EP3343091B1 - Light module for motor vehicle headlamps - Google Patents
Light module for motor vehicle headlamps Download PDFInfo
- Publication number
- EP3343091B1 EP3343091B1 EP17205636.8A EP17205636A EP3343091B1 EP 3343091 B1 EP3343091 B1 EP 3343091B1 EP 17205636 A EP17205636 A EP 17205636A EP 3343091 B1 EP3343091 B1 EP 3343091B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- light
- optics
- lens
- lens combination
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009826 distribution Methods 0.000 claims description 81
- 239000004065 semiconductor Substances 0.000 claims description 50
- 230000003287 optical effect Effects 0.000 claims description 26
- 238000000605 extraction Methods 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 3
- 239000003550 marker Substances 0.000 claims description 2
- 230000000644 propagated effect Effects 0.000 claims 1
- 238000009434 installation Methods 0.000 description 8
- 238000001816 cooling Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
- F21S41/143—Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/285—Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/25—Projection lenses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/25—Projection lenses
- F21S41/26—Elongated lenses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/30—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
- F21S41/32—Optical layout thereof
- F21S41/322—Optical layout thereof the reflector using total internal reflection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/30—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
- F21S41/32—Optical layout thereof
- F21S41/36—Combinations of two or more separate reflectors
- F21S41/365—Combinations of two or more separate reflectors successively reflecting the light
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/40—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/40—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
- F21S41/43—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades characterised by the shape thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/60—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
- F21S41/65—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
- F21S41/663—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S43/00—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
- F21S43/10—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
- F21S43/13—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
- F21S43/14—Light emitting diodes [LED]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S43/00—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
- F21S43/20—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
- F21S43/26—Refractors, transparent cover plates, light guides or filters not provided in groups F21S43/235 - F21S43/255
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S43/00—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
- F21S43/30—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by reflectors
- F21S43/31—Optical layout thereof
- F21S43/315—Optical layout thereof using total internal reflection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S43/00—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
- F21S43/40—Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the combination of reflectors and refractors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S45/00—Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
- F21S45/40—Cooling of lighting devices
- F21S45/47—Passive cooling, e.g. using fins, thermal conductive elements or openings
- F21S45/48—Passive cooling, e.g. using fins, thermal conductive elements or openings with means for conducting heat from the inside to the outside of the lighting devices, e.g. with fins on the outer surface of the lighting device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2102/00—Exterior vehicle lighting devices for illuminating purposes
- F21W2102/10—Arrangement or contour of the emitted light
- F21W2102/13—Arrangement or contour of the emitted light for high-beam region or low-beam region
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2103/00—Exterior vehicle lighting devices for signalling purposes
- F21W2103/20—Direction indicator lights
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2103/00—Exterior vehicle lighting devices for signalling purposes
- F21W2103/55—Daytime running lights [DRL]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2105/00—Planar light sources
- F21Y2105/10—Planar light sources comprising a two-dimensional array of point-like light-generating elements
- F21Y2105/14—Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
Definitions
- the present application relates to a light module for a motor vehicle headlight according to the preamble of claim 1.
- a light module is in each case from EP 3 163 155 A1 , of the EP 1 936 260 A1 and the EP 3 299 703 A1 known.
- a light module known per se has at least two semiconductor light sources, one for each semiconductor light source individual ancillary optics, a light decoupling optics having at least one partial optics and a diaphragm arranged between the ancillary optics and the light decoupling optics, the light module being set up to produce at least two different rule-compliant light distributions individually or in any combination.
- From the DE 10 2014 226 650 A1 is a lamp known that has at least three light functions such as low beam, High beam, daytime running light and / or position light implemented.
- the low beam is analogous to the description in U.S. 6,948,836 and the high beam and daytime running lights in a similar manner as in the DE 10 2008 036 192 generated.
- the U.S. 6,948,836 discloses a low beam module which creates a light-dark boundary by means of an approximately horizontally lying mirrored screen.
- the light used to generate a low beam distribution is generated by a semiconductor light source and bundled by a reflector.
- the bundled light is directed from above onto the front edge of the screen.
- An image of the diaphragm edge is projected onto the road as a light-dark boundary of a low beam distribution using a light decoupling lens implemented as a projection lens.
- location information such as above and below always relate to an alignment of the light module that corresponds to its alignment when used as intended in a motor vehicle.
- an LED bi-function module for generating a low beam and high beam distribution of a motor vehicle headlight is known.
- the horizontal cover is made thin here and is also illuminated from below to generate the high beam. Reflectors or catadioptric optics are used to collimate the LED light.
- the task is to construct a light module that is as compact as possible, with which at least two rule-compliant light distributions can be generated.
- the two light distributions are preferably a low beam distribution and a high beam distribution.
- the light module should be made as simple as possible.
- the different light distributions are, for example, a light distribution optimized for the motorway or for the city or for right-hand traffic or for left-hand traffic.
- a lens combination is arranged between the light extraction optics and the diaphragm, which is illuminated by at least one of the at least two semiconductor light sources and from which the light from this semiconductor light source emerges in a light cone, the lens combination in two with each other and in the main direction of propagation of the light emitted by the light module perpendicular spatial directions has a different refractive power and that the light decoupling optics, which are arranged in the light cone of the lens combination, have a different refractive power in two directions perpendicular to each other and to the main propagation direction of the light emitted by the light module, the refractive power of the light decoupling optics in the spatial direction in which the lens combination has the smaller of its two refractive powers and where the lens combination is closer to the diaphragm than to the light coupling optics ang is arranged, wherein the light module has at least one low beam channel and at least one high beam channel, each low beam channel having a light source, a light from
- the lens combination can also consist of a number of Individual lenses exist.
- the number of lenses preferably corresponds to the number of ancillary optics.
- Each lens, or each part of the lens combination is preferably arranged in the light cone of precisely one lens attachment and is illuminated with light from a light source.
- the individual lenses are arranged in a row running transversely to the main direction of light propagation.
- the light decoupling optics consists of a single lens assigned to all individual lenses.
- the various light channels run separately from one another between the auxiliary optics and the lens or part of the lens combination.
- the two light distributions can also be parts of a single rule-compliant light distribution, for example a low beam distribution or a high beam distribution, the individual channels only generating different partial light distributions. Then the cover has only a continuous shape or, in the case of a high beam distribution, can also be missing.
- the lens combination, together with the light extraction optics forms a projection lens system, each lens-shaped section of the lens combination, together with the light extraction optics, fulfilling the function of a light channel-individual projection lens.
- the focal lengths of these light channel-individual projection lenses on the front optics side are greater for the high beam channels than for the low beam channels.
- the angular ranges are of different sizes in the horizontal and vertical directions. In the case of low beam, this can be a ratio of 5: 1 (approx. 100 ° horizontal width, approx. 20 ° vertical height). If such a ratio is to be generated in an intermediate image area at the diaphragm edge, the width of the diaphragm must also be correspondingly large. Accordingly, light modules must have a certain size in order to generate such a light distribution. If several light sources are generated to generate a rule-compliant light distribution or several different light functions are implemented in one module, this means that the overall system has to be larger, which is contrary to a compact solution.
- the lens combination and the light decoupling optics each have a different refractive power in different spatial directions, a distorted image is generated which solves this problem.
- the combination of lenses preferably ensures, above all, concentration in the spatial direction in which a larger angular range is to be illuminated.
- the bundling in the other spatial direction is mainly realized by the light decoupling optics. This second bundling essentially causes the light beams to be parallelized.
- the spatial directions are a vertical spatial direction and a horizontal spatial direction when the front light is used as intended.
- the lens combination preferably bundles in the horizontal, while the optical coupling-out optics preferably bundles in the vertical.
- the lens combination (or the lenses fulfilling their optical function) is located close to the intermediate image surface, that is, close to the side or edge of the diaphragm facing the light exit optics. The reason for this is that the ancillary optics are usually designed in such a way that the light bundles from the individual light sources are most closely bundled there.
- the lens combination (or the lenses fulfilling its optical function) is located closer to the side or edge of the diaphragm facing the light exit optics than to the light exit optics.
- the lens combination (or the lenses fulfilling their optical function) is preferably located in the light path between the edge of the diaphragm and the light exit optics.
- This optical concept ensures that the light module has a simple and at the same time compact structure.
- simple means that the number of components is small (preferably, but not necessarily less than 12 components per module, light sources and fastenings such as screws not counted), that no mechanically movable parts are required to generate the different light distributions, and that all components can be manufactured inexpensively and in large numbers using conventional manufacturing processes.
- compact means that the module preferably, but not necessarily, has a height of less than 75 mm, a depth of less than 130 mm and a width of less than 150 mm.
- the light emitted by the light module is, in addition to the rule-compliant low beam and high beam, also a rule-compliant daytime running light and / or position light and / or flashing light and / or cornering light and / or motorway light and / or town light and / or partial high beam and / or marker light,
- the light module should be able to generate at least one of these additional light distributions, possibly also for different types of traffic (left-hand traffic, right-hand traffic) or regulation variants (ECE (Europe), SAE (USA), CCC (China)).
- this list is not limited to the light distributions mentioned, but can also contain other light distributions.
- the light exit optics have a further sub-optics and that the ancillary optics of at least one of the semiconductor light sources is set up and arranged to direct light from this semiconductor light source past the lens combination onto the further sub-optics and that the further sub-optics are set up to distribute light to generate, which is different from the light distributions of the light that propagates through the lens combination.
- This refinement is particularly advantageous when realizing light distributions with a light module if the requirements for the light distribution differ significantly. This is the case, for example, with a flashing light distribution and a high beam distribution. Due to the different requirements, different optics are necessary in order to generate the desired light distribution, in particular different light decoupling optics. By arranging both optics in one light module, compared to solutions with separate Optics and / or light modules save space and components.
- all semiconductor light sources are arranged on a flat circuit board which is attached to a one-piece heat sink.
- the costs for connectors, cable harness and circuit boards are significantly reduced, and all semiconductor light sources use a common heat sink.
- the total heat sink volume can be reduced, which reduces weight and costs.
- the ancillary optics is a catadioptric optic and / or a reflector and / or a lens and / or an imaging lens system and / or a light guide.
- each light source has an individual ancillary optics
- this ancillary optics is designed individually for each light source, depending on the requirements.
- the optical attachment is a one-piece optical attachment combination which comprises the optical attachment of all semiconductor light sources. This advantageously further reduces the installation space required, the number of components and thus the weight and costs.
- the semiconductor light sources are arranged in a matrix-like manner in rows, with individual or multiple rows of semiconductor light sources being set up to jointly generate at least one rule-compliant light distribution.
- the lines can also be arranged offset to one another.
- matrix-like is also to be understood as meaning that several semiconductor light sources are arranged at a distance from one another in a row and that a second row of semiconductor light sources, which are also arranged at a distance from one another, is positioned offset to the first row above or below it .
- the additional optics require a significantly larger installation space than the light sources and are therefore largely responsible for the necessary installation space.
- the staggered arrangement makes better use of the available space, since the ancillary optics are also arranged correspondingly offset from one another.
- individual rows are provided for generating a single light distribution (or part of a light distribution), for example a row for a low beam and a row for a high beam, which simplifies the construction.
- a single light distribution or part of a light distribution
- a row for a low beam and a row for a high beam, which simplifies the construction.
- the screen has a screen surface with a combination of at least one elevation and at least is a depression, the elevation being arranged in the light path of a low beam source and the depression in the light path of a high beam source.
- the profiles of the diaphragm in which the elevations and depressions are located are arranged transversely to the main direction of light propagation.
- light channels that require a screen to generate a rule-compliant light distribution, such as a low beam, and light channels that do not require a shutter to generate a rule-compliant light distribution, such as a high beam can be installed in close proximity to one another to save space.
- a single large screen which has a single, continuous screen edge
- the use of a single component as a unit of several small screens reduces the number of components required .
- elevations for example all with the exception of a single elevation, each have a step for generating an image of the step in the form of a light-dark boundary in the low beam distribution.
- Each step has an edge running parallel to the main direction of propagation of the light.
- a bright and glare-free light distribution is initially generated by the elevations having steps.
- the channel or channels that do not have steps are preferably designed in such a way that they scatter the light more broadly than the channels that have steps. In this way, for example, light can be scattered into areas that are shaded by the channels having steps. In this way, an even if low brightness can be generated there which, for example, allow traffic signs to be recognized without unduly dazzling other road users.
- an edge of the diaphragm facing the light extraction optics is arranged in a focal area of the ancillary optics and in a focal area of the projection lens system consisting of the lens combination (or the functionally equivalent lenses) and the light extraction optics (the focal areas of the lens combination (or the functionally equivalent lenses) and of the light decoupling optics form common focal areas that overlap with the focal area of the ancillary optics).
- the diaphragm edge is advantageously mapped sharply, which ensures a sharp light-dark boundary in a low beam distribution.
- At least one lens-shaped section of the lens combination (or a functionally equivalent single lens) is arranged in the light cone of precisely one lens attachment.
- This configuration is particularly advantageous when using several light sources because the contribution of each light source to the overall light distribution can then be configured individually by the shape of the associated section. This also opens up the possibility of producing certain changes in the light distributions by changing the refractive surfaces of the lens combination (or the functionally equivalent individual lenses) with otherwise unchanged light modules.
- the first partial optics the light decoupling optics a cylindrical lens.
- the additional partial optics of the light decoupling optics is a structured disc and / or cushion optics and / or consists of a volume-scattering material, i.e. a material in which the scattering occurs at least not only on the surface but also on scattering centers in the volume .
- the result is a widely spread light distribution, which is suitable, for example, for a rule-compliant flashing light distribution.
- a part of the light module which is set up to generate a rule-compliant daytime running light distribution is preferably also set up to generate a rule-compliant turn signal distribution.
- Standard-compliant daytime running light and indicator light distributions both illuminate a similar angular range. It is therefore expedient to use at least some of the same components within the light module for generating these two light distributions.
- the optical coupling-out system is a one-piece component.
- At least one vertical diaphragm is arranged in the light path of at least one high beam source and is set up to limit the illuminated angular range of the high beam source.
- the light module has at least one low beam channel and at least one high beam channel, each low beam channel consisting of a light source, an auxiliary lens that collects and focuses light from this light source, and a projection lens system that consists of a lenticular section of a lens combination or a single lens of the lens combination and a light extraction lens, wherein each part of the lens combination, or each individual lens of the lens combination is arranged in the light cone of exactly one ancillary optics and wherein an ancillary optics-side focal length of the projection lens system in each high beam channel is greater than in each low beam channel.
- At least two low-beam light channels have a different aperture shape, so that different light distributions can be generated by switching between the channels or by suitable dimming of each channel, for example one for the motorway or light distribution optimized for the city or for right-hand traffic or for left-hand traffic. Switching or dimming is done by activating the light sources of the channels accordingly.
- optical coupling-out system is arranged tilted about a vertical axis or is curved.
- a control device of the headlight which controls the semiconductor light sources is set up to dim semiconductor light sources which are used to generate a rule-compliant high beam distribution in order to generate and / or supplement a rule-compliant daytime running light distribution.
- the light module in particular the board on which the semiconductor light sources are arranged, and the control device controlling the semiconductor light sources are preferably set up to control the semiconductor light sources individually or in groups, for example to dim them.
- individual light sources can advantageously be switched on and off, whereby functions to increase safety, for example a static cornering light that works without moving parts or a partial high beam, can be implemented or country-specific requirements can be met .
- the Figure 1 a light module 8 according to the invention of a motor vehicle headlight, which is shown in this exemplary embodiment with its housing 10.
- a light decoupling optics 9 is formed by a partial optic 9B and a further partial optic 9A.
- the further partial optics 9A is a structured disk in the exemplary embodiment shown, and the partial optics 9B is a cylindrical lens in the exemplary embodiment shown.
