EP2578929B1 - Agencement d'éléments de rétroprojection sur une lentille de projection d'un phare de véhicule automobile - Google Patents

Agencement d'éléments de rétroprojection sur une lentille de projection d'un phare de véhicule automobile Download PDF

Info

Publication number
EP2578929B1
EP2578929B1 EP12187226.1A EP12187226A EP2578929B1 EP 2578929 B1 EP2578929 B1 EP 2578929B1 EP 12187226 A EP12187226 A EP 12187226A EP 2578929 B1 EP2578929 B1 EP 2578929B1
Authority
EP
European Patent Office
Prior art keywords
light
overhead
elements
interface
headlamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12187226.1A
Other languages
German (de)
English (en)
Other versions
EP2578929A3 (fr
EP2578929A2 (fr
Inventor
Markus Kiesel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Automotive Lighting Reutlingen Germany GmbH
Original Assignee
Automotive Lighting Reutlingen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Lighting Reutlingen GmbH filed Critical Automotive Lighting Reutlingen GmbH
Publication of EP2578929A2 publication Critical patent/EP2578929A2/fr
Publication of EP2578929A3 publication Critical patent/EP2578929A3/fr
Application granted granted Critical
Publication of EP2578929B1 publication Critical patent/EP2578929B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/275Lens surfaces, e.g. coatings or surface structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/17Arrangement or contour of the emitted light for regions other than high beam or low beam
    • F21W2102/18Arrangement or contour of the emitted light for regions other than high beam or low beam for overhead signs

