EP2565562B1 - Kühlmittelkreislaufsystem - Google Patents
Kühlmittelkreislaufsystem Download PDFInfo
- Publication number
- EP2565562B1 EP2565562B1 EP12182123.5A EP12182123A EP2565562B1 EP 2565562 B1 EP2565562 B1 EP 2565562B1 EP 12182123 A EP12182123 A EP 12182123A EP 2565562 B1 EP2565562 B1 EP 2565562B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- refrigerant
- accumulator
- oil
- compressor
- oil return
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003507 refrigerant Substances 0.000 title claims description 171
- 239000003921 oil Substances 0.000 description 180
- 239000007788 liquid Substances 0.000 description 66
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 38
- 230000002265 prevention Effects 0.000 description 19
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000000314 lubricant Substances 0.000 description 7
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010696 ester oil Substances 0.000 description 3
- 229920001515 polyalkylene glycol Polymers 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 150000003077 polyols Chemical class 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000004781 supercooling Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000007562 laser obscuration time method Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 239000013526 supercooled liquid Substances 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
- F25B43/006—Accumulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/002—Lubrication
- F25B31/004—Lubrication oil recirculating arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/23—Separators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/01—Geometry problems, e.g. for reducing size
Definitions
- the present invention relates to a refrigerant circuit system applicable to chillers, air conditioners, heat pumps, and the like.
- Some refrigerant circuit systems which are applicable to chillers, air conditioners, heat pumps and the like, are structured to have a plurality of accumulators provided inside a refrigerant suction pipe extending to a compressor, the accumulators being placed in series along a circulation direction of a refrigerant so that liquid backflow to the compressor is more effectively prevented (see, for example, Japanese Unexamined Patent Application, Publication No. 2009-236397 and Japanese Unexamined Patent Application, Publication No. 2011-47545 ).
- JP S61 27074 U relates to a device of a refrigeration cycle.
- a plurality of the accumulators placed in series can prevent liquid backflow to the compressor more effectively.
- an oil return hole provided in a refrigerant exit pipe of each accumulator was not appropriately sized, liquid backflow to the compressor could not appropriately be blocked in some cases, and oil discharge from the compressor occurred due to deteriorated oil return to the compressor in other cases.
- the present invention has been invented in view of the aforesaid circumstances, and it is therefore an object of the present invention to provide a refrigerant circuit system in which the volume of a plurality of accumulators provided in series and the size of an oil return hole are appropriately set so as to achieve both the prevention of liquid backflow and the prevention of oil discharge from a compressor caused by deteriorated oil return.
- the first accumulator which is structured to have a large volume V1 and to have the first oil return hole with a smaller opening area A1
- the first accumulator can surely separate and hold the liquid refrigerant and can thereby prevent liquid backflow to the compressor.
- the liquid refrigerant can be separated and held with the second accumulator, so that the liquid backflow to the compressor can reliably be prevented.
- the second oil return hole in the refrigerant exit pipe of the second accumulator which is sized to have a larger opening area A2 incurs almost no risk of liquid backflow. Oil can reliably be returned to the compressor through the second oil return hole sized to be larger. Therefore, it becomes possible to enhance reliability in prevention of liquid backflow and to surely prevent oil discharge from the compressor caused by decreased oil return.
- the ratio A2/A1 is set to 1.1 ⁇ A2/A1 ⁇ 2. Therefore, it becomes possible to achieve both the prevention of liquid backflow and the prevention of oil discharge from the compressor. In addition, it also becomes possible to ensure prevention of the liquid backflow and to secure oil return performance while avoiding a risk that the value of A2/A1 becomes too large and thereby decreases a discharge amount of the liquid refrigerant, which accumulates in the first accumulator, at the time of transitional operation, thereby resulting in overflow or gas low operation in the first accumulator. Therefore, even when an oil such as polyol ester oils (POE oils) having compatibility with the refrigerant is used as a lubricant oil of the compressor, it is possible to secure oil return performance and to implement stable operation.
- POE oils polyol ester oils
- the first accumulator which is structured to have a large volume V1 and to have the first oil return hole with a smaller opening area A1
- the first accumulator can surely separate and hold the liquid refrigerant and can thereby prevent liquid backflow to the compressor.
- the liquid refrigerant can be separated and held in the second accumulator, so that liquid backflow to the compressor can reliably be prevented.