- the further partial optics 9A are arranged in a beam path of a daytime running light distribution and / or position light distribution, while the partial optics 9B is arranged in the beam path of a low beam distribution and / or high beam distribution.
- Cylindrical lens and structured disk are preferably each individually or as a whole a one-piece component, which lowers the number of individual parts and thus the costs for production.
- the light module described here and below is an advantageous development of the invention and is capable of generating at least two different rule-compliant light distributions.
- cooling body 16 On the rear of the housing 10 of the light module 8 there is a cooling body 16, which has a plurality of cooling fins 18 in the form of representation shown.
- an arm for the mechanical headlight range control 20 is attached to the underside of the housing 10 on the latter.
- An axis of rotation 24 of the headlight range control is defined by a suspension 22 attached to the side of the housing 10.
- an actuator At the bottom of the boom, an actuator, not shown, engages the boom and thus the entire light module 8 is pivoted in the plane perpendicular to the axis of rotation 24.
- FIG 2 is the light module 8 according to the invention from Figure 1 shown without housing.
- the heat sink 16 with its ribs 18 has bores 26 which are intended for fastening other components such as the housing 10, not shown, for example.
- an attachment optics combination 30 is fastened, which consists of several daytime running light attachment optics 32, low beam attachment optics 34 and high beam attachment optics 36.
- These individual parts of the optical attachment combination 30 are arranged in the optical attachment combination 30 such that each individual part forms an individual optical attachment for a single semiconductor light source 70 on the board 28 when the optical attachment combination 30 is used as intended.
- the low-beam headlights 34 and the high-beam headlights 36 are each arranged alternately next to one another in a row.
- the daytime running light attachment optics 32 are located in a further row above the low beam and high beam attachment optics 34 and 36.
- a diaphragm combination 38 which as a diaphragm for the Low beam distribution acts.
- the diaphragm combination 38 has a plurality of alternating depressions 40 and elevations 42 which are arranged transversely to the main direction of light propagation in such a way that in each case a depression and an elevation alternate.
- the elevations form the screens for the respective light channels.
- the elevations 42 are arranged in the beam paths of the low beam attachment optics 34, and the depressions 40 are arranged in the beam paths of the high beam attachment optics 36.
- a step 44 in the panel surface can be seen in three of the four elevations shown. These steps 44 are used to generate a step in the cut-off line of a rule-compliant low beam distribution.
- one of the four elevations 42 has a surface 46 without a step, but this is not an essential feature of the invention.
- the diaphragm combination is only narrow along the main direction of light propagation (e.g. like the narrow side of a metal sheet that is less than 1 mm thick, for example) so that the elevations and depressions only represent parts of a contoured edge of a thin sheet metal .
- the screen can also extend in the vertical direction starting from the optically effective screen edge. The optically effective screen edge is then an upper edge of the screen.
- a lens combination 48 is located in the light path behind the diaphragm combination 38.
- the lens combination 48 has, with the exception of one
- the convex protrusion 56 on the light entry side has a flat light entry surface 50.
- the convex protrusion 56 is set up to receive light that propagates in the low-beam light channel in which the associated diaphragm elevation 42 does not have a step 46.
- the light exit surface 52 of the lens combination consists of high beam exit areas 58 and low beam exit areas 60 arranged next to one another, which are arranged so that each of the light exit areas is illuminated by only one combination of semiconductor light source 70 and its ancillary optics.
- the lens combination (or individual lenses fulfilling their optical function) is preferably located in the light path between the edge of the diaphragm and the light exit optics and is arranged in such a way that each section or each functionally equivalent individual lens captures as much as possible all of the light rays of the light source emanating from the associated ancillary optics.
- a low beam exit surface 60 is arranged next to a high beam exit surface 58, so that two low beam channels are separated by a high beam channel located between them and two high beam channels are separated by a low beam channel located between them.
- the light module is completed by the already described light decoupling optics 9, which consist of a structured disk and cylinder lens.
- a different arrangement of the high beam channels and the low beam channels is also possible, in which the low beam channels lie next to one another without a high beam channel lying between them and / or in which the high beam channels lie next to one another without a low beam channel lying between them.
- the flat light entry surface 50 of the lens combination 48 with the convex protrusion 56 can also be seen particularly clearly, as well as the different designs of the alternating high beam exit surfaces 58 and low beam exit surfaces 60 of the light exit surface 52 of the lens combination 48.
- a holder 62 is attached to the light decoupling optics 9 for attachment the light decoupling optics 9 attached to the housing 10 of the light module 8, not shown in this figure.
- the light module 8 consisting of heat sink 16, circuit board 28, front lens combination 30, diaphragm combination 38, lens combination 48 and light decoupling optics 9 consisting of structured disk (further partial optics 9A), cylinder lens (partial optics 9B) and holder 62 is shown in a side view.
- a plug 64 is attached to the circuit board 28 below the optical attachment combination 30, which serves as an interface for supplying energy to the semiconductor light sources 70 attached to the circuit board and for controlling the semiconductor light sources 70 by a light control device 68 serves.
- the different design of the individual components of the front lens combination 30 can be clearly seen.
- the daytime running light front lens 32, the low beam front lens 34 and the high beam front lens 36 have different designs. They differ depending on the type of light distribution to be generated, especially in their size. It can also be seen that the center points of the low-beam headlights 34 and the high-beam headlights 36 are not at the same height, but rather are arranged vertically offset from one another due to the different sizes of the headlights, so that a checkerboard-like offset arrangement results in which the low-beam headlights in one in the first row and the high-beam headlights are in a further row that is vertically offset.
- the smaller high beam attachment optics 36 are lower than the low beam attachment optics 34.
- Figure 5 the same light module 8 can be seen in a plan view.
- the Figure 5 the heat sink 16 with cooling fins 18, circuit board 28, front optics combination 30, diaphragm combination 38, lens combination 48 and light decoupling optics 9 consisting of a structured disk (further partial optics 9A), cylinder lens (partial optics 9B) and holder 62.
- a light exit surface 60C of the lens combination 48 which belongs to the light channel, in whose associated part of the diaphragm combination 38 the elevation 42 of the diaphragm combination 38 does not have a step, has a different shape than the other light exit surfaces 60A, 60B, 60D of the lens combination 38 for the low beam sources 74.
- each semiconductor light source 70 with the exception of the light decoupling optics 9, always has its own optics (associated part of the front lens combination 30, associated part of the diaphragm combination 38 and associated part of the lens combination 48), individual light channels are formed within the light module. According to the light sources shown here, there are daytime running light channels 82, low beam light channels 84 and high beam light channels 86.
- Figure 6 shows a unit of heat sink 16 with cooling fins 18, plate 28 and front optics combination 30 consisting of daytime running light front optics 32, low beam front optics 34 and high beam front optics 36 in a three-dimensional front view.
- This unit forms a so-called complex light source 66.
- the optical attachment combination 30 removed so that the underlying structure of the circuit board 28, which is attached to the heat sink 16, can be seen.
- the circuit board 28 carries several, in the present example ten, semiconductor light sources 70.
- the lower row of four semiconductor light sources are high beam sources 72, the middle row has four low beam sources 74, and the upper row has daytime running light sources 76.
- the low beam sources 74 and the high beam sources 72 are offset and arranged in rows one above the other.
- the use of further semiconductor light sources is conceivable, in which case further rows of alternating low beam sources 74 and high beam sources 72 are preferably arranged further offset one above the other.
- the daytime running light sources 76 are also preferred as Flashing light sources and / or designed as position light sources.
- a light source can consist of several chips, for example, which may also emit light of different colors (for example red, green and blue to generate white or yellow light).
- the high beam sources 72 can optionally also be used as additional daytime running light sources. To do this, they are dimmed and not operated at full power in order to prevent oncoming traffic from being dazzled.
- the light sources shown are not limited to the number shown there and can be adapted to the respective needs and accompanying circumstances.
- the semiconductor light sources 70 are not necessarily light-emitting diodes.
- individual or all semiconductor light sources can also be implemented using laser light sources.
- each of the four channels has the following elements: A low beam source 74 consisting of a semiconductor light source, a low beam lens system 34, elevations 42 of the horizontally extending diaphragm combination 38 functioning as a diaphragm, a lens combination 48 with low beam exit surfaces 60 in the form of a projection lens and a cylinder lens as Light decoupling optics 9B.
- Low beam source 74 and front lens 34 are arranged higher in the vertical direction than the diaphragm combination 38 and are designed to direct the light obliquely from above onto the diaphragm combination 38, which preferably, but not necessarily, has a mirrored surface.
- the focal area of the low beam attachment optics 34 lies on the diaphragm edge 80 of the diaphragm combination 38, which diaphragm edge 80 faces the lens combination 48. This creates an intermediate image of a light distribution with a light-dark boundary in the plane of the diaphragm edge 80, the shape of which is determined by the shape of the diaphragm edge 80.
- the elevations 42 are provided with a step 44 which creates a step in the course of the light-dark boundary of the low beam distribution.
- a light channel 84C is focused on a piece of the diaphragm edge 80 which does not have a step 44 and accordingly the light-dark boundary of the part of the low-beam light distribution generated by this light channel does not have a corresponding step.
- the diaphragm edge 80 is at the same time also in the focal area of the light entry surface 50 of the lens combination 48. While the light entry surface 50 is a straight and flat surface with the exception of a convex protrusion 56 in the low beam channel 84C, the light exit surface 52 has one for each low beam channel 84A, 84B, 84C, 84D individual low beam exit surface 60A, 60B, 60C, 60D in the form of a projection lens. Each low beam channel 84A, 84B, 84C, 84D has exactly one single low beam exit surface 60A, 60B, 60C, 60D available exclusively.
- the lens combination 48 also has high beam exit surfaces 58, which are described in more detail in a description of the high beam channels 86.
- the high beam and low beam exit surfaces 58 and 60 are arranged alternately next to one another.
- the low-beam light channels 84A, 84B, 84C, 84D pass through their respective associated part of the lens combination 48.
- the low-beam light exit surfaces 60 of the lens combination 48 are shaped so that they are more focused horizontally than vertically. Therefore, the part of the intermediate image generated by one of the low beam light sources 74 is enlarged primarily in the vertical direction. This contributes to the desired compactness of the light module 8. Due to the small horizontal installation space requirement, the semiconductor light sources 70 can be arranged compactly next to one another and / or in two rows one above the other and, if necessary, offset from one another in the longitudinal direction of the rows.
- the lens combination (or the functionally equivalent individual lenses) preferably has no curvature in the vertical direction and is therefore cylindrical in the vertical direction.
- magnification in the horizontal direction is preferably greater than in the vertical direction, these directional information always relating to an alignment as it results when the light module is used as intended in a motor vehicle.
- the partial optics 9B here has the shape of a (horizontal) cylinder lens, the cylinder axis of which in the example shown is a horizontal perpendicular to the main emission direction of the light module.
- the light emerging from the cylinder lens generates the rule-compliant low beam distribution.
- the lens combination 38 bundles more horizontally than vertically and the cylindrical lens bundles more vertically than horizontally, a distorted image is produced, that is, the vertical and horizontal image scale are not the same.
- the horizontal bundling is weaker than the vertical bundling.
- a low beam distribution typically has a width of up to 100 ° and a height of up to 20 °. This corresponds to a width to height ratio of around 5: 1. If such a ratio is to be generated already in the intermediate image area at the diaphragm edge 80 in a conventional system, the width of the diaphragm combination 38 must also be made correspondingly larger. However, this means that the light module 8 has to be wider, which is contrary to a compact solution.
- the distorted imaging projection lens system thus also has the effect of reducing the installation space required for the low beam channels 84A, 84B, 84C, 84D.
- Each channel preferably has differences with regard to the design of the auxiliary optics, the elevation 42 in the diaphragm combination 38 and the low beam exit surface 60 of the lens combination 52.
- the entire low-beam light distribution is only created by the overlapping superposition of the individual light distributions of the low-beam light channels 84A, 84B, 84C, 84D.
- Three low beam channels 84A, 84B, 84D have an elevation 42 with level 44.
- a channel 84C has an elevation 42 without a step.
- the light generated in the low-beam light source 74C which is designed as a semiconductor light source, also passes through the low-beam attachment optics 34 of the attachment optics combination 30, hits an elevation 42 of the approximately horizontal diaphragm combination 38, passes through the lens combination 48 with low-beam exit surfaces 60 in the form of a projection lens, and leaves the light module through the cylinder lens.
- the light entry surface 50 of the lens combination 48 for this low beam channel 84C has the convex protrusion 56 in the form of a further projection lens, which is horizontally more curved than the light exit surface 60C of the channel.
- the effect is that the rays are focused in a plane between the light entry surface 50 and the light exit surface 60C in order to then diverge again. Overall, this achieves a fanning out of the beams in the horizontal plane and the width of the light distribution is increased.
- This effect can also be achieved in that the lens is concave and thus acts horizontally as a diverging lens.
- each of the four channels has the following elements: A high beam source 72 consisting of a semiconductor light source, high beam attachment optics 36 as part of the attachment optics combination 30, a depression 40 in the approximately horizontal diaphragm combination 38, the lens combination 48 with high beam exit surfaces 58 in the form of a projection lens and the cylinder lens as part of the light decoupling optics 9.
- High beam source 72 and front lens 36 are located in the vertical direction above the uppermost surface of the depression and are designed not to direct the light onto the surface and / or an edge of the diaphragm combination 38, which has a mirrored surface.
- the diaphragm combination 38 has a depression 40 in each of the high beam channels 86A, 86B, 86C, 86D so that the high beam can pass through the diaphragm combination 38 without being restricted by the diaphragm.
- the light channel-individual focal area of the ancillary optics 36 lies in the light path in front of the diaphragm edge 80 of the diaphragm combination 38 facing the light extraction optics 9 and overlaps with the light channel-individual focal area of the lens combination 48. While the light entry surface 50 of the high beam channels of the lens combination 48 is straight and even Is surface, the light exit surface 52 has for each high beam channel 86A, 86B, 86C, 86D a single high beam exit surface 58 with an optically effective curvature, which results in the function of a projection lens. Each channel 86A, 86B, 86C, 86D has exactly one single high beam exit surface 58A, 58B, 58C, 58D available exclusively.
- the lens combination 48 also has low beam exit surfaces 60, which have already been described above in the description of the low beam channels were.
- the high beam and low beam exit surfaces 58 and 60 are arranged alternately next to one another.
- the surfaces 58 of the lens combination 48 are also preferably slightly curved or not curved at all, so that they resemble or resemble a vertically oriented cylinder.
- the light propagating in the high beam channels 86A, 86B, 86C, 86D passes through its respective associated part of the lens combination 48.
- the high beam exit surfaces 58 of the lens combination 48 are shaped so that they focus more horizontally than vertically. This contributes to the desired compactness of the light module 8. Due to the small horizontal space requirement, the semiconductor light sources 70 can be arranged compactly next to one another and / or offset, so that two semiconductor light sources 70 adjacent to one another are separated from one another by an empty space between them.
- the partial optics 9B here has the shape of a cylinder lens, the cylinder axis of which in the present embodiment according to the invention is a horizontal line perpendicular to the main emission direction of the light module.
- the light is bundled, preferably in the vertical direction. The light leaving the cylinder lens generates the high beam distribution that complies with the rules.
- the low beam attachment optics 34 and the High beam attachment optics 36 have different focal areas.
- the focal area 88 of the low-beam headlight optics 34 is located near the front edge 80 of the diaphragm combination 38
- the focal area 90 of the high-beam headlight optics 36 lies between the front-end optics combination 30 and the front edge 80 of the diaphragm combination 38. This means that the overall magnification of the light module 8 for the high-beam light channels 86 can be made smaller are considered for the low beam channels 84.
- the low beam and high beam distributions have different requirements in terms of width, height and maximum illuminance. While a low beam distribution typically has a maximum width of 100 ° and a maximum height of 20 °, a high beam distribution typically has a smaller width of a maximum of 50 ° and a smaller height of a maximum of 10 °.