Definitions

  • the present invention relates to a method according to the preamble of claim 1 and a headlight according to the independent device claim.
  • Such a method and such a headlight are from the DE 20 2005 004 080 U1 known.
  • the 10 2009 020 593 A1 shows, in particular, a motor vehicle projection headlight, which is set up to project an edge, which limits a luminous flux of a light source of the headlight, as a light-dark boundary of a light distribution generated in advance by the headlight, and which has a projection lens with geometric overhead elements which are implemented as local deformations of an interface of the projection lens and which are set up to emit light above the light-dark boundary direct overhead area of the light distribution.
  • the light-dark boundary of a low beam distribution delimits a lower, brightly illuminated area of the light distribution from an upper, darker area.
  • the upper area is dimly illuminated in order to reduce glare to other road users, in particular oncoming traffic.
  • illuminance levels are required for motor vehicle headlights. These are formulated separately for low and high beam using numerous measuring points.
  • the present invention relates in particular to the measurement points prescribed for a low beam.
  • a representation of measuring points for the illuminance can for example Automotive paperback, 24th edition, April 2002, ISBN 3-528-13876-9, page 816 be removed.
  • This area of light distribution above the light-dark boundary is also referred to as the overhead or signlight area (derived from the visibility of the traffic signs).
  • the legal measuring points in this area extend up to 4 ° above the horizon and are indicated by Characterized minimum or maximum values as well as so-called total values for the illuminance that is set in each of the measuring points.
  • a local deformation of the lower lens area of the projection lens with an additional, horizontally scattering superstructure is also from the utility model DE 20 2005 004 080 known.
  • Geometric surface modifications are also known, but they are not primarily aimed at illuminating overhead measurement points: These include, for example, lenses with horizontal and oblique wave structures. This is known both for the European ECE legal area and for the American SAE legal area. As an example, refer to the DE 40 31 352 A1 referred. Lenses with cylindrical elements are described in utility model G 90 00 395.
  • additional reflective components in the projection system is possible, such as the use of reflective diaphragms arranged transversely to the direction of light.
  • An example of a reflective additional component which is arranged directly behind the projection lens is the US 5,307,247 refer to.
  • openings in the dipped beam can also be combined with additional, reflective components.
  • An opening in the panel is, for example, in the KR 10 2009 0064 724 A and in the KR 10 2010 0069 471 A described.
  • the appearance of the projection lens when it is switched on also plays an increasing role, so that solutions in which parts of the lens are illuminated in a precise, selective manner are not desired.
  • the method aspects of the invention provide a modular principle that gradually leads to an overhead solution that can be individually adapted to each projection system.
  • Suitable positions for the geometric elements are found first.
  • the size and design of the geometric elements for generating overhead light can then be easily dimensioned precisely by means of lighting simulation and analysis. In this way, compliance with the required measurement values, maintaining the performance of the system and the homogeneity of the light distribution can be simultaneously optimized and achieved for each projection system.
  • the invention is characterized by the characterizing features of claim 8.
  • Fig. 1 shows in detail a schematic representation of an embodiment of a headlight 10 in a longitudinal section.
  • the headlight 10 has a housing 12 with a light exit opening, which from a transparent cover 14 is covered.
  • a projection module 16 is arranged in the housing 12.
  • the projection module 16 has a light source 18 and a reflector 20, which reflects at least part of the light emanating from the light source 18 and bundles it into a focal region.
  • the reflector 20 preferably has the shape of an ellipsoid of revolution or an ellipsoid-like free form deviating therefrom.
  • the light source 18 is arranged in a first focal point F 1 of the reflector 20.
  • a diaphragm arrangement 22 shields at least part of the luminous flux emanating from the reflector 20.
  • the aperture 22 is shown in the Fig. 1 arranged in a plane that runs perpendicular to an optical axis 24 and through the second focal point F 2 of the reflector 20.
  • the aperture 22 can also be arranged lying parallel to the optical axis 24 and have a light reflecting surface.
  • the diaphragm can also have a certain extent parallel to the optical axis, so that it is to a certain extent a thick diaphragm. In any case, however, the diaphragm edge lying in the region of the second focal point F2 or a diaphragm edge lying in the region of a second focal plane is projected as a light-dark boundary into the apron of the headlight 10.
  • the projection takes place through a projection lens 26.
  • the projection lens 26 is attached to a front edge of the reflector 20 by means of a lens holder (not shown) which engages a collar 28.
  • the lens 26 is made of any light-permeable material, for example a temperature-resistant plastic or glass, and has a substantially flat light entry interface 30 on the side facing the light source 18 and a convex light exit interface on its opposite side 32 on.
  • the interface 30 can also be concave or convex.
  • the light module 16 is used to generate a light distribution with a cut-off line, preferably a low beam distribution or a fog light distribution.
  • the light-dark boundary results as a projection of the edge of the diaphragm arrangement 22 located in the region of the second focal point F2 of the reflector 20 in the light distribution generated by the light module 6 on the road.
  • the direction x is essentially parallel to the direction of the optical axis 24, which corresponds to the main emission direction of the luminous flux, and, when the headlight 10 is installed, parallel to the longitudinal axis of the vehicle.
  • the z direction is parallel to the vertical axis of the vehicle and points upwards.
  • the y direction is accordingly perpendicular to the plane of the drawing and points into it.
  • the light exit interface 32 has a partial region 58 of the interface with a grouping of up to twenty individual overhead elements 34, which are implemented in the form of local deformations of the interface, here in the form of projections .
  • Another grouping of such or similar overhead elements is the subject of Fig. 1 also arranged laterally approximately at the level of the optical axis 24 in a partial region 54 of the interface 32.
