differenzierbarer Übergang zwischen der Grundfläche 32 der Projektionslinse 26 und den Licht ablenkenden Oberflächenabschnitten, respektive den Overhead-Elementen erzeugt wird. Diese weiche Integration in die Projektionslinse 26 verbessert die Standzeit des Linsenwerkzeuges, da keine scharfen Kanten vorhanden sind, die abgenutzt werden könnten. Das grundsätzliche Aussehen und das Funktionsprinzip der Overhead-Elemente ist in der bereits beschriebenen
Die Anordnung und Gruppierung der Overhead-Elemente ist nicht auf eine Anordnung in einem Muster von drei Teilbereichen beschränkt. Je nach lichttechnischer Ausgestaltung des Projektionssystems ist eine unterschiedliche Positionierung, Anzahl und Größe der oben beschriebenen Overhead-Elemente 34 geeignet, um eine ausreichende Menge an Overheadlicht zu erzeugen, ohne dafür eine störende Beeinflussung der übrigen Lichtverteilung in Kauf nehmen zu müssen.The arrangement and grouping of the overhead elements is not limited to an arrangement in a pattern of three sub-areas. Depending on the lighting design of the projection system, different positioning, number and size of the above described
Aus gestalterischen Gründen stellt die in der
In jeden dieser Teilbereiche aus
Eine verbesserte Funktionalität der Overhead-Elemente wird durch die folgenden Maßnahmen erreicht: Die beiden seitlichen Bereiche mit Overhead-Elementen können zusätzlich um ihren Mittelpunkt gedreht werden, wobei die Drehachse parallel zur optischen Achse des Projektionssystems verläuft. Der Drehwinkel kann dabei optimal angepasst werden. Das hindurchtretende Licht wird nicht nur nach oben, sondern auch gezielt seitlich abgelenkt. Durch diese Maßnahme wird die Beleuchtung von hinsichtlich der zulässigen Beleuchtungsstärke nach oben limitierten Messpunkten (Blendwerte) wesentlich verringert. Gleichzeitig werden die seitlich liegenden Overhead-Messpunkte stärker beleuchtet, so dass die Effizienz der Overhead-Elemente steigt.An improved functionality of the overhead elements is achieved by the following measures: The two lateral areas with overhead elements can additionally be rotated about their center, the axis of rotation running parallel to the optical axis of the projection system. The angle of rotation can be optimally adjusted. The light passing through is not only deflected upwards, but also deliberately deflected to the side. By this measure, the lighting of With regard to the permissible illuminance, measurement points limited to a higher limit (glare values) are significantly reduced. At the same time, the overhead measuring points on the side are illuminated more intensely, so that the efficiency of the overhead elements increases.
Durch die Kompaktheit der Overhead-Elemente innerhalb ihrer Teilbereiche können diese derart auf der Oberfläche der Projektionslinse angeordnet werden, dass das benötigte Licht ohne störende Auswirkungen auf die übrige Lichtverteilung entnommen werden kann. Bereiche, die nur eine geringe Durchmischung des Lichtes aufweisen oder für die Leistung des Projektionssystems relevant sind, können ausgespart werden: Auf diese Weise werden beispielsweise Inhomogenitäten oder Verdunklungen im Bereich direkt vor dem Fahrzeug und in den Seitenbereichen der Lichtverteilung unterbunden.Due to the compactness of the overhead elements within their subareas, they can be arranged on the surface of the projection lens in such a way that the required light can be removed without disruptive effects on the rest of the light distribution. Areas that only have a slight mixing of the light or are relevant for the performance of the projection system can be left out: In this way, for example, inhomogeneities or darkening in the area directly in front of the vehicle and in the side areas of the light distribution are prevented.
Besondere Bedeutung hat die zentral und bevorzugt unten in dem Teilbereich 58 der Linsenvorderfläche integrierte Gruppe von Overhead-Elementen 34. In der
Gleichzeitig ermöglichen sie durch ihre bevorzugt seitliche Streuung eine Homogenisierung des Lichtes im Overheadbereich, es wird der längs der y-Richtung entstehende Mittelungseffekt ausgenutzt. Dadurch wird ein sehr gleichmäßiges Overheadlicht generiert.At the same time, their preferred lateral scattering enables the light to be homogenized in the overhead region; the averaging effect which arises along the y direction is used. This generates a very even overhead light.