- the liquid backflow can basically be prevented with the first accumulator, the second oil return hole in the refrigerant exit pipe of the second accumulator, even if sized to have a larger opening area A2, incurs almost no risk of liquid backflow, and oil can reliably be returned to the compressor through the larger second oil return hole. Therefore, it becomes possible to enhance reliability in prevention of liquid backflow and to surely prevent oil discharge from the compressor caused by decreased oil return.
- Fig. 1 is a schematic structure view showing a refrigerant circuit system according to one embodiment of the present invention
- Fig. 2 is an enlarged view showing principal parts thereof.
- the radiator 11 of the above heat pump 2 a high-temperature and high-pressure refrigerant gas discharged from the two-stage compressor 9 is circulated to one refrigerant-side flow channel while water is circulated to the other water-side flow channel through the water circulation channel 3. Consequently, the radiator 11 functions as a refrigerant/water heat exchanger which exchanges heat between the water and the refrigerant gas. In the refrigerant/water heat exchanger 11, the water is heated by the refrigerant gas of high temperature and high pressure so that hot water is prepared.
- the refrigerant circuit 21 is also connected to an oil return circuit 22.
- the oil return circuit 22 returns the oil separated with the oil separator 10, which is provided inside a refrigerant discharge pipe 20A extending from the two-stage compressor 9, toward a refrigerant suction pipe 20B side of the two-stage compressor 9.
- the oil return circuit 22 is provided with: a double pipe heat exchanger 23, which exchanges heat between a refrigerant flowing through a later-described gas injection circuit 31 and an oil; and an oil return amount adjustment mechanism 26, which is composed of a solenoid valve 24 and a parallel circuit of two capillary tubes 25A and 25B.
- the refrigerant circuit 21 is also provided with a gas injection circuit 31.
- the gas injection circuit 31 injects an intermediate pressure refrigerant gas, which is separated with the intermediate pressure receiver (intermediate pressure gas-liquid separation unit) 13 having a gas-liquid separation function, into the sealing housing 6 of the two-stage compressor 9, which is in an intermediate pressure gas atmosphere, via the double pipe heat exchanger 23 provided in the oil return circuit 22.
- the gas injection circuit 31 is provided with a solenoid valve 32 and a check valve 33 so that the gas injection circuit 31 can be opened and closed where necessary.
- the first accumulator 18 provided upstream side in a refrigerant flow direction is constituted from a cylindrical airtight container 34 which is connected to a refrigerant inlet pipe 35 and to a refrigerant exit pipe 36 having a first oil return hole 37 provided thereon.
- the second accumulator 19 provided downstream side from the first accumulator 18 is constituted from a cylindrical airtight container 38 which is connected to a refrigerant inlet pipe 39 and to a refrigerant exit pipe 40 having a second oil return hole 41 provided thereon.
- the constitution of the first accumulator 18 and the second accumulator 19 themselves are similar to known accumulators.
- the first accumulator 18 and the second accumulator 19 are adapted to satisfy V1 > V2 where V1 is a volume of the first accumulator 18 and V2 is a volume of the second accumulator 19. Therefore, the first accumulator 18 is made larger in volume than the second accumulator 19.
- the second accumulator 19 is a small accumulator sized to have a relatively small volume as described in the forgoing.
- the second accumulator 19 may be structured to be disposed integrally with an outer circumference of the sealing housing 6 of the two-stage compressor 9 via a bracket and the like.
- the water is heated by radiated heat from the high temperature and high pressure refrigerant gas, the temperature thereof is raised, and then returned to the hot water storage tank (not shown) through the hot water takeout-side channel 3B.
- the heat exchange between the refrigerant and the water is continuously performed in the radiator (refrigerant/water heat exchanger) 11 until the hot-water storage amount in the hot water storage tank reaches a specified amount. Once the hot-water storage amount reaches the specified amount, hot water storing operation is made to be ended.
- the refrigerant which exchanged heat with the water and thereby cooled in the radiator 11 is decompressed by the first electronic expansion valve (intermediate pressure decompressing means) 12 and reaches the intermediate pressure receiver 13, where the refrigerant is subjected to gas-liquid separation.
- An intermediate pressure gas refrigerant separated in the intermediate pressure receiver 13 travels through the solenoid valve 32, the check valve 33, and the double pipe heat exchanger 23, before being injected into the intermediate pressure refrigerant gas inside the sealing housing 6 of the two-stage compressor 9 through the gas injection circuit 31.