  • Figure 2 shows a cross section through a single overhead element 34 of the lower grouping in the partial area 58 according to Figure 1 as he is with one in the drawing plane of the Fig. 1 performed cut results qualitatively.
  • the cross section of the individual overhead element 34 is divided into a first section 42, which lies between points 38 and 40, and a second section 46 between points 40 and 44.
  • Below the vertical extension or length of the individual overhead element is the distance between points 38 and 44 in the Fig. 2 Roger that.
  • the curvature of the first section 42 corresponds to the curvature of a cylinder jacket.
  • the surface of the individual overhead element 34 belonging to the section 42 corresponds to part of an outer surface of an imaginary cylinder, the axis of which, when the headlight 10 is installed in the vehicle, lies parallel to the base area of the vehicle within the lens 26.
  • the contour of section 42 can also be generated as a spline function or as a comparable mathematical function or as a combination of such functions.
  • a continuously differentiable course of the edge curve resulting from the cut with a curvature that is variable in the z direction is preferred.
  • the first section 42 produces the desired deflection effect.
  • Section 46 only serves to implement a continuously differentiable and thus edgeless transition between the first section 42 of the individual overhead element 34 and the remaining interface 32 of the lens 26.
  • each such grouping can itself be regarded as an overhead element.
  • the desired deflecting effect is obtained by comparing the light bundle 48 which passes through the interface of the lens 26 in the region of the overhead element 34 with the light bundles 50, 52 pass through areas of the interface 32 adjacent to the overhead element 34, clearly. In comparison to the light beams 50 and 52, a part 48 ′ of the light beam 48 experiences a deflection in the z direction when it passes through the interface 32.
  • This deflection deflects the light bundle 48 'beyond the light-dark boundary, while the part 48 "of the light bundle 48 is deflected into the low-beam light distribution.
  • the light bundles 50, 52 illuminate the area below the light-dark boundary.
  • the lens 26 According to the division of the areas of the overhead elements 34 and the remaining light exit interface of the lens 26, preferably less than one percent to less than five percent of the light passing through the lens 26 is scattered into the overhead region, while the remaining ones are scattered more than ninety-five to more than ninety-nine percent are used to illuminate the area below the cut-off line.
  • a maximum deflection of a light beam 48 'deflected by an overhead element 34 is at least five degrees with respect to an adjacent light beam 50, 52 which is not deflected by the overhead element 34.
  • the invention has been explained using the example of a light exit interface of a projection lens 26.
  • the locally selectively deflecting effect can also be generated by an appropriate configuration of the light entry interface 30 of the lens 26.
  • the distracting effect may also be achieved by distributing overhead elements on the light entry interface the cover plate can be realized.
  • a new analysis method is used to define subareas on the interface of the projection lens 26 which are suitable for the positioning of overhead elements. These subareas should have dimensions that are as small as possible and thus attract little attention aesthetically. They should preferably be arranged below in the z direction and / or outside in the y direction.
  • an interface of the projection lens 26, for example the light exit interface 32 is mathematically broken down into small segments. These segments are specifically examined for their suitability for the positioning of overhead elements 34. In this sense, suitability arises in particular from the fact that such segments illuminate the surroundings of the light-dark boundary. At the end of the analysis, exact statements are made for the ideal positioning of the geometric elements. This procedure prevents undesirable side effects on the homogeneity of the light distribution or the performance of the projection system.
  • Fig. 3 shows a top view of a light exit interface 32 of a projection lens 26 with a preferred arrangement of partial areas 54, 56 and 58.
  • Two symmetrically arranged partial areas 54 and 56 and a central area 58 arranged below are preferably defined.
  • This arrangement results in an inconspicuous, wanted and aesthetically appealing appearance of the entire lens 26, so that here there is a further degree of design freedom, or so that the lens 26 can be regarded as a design element.
  • the deliberately chosen appearance of the symmetrical arrangement of the partial areas 54 and 56 also avoids, in particular, an impression of a defective lens, as can be awakened, for example, in the case of an overhead element running across the lens in the form of a cylinder part volume.
  • the subareas are in particular arranged in such a way that effects on the low beam distribution below the light / dark boundary, from which the overhead light is ultimately extracted, are minimal.
  • the homogeneity of the light distribution remains largely unaffected.
  • partial areas 54, 56, 58 are thus defined on the interface of the projection lens, but these do not necessarily have to be arranged as it is in FIG Fig. 3 is shown. It is essential that the partial areas 54, 56, 58 are suitable for an arrangement of overhead elements 34, the suitability resulting from the fact that the partial areas 54, 56, 58 have dimensions that are as small as possible and that a luminous flux that passes through these partial areas 54, 56, 58 passes through, can be deflected without disturbing effects on the rest of the light distribution in the overhead area of the light distribution above the light-dark boundary.
  • the subregions are those regions on the projection lens 26 which are traversed by light which would be used to generate the light-dark boundary if there are no overhead elements 34, that is to say that Illumination of the bright area at or just below the cut-off would contribute.
  • the interface for example the light exit interface 32 of the projection lens 26, is broken down mathematically into small segments. These segments are then specifically examined for their suitability for the positioning of overhead elements.
  • three sub-areas 54, 56, 58 are defined, two sub-areas 54, 56 of the three sub-areas being arranged symmetrically to an imaginary plane containing the optical axis 24 of the headlight 10 and perpendicular to the horizon and thus oriented vertically when the headlight is oriented in this way that it generates a light distribution with a rule-compliant, at least partially parallel light-dark boundary.
  • this is the xz level.
  • the third region 58 is arranged in a lower half of the interface 32 such that it is divided into two equal halves by the vertically oriented imaginary plane 39, so that there is also a symmetry of the arrangement with respect to the plane 39 mentioned .