Sie verringern außerdem das Auftreten von Inhomogenitäten in der Lichtverteilung, weil das im Overhead-Bereich benötigte Licht an einer weiteren, unkritischen Stelle der Linsenoberfläche entnommen wird.They also reduce the occurrence of inhomogeneities in the light distribution because this occurs in the overhead area required light is taken from another, uncritical point on the lens surface.
Das durch die geringere Auffälligkeit ästhetisch verbesserte Erscheinungsbild der Overhead-Elemente wird dadurch erreicht, dass an Stelle eines weit über die Projektionslinse ausgedehnten Overhead-Elementes oder zahlreicher diskreter Einzelelemente hier sehr kompakte Strukturen mit räumlich geringen Abmessungen eingesetzt werden.The aesthetically improved appearance of the overhead elements due to the less conspicuousness is achieved by using very compact structures with spatially small dimensions instead of an overhead element which extends far beyond the projection lens or numerous discrete individual elements.
Durch die Aufteilung der ablenkenden Flächen in einzelne Elemente 34, die übereinander, beziehungsweise nebeneinander angeordnet sind, wird eine sehr geringe Höhe der einzelnen Elemente in Richtung ihrer Flächennormalen erreicht. Diese Höhe liegt bevorzugt im Bereich von 0,02 bis 0,2 mm. In einzelnen Fällen kann auch die Verwendung von nur einem Element pro Gruppe ausreichend sein, hier entfällt die Aufteilung. Diese Ausgestaltung ist dann bevorzugt, wenn für die Overhead-Elemente nur eine entsprechend geringe Fläche benötigt wird.By dividing the deflecting surfaces into
Die Gruppierung mehrerer, gleichartiger Overhead-Elemente 34 in einem abgegrenzten Teilbereich, zum Beispiel einem Overhead-Bereich 54, 56 oder 58, und die symmetrische Anordnung der Teilbereiche führen zu einem gewollten Aussehen, so dass die Elemente nicht mit Oberflächenfehlern auf der Linse zu verwechseln sind. Das gewollte Aussehen wird durch die symmetrisch zur Vertikalachse verlaufende Anordnung der beiden seitlichen Overhead-Bereiche 54, 56 und den mittig gelegenen Zusatzbereich 58, der ebenfalls eine Gruppierung von einzelnen Overheadelementen 34 enthält, verstärkt.The grouping of several, similar
Eine insgesamt resultierende Lichtverteilung mit einem erfindungsgemäß erzeugten Overhead-Anteil ist in der
Die mit einer Mindestmenge an Licht zu beleuchtenden Overhead-Messpunkte M1-M6 liegen sicher im ausreichend beleuchteten Overheadbereich. Gleichzeitig steigt das Lichtniveau unterhalb der Messpunkte M4, M5, M6 nicht weiter an, so dass die dort zulässigen Maximalwerte (Blendwerte) sicher eingehalten werden.The overhead measurement points M1-M6 to be illuminated with a minimum amount of light are safely in the sufficiently illuminated overhead area. At the same time, the light level below the measuring points M4, M5, M6 does not rise any further, so that the maximum values (glare values) permitted there are reliably maintained.
Der Kern der hier vorgestellten Erfindung betrifft das beschriebene Verfahren zur Anordnung und Auslegung von Linsenstrukturen zur Erzeugung von Overhead-Werten. Dabei ist die Erfindung nicht auf die Erzeugung einer speziellen Overheadlichtverteilung beschränkt.The essence of the invention presented here relates to the described method for arranging and designing lens structures for generating overhead values. The invention is not limited to the generation of a special overhead light distribution.