- the ratio of the width of the low beam to the width of the high beam and the height of the low beam to the height of the high beam is both around 2: 1.
- maximum illuminance While maximum illuminance levels of the order of magnitude of 50 lx on a wall 25 m away are typical for a low beam, it is 100 lx for a high beam.
- the ratio of the illuminance of the low beam to the high beam therefore corresponds to a ratio of 1: 2. Both the proportions of height and width and of the maximum illuminance levels therefore require a lower magnification for the high beam channels 86.
- the total magnification is determined from the product of the magnification through the ancillary optics 30 and the magnification through the lens combination 48.
- the magnification of the ancillary optics 30 is given by the ratio of Image distance to object distance, where the object is a semiconductor light source 70.
- the object distance distance between the semiconductor light source and the optical attachment
- the image range of the high beam attachment optics 36 is selected to be smaller than the image range of the low beam attachment optics 34. The magnification by the high beam attachment optics 36 is therefore lower.
- the high beam exit surface 58 of the lens combination 48 can be designed so that the total focal length of the lens combination 48 in the high beam channels 86 is greater than in the low beam channels 84. Since the image distance for light channels 84 and 86 is the same (in the example shown, 25 m) thus the magnification in the high beam channels 86 is also smaller than in the low beam channels 84.
- FIG. 12 shows the beam paths of the two daytime running light channels 82.
- each of the two channels has the following elements:
- a daytime running light source 76 consisting of a semiconductor light source, a daytime running light attachment lens 32 and a structured disk 9A as part of the light extraction lens 9.
- Light which is generated by the daytime running light source 76 is deflected and bundled by the ancillary optics 32, in the present case a catadioptric optic.
- the light is directed in the direction of the structured pane, which serves as further partial optics 9A of light decoupling optics 9.
- the pane here has a structure which scatters the light into larger angular ranges in order to distribute daytime running lights and / or position light produce. This can be a pillow structure, for example.
- Light is preferably scattered in the same way on each part of the structured pane, so that a uniform, bright illumination of the pane results.
- the daytime running light channels 82 can alternatively or additionally also be used as a channel for a flashing light. It is advantageous to use yellow semiconductor light sources for this, especially if the channel is to be used in parallel for daytime running lights / position lights. However, it is also possible to use white semiconductor light sources and to color parts of the ancillary optics combination 30 and / or parts of the structured pane yellow. In order to use the channel for daytime running lights and indicators in parallel, a white and a yellow LED can be used next to each other, or an RGB LED can be used, which can be switched white and yellow.
- FIG. 13 a side view of a light module 8 with drawn-in beam paths of a daytime running light channel 82, a low beam channel 84 and a high beam channel 86 is shown.
- the semiconductor light sources 72, 74, 76 are all arranged in one plane, to which the front lens combination 30 consisting of daytime running light front lens 32, low beam front lens 34 and high beam front lens 36 is connected.
- the daytime running light channel 82 is arranged above the other two channels. It does not pass through the diaphragm combination 38 and the lens combination 48, but instead the light hits the structured lens directly after leaving the daytime running light attachment optics 32 Disc.
- Low beam channel 84 and high beam channel 86 after their respective ancillary optics 34 and 36, both pass through the diaphragm combination 38 and then the lens combination 48. Ultimately, both meet their part of the light decoupling optics 9, which is implemented by a cylindrical lens.
- Figure 14 shows a further comparison of the beam paths of the daytime running light channels 82, low beam channels 84 and high beam channels 86 within a lighting module 8 according to the invention in a three-dimensional view.
- the daytime running light channels 82 which are arranged above the low-beam light channels 84 and high-beam light channels 86, hit the structured pane, which forms part of the light extraction optics 9, directly after leaving the front lens combination 30.
- Low beam channels 84 and high beam channels 86 are arranged alternately next to one another. Both pass through the diaphragm combination 38 and the lens combination 48 after leaving the attachment optics combination 30. The light rays from these channels leave the light module 8 via the part of the light decoupling optics 9, which is a cylindrical lens.
- the Figures 13 and 14th clearly show that the light module can easily be divided in terms of its light functions into a lower part (headlight functions such as low beam and high beam generation) and an upper part (signal light functions such as flashing light, daytime running light, position light, ...), whereby this functional separation is possible is accompanied by a structural separation.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Description
Die vorliegende Anmeldung betrifft ein Lichtmodul für einen Kraftfahrzeugscheinwerfer nach dem Oberbegriff des Anspruchs 1. Ein solches Lichtmodul ist jeweils aus der
Ein per se bekanntes Lichtmodul weist zumindest zwei Halbleiterlichtquellen, je eine für jede Halbleiterlichtquelle individuelle Vorsatzoptik, eine mindestens eine Teiloptik aufweisende Lichtauskoppeloptik und eine zwischen der Vorsatzoptik und der Lichtauskoppeloptik angeordnete Blende auf, wobei das Lichtmodul dazu eingerichtet ist, mindestens zwei verschiedene regelkonforme Lichtverteilungen jeweils einzeln oder in einer beliebigen Kombination erzeugen zu können.A light module known per se has at least two semiconductor light sources, one for each semiconductor light source individual ancillary optics, a light decoupling optics having at least one partial optics and a diaphragm arranged between the ancillary optics and the light decoupling optics, the light module being set up to produce at least two different rule-compliant light distributions individually or in any combination.
Aus der
Die
Aus der
Ausgehend von dem eingangs beschriebenen Stand der Technik besteht die Aufgabe darin, ein möglichst kompaktes Lichtmodul zu konstruieren, mit dem zumindest zwei regelkonforme Lichtverteilungen erzeugt werden können. Die zwei Lichtverteilungen sind bevorzugt eine Abblendlichtverteilung und eine Fernlichtverteilung.Based on the prior art described at the outset, the task is to construct a light module that is as compact as possible, with which at least two rule-compliant light distributions can be generated. The two light distributions are preferably a low beam distribution and a high beam distribution.
Gleichzeitig soll das Lichtmodul aber möglichst einfach ausgeführt sein. Die verschiedenen Lichtverteilungen sind zum Beispiel eine für die Autobahn oder für die Stadt oder für Rechtsverkehr oder für Linksverkehr optimierte Lichtverteilung.At the same time, the light module should be made as simple as possible. The different light distributions are, for example, a light distribution optimized for the motorway or for the city or for right-hand traffic or for left-hand traffic.
Diese Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved with the features of claim 1.
Die Merkmale des Anspruchs 1 sehen vor, dass zwischen der Lichtauskoppeloptik und der Blende eine Linsenkombination angeordnet ist, welche von wenigstens einer der zumindest zwei Halbleiterlichtquellen beleuchtet wird und aus der Licht dieser Halbleiterlichtquelle in einem Lichtkegel austritt, wobei die Linsenkombination in zwei untereinander und zur Hauptpropagationsrichtung des von dem Lichtmodul ausgestrahlten Lichtes senkrechten Raumrichtungen eine unterschiedliche Brechkraft besitzt und dass die Lichtauskoppeloptik, welche im Lichtkegel der Linsenkombination angeordnet ist, in zwei untereinander und zur Hauptpropagationsrichtung des von dem Lichtmodul ausgestrahlten Lichtes senkrechten Raumrichtungen eine unterschiedliche Brechkraft besitzt, wobei die Brechkraft der Lichtauskoppeloptik in der Raumrichtung größer ist, in welcher die Linsenkombination die kleinere ihrer beiden Brechkräfte aufweist und wobei die Linsenkombination näher an der Blende als an der Lichtauskoppeloptik angeordnet ist, wobei das Lichtmodul wenigstens einen Abblendlichtkanal und wenigstens einen Fernlichtkanal aufweist, wobei jeder Abblendlichtkanal eine Lichtquelle, eine Licht dieser Lichtquelle sammelnde und bündelnde Vorsatzoptik, eine Erhebung der Blende, und ein Projektionslinsensystem aufweist, das aus einem Linsenförmigen Teilstück der Linsenkombination oder einer Einzellinse der Linsenkombination und der Lichtauskoppeloptik besteht, wobei jedes Teilstück der Linsenkombination beziehungsweise jede Einzellinse der Linsenkombination im Lichtkegel genau einer Vorsatzoptik angeordnet ist, und dass eine Vorsatzoptik-seitige Brennweite des Projektionslinsensystems in jedem Fernlichtkanal größer ist als in jedem Abblendlichtkanal, und dass mindestens zwei Abblendlichtkanäle eine unterschiedliche Blendenform aufweisen.The features of claim 1 provide that a lens combination is arranged between the light extraction optics and the diaphragm, which is illuminated by at least one of the at least two semiconductor light sources and from which the light from this semiconductor light source emerges in a light cone, the lens combination in two with each other and in the main direction of propagation of the light emitted by the light module perpendicular spatial directions has a different refractive power and that the light decoupling optics, which are arranged in the light cone of the lens combination, have a different refractive power in two directions perpendicular to each other and to the main propagation direction of the light emitted by the light module, the refractive power of the light decoupling optics in the spatial direction in which the lens combination has the smaller of its two refractive powers and where the lens combination is closer to the diaphragm than to the light coupling optics ang is arranged, wherein the light module has at least one low beam channel and at least one high beam channel, each low beam channel having a light source, a light from this light source collecting and focusing lens, an elevation of the diaphragm, and a projection lens system, which consists of a lens-shaped section of the lens combination or a single lens the lens combination and the light decoupling optics, each part of the lens combination or each individual lens of the lens combination being arranged in the light cone of exactly one ancillary optics, and that an ancillary optics-side focal length of the projection lens system in each high beam channel is greater than in each low beam channel, and that at least two low beam channels have different diaphragm shapes.
Die Linsenkombination kann auch aus einer Anzahl von Einzellinsen bestehen. Die Anzahl der Linsen entspricht bevorzugt der Anzahl der Vorsatzoptiken. Jede Linse, beziehungsweise jedes Teilstück der Linsenkombination, ist bevorzugt im Lichtkegel genau einer Vorsatzoptik angeordnet und wird mit Licht einer Lichtquelle beleuchtet. Die Einzellinsen sind in einer quer zur Hauptlichtausbreitungsrichtung verlaufenden Reihe angeordnet. Die Lichtauskoppeloptik besteht aus einer einzigen allen Einzellinsen zugeordneten Linse besteht.
Je ein Paar aus einer Vorsatzoptik und der im Lichtkegel dieser Vorsatzoptik liegenden Linse, beziehungsweise des im Lichtkegel dieser Vorsatzoptik liegenden Teilstücks der Linsenkombination und die im Lichtweg nachfolgende Lichtauskoppeloptik, bilden einen Lichtkanal. Die verschiedenen Lichtkanäle verlaufen zwischen Vorsatzoptik und Linse, bzw. Teilstück der Linsenkombination getrennt voneinander. Die beiden Lichtverteilungen können auch Teile einer einzigen regelkonformen Lichtverteilung, zum Beispiel einer Abblendlichtverteilung oder einer Fernlichtverteilung sein, wobei die einzelnen Kanäle nur verschiedene Teillichtverteilungen erzeugen. Dann hat die Blende nur eine durchgehende Form oder kann, bei einer Fernlichtverteilung, auch fehlen. Die Linsenkombination bildet zusammen mit der Lichtauskoppeloptik ein Projektionslinsensystem, wobei jedes linsenförmige Teilstück der Linsenkombination zusammen mit der Lichtauskoppeloptik die Funktion einer Lichtkanal-individuellen Projektionslinse erfüllt. Die Vorsatzoptikseitigen Brennweiten dieser Lichtkanal-individuellen Projektionslinsen sind für die Fernlichtkanäle größer als für die Abblendlichtkanäle.The lens combination can also consist of a number of Individual lenses exist. The number of lenses preferably corresponds to the number of ancillary optics. Each lens, or each part of the lens combination, is preferably arranged in the light cone of precisely one lens attachment and is illuminated with light from a light source. The individual lenses are arranged in a row running transversely to the main direction of light propagation. The light decoupling optics consists of a single lens assigned to all individual lenses.
A pair of an ancillary optics and the lens lying in the light cone of this ancillary optics, or the part of the lens combination lying in the light cone of this ancillary optics and the light decoupling optics following in the light path, form a light channel. The various light channels run separately from one another between the auxiliary optics and the lens or part of the lens combination. The two light distributions can also be parts of a single rule-compliant light distribution, for example a low beam distribution or a high beam distribution, the individual channels only generating different partial light distributions. Then the cover has only a continuous shape or, in the case of a high beam distribution, can also be missing. The lens combination, together with the light extraction optics, forms a projection lens system, each lens-shaped section of the lens combination, together with the light extraction optics, fulfilling the function of a light channel-individual projection lens. The focal lengths of these light channel-individual projection lenses on the front optics side are greater for the high beam channels than for the low beam channels.
Insbesondere für die Erzeugung von Fernlicht und Abblendlicht gibt es vom Gesetzgeber und von Automobilherstellern Vorgaben, welche Winkelbereiche ausgeleuchtet werden sollen. In der Regel sind die Winkelbereiche in horizontaler und vertikaler Richtung unterschiedlich groß. Im Falle von Abblendlicht kann es sich dabei um ein Verhältnis von 5:1 zu handeln (ca. 100° horizontale Breite, ca. 20° vertikale Höhe). Wenn ein solches Verhältnis bereits in einer Zwischenbildfläche an der Blendenkante erzeugt werden soll, muss auch die Breite der Blende entsprechend groß sein. Entsprechend müssen Lichtmodule eine gewisse Größe aufweisen, um solch eine Lichtverteilung zu erzeugen. Werden mehrere Lichtquellen zur Erzeugung einer regelkonformen Lichtverteilung erzeugt oder mehrere verschieden Lichtfunktionen in einem Modul realisiert, so führt dies dazu, dass das Gesamtsystem größer werden muss, was einer kompakten Lösung entgegensteht.In particular for the generation of high beam and low beam, there are stipulations by law and by automobile manufacturers as to which angular areas should be illuminated. As a rule, the angular ranges are of different sizes in the horizontal and vertical directions. In the case of low beam, this can be a ratio of 5: 1 (approx. 100 ° horizontal width, approx. 20 ° vertical height). If such a ratio is to be generated in an intermediate image area at the diaphragm edge, the width of the diaphragm must also be correspondingly large. Accordingly, light modules must have a certain size in order to generate such a light distribution. If several light sources are generated to generate a rule-compliant light distribution or several different light functions are implemented in one module, this means that the overall system has to be larger, which is contrary to a compact solution.
Dadurch, dass die Linsenkombination und die Lichtauskoppeloptik in unterschiedlichen Raumrichtungen eine jeweils unterschiedliche Brechkraft aufweisen, wird eine verzerrte Abbildung erzeugt, welche dieses Problem löst. Die Linsenkombination (beziehungsweise die Linsen), welche nach einer eventuell im Lichtweg vorhandenen Blende angeordnet ist, sorgt je nach Vorgabe für eine mehr oder weniger starke Bündelung in die eine Richtung, während die Lichtauskoppeloptik dies für eine zweite Richtung realisiert. Vorzugsweise sorgt die Linsenkombination vor allem für eine Bündelung in der Raumrichtung, in welcher ein größerer Winkelbereich ausgeleuchtet werden soll. Die Bündelung in der anderen Raumrichtung wird maßgeblich durch die Lichtauskoppeloptik realisiert. Diese zweite Bündelung bewirkt im Wesentlichen eine Parallelisierung der Lichtstrahlen.Because the lens combination and the light decoupling optics each have a different refractive power in different spatial directions, a distorted image is generated which solves this problem. The lens combination (or the lenses), which is arranged after a diaphragm that may be present in the light path, ensures a more or less strong focus in one direction, while the light decoupling optics realize this for a second direction. The combination of lenses preferably ensures, above all, concentration in the spatial direction in which a larger angular range is to be illuminated. The bundling in the other spatial direction is mainly realized by the light decoupling optics. This second bundling essentially causes the light beams to be parallelized.