  • the individual overhead elements 34 which are grouped together in such a partial area, can also be arranged rotated relative to one another.
  • the two partial regions 54, 56 arranged symmetrically to one another with respect to a symmetry plane lying centrally between them and parallel to the xz plane preferably have a width of 4 to 5 mm with a length of approximately 10 mm.
  • the lower middle region is preferably approximately 6 mm long and approximately 2.5 mm high. This applies to a lens 26 with a diameter of approximately 60 to 75 mm. With these values, the area occupied by overhead elements 34 is only about 3% of the light exit area 32 of the projection lens 26 projected into the plane. This is significantly less than with the uniform distribution according to FIG DE 10 2009 020 593 A1 .
  • this area share is less than 5%. It generally applies to the partial areas that their width is preferably between two mm and ten mm, and their length is preferably between one and twenty mm.
  • the two partial regions 54, 56 arranged laterally symmetrically to one another are rotated about an axis of rotation that is parallel to the optical axis and runs through the respective partial region 54 or 56 in such a way that they illuminate light in the Claim 5 described alignment of the headlamp not only deflect upwards, but also to the side.
  • the optical axis runs in the Fig. 3 parallel to the x direction.
  • the subregions 54 and 56 are thus preferably with overhead elements, for example with overhead elements 34 which are shown in FIG Fig. 2 illustrated type proves that these overhead elements deflect light passing through them so that this light has propagation direction components 60, 62, respectively.
  • propagation direction components are distinguished by the fact that they not only have an upward component (in the z direction), but also that they have directional components that point laterally, ie in the positive and / or negative y direction.
  • the width of the overhead lighting in the y direction required for conformity with the rules is thereby achieved, so that all prescribed measuring points are illuminated.
  • each group preferably contains a number of individual overhead elements, which is between 1 and 20.
  • the overhead elements 34 preferably have a geometry which, due to their far-reaching adaptability, enables a defined generation of overhead light. At the same time, the maximum values (glare values) to be observed are taken into account through targeted light control, so that the legal requirements can be safely met.
  • the overhead elements are at least C1 continuous, i.e. at least once continuously differentiable and therefore without Step or kink in the interface, so integrated into the surface of the projection lens 26. In series production, this leads to an improved tool life.
  • the dimensioning of the geometric elements to be used in the partial areas defined in the first step takes place by means of simulation and subsequent analysis. Due to the precisely defined geometry of the overhead elements 34, their effect can be predicted with good accuracy. This makes it easy to adapt the elements 34 to precise targets. This saves a considerable amount of time when determining the size, number and alignment of the overhead elements.
  • Smaller surface sections 42 of the front surface of the projection lens 26 are specifically tilted in the vertical direction relative to their previous orientation.
  • a z component of a surface normal of the surface section or surface area is enlarged.
  • the light that passes through these surface sections or surface areas experiences a significant increase compared to its previous direction, i.e. an increase in the z component of its direction of propagation, and then illuminates the overhead area of the light distribution as a desired consequence. This light is taken from the low beam distribution that occurs without such a tilt.
  • the vertical deflection angle is varied within the tilted surface sections to cover the entire overhead measurement range. This creates a flat and homogeneous, albeit comparatively weak Illuminated area in which all overhead measurement points are located.
  • the maximum light deflection achieved by the overhead elements is at least 4 °, but can also be up to 10 °.
  • the surface sections 42 tilted against the surface 32 of the projection lens 26 are generally realized by cylinder sections. However, they can also be limited by comparable or different mathematical functions or, for example, spline surfaces or a combination of them.
  • the tilted individual surfaces are integrated into the surface of the projection lens by clever rounding, which lies between points 40 and 44.
  • Various rounding surfaces or free-form surfaces defined by mathematical functions can be used. Areas defined by spline functions can also be used; other defined areas are also possible.
  • the rounding is realized in particular in that an at least once continuously differentiable transition is generated between the base surface 32 of the projection lens 26 and the light-deflecting surface sections or the overhead elements.
  • This soft integration into the projection lens 26 improves the service life of the lens tool, since there are no sharp edges that could be worn out.
  • the basic appearance and the functional principle of the overhead elements is described in the Figure 2 shown.
  • the arrangement and grouping of the overhead elements is not limited to an arrangement in a pattern of three sub-areas.
  • different positioning, number and size of the above described overhead elements 34 suitable to generate a sufficient amount of overhead light, without having to put up with a disturbing influence on the rest of the light distribution.
  • each of these areas Fig. 3 at least one single overhead element 34 is placed.
  • occupying each sub-area with only up to ten individual overhead elements 34 is preferred, the number of individual overhead elements in the sub-areas arranged symmetrically to one another preferably being the same.
  • two groups are placed in the two lateral areas of the projection lens (based on the vertical axis) and the third group in the central area, preferably further below.
  • the two lateral areas with overhead elements can additionally be rotated about their center, the axis of rotation running parallel to the optical axis of the projection system.
  • the angle of rotation can be optimally adjusted.
  • the light passing through is not only deflected upwards, but also deliberately deflected to the side.
  • the lighting of With regard to the permissible illuminance measurement points limited to a higher limit (glare values) are significantly reduced.
  • the overhead measuring points on the side are illuminated more intensely, so that the efficiency of the overhead elements increases.