- the injected intermediate pressure gas refrigerant is then sucked into the high stage-side compressor 8 and recompressed therein.
- An economizer effect by this gas injection makes it possible to enhance heating capability and coefficients of performance (COP) of the heat pump 2 and to expand water heating capability.
- COP coefficients of performance
- the refrigerant which flowed into the evaporators (air heat exchanger) 17A and 17B exchanges heat with an outdoor air sent by a fan, i.e., the refrigerant absorbs heat from the outdoor air and thereby becomes evaporating gas.
- the refrigerant gasified in the evaporators 17A and 17B exchanges heat with the intermediate pressure liquid refrigerant in the internal heat exchanger 14 and is used to supercool the intermediate pressure liquid refrigerant therein. Then, a liquid part (liquid refrigerant, oil) thereof is separated in the process of passing the first accumulator 18 and the second accumulator 19. As a result, only the gas refrigerant is sucked into the two-stage compressor 9 and is recompressed therein. Through repeating the subsequent similar operation, hot water is prepared.
- defrosting operation can be performed by detecting the frost accumulation, opening the solenoid valve 28, and introducing the hot gas refrigerant, which is discharged from the two-stage compressor 9, from the downstream of the oil separator 10 to the evaporators 17A and 17B through the hot gas bypass circuit 27.
- the oil separated from the refrigerant in the oil separator 10 passes through the oil return circuit 22 and exchanges heat with the intermediate pressure refrigerant gas in the double pipe heat exchanger 23 so as to heat the refrigerant gas.
- the amount of the oil is then adjusted through the oil return amount adjustment mechanism 26, and the adjusted oil is returned to the refrigerant suction pipe 20B between first accumulator 18 and the second accumulator 19.
- the oil once separated inside the second accumulator 19 is put into a refrigerant gas flow little by little through the second oil return hole 41 provided in the refrigerant exit pipe 40 of the second accumulator 19, so that the oil is returned to the two-stage compressor 9 side.
- the first accumulator 18 and the second accumulator 19 are placed in series inside the refrigerant suction pipe 20B of the two-stage compressor 9 and are adapted to satisfy V1 > V2 where V1 and V2 are their volumes. Moreover, the first accumulator 18 and the second accumulator 19 are also adapted to satisfy A1 ⁇ A2 where A1 and A2 are opening areas of the first oil return hole 37 and the second oil return hole 41 provided on the refrigerant exit pipe 36 and the refrigerant exit pipe 40, respectively.
- the first accumulator 18, which is structured to have a large volume V1 and to have the first oil return hole 37 with a smaller opening area A1 can surely separate and hold a liquid part and can thereby block liquid backflow to the two-stage compressor 9.
- the ratio A2/A1 is set to 1.1 ⁇ A2/A1 ⁇ 3.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Compressor (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Claims (4)
- Kältemittelkreislaufsystem (1) umfassend:einen Kompressor (9) mit einer Kältemittelansaugleitung (20B),einen ersten Akkumulator (18),einen zweiten Akkumulator (19),wobei der erste und der zweite Akkumulator in Reihe innerhalb der Kältemittelansaugleitung (20B) des Kompressors (9) in einer Kältemittelzirkulationsrichtung vorgesehen sind,wobei der erste Akkumulator (18) und der zweite Akkumulator (19) ausgelegt sind, V1 > V2 zu erfüllen, wobei V1 ein Volumen des ersten Akkumulators ist und V2 ein Volumen des zweiten Akkumulators ist, dadurch gekennzeichnet, dassder erste Akkumulator (18) und der zweite Akkumulator (19) ebenfalls ausgelegt sind, A1 < A2 zu erfüllen, wobei A1 eine Öffnungsfläche eines ersten Ölrückführungslochs (37) ist, das in einer Kältemittelauslassleitung (36) des ersten Akkumulators (18) vorgesehen ist, und A2 eine Öffnungsfläche eines zweiten Ölrückführungslochs (41) ist, das in einer Kältemittelauslassleitung (40) des zweiten Akkumulators (19) vorgesehen ist, und dadurch, dassein Ölabscheider (10) in einer Kältemittelabflussleitung (20A) des Kompressors (9) vorgesehen ist, wobei das Kältemittelsystem ferner einen Ölrückführungskreislauf (22) umfasst, der das im Ölabscheider (10) abgeschiedene Öl zur Kompressorseite zurückführt und mit einer Kältemittelleitung (20) zwischen dem ersten Akkumulator (18) und dem zweiten Akkumulator (19) verbunden ist.