Mit dem Verfahren sollen die Position, die Abmessungen und die Anzahl der Overhead-Elemente festgelegt werden. Dabei müssen die Lichtquelle 18 selbst und der Reflektor 20 sowie die Blende 22 der Abblendlichtverteilung berücksichtigt werden. Als Lichtquellen kommen Halogen- und Gasentladungslampen sowie Halbleiterlichtquellen in Frage. Bevorzugte Position der Overheadstrukturen sind Bereiche auf der Linse, die von Licht durchquert werden, das zur Erzeugung der Hell-Dunkelgrenze dient.The method is intended to determine the position, the dimensions and the number of overhead elements. The
Die erfindungsgemäßen Oberflächenstrukturen können mit den bekannten Linsenstrukturen (Wellenstrukturen, Narbenmuster, Rauten nach
Bei dem hier beschriebenen Verfahren zur Anordnung und Auslegung von Linsenstrukturen zur Erzeugung von Overhead-Werten wird die Linsenvorderfläche in einem ersten Schritt rechnerisch in kleine, einzelne Segmente geeigneter Größe aufgeteilt. In einer Ausgestaltung sind diese Segmente jeweils 5 x 5 mm groß.In the method described here for arranging and designing lens structures for generating overhead values, the lens front surface is computationally divided into small, individual segments of a suitable size in a first step. In one embodiment, these segments are each 5 x 5 mm in size.
Dann wird in einem zweiten Schritt für jedes Segment der Fläche der Projektionslinse eine eigene Simulation durchgeführt. Es wird dabei jeweils nur das Licht betrachtet, welches durch das aktuell untersuchte Segment der Projektionslinse hindurchtritt. Als Ergebnis erhält man für jedes Segment die zugehörige Lichtverteilung. Damit ist jeweils bekannt, an welchem Ort der Lichtverteilung wie viel Licht aus dem betreffenden Segment ankommt.Then, in a second step, a separate simulation is carried out for each segment of the surface of the projection lens. Only the light that passes through the currently examined segment of the projection lens is considered. The result is the associated light distribution for each segment. It is thus known in each case at which location of the light distribution how much light arrives from the relevant segment.
Auf dieser Basis wird für jedes Segment in einem dritten Schritt festgelegt, ob sich dieses Segment für eine Integration von Overhead-Elemente eignet. Auf diese Weise werden alle Linsenbereiche in diesem dritten Schritt in für die Overhead-Beleuchtung nutzbare Bereiche und nicht nutzbare Bereiche eingeteilt. Nutzbare Bereiche sind solche Bereiche, die Licht an die Hell-Dunkel-Grenze oder in deren Nähe bringen. Nicht nutzbare Bereiche beleuchten das Vorfeld des Fahrzeugs oder leuchten den seitlichen Bereich der Lichtverteilung aus oder sind für die Leistungsfähigkeit des Projektionssystems wesentlich. Würde man in diesem Sinne nicht nutzbare Bereiche Overhead-Elemente anordnen, würde die Homogenität der Lichtverteilung und die Leistungsfähigkeit des Projektionssystems verschlechtert.On this basis, it is determined in a third step for each segment whether this segment is suitable for integrating overhead elements. In this way, in this third step, all lens areas are divided into areas that can be used for overhead lighting and areas that cannot be used. Usable areas are areas that bring light to or near the cut-off line. Areas that cannot be used illuminate this In front of the vehicle or illuminate the side area of the light distribution or are essential for the performance of the projection system. In this sense, if you arranged non-usable areas of overhead elements, the homogeneity of the light distribution and the performance of the projection system would be impaired.