  • the overhead elements Due to the compactness of the overhead elements within their subareas, they can be arranged on the surface of the projection lens in such a way that the required light can be removed without disruptive effects on the rest of the light distribution. Areas that only have a slight mixing of the light or are relevant for the performance of the projection system can be left out: In this way, for example, inhomogeneities or darkening in the area directly in front of the vehicle and in the side areas of the light distribution are prevented.
  • the group of overhead elements 34 which is integrated centrally and preferably below in the partial area 58 of the front surface of the lens, is of particular importance Fig. 3 this is the group of individual overhead elements 34 arranged in the partial area 58. These support the elements 34 arranged laterally in the partial areas 54 and 56 by making an additional contribution to the required overhead light.
  • a very small height of the individual elements is achieved in the direction of their surface normals. This height is preferably in the range from 0.02 to 0.2 mm. In individual cases, the use of only one element per group may be sufficient; the division is not necessary here. This configuration is preferred if only a correspondingly small area is required for the overhead elements.
  • the desired appearance is enhanced by the arrangement of the two lateral overhead areas 54, 56, which runs symmetrically to the vertical axis, and the central additional area 58, which also contains a grouping of individual overhead elements 34.
  • FIG Fig. 4 An overall resulting light distribution with an overhead component generated according to the invention is shown in FIG Fig. 4 shown.
  • H denotes a horizontal and V a vertical.
  • the H direction thus corresponds to the y direction also used here and the V direction corresponds to the z direction.
  • the numbers are given in degrees.
  • the closed curves are lines of the same illuminance, the illuminance decreasing from the inside to the outside.
  • the overhead measurement points M1-M6 to be illuminated with a minimum amount of light are safely in the sufficiently illuminated overhead area.
  • the light level below the measuring points M4, M5, M6 does not rise any further, so that the maximum values (glare values) permitted there are reliably maintained.
  • the essence of the invention presented here relates to the described method for arranging and designing lens structures for generating overhead values.
  • the invention is not limited to the generation of a special overhead light distribution.
  • the method is intended to determine the position, the dimensions and the number of overhead elements.
  • the light source 18 itself and the reflector 20 and the diaphragm 22 of the low-beam light distribution must be taken into account.
  • Halogen and gas discharge lamps and semiconductor light sources come into question as light sources.
  • Preferred positions of the overhead structures are areas on the lens which are traversed by light which serves to generate the light-dark boundary.
  • the surface structures according to the invention can be made using the known lens structures (wave structures, grain patterns, rhombuses) DE102008023551 ), especially those combined to influence the light-dark boundary.
  • the structures for generating the overhead values are not superimposed on the other structures. Instead, the overhead structures described here are retained and the other structures are trimmed accordingly.
  • the lens front surface is computationally divided into small, individual segments of a suitable size in a first step.
  • these segments are each 5 x 5 mm in size.
  • a separate simulation is carried out for each segment of the surface of the projection lens. Only the light that passes through the currently examined segment of the projection lens is considered. The result is the associated light distribution for each segment. It is thus known in each case at which location of the light distribution how much light arrives from the relevant segment.
  • this segment is suitable for integrating overhead elements.
  • all lens areas are divided into areas that can be used for overhead lighting and areas that cannot be used.
  • Usable areas are areas that bring light to or near the cut-off line. Areas that cannot be used illuminate this In front of the vehicle or illuminate the side area of the light distribution or are essential for the performance of the projection system. In this sense, if you arranged non-usable areas of overhead elements, the homogeneity of the light distribution and the performance of the projection system would be impaired.
  • the fourth step now follows, in which the geometry and the properties of the overhead elements are defined.
  • the definition of the geometry of the overhead individual elements and the grouping of such overhead elements is preferably carried out according to the following aspects:
  • the height of the area to be illuminated ie the distance from the lower edge to the upper edge of the overhead light strip, is set via the radius of the cylinder on which it is based.
  • the optimal vertical positioning of the overhead area is achieved by vertical displacement of the cylinder axis of the overhead individual elements.
  • the entire light band can be precisely adjusted in its vertical position. Overall, it can be moved up or down to optimally illuminate the specified measuring points.
  • a vertical shift is understood to mean a shift parallel to the vertical axis of the vehicle. In the figures, this is the z direction.
  • the amount of light required for the overhead light can easily be precisely targeted by varying the number of individual overheand elements and by extending the individual elements laterally dimension. The larger the area of the overhead elements, the more overhead light is generated.
  • the additional relief of the glare values is achieved by suitable positioning of the overhead individual elements and additionally by rotating the overhead elements.
  • the individual overhead elements are positioned such that they are only arranged in non-critical areas of the projection lens. These are the appropriate areas mentioned above.
  • a lateral deflection is additionally generated by the rotation on the surface of the projection lens 32, whereas when several individual overhead elements 34 are aligned one above the other in a vertical row, so to speak, the light is deflected only in the vertical direction.
  • several such individual overhead elements 34 are preferably arranged in a row next to one another or one above the other.
  • These individual overhead elements are preferably combined in groups, as is the case, for. B. from the top view of a projection lens 26 according to Figure 3 can be seen.
  • the grouping in the partial area 58 shows a side-by-side arrangement in which several individual overhead elements 34 are arranged side by side in the y-direction.
  • the two other groups, which lie in the partial areas 54 and 56, each each show groups of overhead elements 34, which have been rotated somewhat out of the z direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Claims (13)