Im Falle eines Frontscheinwerfers handelt es sich bei den Raumrichtungen um eine bei bestimmungsgemäßer Verwendung des Frontscheinwerfers vertikale Raumrichtung und eine horizontale Raumrichtung. Die Linsenkombination bündelt vorzugsweise in der Horizontalen, während die Lichtauskoppeloptik vorzugsweise in der Vertikalen bündelt. Für die Kompaktheit des Lichtmodules ist es außerdem vorteilhaft, wenn sich die Linsenkombination (beziehungsweise die deren optische Funktion erfüllenden Linsen) nahe an der Zwischenbildfläche, das heißt, nahe an der der Lichtaustrittsoptik zugewandten Seite oder Kante der Blende befindet. Dies hat seinen Grund darin, dass die Vorsatzoptiken in der Regel so ausgelegt sind, dass dort die Lichtbündel der einzelnen Lichtquellen am engsten gebündelt sind. Bevorzugt ist insbesondere, dass sich die Linsenkombination (beziehungsweise die deren optische Funktion erfüllenden Linsen), näher an der der Lichtaustrittsoptik zugewandten Seite oder Kante der Blende als an der Lichtaustrittsoptik befindet. Die Linsenkombination (beziehungsweise die deren optische Funktion erfüllenden Linsen) liegt bevorzugt im Lichtweg zwischen der Kante der Blende und der Lichtaustrittsoptik.In the case of a headlight, the spatial directions are a vertical spatial direction and a horizontal spatial direction when the front light is used as intended. The lens combination preferably bundles in the horizontal, while the optical coupling-out optics preferably bundles in the vertical. For the compactness of the light module, it is also advantageous if the lens combination (or the lenses fulfilling their optical function) is located close to the intermediate image surface, that is, close to the side or edge of the diaphragm facing the light exit optics. The reason for this is that the ancillary optics are usually designed in such a way that the light bundles from the individual light sources are most closely bundled there. It is particularly preferred that the lens combination (or the lenses fulfilling its optical function) is located closer to the side or edge of the diaphragm facing the light exit optics than to the light exit optics. The lens combination (or the lenses fulfilling their optical function) is preferably located in the light path between the edge of the diaphragm and the light exit optics.
Durch dieses optische Konzept wird erreicht, dass das Lichtmodul einen einfachen und gleichzeitig kompakten Aufbau aufweist.This optical concept ensures that the light module has a simple and at the same time compact structure.
Einfach heißt in diesem Zusammenhang, dass die Anzahl der Bauteile gering ist (vorzugsweise, aber nicht notwendigerweise weniger als 12 Bauteile pro Modul, Lichtquellen und Befestigungen wie etwa Schrauben nicht gezählt), dass keine mechanisch bewegbaren Teile für die Erzeugung der unterschiedlichen Lichtverteilungen erforderlich sind, und dass alle Bauteile mit herkömmlichen Herstellungsverfahren kostengünstig und in großen Stückzahlen herstellbar sind.In this context, simple means that the number of components is small (preferably, but not necessarily less than 12 components per module, light sources and fastenings such as screws not counted), that no mechanically movable parts are required to generate the different light distributions, and that all components can be manufactured inexpensively and in large numbers using conventional manufacturing processes.
Kompakt heißt in diesem Zusammenhang, dass das Modul vorzugsweise, aber nicht notwendigerweise eine Höhe von weniger als 75mm hat, eine Tiefe von weniger als 130mm und eine Breite von weniger als 150mm aufweist.In this context, compact means that the module preferably, but not necessarily, has a height of less than 75 mm, a depth of less than 130 mm and a width of less than 150 mm.
Bevorzugt ist, dass von dem Lichtmodul ausgestrahltes Licht zusätzlich zu dem regelkonformen Abblendlicht und Fernlicht auch ein regelkonformes Tagfahrlicht und/oder Positionslicht und/oder Blinklicht und/oder Kurvenlicht und/oder Autobahnlicht und/oder Stadtlicht und/oder Teilfernlicht und/oder Markierungslicht ist, wobei das Lichtmodul dazu in der Lage sein soll, mindestens eine dieser zusätzlichen Lichtverteilungen zu erzeugen, evtl. auch für verschiedene Verkehrsarten (Linksverkehr, Rechtsverkehr) oder Regelungsvarianten(ECE (Europa), SAE (USA), CCC (China)). Selbstverständlich ist diese Liste dabei nicht auf die genannten Lichtverteilungen beschränkt, sondern kann auch weitere Lichtverteilungen beinhalten.It is preferred that the light emitted by the light module is, in addition to the rule-compliant low beam and high beam, also a rule-compliant daytime running light and / or position light and / or flashing light and / or cornering light and / or motorway light and / or town light and / or partial high beam and / or marker light, The light module should be able to generate at least one of these additional light distributions, possibly also for different types of traffic (left-hand traffic, right-hand traffic) or regulation variants (ECE (Europe), SAE (USA), CCC (China)). Of course, this list is not limited to the light distributions mentioned, but can also contain other light distributions.
Bevorzugt ist weiterhin, dass die Lichtaustrittoptik eine weitere Teiloptik aufweist und dass die Vorsatzoptik von wenigstens einer der Halbleiterlichtquellen dazu eingerichtet und angeordnet ist, Licht dieser Halbleiterlichtquelle an der Linsenkombination vorbei auf die weitere Teiloptik zu richten und dass die weitere Teiloptik dazu eingerichtet ist, eine Lichtverteilung zu erzeugen, welche von den Lichtverteilungen des Lichtes, welches durch die Linsenkombination propagiert, verschieden ist.It is further preferred that the light exit optics have a further sub-optics and that the ancillary optics of at least one of the semiconductor light sources is set up and arranged to direct light from this semiconductor light source past the lens combination onto the further sub-optics and that the further sub-optics are set up to distribute light to generate, which is different from the light distributions of the light that propagates through the lens combination.
Vorteilhaft ist diese Ausgestaltung insbesondere bei der Realisierung von Lichtverteilungen mit einem Lichtmodul, falls sich die Anforderungen an die Lichtverteilung signifikant unterscheiden. Dies ist beispielsweise bei einer Blinklichtverteilung und einer Fernlichtverteilung der Fall. Durch die unterschiedlichen Anforderungen sind andere Optiken notwendig, um die gewünschte Lichtverteilung zu erzeugen, insbesondere eine andere Lichtauskoppeloptik. Indem dennoch beide Optiken in einem Lichtmodul angeordnet werden, lassen sich im Vergleich zu Lösungen mit getrennten Optiken und/oder Lichtmodulen Bauraum und Bauteile einsparen.This refinement is particularly advantageous when realizing light distributions with a light module if the requirements for the light distribution differ significantly. This is the case, for example, with a flashing light distribution and a high beam distribution. Due to the different requirements, different optics are necessary in order to generate the desired light distribution, in particular different light decoupling optics. By arranging both optics in one light module, compared to solutions with separate Optics and / or light modules save space and components.
Ferner ist bevorzugt, dass alle Halbleiterlichtquellen auf einer ebenen Platine angeordnet sind, die an einem einstückigen Kühlkörper befestigt ist.It is also preferred that all semiconductor light sources are arranged on a flat circuit board which is attached to a one-piece heat sink.
Vorteilhaft werden so die Kosten für Stecker, Kabelbaum und Platinen wesentlich gesenkt, und alle Halbleiterlichtquellen nutzen einen gemeinsamen Kühlkörper. Auf diese Weise kann das gesamte Kühlkörpervolumen reduziert werden, was Gewicht und Kosten reduziert.Advantageously, the costs for connectors, cable harness and circuit boards are significantly reduced, and all semiconductor light sources use a common heat sink. In this way, the total heat sink volume can be reduced, which reduces weight and costs.
Bevorzugt ist auch, dass die Vorsatzoptik eine katadioptrische Optik, und/oder ein Reflektor und/oder eine Linse und/oder ein abbildendes Linsensystem und/oder ein Lichtleiter ist.It is also preferred that the ancillary optics is a catadioptric optic and / or a reflector and / or a lens and / or an imaging lens system and / or a light guide.
Je nach vorhandenem Bauraum, vorgesehener Anwendung des Lichtmodules oder Gestaltungsanforderungen ist es vorteilhaft, eine unterschiedliche Vorsatzoptik zu verwenden. Dadurch, dass jede Lichtquelle eine individuelle Vorsatzoptik aufweist, kann es aufgrund der unterschiedlichen Anforderungen an die Lichtverteilungen vorteilhaft sein, auch in ein und demselben Lichtmodul unterschiedliche Vorsatzoptiken zu verwenden. Grundsätzlich ist es vorgesehen, dass auch bei Verwendung einer gleichen Art von Vorsatzoptik für alle Lichtquellen diese Vorsatzoptik je nach Anforderung individuell für jede Lichtquelle ausgestaltet ist.Depending on the existing installation space, the intended application of the light module or the design requirements, it is advantageous to use different front optics. Due to the fact that each light source has an individual ancillary optics, it can be advantageous to use different ancillary optics in one and the same light module due to the different requirements for the light distributions. In principle, it is provided that even when using the same type of ancillary optics for all light sources, this ancillary optics is designed individually for each light source, depending on the requirements.
Hierbei ist bevorzugt, dass die Vorsatzoptik eine einteilige Vorsatzoptikkombination ist, welche die Vorsatzoptiken aller Halbleiterlichtquellen umfasst. Vorteilhaft werden hierdurch der notwendige Bauraum, die Anzahl der Bauteile und somit das Gewicht und Kosten weiter gesenkt.It is preferred here that the optical attachment is a one-piece optical attachment combination which comprises the optical attachment of all semiconductor light sources. This advantageously further reduces the installation space required, the number of components and thus the weight and costs.
Außerdem ist bevorzugt, dass die Halbleiterlichtquellen matrixartig in Zeilen angeordnet sind, wobei einzelne oder mehrere Reihen von Halbleiterlichtquellen dazu eingerichtet sind, gemeinsam jeweils mindestens eine regelkonforme Lichtverteilung zu erzeugen. Die Zeilen können auch versetzt zueinander angeordnet sein.It is also preferred that the semiconductor light sources are arranged in a matrix-like manner in rows, with individual or multiple rows of semiconductor light sources being set up to jointly generate at least one rule-compliant light distribution. The lines can also be arranged offset to one another.
Als matrixartig ist in diesem Zusammenhang auch zu verstehen, dass mehrere Halbleiterlichtquellen in einem Abstand voneinander in einer Reihe angeordnet sind und dass eine zweite Reihe von Halbleiterlichtquellen, welche ebenfalls in einem Abstand voneinander angeordnet sind, versetzt zu der ersten Reihe über oder unter dieser positioniert ist. Hieraus ergibt sich der Vorteil eines kompakten Bauraums. Die Vorsatzoptiken benötigen einen signifikant größeren Bauraum als die Lichtquellen und sind daher maßgeblich für den notwendigen Bauraum verantwortlich. Durch die versetzte Anordnung wird der vorhandene Platz besser ausgenutzt, da auch die Vorsatzoptiken entsprechend versetzt zueinander angeordnet sind. Hierbei sind jeweils einzelne Reihen für die Erzeugung einer einzelnen Lichtverteilung (oder eine Teiles einer Lichtverteilung) vorgesehen, zum Beispiel eine Reihe für ein Abblendlicht und eine Reihe für ein Fernlicht, was die Konstruktion vereinfacht. Um weiter Platz zu sparen, ist es möglich, mehrere Reihen zur Erzeugung der gleichen Lichtverteilung, beispielhaft seien zwei Reihen zur Erzeugung einer Abblendlichtverteilung genannt, zu nutzen.In this context, matrix-like is also to be understood as meaning that several semiconductor light sources are arranged at a distance from one another in a row and that a second row of semiconductor light sources, which are also arranged at a distance from one another, is positioned offset to the first row above or below it . This results in the advantage of a compact installation space. The additional optics require a significantly larger installation space than the light sources and are therefore largely responsible for the necessary installation space. The staggered arrangement makes better use of the available space, since the ancillary optics are also arranged correspondingly offset from one another. In this case, individual rows are provided for generating a single light distribution (or part of a light distribution), for example a row for a low beam and a row for a high beam, which simplifies the construction. In order to save even more space, it is possible to use several rows to generate the same light distribution, for example two rows to generate a low beam distribution.
Bevorzugt ist, dass die Blende eine Blendenfläche mit einer Kombination aus wenigstens einer Erhebung und wenigstens einer Senke ist, wobei die Erhebung im Lichtweg einer Abblendlichtquelle und die Senke im Lichtweg einer Fernlichtquelle angeordnet ist. Die Profile der Blende, in denen die Erhebungen und Senken liegen, sind quer zur Hauptlichtausbreitungsrichtung angeordnet.It is preferred that the screen has a screen surface with a combination of at least one elevation and at least is a depression, the elevation being arranged in the light path of a low beam source and the depression in the light path of a high beam source. The profiles of the diaphragm in which the elevations and depressions are located are arranged transversely to the main direction of light propagation.
Vorteilhaft lassen sich hierdurch Lichtkanäle, die zur Erzeugung einer regelkonformen Lichtverteilung eine Blende benötigen, wie etwa ein Abblendlicht, und Lichtkanäle, die zur Erzeugung einer regelkonformen Lichtverteilung keine Blende benötigen, wie etwa ein Fernlicht, platzsparend in unmittelbarer Nähe zueinander anbringen. Durch mehrere kleinere als Blenden dienende Erhebungen wird für das gesamte Lichtmodul weniger Platz benötigt als bei einer einzelnen großen Blende, die eine einzige, durchgehende Blendenkante aufweist, und durch die Verwendung eines einzelnen Bauteils als Baueinheit von mehreren kleinen Blenden wird die Anzahl der notwendigen Bauteile reduziert.Advantageously, light channels that require a screen to generate a rule-compliant light distribution, such as a low beam, and light channels that do not require a shutter to generate a rule-compliant light distribution, such as a high beam, can be installed in close proximity to one another to save space. With several smaller elevations serving as screens, less space is required for the entire light module than with a single large screen, which has a single, continuous screen edge, and the use of a single component as a unit of several small screens reduces the number of components required .
Ferner ist bevorzugt, dass ein Teil der Erhebungen, zum Beispiel alle mit Ausnahme einer einzelnen Erhebung, jeweils eine Stufe zur Erzeugung eines Bildes der Stufe in Form einer Hell-Dunkel-Grenze in der Abblendlichtverteilung aufweisen. Jede Stufe weist eine parallel zur Hauptausbreitungsrichtung des Lichtes verlaufende Kante auf.It is further preferred that some of the elevations, for example all with the exception of a single elevation, each have a step for generating an image of the step in the form of a light-dark boundary in the low beam distribution. Each step has an edge running parallel to the main direction of propagation of the light.
Durch die Stufen aufweisenden Erhebungen wird zunächst eine helle und blendfreie Lichtverteilung erzeugt. Der Kanal oder die Kanäle, die keine Stufen aufweisen, werden bevorzugt so gestaltet, dass sie das Licht breiter streuen als die Stufen aufweisenden Kanäle. Dadurch kann zum Beispiel Licht in Bereiche gestreut werden, die von den Stufen aufweisenden Kanälen abgeschattet werden. Auf diese Weise kann dort eine wenn auch geringe Helligkeit erzeugt werden, die zum Beispiel das Erkennen von Verkehrsschildern erlaubt, ohne andere Verkehrsteilnehmer unzulässig zu blenden.A bright and glare-free light distribution is initially generated by the elevations having steps. The channel or channels that do not have steps are preferably designed in such a way that they scatter the light more broadly than the channels that have steps. In this way, for example, light can be scattered into areas that are shaded by the channels having steps. In this way, an even if low brightness can be generated there which, for example, allow traffic signs to be recognized without unduly dazzling other road users.