Mit dem Ergebnis dieser Analyse ist die optimale Positionierung der Overhead-Elemente auf der Projektionslinse bekannt. Es folgt nun der vierte Schritt, in dem die Geometrie und die Eigenschaften der Overhead-Elemente festgelegt werden. Die Festlegung der Geometrie der Overhead-Einzelelemente und die Gruppierung solcher Overhead-Elemente erfolgt bevorzugt nach den folgenden Gesichtspunkten:
Die Höhe des zu beleuchtenden Bereiches, also die Entfernung von Unterkante zu Oberkante des Overheadlichtbandes wird über den Radius des zu Grunde liegenden Zylinders eingestellt. Je kleiner der Radius gewählt wird, desto stärker ist das entstehende Overheadlicht vertikal ausgedehnt. Die optimale vertikale Positionierung des Overhead-Bereiches wird über eine vertikale Verschiebung der Zylinderachse der Overhead-Einzelelemente erreicht. Das gesamte Lichtband ist in seiner vertikalen Position exakt einstellbar. Es kann insgesamt weiter nach oben oder unten verschoben werden, um die vorgegebenen Messpunkte optimal zu beleuchten. Unter einer vertikalen Verschiebung wird dabei eine Verschiebung parallel zur Fahrzeughochachse verstanden. In den Figuren ist dies die z-Richtung. Die für das Overheadlicht benötigte Lichtmenge lässt sich leicht über die Variation der Anzahl der Overheand-Einzelelemente und über die laterale Ausdehnung der Einzelelemente zielgenau dimensionieren. Je größer die Fläche der Overhead-Elemente ist, desto mehr Overheadlicht wird erzeugt. Die zusätzliche Entlastung der Blendwerte wird über eine geeignete Positionierung der Overhead-Einzelelemente und zusätzlich über eine Drehung der Overhead-Elemente erreicht. Die Positionierung der Overhead-Einzelelemente erfolgt dabei so, dass diese nur in unkritischen Bereichen der Projektionslinse angeordnet werden. Dies sind die oben genannten geeigneten Bereiche. Durch die Drehung auf der Oberfläche der Projektionslinse 32 wird zusätzlich eine seitliche Ablenkung erzeugt, während bei einer Ausrichtung mehrerer einzelner Overhead-Elemente 34 in z-Richtung übereinander also gewissermaßen in einer vertikalen Reihe, eine Ablenkung des Lichtes lediglich in vertikaler Richtung erfolgt. Um die ablenkende Fläche zu vergrößern, die in der
The height of the area to be illuminated, ie the distance from the lower edge to the upper edge of the overhead light strip, is set via the radius of the cylinder on which it is based. The smaller the radius is chosen, the more the resulting overhead light is expanded vertically. The optimal vertical positioning of the overhead area is achieved by vertical displacement of the cylinder axis of the overhead individual elements. The entire light band can be precisely adjusted in its vertical position. Overall, it can be moved up or down to optimally illuminate the specified measuring points. A vertical shift is understood to mean a shift parallel to the vertical axis of the vehicle. In the figures, this is the z direction. The amount of light required for the overhead light can easily be precisely targeted by varying the number of individual overheand elements and by extending the individual elements laterally dimension. The larger the area of the overhead elements, the more overhead light is generated. The additional relief of the glare values is achieved by suitable positioning of the overhead individual elements and additionally by rotating the overhead elements. The individual overhead elements are positioned such that they are only arranged in non-critical areas of the projection lens. These are the appropriate areas mentioned above. A lateral deflection is additionally generated by the rotation on the surface of the
Claims (13)
- Method for arranging and dimensioning geometric overhead elements (34), which are implemented as local deformations of an interface (32) of a projection lens (26) of a motor vehicle projection headlamp (10), which is designed to project an edge, which delimits a luminous output from a light source of the headlamp, as the light-dark cut-off of a light distribution produced by the headlamp in front thereof, the overhead elements (34) being designed so as to direct light into an overhead region of the light distribution, which region is above the light-dark cut-off, characterized in that, in a first step, three subregions (54, 56, 58) of the interface (32) are defined which are those regions on the projection lens (26) through which light passes, which light would serve to produce the light-dark cut-off, in the event of there being no overhead elements (34), such that said light would contribute to the illumination of the light region on the light-dark cut-off, two of the three subregions being arranged so as to be symmetrical with respect to a plane, which contains the optical axis of the headlamp and is perpendicular with respect to the horizon and is thus a vertically oriented imaginary plane, if the headlamp is oriented in such a way that it produces a light distribution having a light-dark cut-off that conforms to the rules and is at least partially parallel to the horizon, and such that, in such an orientation, the third region is arranged in a lower half of the interface such that it is divided into two equal halves by the vertically oriented imaginary plane, in that, in a second step, overhead elements (34) are defined which are arranged in the subregions defined in the first step, in that an overhead illumination resulting from the simulated overhead elements is simulated, the simulation of the defined overhead elements being used in order to iteratively modify a number and/or shape of the defined overhead elements such that the simulated overhead illumination satisfies predefined conditions.