  1. Procédé de disposition et de dimensionnement d'éléments de rétroprojection (34) géométriques, qui sont réalisés en tant que déformations locales d'une surface limite (32) d'une lentille de projection (26) d'un projecteur de véhicule automobile (10), qui est conçu pour projeter un bord, qui délimite un flux lumineux d'une source de lumière du projecteur, en tant que limite clarté-obscurité d'une distribution de lumière produite par le projecteur dans le champ situé devant celui-ci, dans lequel les éléments de rétroprojection (34) dont conçus pour diriger la lumière dans une zone de rétroprojection, située au-dessus de la limite clarté-obscurité, de la distribution de lumière, caractérisé en ce que, dans une première étape, trois zones partielles (54, 56, 58) de la surface limite (32) sont définies, qui sont les zones sur la lentille de projection (26) qui sont traversées par la lumière qui servirait, lorsque les éléments de rétroprojection (34) ne sont pas présents, à produire la limite clarté-obscurité, du fait qu'elle contribuerait à éclairer la zone claire sur la limite clarté-obscurité, dans lequel deux des trois zones partielles sont disposées de manière symétrique par rapport à un plan imaginaire contenant l'axe optique du projecteur et orienté de manière perpendiculaire par rapport à l'horizon et donc verticalement, lorsque le projecteur est orienté de sorte qu'il produit une distribution de lumière avec une limite clarté-obscurité conforme à la réglementation, située au moins en partie parallèlement à l'horizon, et que la troisième zone, pour une telle orientation, est disposée dans une moitié inférieure de la surface limite, de sorte qu'elle est divisée par le plan imaginaire orienté verticalement en deux moitiés identiques, que dans une deuxième étape, des éléments de rétroprojection (34) sont définis, qui sont disposés dans les zones partielles définies dans la première étape, qu'un éclairage en rétroprojection résultant des éléments de rétroprojection simulés est simulé, dans lequel la simulation des éléments de rétroprojection définis est utilisée pour modifier de manière itérative un nombre et/ou une forme des éléments de rétroprojection définis, de sorte que l'éclairage en rétroprojection simulé satisfait aux conditions prédéfinies.
  2. Procédé selon la revendication 1, caractérisé en ce que, dans la première étape, des zones partielles sont définies sur la surface limite de la lentille de projection, qui sont adaptées au positionnement d'éléments de rétroprojection, dans lequel l'adaptation est produite du fait que les zones partielles présentent les dimensions les plus petites possibles et qu'un flux lumineux, qui traverse ces zones partielles, peut être dévié sans effets gênants sur le reste de la distribution de lumière dans la zone de rétroprojection, située au-dessus de la limite clarté-obscurité, de la distribution de lumière.
  3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, dans la première étape, la surface limite de la lentille de projection est décomposée en petits segments et que ces segments sont examinés de manière précise en ce qui concerne leur adaptation au positionnement des éléments de rétroprojection.
  4. Procédé selon la revendication 1, caractérisé en ce que les deux zones partielles disposées de manière latéralement symétrique l'une par rapport à l'autre sont amenées en rotation autour d'un axe de rotation respectivement parallèle à l'axe optique et s'étendant à travers la zone partielle respective, de sorte qu'avec l'orientation décrite du projecteur, elles dévient la lumière non seulement vers le haut, mais également vers le côté.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, pour les éléments de rétroprojection définis, des géométries qui se caractérisent par une grande adaptabilité et dont l'effet sur la distribution de lumière peut être simulée sont utilisées avec une précision satisfaisante.
  6. Procédé selon la revendication 5, caractérisé en ce que les éléments de rétroprojection sont définis de sorte que la surface limite des éléments de rétroprojection, par rapport à l'air, passe en continu de manière différentiable dans la surface limite voisine, ne faisant pas partie de l'élément de rétroprojection, de la lentille de projection.
  7. Procédé selon la revendication 4, caractérisé en ce que les éléments de rétroprojection destinés à être disposés dans les zones partielles sont définis quant à leur taille, leur nombre, leur configuration géométrique et orientation à l'intérieur des zones partielles.
  8. Projecteur de véhicule automobile, qui est conçu pour projeter un bord, qui délimite un flux lumineux d'une source de lumière du projecteur, en tant que limite clarté-obscurité d'une distribution de lumière produite par le projecteur dans le champ situé devant celui-ci, et qui présente une lentille de projection avec des éléments de rétroprojection géométriques, qui sont réalisés en tant que déformations locales d'une surface limite de la lentille de projection et qui sont conçus pour diriger la lumière dans une zone de rétroprojection, située au-dessus de la limite clarté-obscurité, de la distribution de lumière, caractérisé en ce que les éléments de rétroprojection sont disposés de manière délimitée sur trois zones partielles de la surface limite, qui sont les zones sur la lentille de projection (26) qui sont traversées par la lumière qui servirait ainsi, lorsque les éléments de rétroprojection (34) ne sont pas présents, à produire la limite clarté-obscurité du fait qu'elle contribuerait à éclairer la zone claire sur la limite clarté-obscurité, dans lequel deux des trois zones partielles sont disposées de manière symétrique par rapport à un plan imaginaire contenant l'axe optique du projecteur et orienté de manière perpendiculaire par rapport à l'horizon et donc verticalement, lorsque le projecteur est orienté de sorte qu'il produit une distribution de lumière avec une limite clarté-obscurité conforme à la réglementation, située au moins en partie parallèlement à l'horizon, et que la troisième zone, avec une telle orientation, est disposée dans une moitié inférieure de la surface limite, de sorte qu'elle est divisée par le plan imaginaire orienté verticalement en deux moitiés identiques.
  9. Projecteur selon la revendication 8, caractérisé en ce que les deux zones partielles disposées de manière latéralement symétrique l'une par rapport à l'autre sont amenées en rotation autour d'un axe de rotation respectivement parallèle à l'axe optique et s'étendant à travers la zone partielle respective, de sorte qu'avec l'orientation décrite du projecteur, elles dévient la lumière non seulement vers le haut, mais également vers le côté.
  10. Projecteur selon la revendication 9, caractérisé en ce que la surface limite des éléments de rétroprojection, par rapport à l'air, passe en continu de manière différentiable dans la surface voisine de la surface limite, ne faisant pas partie de l'élément de rétroprojection, de la lentille de projection.
  11. Projecteur selon l'une quelconque des revendications 8 à 10, caractérisé en ce que chaque zone partielle présente un à dix éléments de rétroprojection.
  12. Projecteur selon la revendication 11, caractérisé en ce que les éléments de rétroprojection font saillie de 0,02 à 0,2 mm de largeur à l'extérieur de la surface limite, les entourant, de la lentille de projection ou font saillie vers l'intérieur.
  13. Projecteur selon l'une quelconque des revendications 8 à 12, caractérisé en ce que la surface limite présente en plus des éléments de rétroprojection des structures de surface qui ne servent pas à produire un éclairage de rétroprojection et qui sont disposés à l'extérieur des zones partielles, présentant des éléments de rétroprojection, de la surface limite.
EP12187226.1A 2011-10-04 2012-10-04 Agencement d'éléments de rétroprojection sur une lentille de projection d'un phare de véhicule automobile Active EP2578929B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011114636A DE102011114636A1 (de) 2011-10-04 2011-10-04 Anordnung und Dimensionierung von Overhead-Elementen auf einer Projektionslinse eines Kraftfahrzeugscheinwerfers