Es ist bevorzugt, dass eine der Lichtauskoppeloptik zugewandte Kante der Blende in einem Fokalbereich der Vorsatzoptik und in einem Fokalbereich des Projektionslinsensystems bestehend aus der Linsenkombination (oder den funktionsäquivalenten Linsen) und der Lichtauskoppeloptik angeordnet ist (Die Fokalbereiche der Linsenkombination (oder den funktionsäquivalenten Linsen) und der Lichtauskoppeloptik bilden gemeinsame Fokalbereiche, die sich mit dem Fokalbereich der Vorsatzoptiken überlappen).It is preferred that an edge of the diaphragm facing the light extraction optics is arranged in a focal area of the ancillary optics and in a focal area of the projection lens system consisting of the lens combination (or the functionally equivalent lenses) and the light extraction optics (the focal areas of the lens combination (or the functionally equivalent lenses) and of the light decoupling optics form common focal areas that overlap with the focal area of the ancillary optics).
Vorteilhaft wird so die Blendenkante scharf abgebildet, was für eine scharfe Hell-Dunkel-Grenze in einer Abblendlichtverteilung sorgt.In this way, the diaphragm edge is advantageously mapped sharply, which ensures a sharp light-dark boundary in a low beam distribution.
Ferner bevorzugt ist, dass wenigstens ein linsenförmiges Teilstück der Linsenkombination (oder eine funktionsäquivalente Einzellinse) im Lichtkegel genau einer Vorsatzoptik angeordnet ist.It is also preferred that at least one lens-shaped section of the lens combination (or a functionally equivalent single lens) is arranged in the light cone of precisely one lens attachment.
Besonders vorteilhaft ist diese Ausgestaltung bei der Verwendung mehrerer Lichtquellen, weil dann der Beitrag jeder Lichtquelle zur gesamtem Lichtverteilung durch die Formgebung des zugehörigen Teilstücks individuell gestaltet werden kann. Das eröffnet auch die Möglichkeit, bei ansonsten unveränderten Lichtmodulen bestimmte Änderungen der Lichtverteilungen durch Änderungen der brechenden Flächen der Linsenkombination (oder der funktionsäquivalenten Einzellinsen) zu erzeugen.This configuration is particularly advantageous when using several light sources because the contribution of each light source to the overall light distribution can then be configured individually by the shape of the associated section. This also opens up the possibility of producing certain changes in the light distributions by changing the refractive surfaces of the lens combination (or the functionally equivalent individual lenses) with otherwise unchanged light modules.
In einer bevorzugten Ausgestaltung ist die erste Teiloptik der Lichtauskoppeloptik eine Zylinderlinse.In a preferred embodiment, the first partial optics the light decoupling optics a cylindrical lens.
Vorteilhaft an dieser Ausgestaltung ist die einfache Herstellung und kompakte Bauweise, welche gleichzeitig eine breite Lichtaustrittsfläche bietet.The advantage of this configuration is the simple production and compact design, which at the same time offers a wide light exit surface.
Bevorzugt ist, dass die zusätzliche Teiloptik der Lichtauskoppeloptik eine strukturierte Scheibe und/oder eine Kissenoptik ist und/oder aus einem volumenstreuenden Material besteht, also einem Material, bei dem die Streuung zumindest nicht nur an der Oberfläche, sondern auch an im Volumen liegenden Streuzentren erfolgt.It is preferred that the additional partial optics of the light decoupling optics is a structured disc and / or cushion optics and / or consists of a volume-scattering material, i.e. a material in which the scattering occurs at least not only on the surface but also on scattering centers in the volume .
Als Folge ergibt sich eine breit gestreute Lichtverteilung, welche zum Beispiel für eine regelkonforme Blinklichtverteilung geeignet ist.The result is a widely spread light distribution, which is suitable, for example, for a rule-compliant flashing light distribution.
Vorzugsweise ist ein Teil des Lichtmodules, welcher dazu eingerichtet ist, eine regelkonforme Tagfahrlichtverteilung zu erzeugen, auch dazu eingerichtet, eine regelkonforme Blinklichtverteilung zu erzeugen.A part of the light module which is set up to generate a rule-compliant daytime running light distribution is preferably also set up to generate a rule-compliant turn signal distribution.
Bevorzugt ist auch, dass Lichtfunktionen, welche eine ähnliche Lichtverteilung aufweisen, gleiche Bauteile des Lichtmodules nutzen, insbesondere sei hier die Lichtauskoppeloptik genannt.It is also preferred that light functions which have a similar light distribution use the same components of the light module, in particular the light decoupling optics should be mentioned here.
Damit ergibt sich eine kompaktere Bauform des Lichtmodules bei gleichzeitig reduzierten Kosten. Regelkonforme Tagfahrlicht- und Blinklichtverteilungen leuchten beide einen ähnlichen Winkelbereich aus. Es ist daher zweckmäßig, für die Erzeugung dieser beiden Lichtverteilungen zumindest zum Teil dieselben Bauteile innerhalb des Lichtmodules zu nutzen.This results in a more compact design of the light module with simultaneously reduced costs. Standard-compliant daytime running light and indicator light distributions both illuminate a similar angular range. It is therefore expedient to use at least some of the same components within the light module for generating these two light distributions.
In einer bevorzugten Ausgestaltung ist die Lichtauskoppeloptik ein einstückiges Bauteil.In a preferred embodiment, the optical coupling-out system is a one-piece component.
Neben den reduzierten Kosten für das Bauteil wird auch der Bauraum reduziert und die Montage vereinfacht.In addition to the reduced costs for the component, the installation space is also reduced and assembly is simplified.
Ferner ist bevorzugt, dass wenigstens eine vertikale Blende im Lichtweg wenigstens einer Fernlichtquelle angeordnet und dazu eingerichtet ist, den ausgeleuchteten Winkelbereich der Fernlichtquelle zu begrenzen.It is further preferred that at least one vertical diaphragm is arranged in the light path of at least one high beam source and is set up to limit the illuminated angular range of the high beam source.
Vorteilhaft ist hierdurch die Realisierung eines Teilfernlichtes denkbar, bei dem einzelne Lichtquellen zur Verhinderung der Blendung von Verkehrsteilnehmern abgeschaltet oder gedimmt werden.In this way, the implementation of a partial high beam is advantageously conceivable, in which individual light sources are switched off or dimmed to prevent dazzling road users.
Erfindungsgemäß weist das Lichtmodul wenigstens einen Abblendlichtkanal und wenigstens einen Fernlichtkanal auf, wobei jeder Abblendlichtkanal aus einer Lichtquelle, einer Licht dieser Lichtquelle sammelnden und bündelnden Vorsatzoptik und einem Projektionslinsensystem besteht, das aus einem linsenförmigen Teilstück einer Linsenkombination oder einer Einzellinse der Linsenkombination und einer Lichtauskoppeloptik besteht, wobei jedes Teilstück der Linsenkombination, beziehungsweise jede Einzellinse der Linsenkombination im Lichtkegel genau einer Vorsatzoptik angeordnet ist und wobei eine Vorsatzoptik-seitige Brennweite des Projektionslinsensystems in jedem Fernlichtkanal größer ist als in jedem Abblendlichtkanal.According to the invention, the light module has at least one low beam channel and at least one high beam channel, each low beam channel consisting of a light source, an auxiliary lens that collects and focuses light from this light source, and a projection lens system that consists of a lenticular section of a lens combination or a single lens of the lens combination and a light extraction lens, wherein each part of the lens combination, or each individual lens of the lens combination is arranged in the light cone of exactly one ancillary optics and wherein an ancillary optics-side focal length of the projection lens system in each high beam channel is greater than in each low beam channel.
Erfindungsgemäß weisen mindestens zwei Abblendlichtkanäle eine unterschiedliche Blendenform auf, so dass durch Umschalten zwischen den Kanälen oder durch eine geeignete Dimmung jedes Kanals unterschiedliche Lichtverteilungen erzeugt werden können, zum Beispiel eine für die Autobahn oder für die Stadt oder für Rechtsverkehr oder für Linksverkehr optimierte Lichtverteilung. Das Umschalten, bzw. das Dimmen erfolgt durch eine entsprechende Ansteuerung der Lichtquellen der Kanäle.According to the invention, at least two low-beam light channels have a different aperture shape, so that different light distributions can be generated by switching between the channels or by suitable dimming of each channel, for example one for the motorway or light distribution optimized for the city or for right-hand traffic or for left-hand traffic. Switching or dimming is done by activating the light sources of the channels accordingly.
Weiterhin ist bevorzugt, dass die Lichtauskoppeloptik um eine vertikale Achse verkippt angeordnet ist oder gebogen ist.It is further preferred that the optical coupling-out system is arranged tilted about a vertical axis or is curved.
Vorteilhaft kann damit äußeren Gegebenheiten, etwa der Pfeilung der Abdeckscheibe des Scheinwerfers, Rechnung getragen werden.External conditions, such as the arrowheading of the cover plate of the headlight, can thus advantageously be taken into account.
Auch ist bevorzugt, dass ein die Halbleiterlichtquellen steuerndes Steuergerät des Scheinwerfers dazu eingerichtet ist, Halbleiterlichtquellen, die zur Erzeugung einer regelkonformen Fernlichtverteilung dienen, zu dimmen, um eine regelkonforme Tagfahrlichtverteilung zu erzeugen und/oder zu ergänzen.It is also preferred that a control device of the headlight which controls the semiconductor light sources is set up to dim semiconductor light sources which are used to generate a rule-compliant high beam distribution in order to generate and / or supplement a rule-compliant daytime running light distribution.
Vorteilhaft wird hierdurch die leuchtende Fläche des Scheinwerfers im Tagfahrlichtbetrieb vergrößert, was die Sichtbarkeit des Kraftfahrzeuges weiter verbessert. Ein weiterer Vorteil besteht darin, dass eine nur zur Erzeugung einer Tagfahrlichtverteilung dienende Baugruppe weggelassen werden kann.This advantageously increases the luminous area of the headlight in daytime running lights, which further improves the visibility of the motor vehicle. Another advantage is that an assembly serving only to generate daytime running lights can be omitted.
Bevorzugt sind das Lichtmodul, insbesondere die Platine, auf der die Halbleiterlichtquellen angeordnet sind, und das die Halbleiterlichtquellen steuernde Steuergerät dazu eingerichtet, die Halbleiterlichtquellen einzeln oder gruppenweise individuell anzusteuern, zum Beispiel zu dimmen.The light module, in particular the board on which the semiconductor light sources are arranged, and the control device controlling the semiconductor light sources are preferably set up to control the semiconductor light sources individually or in groups, for example to dim them.
Vorteilhaft lassen sich hierdurch je nach Verkehrssituation, Verkehrsart oder gesetzlichen Anforderungen auch einzelne Lichtquellen einschalten und ausschalten, wodurch Funktionen zur Erhöhung der Sicherheit, beispielhaft seien ein statisches, ohne bewegliche Teile arbeitendes Kurvenlicht oder ein Teilfernlicht genannt, realisiert werden können oder landestypische Anforderungen erfüllt werden können.Depending on the traffic situation, type of traffic or legal requirements, individual light sources can advantageously be switched on and off, whereby functions to increase safety, for example a static cornering light that works without moving parts or a partial high beam, can be implemented or country-specific requirements can be met .
Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung, den Zeichnungen und den Unteransprüchen. Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen. Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.Further advantages emerge from the following description, the drawings and the subclaims. It goes without saying that the features mentioned above and those yet to be explained below can be used not only in the respectively specified combination, but also in other combinations or alone, without departing from the scope of the present invention. Exemplary embodiments of the invention are shown in the drawings and are explained in more detail in the following description.
Dabei zeigen, jeweils in schematischer Form:
- Figur 1
- ein Ausführungsbeispiel eines erfindungsgemäßen Lichtmoduls in einer dreidimensionalen Ansicht mit Gehäuse;
- Figur 2
- das Lichtmodul aus
Figur 1 in einer dreidimensionalen Ansicht ohne Gehäuse; - Figur 3
- das Lichtmodul aus
Figur 1 in einer dreidimensionalen Ansicht von oben; - Figur 4
- das aus
Figur 1 Lichtmodul in einer Seitenansicht; - Figur 5
- eine Draufsicht auf das Lichtmodul der
Figur 1 ; - Figur 6
- eine Komplexlichtquelle des erfindungsgemäßen Lichtmodul aus
Figur 1 ; - Figur 7
- eine dreidimensionale Vorderansicht der Lichtquellen auf einer Platine;
Figur 8- Strahlengänge der Abblendlichtkanäle in dem Lichtmodul aus
Figur 1 in der Draufsicht; Figur 9- einen Strahlengang eines Abblendlichtkanals entlang der keine Stufe aufweisenden Blende in dem Lichtmodul aus
Figur 1 ; Figur 10- Strahlengänge der Fernlichtkanäle in dem Lichtmodul aus
Figur 1 ; - Figur 11
- Vergleich der Strahlengänge von Abblendlicht und Fernlicht in dem Lichtmodul aus
Figur 1 ; - Figur 12
- Strahlengänge der Tagfahrlicht-/Positionslichtkanäle in dem Lichtmodul aus
Figur 1 ; - Figur 13
- Strahlengänge unterschiedlicher Lichtkanäle in dem Lichtmodul aus
Figur 1 in einer Seitenansicht; und - Figur 14
- Strahlengänge unterschiedlicher Lichtkanäle in dem Lichtmodul aus
Figur 1 in einer dreidimensionalen Ansicht
- Figure 1
- an embodiment of a light module according to the invention in a three-dimensional view with housing;
- Figure 2
- the light module off
Figure 1 in a three-dimensional view without the housing; - Figure 3
- the light module off
Figure 1 in a three-dimensional view from above; - Figure 4
- the end
Figure 1 Light module in a side view; - Figure 5
- a top view of the light module of
Figure 1 ; - Figure 6
- a complex light source of the light module according to the invention
Figure 1 ; - Figure 7
- a three-dimensional front view of the light sources on a circuit board;
- Figure 8
- Beam paths of the low beam channels in the light module
Figure 1 in plan view; - Figure 9
- a beam path of a low beam channel along the diaphragm not having a step in the light module
Figure 1 ; - Figure 10
- Beam paths of the high beam channels in the light module
Figure 1 ; - Figure 11
- Comparison of the beam paths from low beam and high beam in the light module
Figure 1 ; - Figure 12
- Beam paths of the daytime running light / position light channels in the light module
Figure 1 ; - Figure 13
- Beam paths of different light channels in the light module
Figure 1 in a side view; and - Figure 14
- Beam paths of different light channels in the light module
Figure 1 in a three-dimensional view
Dabei bezeichnen gleiche Bezugszeichen in verschiedenen Figuren jeweils gleiche oder zumindest ihrer Funktion nach vergleichbare Elemente.The same reference symbols denote different ones Figures are identical or at least functionally comparable elements.