- Method according to claim 1, characterized in that, in the first step, subregions are defined on the interface of the projection lens which are suitable for positioning overhead elements, the suitability resulting from the fact that the subregions have the smallest possible dimensions and that a luminous output, which passes through these subregions, can be deflected without disturbing effects on the rest of the light distribution into the overhead region of the light distribution, which region is above the light-dark cut-off.
- Method according to either of the preceding claims, characterized in that, in the first step, the interface of the projection lens is split into small segments, and in that these segments are specifically examined for their suitability for the positioning of overhead elements.
- Method according to claim 1, characterized in that the two laterally symmetrically arranged subregions are rotated about a rotational axis, which is parallel to the optical axis and passes through the relevant subregion, such that, in the described orientation of the headlamp, said subregions deflect light not only upward, but also to the side.
- Method according to any of the preceding claims, characterized in that, for the defined overhead elements, those geometries are used which are distinguished by extensive adaptability and of which the effect on the light distribution can be simulated with a high level of accuracy.
- Method according to claim 5, characterized in that the overhead elements are defined such that the interface between the overhead elements and the air continuously differentiably transitions into the adjacent interface of the projection lens which does not belong to the overhead element.
- Method according to claim 4, characterized in that the overhead elements to be arranged in the subregions are defined with respect to their size, number, geometric design and orientation within the subregions.
- Motor vehicle projection headlamp, which is designed to project an edge, which delimits a luminous output from a light source of the headlamp, as the light-dark cut-off of a light distribution produced by the headlamp in front thereof, and which headlamp comprises a projection lens having geometric overhead elements which are implemented as local deformations of an interface of the projection lens and are designed so as to direct light into an overhead region of the light distribution, which region is above the light-dark cut-off, characterized in that the overhead elements are arranged on three subregions of the interface so as to be restricted, which subregions are those regions on the projection lens (26) through which light passes, which light would serve to produce the light-dark cut-off, in the event of there being no overhead elements (34), such that said light would contribute to the illumination of the light region on the light-dark cut-off, two of the three subregions being arranged so as to be symmetrical with respect to a plane, which contains the optical axis of the headlamp and is perpendicular with respect to the horizon and is thus a vertically oriented imaginary plane, if the headlamp is oriented in such a way that it produces a light distribution having a light-dark cut-off that conforms to the rules and is at least partially parallel to the horizon, and such that, in such an orientation, the third region is arranged in a lower half of the interface such that it is divided into two equal halves by the vertically oriented imaginary plane.
- Headlamp according to claim 8, characterized in that the two laterally symmetrically arranged subregions are arranged so as to be rotated about a rotational axis, which is parallel to the optical axis and passes through the relevant subregion, such that, in the described orientation of the headlamp, said subregions deflect light not only upward, but also to the side.
- Headlamp according to claim 9, characterized in that the interface between the overhead elements and the air continuously differentiably transitions into the adjacent surface of the interface of the projection lens which does not belong to the overhead element.
- Headlamp according to any of claims 8 to 10, characterized in that each subregion comprises one to ten overhead elements.
- Headlamp according to claim 11, characterized in that the overhead elements protrude out or protrude in by 0.02 to 0.2 mm from the interface of the projection lens surrounding said elements.