Publications (3)

Publication Number Publication Date
EP2578929A2 EP2578929A2 (fr) 2013-04-10
EP2578929A3 EP2578929A3 (fr) 2015-04-29
EP2578929B1 true EP2578929B1 (fr) 2020-05-20

Family

ID=46968079

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12187226.1A Active EP2578929B1 (fr) 2011-10-04 2012-10-04 Agencement d'éléments de rétroprojection sur une lentille de projection d'un phare de véhicule automobile

Country Status (2)

Country Link
EP (1) EP2578929B1 (fr)
DE (1) DE102011114636A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022109270A1 (de) 2022-04-14 2023-10-19 Marelli Automotive Lighting Reutlingen (Germany) GmbH Projektionslichtmodul für einen Kraftfahrzeugscheinwerfer mit einer Overheadelemente aufweisenden Projektionslinse

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3048485B1 (fr) * 2016-03-02 2019-04-05 Valeo Vision Lentille amelioree pour dispositif d'eclairage de vehicule automobile
FR3064339B1 (fr) * 2017-03-21 2020-10-30 Valeo Vision Module lumineux avec correction de chromatisme
DE102020109869A1 (de) 2019-05-03 2020-11-05 Docter Optics Se Verfahren zur Herstellung eines optischen Elementes aus Glas
DE102020115078A1 (de) 2019-07-13 2021-01-14 Docter Optics Se Verfahren zur Herstellung eines optischen Elementes aus Glas
WO2021104558A1 (fr) 2019-11-28 2021-06-03 Docter Optics Se Procédé de fabrication d'un élément optique à partir de verre
DE102020115079A1 (de) 2020-06-05 2021-12-09 Docter Optics Se Verfahren zur Herstellung eines optischen Elementes aus Glas
EP3974709A1 (fr) * 2020-09-25 2022-03-30 ZKW Group GmbH Dispositif d'éclairage pour un phare de véhicule automobile
DE102020127639A1 (de) 2020-10-20 2022-04-21 Docter Optics Se Verfahren zur Herstellung eines optischen Elementes aus Glas
DE112021002952A5 (de) 2020-10-20 2023-04-13 Docter Optics Se Verfahren zur Herstellung eines optischen Elementes aus Glas
US11708289B2 (en) 2020-12-03 2023-07-25 Docter Optics Se Process for the production of an optical element from glass
DE102022101728A1 (de) 2021-02-01 2022-08-04 Docter Optics Se Verfahren zur Herstellung eines optischen Elementes aus Glas
DE102021105560A1 (de) 2021-03-08 2022-09-08 Docter Optics Se Verfahren zur Herstellung eines optischen Elementes aus Glas
DE102022100705A1 (de) 2022-01-13 2023-07-13 Docter Optics Se Kraftfahrzeug