Im Einzelnen zeigt die
An der Rückseite des Gehäuses 10 des Lichtmodules 8 befindet sich ein Kühlkörper 16, welcher in der gezeigten Darstellungsform mehrere Kühlrippen 18 aufweist.On the rear of the
Weiterhin ist ein Ausleger für die mechanische Leuchtweitenregelung 20 an der Unterseite des Gehäuses 10 an diesem befestigt. Durch eine am Gehäuse 10 seitlich befestigte Aufhängung 22 wird eine Drehachse 24 der Leuchtweitenregelung definiert. An dem Ausleger greift unten ein nicht dargestellter Aktor an, der den Ausleger und damit das ganze Lichtmodul 8 in der zur Drehachse 24 senkrechten Ebene verschwenkt.Furthermore, an arm for the mechanical
In der
Direkt an dem Kühlkörper 16 ist eine Platine 28 befestigt, auf welcher sich die in dieser Darstellung nicht sichtbaren Halbleiterlichtquellen 70, vorzugsweise LEDs, befinden. Vor der Platine 28 ist eine Vorsatzoptikkombination 30 befestigt, welche aus mehreren Tagfahrlichtvorsatzoptiken 32, Abblendlichtvorsatzoptiken 34 und Fernlichtvorsatzoptiken 36 besteht. Diese einzelnen Teile der Vorsatzoptikkombination 30 sind in der Vorsatzoptikkombination 30 so angeordnet, dass jedes einzelne Teil bei einer bestimmungsgemäßen Verwendung der Vorsatzoptikkombination 30 jeweils eine individuelle Vorsatzoptik für jeweils eine einzelne Halbleiterlichtquelle 70 auf der Platine 28 bildet. Hierbei sind die Abblendlichtvorsatzoptiken 34 und die Fernlichtvorsatzoptiken 36 jeweils abwechselnd nebeneinander in einer Reihe angeordnet. Die Tagfahrlichtvorsatzoptiken 32 befinden sich in einer weiteren Reihe über den Abblendlicht- und Fernlichtvorsatzoptiken 34 und 36.A
Im Lichtweg nach der Vorsatzoptikkombination 30 befindet sich eine Blendenkombination 38, welche als Blende für die Abblendlichtverteilung fungiert. Die Blendenkombination 38 weist mehrere abwechselnde Senken 40 und Erhebungen 42 auf, die quer zur Hauptlichtausbreitungsrichtung so angeordnet sind, dass sich jeweils eine Senke und eine Erhebung abwechseln. Die Erhebungen bilden die Blenden für die jeweiligen Lichtkanäle. Die Erhebungen 42 sind in den Strahlengängen der Abblendlichtvorsatzoptiken 34 angeordnet, und die Senken 40 sind in den Strahlengängen der Fernlichtvorsatzoptiken 36 angeordnet. In drei der vier dargestellten Erhebungen ist eine Stufe 44 in der Blendenoberfläche erkennbar. Diese Stufen 44 dienen zur Erzeugung einer Stufe in der Hell-Dunkel-Grenze einer regelkonformen Abblendlichtverteilung. Eine der vier Erhebungen 42 weist in dem dargestellten Ausführungsbeispiel eine Oberfläche 46 ohne Stufe auf, was aber kein wesentliches Merkmal der Erfindung darstellt.In the light path after the
Prinzipiell ist es möglich, anstelle einer Blendenkombination 38 auch mehrere einzelne Blenden zu verwenden. Um die Anzahl der Bauteile des Lichtmodules 8 zu verringern, ist eine Ausgestaltung in Form der einteiligen Blendenkombination zu bevorzugen. Des Weiteren ist es prinzipiell auch möglich, dass die Blendenkombination entlang der Hauptlichtausbreitungsrichtung nur schmal ist (z.B. wie die Schmalseite eines Bleches, das z.B. weniger als 1 mm dick ist), so dass die Erhebungen und Senken nur Teile einer konturierten Kante eines dünnen Bleches darstellen. Die Blende kann sich in diesem Fall auch von der optisch wirksamen Blendenkante ausgehend in vertikaler Richtung erstrecken. Die optisch wirksame Blendenkante ist dann eine obere Kante der Blende.In principle, it is also possible to use several individual diaphragms instead of a
Im Lichtweg hinter der Blendenkombination 38 befindet sich eine Linsenkombination 48. In der gezeigten Ausführungsform weist die Linsenkombination 48 mit Ausnahme einer lichteintrittsseitigen konvexen Vorwölbung 56 eine ebene Lichteintrittsfläche 50 auf. Die konvexe Vorwölbung 56 ist dazu eingerichtet, Licht aufzunehmen, das in dem Abblendlichtkanal propagiert, in dem die zugehörige Blendenerhebung 42 keine Stufe 46 aufweist.A
Die Lichtaustrittsfläche 52 der Linsenkombination besteht dabei aus nebeneinander angeordneten Fernlichtaustrittsflächen 58 und Abblendlichtaustrittsflächen 60, welche so angeordnet sind, dass jede der Lichtaustrittsflächen nur von jeweils einer Kombination aus Halbleiterlichtquelle 70 und deren Vorsatzoptik beleuchtet wird. Die Linsenkombination (beziehungsweise deren optische Funktion erfüllende Einzellinsen) liegt bevorzugt im Lichtweg zwischen der Kante der Blende und der Lichtaustrittsoptik und ist dabei so angeordnet, dass jedes Teilstück, bzw. jede funktionsäquivalente Einzellinse möglichst alle von der jeweils zugehörigen Vorsatzoptik ausgehenden Lichtstrahlen der Lichtquelle erfasst. Dabei ist jeweils eine Abblendlichtaustrittsfläche 60 neben einer Fernlichtaustrittsfläche 58 angeordnet, so dass jeweils zwei Abblendlichtkanäle durch einen zwischen ihnen liegenden Fernlichtkanal getrennt sind und jeweils zwei Fernlichtkanäle durch einen zwischen ihnen liegenden Abblendlichtkanal getrennt sind. Das Lichtmodul wird durch die bereits beschriebene Lichtauskoppeloptik 9 abgeschlossen, die aus strukturierter Scheibe und Zylinderlinse besteht. Es ist auch eine andere Anordnung der Fernlichtkanäle und der Abblendlichtkanäle möglich, bei der die Abblendlichtkanäle ohne einen zwischen ihnen liegenden Fernlichtkanal nebeneinander liegen und/oder bei der die Fernlichtkanäle ohne einen zwischen ihnen liegenden Abblendlichtkanal nebeneinander liegen.The
In der
Besonders deutlich lässt sich auch die ebene Lichteintrittsfläche 50 der Linsenkombination 48 mit der konvexen Vorwölbung 56 erkennen, ebenso wie die unterschiedlichen Gestaltungen der abwechselnd angeordneten Fernlichtaustrittsflächen 58 und Abblendlichtaustrittsflächen 60 der Lichtaustrittsfläche 52 der Linsenkombination 48. Weiterhin ist an der Lichtauskoppeloptik 9 eine Halterung 62 zur Befestigung der Lichtauskoppeloptik 9 am in dieser Figur nicht dargestellten Gehäuse 10 des Lichtmoduls 8 angebracht.The flat
In der
An der Platine 28 ist unterhalb der Vorsatzoptikkombination 30 ein Stecker 64 angebracht, der als Schnittstelle zur Energieversorgung der auf der Platine angebrachten Halbleiterlichtquellen 70 und zur Ansteuerung der Halbleiterlichtquellen 70 durch ein Lichtsteuergerät 68 dient.A
Deutlich erkennbar ist die unterschiedliche Ausgestaltung der einzelnen Bestandteile der Vorsatzoptikkombination 30. Die Tagfahrlichtvorsatzoptik 32, die Abblendlichtvorsatzoptik 34 und die Fernlichtvorsatzoptik 36 weisen unterschiedliche Bauformen auf. Sie unterscheiden sich je nach Art der zu erzeugenden Lichtverteilung, insbesondere in ihrer Größe. Weiterhin ist erkennbar, dass die Mittelpunkte der Abblendlichtvorsatzoptiken 34 und der Fernlichtvorsatzoptiken 36 sich nicht auf gleicher Höhe befinden, sondern aufgrund der unterschiedlichen Größe der Vorsatzoptiken auch vertikal versetzt zueinander angeordnet sind, so dass sich eine schachbrettartig versetzte Anordnung ergibt, bei der die Abblendlichtvorsatzoptiken in einer ersten Reihe liegen und die Fernlichtvorsatzoptiken in einer dazu vertikal versetzten weiteren Reihe liegen. Die kleineren Fernlichtvorsatzoptiken 36 liegen dabei tiefer als die Abblendlichtvorsatzoptiken 34.The different design of the individual components of the
In
Erkennbar ist, dass eine Lichtaustrittsfläche 60C der Linsenkombination 48, die zu dem Lichtkanal gehört, in dessen zugehörigem Teil der Blendenkombination 38 die keine Stufe aufweisende Erhebung 42 der Blendenkombination 38 liegt, eine andere Form aufweist als die anderen Lichtaustrittsflächen 60A, 60B, 60D der Linsenkombination 38 für die Abblendlichtquellen 74.It can be seen that a
Da jede Halbleiterlichtquelle 70 mit Ausnahme der Lichtauskoppeloptik 9 immer eine eigene Optik (zugehöriger Teil der Vorsatzoptikkombination 30, zugehöriger Teil der Blendenkombination 38 und zugehöriger Teil der Linsenkombination 48) besitzt, bilden sich einzelne Lichtkanäle innerhalb des Lichtmodules. Entsprechend der hier dargestellten Lichtquellen gibt es Tagfahrlichtkanäle 82, Abblendlichtkanäle 84 und Fernlichtkanäle 86.Since each
Zur platzsparenden Anordnung sind die Abblendlichtquellen 74 und die Fernlichtquellen 72 versetzt und in Reihen übereinander angeordnet. Denkbar ist die Verwendung weiterer Halbleiterlichtquellen, wobei in diesem Falle bevorzugt weitere Reihen von abwechselnd Abblendlichtquellen 74 und Fernlichtquellen 72 weiter übereinander versetzt angeordnet werden.To save space, the
Bevorzugt sind die Tagfahrlichtquellen 76 auch als Blinklichtquellen und/oder als Positionslichtquellen ausgeführt. Eine Lichtquelle kann zum Beispiel aus mehreren Chips bestehen, die ggf. auch Licht verschiedener Farben abgeben (zum Beispiel rot grün und blau, um weißes oder gelbes Licht zu erzeugen).The daytime running
Optional können die Fernlichtquellen 72 auch als zusätzliche Tagfahrlichtquellen genutzt werden. Hierzu werden sie gedimmt und nicht bei voller Leistung betrieben, um eine Blendung des Gegenverkehrs zu verhindern.The
Selbstverständlich ist die Anzahl der in der
Bei den Halbleiterlichtquellen 70 handelt es sich nicht notwendigerweise um Leuchtdioden. Beispielsweise können einzelne oder alle Halbleiterlichtquellen auch durch Laserlichtquellen realisiert werden.Of course, the number of in the
The
In der
Licht, welches von den Abblendlichtquellen 74 erzeugt wird, wird durch die jeweils einer Abblendlichtquelle 74 individuell zugehörige Abblendlichtvorsatzoptik 34, die im vorliegenden Fall eine katadioptrische Optik ist, umgelenkt und gebündelt. Abblendlichtquelle 74 und Vorsatzoptik 34 sind dabei in vertikaler Richtung höher als die Blendenkombination 38 angeordnet und sind dazu eingerichtet, das Licht von schräg oben auf die Blendenkombination 38, welche bevorzugt, aber nicht obligatorisch eine verspiegelte Oberfläche aufweist, zu lenken. Der Fokalbereich der Abblendlichtvorsatzoptik 34 liegt dabei auf der Blendenkante 80 der Blendenkombination 38, welche Blendenkante 80 der Linsenkombination 48 zugewandt ist. Hierdurch entsteht in der Ebene der Blendenkante 80 ein Zwischenbild einer Lichtverteilung mit einer Hell-Dunkel-Grenze, deren Gestalt durch die Form der Blendenkante 80 bestimmt wird.Light which is generated by the low-
In drei der vier in diesem Lichtmodul gezeigten Lichtkanäle 84A, 84B, 84D sind die Erhebungen 42 mit einer Stufe 44 versehen, die eine Stufe im Verlauf der Hell-Dunkel-Grenze der Abblendlichtverteilung erzeugt. Ein Lichtkanal 84C ist auf ein Stück der Blendenkante 80 fokussiert, welches keine Stufe 44 aufweist und entsprechend weist auch die Hell-Dunkel-Grenze des durch diesen Lichtkanal erzeugten Teils der Abblendlichtverteilung keine entsprechende Stufe auf.In three of the four
Die Blendenkante 80 liegt gleichzeitig auch im Fokalbereich der Lichteintrittsfläche 50 der Linsenkombination 48. Während die Lichteintrittsfläche 50 mit Ausnahme einer konvexen Vorwölbung 56 im Abblendlichtkanal 84C eine gerade und ebene Fläche ist, weist die Lichtaustrittsfläche 52 für jeden Abblendlichtkanal 84A, 84B, 84C, 84D eine einzelne Abblendlichtaustrittsfläche 60A, 60B, 60C, 60D in Form einer Projektionslinse auf. Dabei steht jedem Abblendlichtkanal 84A, 84B, 84C, 84D jeweils genau eine einzelne Abblendlichtaustrittsfläche 60A, 60B, 60C, 60D exklusiv zur Verfügung.The
In dem dargestellten Lichtmodul 8 weist die Linsenkombination 48 auch Fernlichtaustrittsflächen 58 auf, die in einer Beschreibung der Fernlichtkanäle 86 näher beschrieben werden. Die Fernlicht- und Abblendlichtaustrittsflächen 58 und 60 sind dabei abwechselnd nebeneinander angeordnet.In the
Die Abblendlichtkanäle 84A, 84B, 84C, 84D durchlaufen ihren jeweils zugehörigen Teil der Linsenkombination 48. Die Abblendlichtlichtaustrittsflächen 60 der Linsenkombination 48 sind so geformt, dass sie horizontal stärker bündeln als vertikal. Daher wird der von einer der Abblendlichtquellen 74 erzeugte Teil des Zwischenbildes vor allem in vertikaler Richtung vergrößert. Dies trägt zu der angestrebten Kompaktheit des Lichtmoduls 8 bei. Aufgrund des geringen horizontalen Bauraumbedarfs können die Halbleiterlichtquellen 70 kompakt nebeneinander und/oder in zwei Reihen übereinander und dabei ggf. in der Längsrichtung der Reihen versetzt zueinander angeordnet sein. Vorzugsweise weist die Linsenkombination (bzw. die funktionsäquivalenten Einzellinsen) in vertikaler Richtung kein Krümmung auf und ist damit in vertikaler Richtung zylindrisch. Eine Vergrößerung des Zwischenbildes, des sich im blendenseitigen Fokalbereich der Lichtauskoppeloptik im Inneren des Lichtmoduls einstellenden Lichtverteilung entsteht durch das Zusammenwirken von Linsenkombination und Lichtauskoppeloptik. Dabei ist die Vergrößerung in horizontaler Richtung bevorzugt größer als in vertikaler Richtung, wobei sich diese Richtungsangaben immer auf eine Ausrichtung beziehen, wie sie sich bei einer bestimmungsgemäßen Verwendung des Lichtmoduls in einem Kraftfahrzeug ergibt.The low-
Anschließend trifft das von den Abblendlichtquellen 74 ausgehende Licht auf die Teiloptik 9B der Lichtauskoppeloptik 9. Die Teiloptik 9B besitzt hier die Form einer (horizontalen) Zylinderlinse, deren Zylinderachse in dem dargestellten Beispiel eine Horizontale senkrecht zur Hauptabstrahlrichtung des Lichtmoduls ist. Das aus der Zylinderlinse austretende Licht erzeugt die regelkonforme Abblendlichtverteilung.The light emanating from the low beam
Da die Linsenkombination 38 horizontal stärker bündelt als vertikal und die Zylinderlinse vertikal stärker bündelt als horizontal, entsteht eine verzerrte Abbildung, das heißt, der vertikale und horizontale Abbildungsmaßstab sind nicht gleich. In diesem Beispiel ist die horizontale Bündelung schwächer als die vertikale Bündelung. Dies ist vorteilhaft, weil eine Abblendlichtverteilung typischerweise eine Breite von bis zu 100° und eine Höhe von bis zu 20° aufweist. Das entspricht einem Verhältnis Breite zu Höhe von ungefähr 5:1. Soll ein solches Verhältnis bei einem konventionellen System bereits in der Zwischenbildfläche an der Blendenkante 80 erzeugt werden, so muss auch die Breite der Blendenkombination 38 entsprechend größer gestaltet werden. Dies führt aber dazu, dass das Lichtmodul 8 breiter werden muss, was einer kompakten Lösung entgegensteht. Das verzerrt abbildende Projektionslinsensystem hat also auch den Effekt, den benötigten Bauraum für die Abblendlichtkanäle 84A, 84B, 84C, 84D zu verringern.Since the