- Headlamp according to any of claims 8 to 12, characterized in that, in addition to the overhead elements, the interface comprises surface structures which are not used for producing an overhead illumination and are arranged outside of the subregions of the interface which have the overhead elements.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011114636A DE102011114636A1 (en) | 2011-10-04 | 2011-10-04 | Arrangement and dimensioning of overhead elements on a projection lens of a motor vehicle headlight |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2578929A2 EP2578929A2 (en) | 2013-04-10 |
EP2578929A3 EP2578929A3 (en) | 2015-04-29 |
EP2578929B1 true EP2578929B1 (en) | 2020-05-20 |
Family
ID=46968079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12187226.1A Active EP2578929B1 (en) | 2011-10-04 | 2012-10-04 | Arrangement of overhead elements on a projection lens of a motor vehicle headlamp |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2578929B1 (en) |
DE (1) | DE102011114636A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022109270A1 (en) | 2022-04-14 | 2023-10-19 | Marelli Automotive Lighting Reutlingen (Germany) GmbH | Projection light module for a motor vehicle headlight with a projection lens having overhead elements |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3048485B1 (en) | 2016-03-02 | 2019-04-05 | Valeo Vision | IMPROVED LENS FOR LIGHTING DEVICE OF MOTOR VEHICLE |
FR3064339B1 (en) * | 2017-03-21 | 2020-10-30 | Valeo Vision | LIGHT MODULE WITH CHROMATISM CORRECTION |
DE102020109869A1 (en) | 2019-05-03 | 2020-11-05 | Docter Optics Se | Process for the production of an optical element from glass |
DE112020003372A5 (en) | 2019-07-13 | 2022-03-31 | Docter Optics Se | Process for manufacturing an optical element from glass |
WO2021104558A1 (en) | 2019-11-28 | 2021-06-03 | Docter Optics Se | Method for producing an optical element from glass |
DE102020115079A1 (en) | 2020-06-05 | 2021-12-09 | Docter Optics Se | Process for the production of an optical element from glass |
EP3974709A1 (en) * | 2020-09-25 | 2022-03-30 | ZKW Group GmbH | Lighting device for a motor vehicle headlight |
US20230348309A1 (en) | 2020-10-20 | 2023-11-02 | Docter Optics Se | Method for producing an optical element made of glass |
DE102020127639A1 (en) | 2020-10-20 | 2022-04-21 | Docter Optics Se | Process for manufacturing an optical element from glass |
US11708289B2 (en) | 2020-12-03 | 2023-07-25 | Docter Optics Se | Process for the production of an optical element from glass |
DE102022101728A1 (en) | 2021-02-01 | 2022-08-04 | Docter Optics Se | Process for manufacturing an optical element from glass |
DE102021105560A1 (en) | 2021-03-08 | 2022-09-08 | Docter Optics Se | Process for manufacturing an optical element from glass |
DE102022100705A1 (en) | 2022-01-13 | 2023-07-13 | Docter Optics Se | motor vehicle |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE9000395U1 (en) | 1990-01-16 | 1991-05-16 | Robert Bosch Gmbh, 7000 Stuttgart | Headlights for motor vehicles |
DE4031352A1 (en) | 1990-10-04 | 1992-04-09 | Bosch Gmbh Robert | Headlamp with achromatic lens combination for motor vehicle - has corrugations on convex face at angle to horizontal for diffusion of boundary of bright field |
US5307247A (en) | 1992-09-22 | 1994-04-26 | Autopal, Statni Podnik | Headlamp for motor vehicles |
FR2770617B1 (en) * | 1997-10-30 | 2000-02-04 | Valeo Vision | ELLIPTICAL PROJECTOR FOR A MOTOR VEHICLE WITH A LIGHT BEAM |
FR2841512B1 (en) | 2002-06-28 | 2005-01-07 | Valeo Vision | PROJECTOR DEVICE FOR A MOTOR VEHICLE LIGHTING PORTIC POINTS |
DE10309434B4 (en) | 2003-03-05 | 2016-11-24 | Hella Kgaa Hueck & Co. | Headlights for vehicles |
FR2853394B1 (en) | 2003-04-03 | 2006-03-10 | Valeo Vision | PROJECTION DEVICE FOR A MOTOR VEHICLE LIGHTING PORTIC POINTS |
DE102004024107B4 (en) | 2004-05-14 | 2011-07-28 | Docter Optics GmbH, 07806 | Headlight lens for a motor vehicle headlight |
DE202005004080U1 (en) | 2005-03-14 | 2005-07-07 | Zizala Lichtsysteme Gmbh | Lens for vehicle headlamp has laterally adjacent elongated recesses and/or raised sections extending essentially from above downwards along surface of optical element on convex front side of lens |
KR20090064724A (en) | 2007-12-17 | 2009-06-22 | 현대모비스 주식회사 | Head lamp for vehicles |
JP5257747B2 (en) * | 2008-03-26 | 2013-08-07 | スタンレー電気株式会社 | Vehicle headlamp |
DE102008023551B4 (en) | 2008-05-14 | 2019-05-09 | Automotive Lighting Reutlingen Gmbh | Lighting device in the form of a projection headlight for motor vehicles |
KR101491989B1 (en) | 2008-12-16 | 2015-02-10 | 현대모비스 주식회사 | Head lamp for vehicles |
DE102009020593B4 (en) | 2009-05-09 | 2017-08-17 | Automotive Lighting Reutlingen Gmbh | For generating a defined overhead lighting vehicle headlights |