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9000395U1 (de) 1990-01-16 1991-05-16 Robert Bosch Gmbh, 7000 Stuttgart Scheinwerfer für Kraftfahrzeuge
DE4031352A1 (de) 1990-10-04 1992-04-09 Bosch Gmbh Robert Scheinwerfer fuer kraftfahrzeuge
US5307247A (en) 1992-09-22 1994-04-26 Autopal, Statni Podnik Headlamp for motor vehicles
FR2770617B1 (fr) * 1997-10-30 2000-02-04 Valeo Vision Projecteur elliptique pour vehicule automobile dont le faisceau lumineux presente une coupure attenuee
FR2841512B1 (fr) 2002-06-28 2005-01-07 Valeo Vision Dispositif projecteur pour vehicule automobile eclairant des points de portique
DE10309434B4 (de) 2003-03-05 2016-11-24 Hella Kgaa Hueck & Co. Scheinwerfer für Fahrzeuge
FR2853394B1 (fr) 2003-04-03 2006-03-10 Valeo Vision Dispositif de projection pour vehicule automobile eclairant des points de portique
DE102004024107B4 (de) 2004-05-14 2011-07-28 Docter Optics GmbH, 07806 Scheinwerferlinse für einen Kraftfahrzeugscheinwerfer
DE202005004080U1 (de) 2005-03-14 2005-07-07 Zizala Lichtsysteme Gmbh Linse für einen Fahrzeugscheinwerfer
KR20090064724A (ko) 2007-12-17 2009-06-22 현대모비스 주식회사 차량용 헤드램프
JP5257747B2 (ja) * 2008-03-26 2013-08-07 スタンレー電気株式会社 車両用前照灯
DE102008023551B4 (de) 2008-05-14 2019-05-09 Automotive Lighting Reutlingen Gmbh Beleuchtungseinrichtung in Form eines Projektionsscheinwerfers für Kraftfahrzeuge
KR101491989B1 (ko) 2008-12-16 2015-02-10 현대모비스 주식회사 차량용 헤드램프
DE102009020593B4 (de) 2009-05-09 2017-08-17 Automotive Lighting Reutlingen Gmbh Zur Erzeugung einer definierten Overhead-Beleuchtung eingerichteter Fahrzeugscheinwerfer
JP5537989B2 (ja) * 2010-02-24 2014-07-02 スタンレー電気株式会社 前照灯及び複焦点レンズ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022109270A1 (de) 2022-04-14 2023-10-19 Marelli Automotive Lighting Reutlingen (Germany) GmbH Projektionslichtmodul für einen Kraftfahrzeugscheinwerfer mit einer Overheadelemente aufweisenden Projektionslinse

Also Published As

Publication number Publication date
EP2578929A3 (fr) 2015-04-29
DE102011114636A1 (de) 2013-04-04
EP2578929A2 (fr) 2013-04-10

Similar Documents

Publication Publication Date Title
EP2578929B1 (fr) Agencement d'éléments de rétroprojection sur une lentille de projection d'un phare de véhicule automobile
EP3343091B1 (fr) Module d'éclairage de phare de véhicule automobile
EP3404313B1 (fr) Phare de véhicule automobile pourvu de module lumineux comportant des microprojecteurs
AT512468B1 (de) Beleuchtungsmodul für ein kraftfahrzeug
DE102009020593B4 (de) Zur Erzeugung einer definierten Overhead-Beleuchtung eingerichteter Fahrzeugscheinwerfer
EP3351849B1 (fr) Module à led et dispositif d'éclairage pour un véhicule automobile pourvu d'une pluralité de tels modules à led
DE102014205994B4 (de) Lichtmodul mit Halbleiterlichtquelle und Vorsatzoptik und Kraftfahrzeugscheinwerfer mit einem solchen Lichtmodul
DE102009010558B4 (de) Lichtmodul für einen Scheinwerfer eines Kraftfahrzeugs und Kraftfahrzeugscheinwerfer mit einem solchen Lichtmodul
EP2828571B1 (fr) Phare de véhicule avec lentille de projection
EP3042118B1 (fr) Dispositif d'éclairage d'un phare de véhicule automobile avec une structure optique
AT516836B1 (de) Beleuchtungsvorrichtung mit Strahlenblende sowie Kraftfahrzeugscheinwerfer
DE19807153A1 (de) Scheinwerfer für Fahrzeuge nach dem Projektionsprinzip
WO2017106891A1 (fr) Phare pour véhicule
EP3274216B1 (fr) Dispositif d'éclairage pour phares de véhicules
EP2420728A1 (fr) Phare avec gradient d'intensité lumineuse ciblée amortie sur la limite de clair-obscur
EP2863108B1 (fr) Module à LED d'un phare de véhicule automobile
DE102019218776B4 (de) Leuchte für Fahrzeug
EP3301350A1 (fr) Module d'éclairage pour phare de véhicule automobile
EP3671304B1 (fr) Procédé de construction d'un élément optique pour un phare de véhicule automobile
EP3721134B1 (fr) Dispositif de projection pour un phare de véhicule automobile
EP3765781B1 (fr) Module de lumière pour phare de véhicule automobile
DE19805217B4 (de) Kraftfahrzeugscheinwerfer mit einem Spiegel mit seitlich nebeneinander angeordneten Zonen und Verfahren zur Herstellung eines solchen Spiegels
DE112019004405T5 (de) Optisches Element einer Fahrzeugleuchte, Fahrzeugleuchtenmodul, Fahrzeug-Scheinwerfer und Fahrzeug
EP3719391B1 (fr) Module de feu de route partiel pour un phare de véhicule automobile
DE10310263A1 (de) LED-Scheinwerfer zur asymmetrischen Ausleuchtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 8/10 20060101ALI20150319BHEP

Ipc: F21V 5/00 20150101AFI20150319BHEP

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20151029

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180612

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012016090

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21V0005000000

Ipc: F21S0041255000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/255 20180101AFI20190612BHEP

Ipc: F21S 41/275 20180101ALI20190612BHEP

INTG Intention to grant announced

Effective date: 20190716

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200107

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012016090

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1272831

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200921

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200920

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200821

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200820

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200820

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012016090

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201004

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201004

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201004

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1272831

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 12