Jeder Kanal weist bzgl. der Gestaltung der Vorsatzoptik, der Erhebung 42 in der Blendenkombination 38 und der Abblendlichtaustrittsfläche 60 der Linsenkombination 52 bevorzugt Unterschiede auf. Die gesamte Abblendlichtverteilung entsteht erst durch einander überlappende Überlagerung der einzelnen Lichtverteilungen der Abblendlichtkanäle 84A, 84B, 84C, 84D. Drei Abblendlichtkanäle 84A, 84B, 84D weisen eine Erhebung 42 mit Stufe 44 auf. Ein Kanal 84C hat eine Erhebung 42 ohne Stufe.Each channel preferably has differences with regard to the design of the auxiliary optics, the
In
Auch das in der als Halbleiterlichtquelle ausgeführten Abblendlichtquelle 74C erzeugte Licht durchläuft die Abblendlichtvorsatzoptik 34 der Vorsatzoptikkombination 30, trifft auf eine Erhebungen 42 der ungefähr horizontalen Blendenkombination 38, durchläuft die Linsenkombination 48 mit Abblendlichtaustrittsflächen 60 in Form einer Projektionslinse, und verlässt das Lichtmodul durch die Zylinderlinse.The light generated in the low-beam light source 74C, which is designed as a semiconductor light source, also passes through the low-
Die Lichteintrittsfläche 50 der Linsenkombination 48 für diesen Abblendlichtkanal 84C weist die konvexe Vorwölbung 56 in Form einer weiteren Projektionslinse auf, welche horizontal stärker gekrümmt ist als die Lichtaustrittsfläche 60C des Kanals. Der Effekt ist, dass die Strahlen in einer Ebene zwischen Lichteintrittsfläche 50 und Lichtaustrittsfläche 60C fokussiert werden, um danach wieder auseinanderzulaufen. Insgesamt wird dadurch eine Auffächerung der Strahlen in der horizontalen Ebene erreicht und die Breite der Lichtverteilung wird erhöht. Dieser Effekt kann auch dadurch erreicht werden, dass die Linse konkav vorgewölbt ist und somit horizontal als Zerstreuungslinse wirkt.The
In der
Licht, welches von der Fernlichtquelle 72 erzeugt wird, wird durch die Vorsatzoptik 36, die im vorliegenden Fall eine katadioptrische Optik ist, umgelenkt und gebündelt. Fernlichtquelle 72 und Vorsatzoptik 36 befinden sich dabei in vertikaler Richtung über der obersten Fläche der Senke und sind dazu eingerichtet, das Licht nicht auf die Oberfläche und/oder eine Kante der Blendenkombination 38, die eine verspiegelte Oberfläche aufweist, zu richten. Dazu weist die Blendenkombination 38 in den Fernlichtkanälen 86A, 86B, 86C, 86D jeweils eine Senke 40 auf, sodass das Fernlichtbündel die Blendenkombination 38 ohne durch die Blende begrenzt zu werden, ungehindert passieren kann.Light which is generated by the
Der Lichtkanal-individuelle Fokalbereich der Vorsatzoptik 36 liegt hierbei jeweils im Lichtweg vor der der Lichtauskoppeloptik 9 zugewandten Blendenkante 80 der Blendenkombination 38 und überlappt sich mit dem Lichtkanal-individuellen Fokalbereich der Linsenkombination 48. Während die Lichteintrittsfläche 50 der Fernlichtkanäle der Linsenkombination 48 eine gerade und ebene Fläche ist, weist die Lichtaustrittsfläche 52 für jeden Fernlichtkanal 86A, 86B, 86C, 86D eine einzelne Fernlichtaustrittsfläche 58 mit einer optisch wirksamen Krümmung auf, durch die sich die Funktion einer Projektionslinse ergibt. Dabei steht jedem Kanal 86A, 86B, 86C, 86D jeweils genau eine einzelne Fernlichtaustrittsfläche 58A, 58B, 58C, 58D exklusiv zur Verfügung. In dem dargestellten, erfindungsgemäßen Lichtmodul 8 weist die Linsenkombination 48 weiterhin auch Abblendlichtaustrittsflächen 60 auf, welche weiter oben in der Beschreibung der Abblendlichtkanäle bereits beschrieben wurden. Die Fernlicht- und Abblendlichtaustrittsflächen 58 und 60 sind dabei abwechselnd nebeneinander angeordnet. Auch die Flächen 58 der Linsenkombination 48 sind vorzugsweise gering oder gar nicht gekrümmt, so dass sie einem vertikal orientierten Zylinder gleichen oder ähneln.The light channel-individual focal area of the
Das in den Fernlichtkanälen 86A, 86B, 86C, 86D propagierende Licht durchläuft seinen jeweils zugehörigen Teil der Linsenkombination 48. Die Fernlichtaustrittsflächen 58 der Linsenkombination 48 sind so geformt, dass sie horizontal stärker bündeln als vertikal. Dies trägt zu der angestrebten Kompaktheit des Lichtmoduls 8 bei. Aufgrund des geringen horizontalen Bauraumbedarfs können die Halbleiterlichtquellen 70 kompakt nebeneinander und/oder versetzt angeordnet werden, so dass zwei einander benachbarte Halbleiterlichtquellen 70 durch einen zwischen ihnen leeren Platz voneinander getrennt sind.The light propagating in the
Anschließend trifft das von den Fernlichtquellen 72 ausgehende Licht auf die Teiloptik 9B. Die Teiloptik 9B besitzt hier die Form einer Zylinderlinse, deren Zylinderachse in der vorliegenden erfindungsgemäßen Ausführung eine Horizontale senkrecht zur Hauptabstrahlrichtung des Lichtmoduls ist. In dieser Zylinderlinse erfolgt eine Bündelung des Lichtes bevorzugt in vertikaler Richtung. Das die Zylinderlinse verlassende Licht erzeugt die regelkonforme Fernlichtverteilung.The light emanating from the
In der
Das ist vorteilhaft, da an Abblendlicht- und Fernlichtverteilungen unterschiedliche Anforderungen hinsichtlich Breite, Höhe und maximaler Beleuchtungsstärke gestellt werden. Während eine Abblendlichtverteilung typischerweise eine Breite von maximal 100° aufweist und eine Höhe von maximal 20°, hat eine Fernlichtverteilung typischerweise eine kleinere Breite von maximal 50° und eine kleinere Höhe von maximal 10°. Das Verhältnis Breite Abblendlicht zu Breite Fernlicht und Höhe Abblendlicht zu Höhe Fernlicht ist also beides Mal etwa 2:1. Auch beim Maximum der Beleuchtungsstärke gibt es unterschiedliche Anforderungen. Während bei einem Abblendlicht maximale Beleuchtungsstärken in der Größenordnung 50 lx auf einer 25 m entfernten Wand typisch sind, so sind es bei einem Fernlicht 100 lx. Das Verhältnis der Beleuchtungsstärke von Abblendlicht zu Fernlicht entspricht also einem Verhältnis 1:2. Sowohl die Verhältnisse bei Höhe und Breite als auch bei den maximalen Beleuchtungsstärken verlangen also nach einer geringeren Vergrößerung für die Fernlichtkanäle 86.This is advantageous because the low beam and high beam distributions have different requirements in terms of width, height and maximum illuminance. While a low beam distribution typically has a maximum width of 100 ° and a maximum height of 20 °, a high beam distribution typically has a smaller width of a maximum of 50 ° and a smaller height of a maximum of 10 °. The ratio of the width of the low beam to the width of the high beam and the height of the low beam to the height of the high beam is both around 2: 1. There are also different requirements for maximum illuminance. While maximum illuminance levels of the order of magnitude of 50 lx on a wall 25 m away are typical for a low beam, it is 100 lx for a high beam. The ratio of the illuminance of the low beam to the high beam therefore corresponds to a ratio of 1: 2. Both the proportions of height and width and of the maximum illuminance levels therefore require a lower magnification for the high beam channels 86.
Dies kann durch den beschriebenen Aufbau realisiert werden. Die Gesamtvergrößerung bestimmt sich aus dem Produkt der Vergrößerung durch die Vorsatzoptik 30 und der Vergrößerung durch die Linsenkombination 48. Die Vergrößerung der Vorsatzoptik 30 ist gegeben durch das Verhältnis von Bildweite zu Objektweite, wobei das Objekt eine Halbleiterlichtquelle 70 ist. In der beschriebenen Ausführung ist die Objektweite (Abstand Halbleiterlichtquelle zu Vorsatzoptik) für alle Teile der Vorsatzoptikkombination 30 ungefähr gleich gewählt. In den Fernlichtkanälen 86 ist die Bildweite der Fernlichtvorsatzoptiken 36 aber kleiner gewählt als die Bildweite der Abblendlichtvorsatzoptiken 34. Daher ist die Vergrößerung durch die Fernlichtvorsatzoptiken 36 geringer. Durch die kürzere Bildweite wird zwangsläufig ein größerer Abstand zwischen Zwischenbildfläche und Zylinderlinse erzeugt. Dadurch kann die Fernlichtaustrittsfläche 58 der Linsenkombination 48 so ausgelegt werden, dass die gesamte Brennweite der Linsenkombination 48 in den Fernlichtkanälen 86 größer ist als in den Abblendlichtkanälen 84. Da die Bildweite für Lichtkanäle 84 und 86 gleich ist (im dargestellten Beispiel 25 m), ist damit auch die Vergrößerung in den Fernlichtkanälen 86 kleiner als in den Abblendlichtkanälen 84.This can be achieved by the structure described. The total magnification is determined from the product of the magnification through the
Licht, welches von der Tagfahrlichtquelle 76 erzeugt wird, wird durch die Vorsatzoptik 32, im vorliegenden Fall eine katadioptrische Optik, umgelenkt und gebündelt. Dabei wird das Licht in Richtung der strukturierten Scheibe, welche als weitere Teiloptik 9A der Lichtauskoppeloptik 9 dient, gelenkt. Die Scheibe weist hierbei eine Struktur auf, welche das Licht in größere Winkelbereiche streut, um so eine Tagfahrlicht- und/oder Positionslichtverteilung zu erzeugen. Hierbei kann es sich beispielsweise um eine Kissenstruktur handeln. Vorzugsweise wird Licht an jedem Teil der strukturierten Scheibe in gleicher Weise gestreut, so dass sich eine gleichmäßige, helle Ausleuchtung der Scheibe ergibt.Light which is generated by the daytime running
Die Tagfahrlichtkanäle 82 können alternativ oder zusätzlich auch als Kanal für ein Blinklicht genutzt werden. Es ist vorteilhaft, dafür gelb leuchtende Halbleiterlichtquellen zu verwenden, insbesondere wenn der Kanal parallel für Tagfahrlicht/Positionslicht genutzt werden soll. Es ist aber auch möglich, weiße Halbleiterlichtquellen zu verwenden und Teile der Vorsatzoptikkombination 30 und/oder Teile der strukturierten Scheibe gelb einzufärben. Um den Kanal parallel für Tagfahrlicht und Blinklicht zu nutzen, können eine weiße und eine gelbe LED nebeneinander eingesetzt werden, oder es kann eine RGB LED verwendet werden, die weiß und gelb geschaltet werden kann.The daytime running light channels 82 can alternatively or additionally also be used as a channel for a flashing light. It is advantageous to use yellow semiconductor light sources for this, especially if the channel is to be used in parallel for daytime running lights / position lights. However, it is also possible to use white semiconductor light sources and to color parts of the
In der
Die Halbleiterlichtquellen 72, 74, 76 sind alle in einer Ebene angeordnet, an welche sich die Vorsatzoptikkombination 30 bestehend aus Tagfahrlichtvorsatzoptik 32, Abblendlichtvorsatzoptik 34 und Fernlichtvorsatzoptik 36 anschließt.The
Der Tagfahrlichtkanal 82 ist dabei über den anderen beiden Kanälen angeordnet. Er durchläuft nicht die Blendenkombination 38 und die Linsenkombination 48, sondern das Licht trifft nach Verlassen der Tagfahrlichtvorsatzoptik 32 direkt auf die strukturierte Scheibe.The daytime running light channel 82 is arranged above the other two channels. It does not pass through the
Abblendlichtkanal 84 und Fernlichtlichtkanal 86 hingegen durchlaufen nach ihren jeweiligen Vorsatzoptiken 34 und 36 beide die Blendenkombination 38 und anschließend die Linsenkombination 48. Letztlich treffen beide auf ihren Teil der Lichtauskoppeloptik 9, welcher durch eine Zylinderlinse realisiert ist.
Abblendlichtkanäle 84 und Fernlichtkanäle 86 sind abwechselnd nebeneinander angeordnet. Beide durchlaufen die Blendenkombination 38 und die Linsenkombination 48 nach Verlassen der Vorsatzoptikkombination 30. Die Lichtstrahlen dieser Kanäle verlassen das Lichtmodul 8 über den Teil der Lichtauskoppeloptik 9, der eine Zylinderlinse ist.
Die
The
Claims (13)
- Light module (8) for a motor vehicle headlamp with at least two semiconductor light sources (72, 74, 76), a respective individual optical attachment (32, 34, 36) for each semiconductor light source (72, 74, 76), a light extraction optics (9) having at least one partial optical system (9B) and a screen(38) arranged between the optical attachment (32, 34, 36) and the extraction optics (9), wherein the light module (8) is designed to be able to generate at least two different regulation-compliant light distributions, either individually or in any combination, wherein a lens combination (48) is arranged between the light extraction optics (9) and the screen (38), which is illuminated by at least one of the two semiconductor light sources (72, 74, 76) and from which light from this semiconductor light source emerges in a cone of light, the lens combination (48) having a different refractive power in two spatial directions perpendicular to one another and to the main direction of propagation of the light emitted by the light module (8), and the light extraction optics (9) which is arranged in the light cone of the lens combination (48), has a different refractive power in two spatial directions perpendicular to each other and to the main direction of propagation of the light emitted by the light module (8), wherein the refractive power of the light extraction optics (9) is greater in the spatial direction in which the lens combination (48) has the smaller of its two refractive powers, and wherein the lens combination (48) is arranged closer to the screen (38) than to the light extraction optics (9), wherein the light module (8) has at least one low beam channel (84) and at least one high beam channel (86), each low beam channel (84) having a light source (74), an optical attachment (34) collecting and focusing light from this light source, an elevation (42) of the screen (38), and a projection lens system, which consists of a lenticular portion of the lens combination (48) or an individual lens of the lens combination (48) and the light extraction optics, wherein each portion of the lens combination (48) or each individual lens of the lens combination (48) is arranged in the light cone of exactly one optical attachment (34), characterized in that an attachment optic-side focal length of the projection lens system is greater in each high beam channel (86) than in each low beam channel (84), and in that at least two low beam channels have a different screen shape of the screen (38).
- Light module according to one of the preceding claims, characterised in that the lens combination (48) consists of a number of individual lenses, each of which is illuminated by exactly one of the attachment optics (34, 36) with light from one of the light sources (74, 76), wherein the individual lenses are arranged in a row extending transversely to the main light propagation direction and wherein the partial optics (9B) of the light extraction optics (9) consists of a single lens associated with all individual lenses.
- Light module (8) according to one of the preceding claims, characterised in that the spatial directions in which the light extraction optics (9) and the lens combination (48) have different refractive power are a horizontal and a vertical spatial direction when the light module is used as intended.