JP5537989B2 (en) * | 2010-02-24 | 2014-07-02 | スタンレー電気株式会社 | Headlamp and bifocal lens |
-
2011
- 2011-10-04 DE DE102011114636A patent/DE102011114636A1/en not_active Ceased
-
2012
- 2012-10-04 EP EP12187226.1A patent/EP2578929B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022109270A1 (en) | 2022-04-14 | 2023-10-19 | Marelli Automotive Lighting Reutlingen (Germany) GmbH | Projection light module for a motor vehicle headlight with a projection lens having overhead elements |
Also Published As
Publication number | Publication date |
---|---|
EP2578929A2 (en) | 2013-04-10 |
DE102011114636A1 (en) | 2013-04-04 |
EP2578929A3 (en) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2578929B1 (en) | Arrangement of overhead elements on a projection lens of a motor vehicle headlamp | |
EP3343091B1 (en) | Light module for motor vehicle headlamps | |
EP3404313B1 (en) | Motor vehicle headlamp with a light module with microprojectors | |
AT512468B1 (en) | LIGHTING MODULE FOR A MOTOR VEHICLE | |
DE102009020593B4 (en) | For generating a defined overhead lighting vehicle headlights | |
EP3351849B1 (en) | Led module and lighting device for a motor vehicle with a plurality of such led modules | |
DE102014205994B4 (en) | Light module with semiconductor light source and attachment optics and motor vehicle headlight with such a light module | |
DE102009010558B4 (en) | Light module for a headlight of a motor vehicle and motor vehicle headlight with such a light module | |
EP2828571B1 (en) | Headlamp for vehicles with projection lens | |
EP3042118B1 (en) | Lighting device of a motor vehicle headlight with an optical structure | |
AT516836B1 (en) | Lighting device with beam diaphragm and motor vehicle headlights | |
DE19807153A1 (en) | Headlights for vehicles according to the projection principle | |
WO2017106891A1 (en) | Headlight for a vehicle | |
EP3274216B1 (en) | Lighting device for vehicle headlight | |
EP2420728A1 (en) | Projection headlamp with targeted weakened light intensity gradients at the light-dark border | |
EP2863108B1 (en) | LED module of a motor vehicle headlamp | |
DE102019218776B4 (en) | lamp for vehicle | |
EP3301350A1 (en) | Light module for a motor vehicle headlamp | |
EP3671304B1 (en) | Method for constructing an optical element for a motor vehicle headlight | |
EP3721134B1 (en) | Projection device for a motor vehicle headlight | |
EP3550203A1 (en) | Light module for a swept-back motor vehicle lighting device | |
EP3765781B1 (en) | Light module for motor vehicle headlight | |
DE112019004405T5 (en) | Optical element of a vehicle light, vehicle light module, vehicle headlight and vehicle | |
DE19805217B4 (en) | Motor vehicle headlight with a mirror with laterally juxtaposed zones and method for producing such a mirror | |
EP3719391B1 (en) | Partial high beam module for a motor vehicle headlight |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F21S 8/10 20060101ALI20150319BHEP Ipc: F21V 5/00 20150101AFI20150319BHEP |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20151029 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180612 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502012016090 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F21V0005000000 Ipc: F21S0041255000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F21S 41/255 20180101AFI20190612BHEP Ipc: F21S 41/275 20180101ALI20190612BHEP |
|
INTG | Intention to grant announced |
Effective date: 20190716 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAL | Information related to payment of fee for publishing/printing deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR3 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200107 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012016090 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1272831 Country of ref document: AT Kind code of ref document: T Effective date: 20200615 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200921 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200920 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200821 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200820 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200820 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012016090 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20201004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201004 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201004 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201004 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1272831 Country of ref document: AT Kind code of ref document: T Effective date: 20201004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230920 Year of fee payment: 12 |