- Light module (8) according to one of the preceding claims, characterised in that the light emitted by the light module is a regulation-compliant low beam and high beam and: daytime running light and/or position light and/or flashing light and/or cornering light and/or motorway light and/or town light and/or partial high beam and/or marker light.
- Light module (8) according to one of the preceding claims, characterised in that the light extraction optics (9) has a further partial optics (9A) and that the optical attachment (32) of at least one of the semiconductor light sources (72) is set up and arranged to direct light of this semiconductor light source (72) past the lens combination (48) onto the further partial optics (9A) and that the further partial optics (9A) is arranged to produce a light distribution which is different from the light distributions of the light propagated by the lens combination (48).
- Light module (8) according to one of the preceding claims, characterised in that the semiconductor light sources (72, 74, 76) are arranged in a matrix-like manner and wherein individual or several rows of semiconductor light sources (72, 74, 76) are set up to jointly generate at least one regulation compliant light distribution in each case.
- Light module (8) according to one of the preceding claims, characterized in that the screen (38) is a screen combination of at least one elevation (42) and at least one depression (40), the elevation (42) being arranged in the light path of a low beamlight source (74) and the depression (40) being arranged in the light path of a high beam source (72).
- light module (8) according to claim 7, characterised in that some of the elevations (42) have a step (44) for generating a step in a light/dark boundary in the low beam light distribution.
- Light module (8) according to one of the preceding claims, characterised in that an edge (80) of the screen (38) facing the light extraction optics (9) is arranged in a focal region of the attachment optics and in a focal region (88) of a projection lens system consisting of the lens combination (48) and the light extraction optics (9) .
- Light module (8) according to one of the preceding claims, characterised in that at least a lenticular section of the lens combination (48) or an individual lens of the lens combination (48) is arranged in the light cone of exactly one optical attachment (34, 36).
- Light module (8) according to one of the preceding claims, characterised in that the first partial optics(9B) of the light extraction optics(9) is a cylindrical lens.
- Light module (8) according to one of the preceding claims, characterised in that the additional partial optics(9A) of the light extraction optics(9) is a structured lens and/or a cushion optics and/or made of a volume-diffusing material, and/or in that a part of the light module (8) assigned to the partial optics (9A), which is set up to produce a regulation-compliant daytime running light distribution, is also set up to produce a regulation-compliant flashing light distribution.
- Light module (8) according to one of the previous claims, characterised in that the light extraction optics (9) is a one-piece component.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016125887.3A DE102016125887A1 (en) | 2016-12-29 | 2016-12-29 | Light module for motor vehicle headlights |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3343091A1 EP3343091A1 (en) | 2018-07-04 |
EP3343091B1 true EP3343091B1 (en) | 2021-02-17 |
Family
ID=60582509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17205636.8A Active EP3343091B1 (en) | 2016-12-29 | 2017-12-06 | Light module for motor vehicle headlamps |
Country Status (4)
Country | Link |
---|---|
US (1) | US10082264B2 (en) |
EP (1) | EP3343091B1 (en) |
CN (1) | CN108253372B (en) |
DE (1) | DE102016125887A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024023307A1 (en) * | 2022-07-28 | 2024-02-01 | Valeo Vision | Lighting and light-signalling module |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017117376A1 (en) * | 2017-08-01 | 2019-02-07 | HELLA GmbH & Co. KGaA | Headlight, in particular headlight of a motor vehicle |
JP7016257B2 (en) | 2017-12-28 | 2022-02-21 | スタンレー電気株式会社 | Vehicle lighting |
JP7042615B2 (en) | 2017-12-28 | 2022-03-28 | スタンレー電気株式会社 | Vehicle headlights |
JP7025924B2 (en) | 2017-12-28 | 2022-02-25 | スタンレー電気株式会社 | Vehicle lighting |
DE102018105720B4 (en) * | 2018-03-13 | 2019-10-24 | Automotive Lighting Reutlingen Gmbh | Light module for motor vehicle headlights |
DE112019003756B4 (en) * | 2018-07-24 | 2023-08-17 | Maxell, Ltd. | headlight device |
WO2020094481A1 (en) * | 2018-11-08 | 2020-05-14 | Lumileds Holding B.V. | Optical arrangement with improved stability |
CN109764303A (en) * | 2018-12-19 | 2019-05-17 | 深圳市九洲光电科技有限公司 | A kind of double lens LED light |
CN111412432A (en) * | 2019-01-07 | 2020-07-14 | 堤维西交通工业股份有限公司 | Multi-section automobile steering lamp device |
KR20200112542A (en) * | 2019-03-22 | 2020-10-05 | 엘지이노텍 주식회사 | Lighting module and lighting device |
DE102019108233A1 (en) | 2019-03-29 | 2020-10-01 | Automotive Lighting Reutlingen Gmbh | Light module for a motor vehicle headlight with n partial light modules arranged in a row next to one another |
CN209801362U (en) * | 2019-03-29 | 2019-12-17 | 曼德电子电器有限公司 | vehicle dipped beam light distribution structure |
KR20210083600A (en) * | 2019-12-27 | 2021-07-07 | 에스엘 주식회사 | Lamp module for vehicle |
CN113587041A (en) * | 2020-04-30 | 2021-11-02 | 华域视觉科技(上海)有限公司 | Optical lens, optical lens group, car light system and vehicle |
CN115698585A (en) * | 2020-06-03 | 2023-02-03 | 海拉有限双合股份公司 | Headlight for a motor vehicle |
DE102020115963A1 (en) | 2020-06-17 | 2021-12-23 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Front light for a motor vehicle |
CN112797368A (en) * | 2020-09-08 | 2021-05-14 | 华域视觉科技(上海)有限公司 | Vehicle headlamp optical system, vehicle headlamp and vehicle |
CN112325241B (en) * | 2020-10-27 | 2022-11-22 | 浙江吉利控股集团有限公司 | Car lamp device and use its vehicle |
KR102454229B1 (en) * | 2020-11-30 | 2022-10-14 | 현대모비스 주식회사 | Lamp for vehicle |
KR102673141B1 (en) | 2021-06-22 | 2024-06-10 | 현대모비스 주식회사 | Lamp for vehicle and vehicle including the same |
WO2023274897A1 (en) * | 2021-06-30 | 2023-01-05 | Valeo Vision | Light-emitting module and vehicle |
DE102022101792A1 (en) * | 2022-01-26 | 2023-07-27 | HELLA GmbH & Co. KGaA | Headlight for a motor vehicle |
WO2023164023A1 (en) * | 2022-02-28 | 2023-08-31 | J.W. Speaker Corporation | Headlamp for a vehicle |
KR20240025180A (en) * | 2022-08-18 | 2024-02-27 | 현대모비스 주식회사 | Lamp for vehicle |
WO2024094280A1 (en) * | 2022-10-31 | 2024-05-10 | HELLA GmbH & Co. KGaA | Headlamp for a motor vehicle |
US12078315B1 (en) * | 2023-09-13 | 2024-09-03 | Valeo Vision | Reconfigurable light that provides multiple different light configurations from a single housing and controlling the reconfigurable light |
CN118031152A (en) * | 2024-04-15 | 2024-05-14 | 常州星宇车灯股份有限公司 | Optical system for improving lighting uniformity and car lamp and car using same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1936260A1 (en) * | 2006-12-20 | 2008-06-25 | Valeo Vision | Automobile headlight module for a cut-off beam |
EP3299703A1 (en) * | 2016-09-26 | 2018-03-28 | Valeo Vision | Dual-function lighting module made of transparent material |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6340201A (en) * | 1986-08-04 | 1988-02-20 | 株式会社小糸製作所 | Head lamp for vehicle |
EP1306607B1 (en) * | 1995-09-12 | 2005-11-16 | Denso Corporation | Discharge lamp device |
JP4080780B2 (en) | 2002-04-23 | 2008-04-23 | 株式会社小糸製作所 | Light source unit |
DE102008036192B4 (en) | 2008-08-02 | 2012-05-03 | Automotive Lighting Reutlingen Gmbh | Automotive lighting device |
DE102009010558B4 (en) * | 2009-02-13 | 2016-06-09 | Automotive Lighting Reutlingen Gmbh | Light module for a headlight of a motor vehicle and motor vehicle headlight with such a light module |
DE102010023177A1 (en) * | 2010-06-09 | 2011-12-15 | Automotive Lighting Reutlingen Gmbh | Light module for a lighting device of a motor vehicle |
DE102011075510A1 (en) * | 2011-05-09 | 2012-11-15 | Automotive Lighting Reutlingen Gmbh | Light module for a motor vehicle headlight for generating a variable light distribution and motor vehicle headlights with such a light module |
AT511760B1 (en) * | 2011-08-08 | 2013-12-15 | Zizala Lichtsysteme Gmbh | LED LIGHT SOURCE MODULE FOR A LED MOTOR VEHICLE HEADLIGHT AND LED MOTOR VEHICLE HEADLAMP AND HEADLAMP SYSTEM |
DE102011054232B4 (en) | 2011-10-06 | 2022-11-17 | HELLA GmbH & Co. KGaA | lighting device |
DE102011085315A1 (en) * | 2011-10-27 | 2013-05-02 | Automotive Lighting Reutlingen Gmbh | Headlamp projection module for a motor vehicle |
US8733992B2 (en) * | 2012-10-01 | 2014-05-27 | Osram Sylvania, Inc. | LED low profile linear front fog module |
AT513738B1 (en) * | 2012-12-20 | 2014-07-15 | Zizala Lichtsysteme Gmbh | Lighting unit for a headlight |
JP6146040B2 (en) * | 2013-02-15 | 2017-06-14 | スタンレー電気株式会社 | Vehicle headlamp |
DE102013110272B4 (en) * | 2013-09-18 | 2023-04-13 | HELLA GmbH & Co. KGaA | Lighting device for vehicles |
AT515012B1 (en) * | 2013-10-28 | 2015-08-15 | Zizala Lichtsysteme Gmbh | Lighting device for a motor vehicle headlight |
DE102014203313A1 (en) * | 2014-02-25 | 2015-08-27 | Volkswagen Aktiengesellschaft | Lighting device for a motor vehicle |
DE102014215785B4 (en) * | 2014-08-08 | 2016-03-31 | Automotive Lighting Reutlingen Gmbh | Projection light module for a motor vehicle headlight |
DE102014226650B4 (en) | 2014-12-19 | 2023-05-25 | Osram Gmbh | lamp |
KR102289755B1 (en) * | 2014-12-24 | 2021-08-13 | 에스엘 주식회사 | Low beam shield for head lamp |
JP6516495B2 (en) * | 2015-02-13 | 2019-05-22 | 株式会社小糸製作所 | Vehicle lamp |
JP6517556B2 (en) * | 2015-03-24 | 2019-05-22 | スタンレー電気株式会社 | Vehicle lamp |
JP6595881B2 (en) * | 2015-10-27 | 2019-10-23 | スタンレー電気株式会社 | Diffuse light distribution optical system and vehicle lamp |
CN105465715A (en) * | 2015-12-23 | 2016-04-06 | 江西省绿野汽车照明有限公司 | Head lamp for high and low-beam light car |
-
2016
- 2016-12-29 DE DE102016125887.3A patent/DE102016125887A1/en not_active Withdrawn
-
2017
- 2017-12-06 EP EP17205636.8A patent/EP3343091B1/en active Active
- 2017-12-22 US US15/853,162 patent/US10082264B2/en active Active
- 2017-12-22 CN CN201711405397.2A patent/CN108253372B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1936260A1 (en) * | 2006-12-20 | 2008-06-25 | Valeo Vision | Automobile headlight module for a cut-off beam |
EP3299703A1 (en) * | 2016-09-26 | 2018-03-28 | Valeo Vision | Dual-function lighting module made of transparent material |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024023307A1 (en) * | 2022-07-28 | 2024-02-01 | Valeo Vision | Lighting and light-signalling module |
FR3138498A1 (en) * | 2022-07-28 | 2024-02-02 | Valeo Vision | Lighting and light signaling module |
Also Published As
Publication number | Publication date |
---|---|
CN108253372A (en) | 2018-07-06 |
DE102016125887A1 (en) | 2018-07-05 |
US20180187851A1 (en) | 2018-07-05 |
CN108253372B (en) | 2022-01-21 |
EP3343091A1 (en) | 2018-07-04 |
US10082264B2 (en) | 2018-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3343091B1 (en) | Light module for motor vehicle headlamps | |
DE102010056313B4 (en) | Lighting device of a motor vehicle | |
EP2357398B1 (en) | Light module for a lighting device of a motor vehicle | |
EP2431657B1 (en) | Reflector module of a motor vehicle headlamp | |
DE102014205994B4 (en) | Light module with semiconductor light source and attachment optics and motor vehicle headlight with such a light module | |
EP2339228B1 (en) | Light module for a lighting device and lighting device of a motor vehicle with such a light module | |
DE102011078653B4 (en) | Attachment optics for the bundling of emitted light of at least one semiconductor light source | |
EP3033248B1 (en) | Method for controlling a headlight arrangement for a vehicle and such a headlight arrangement | |
EP2523022B1 (en) | Lighting module of a motor vehicle headlamp for creating a variable light distribution and motor vehicle headlamp with such a lighting module | |
DE112018000017B4 (en) | High and low beam system based on a light guide and vehicle headlights | |
EP2799761A2 (en) | Light module for a motor vehicle headlamp | |
DE102009037698A1 (en) | Vehicle lighting unit and vehicle light | |
EP1864053A1 (en) | Motor vehicle headlight | |
EP2863108B1 (en) | LED module of a motor vehicle headlamp | |
DE102009008631A1 (en) | Projection module for a motor vehicle headlight | |
DE102004043706A1 (en) | Optical system for a motor vehicle headlight, lighting unit for a motor vehicle headlight and motor vehicle headlight | |
EP2984397B1 (en) | Lighting unit for a vehicle headlamp | |
DE102016102263A1 (en) | Lighting device, in particular a headlight for motor vehicles | |
DE102011006073A1 (en) | Automotive lighting device and motor vehicle headlight with such a lighting device | |
DE102004032797B4 (en) | Headlight of a motor vehicle with adaptive light distribution | |
EP3765781B1 (en) | Light module for motor vehicle headlight | |
DE102017206274A1 (en) | Method for generating a total light distribution of a motor vehicle and high beam module, headlights and motor vehicle for carrying out the method | |
DE19610904B4 (en) | Dipped beam headlights for vehicles | |
DE102011102679B4 (en) | Lighting unit for a headlight of a vehicle | |
DE102016122188A1 (en) | Lighting device, in particular a projector system for a headlight for motor vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190104 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190920 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502017009329 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F21S0041143000 Ipc: F21W0103200000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F21S 41/26 20180101ALI20200727BHEP Ipc: F21S 41/32 20180101ALI20200727BHEP Ipc: F21S 43/20 20180101ALI20200727BHEP Ipc: F21S 43/31 20180101ALI20200727BHEP Ipc: F21S 41/143 20180101ALI20200727BHEP Ipc: F21S 41/663 20180101ALI20200727BHEP Ipc: F21S 43/14 20180101ALI20200727BHEP Ipc: F21S 43/40 20180101ALI20200727BHEP Ipc: F21S 41/43 20180101ALI20200727BHEP Ipc: F21S 41/365 20180101ALI20200727BHEP Ipc: F21W 102/13 20180101ALI20200727BHEP Ipc: F21W 103/55 20180101ALI20200727BHEP Ipc: F21W 103/20 20180101AFI20200727BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200929 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017009329 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1361944 Country of ref document: AT Kind code of ref document: T Effective date: 20210315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210518 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210517 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210617 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210517 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017009329 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20211118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211206 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211206 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211206 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20171206 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231122 Year of fee payment: 7 Ref country code: DE Payment date: 20231121 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1361944 Country of ref document: AT Kind code of ref document: T Effective date: 20221206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210217 |