- Kältemittelkreislaufsystem (1) nach Anspruch 1, wobei
ein Verhältnis A2/A1 zwischen der Öffnungsfläche A1 des ersten Ölrückführungslochs (37) und der Öffnungsfläche A2 des zweiten Ölrückführungslochs (41) auf mindestens 1,1 oder mehr eingestellt ist. - Kältemittelkreislaufsystem (1) nach Anspruch 2, wobei,
wenn ein in den Kompressor (9) gefülltes Öl ein Öl ist, das Kompatibilität mit einem Kältemittel über die komplette Bandbreite von Arbeitsbedingungen des Kompressors (9) aufweist, das Verhältnis A2/A1 auf 1,1 ≤ A2/A1 ≤ 2 eingestellt ist. - Kältemittelkreislaufsystem (1) nach Anspruch 2, wobei,
wenn ein in den Kompressor (9) gefülltes Öl ein Öl ist, das inkompatibel mit einem Kältemittel über die komplette Bandbreite oder einen Teil von Arbeitsbedingungen des Kompressors (9) ist, das Verhältnis A2/A1 auf 1,1 ≤ A2/A1 ≤ 3 eingestellt ist.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011190129A JP2013053757A (ja) | 2011-08-31 | 2011-08-31 | 冷媒回路システム |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2565562A2 EP2565562A2 (de) | 2013-03-06 |
EP2565562A3 EP2565562A3 (de) | 2017-04-19 |
EP2565562B1 true EP2565562B1 (de) | 2018-09-26 |
Family
ID=46800063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12182123.5A Active EP2565562B1 (de) | 2011-08-31 | 2012-08-29 | Kühlmittelkreislaufsystem |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2565562B1 (de) |
JP (1) | JP2013053757A (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105716307B (zh) * | 2014-12-17 | 2018-08-03 | Lg电子株式会社 | 空气调节器 |
CN112747501B (zh) * | 2019-10-31 | 2023-05-05 | 广东美的白色家电技术创新中心有限公司 | 压缩机组件、热交换系统和电器设备 |
JP6970363B1 (ja) * | 2020-09-30 | 2021-11-24 | ダイキン工業株式会社 | 圧縮装置 |
DE102022118621A1 (de) | 2022-07-26 | 2024-02-01 | Audi Aktiengesellschaft | Kälteanlage für überkritisches Kältemittel mit zusätzlichem Kältemittelspeicher für ein Kraftfahrzeug, Kraftfahrzeug mit einer solchen Kälteanlage |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6127074U (ja) * | 1984-07-24 | 1986-02-18 | 株式会社東芝 | 冷凍サイクル装置 |
JPS6155562A (ja) * | 1984-08-24 | 1986-03-20 | ダイキン工業株式会社 | 混合冷媒を用いた冷凍装置 |
JPS61128075A (ja) * | 1984-11-28 | 1986-06-16 | 株式会社東芝 | 冷凍サイクル |
US4912937A (en) * | 1988-04-25 | 1990-04-03 | Mitsubishi Denki Kabushiki Kaisha | Air conditioning apparatus |
JPH02298770A (ja) * | 1989-05-10 | 1990-12-11 | Daikin Ind Ltd | マルチ形空気調和機 |
JPH0387575A (ja) * | 1989-08-30 | 1991-04-12 | Sanyo Electric Co Ltd | 冷媒回路の気液分離装置 |
JP3435822B2 (ja) * | 1994-03-15 | 2003-08-11 | 三菱電機株式会社 | 空気調和装置 |
JPH1114199A (ja) * | 1997-06-24 | 1999-01-22 | Mitsubishi Electric Corp | アキュムレータ |
JPH11281207A (ja) * | 1998-03-30 | 1999-10-15 | Sanyo Electric Co Ltd | 蒸気圧縮式冷凍装置 |
JP2009236397A (ja) * | 2008-03-27 | 2009-10-15 | Toshiba Carrier Corp | 空気調和装置 |
JP2011047545A (ja) * | 2009-08-26 | 2011-03-10 | Panasonic Corp | 多室形空気調和機の運転制御方法 |
-
2011
- 2011-08-31 JP JP2011190129A patent/JP2013053757A/ja active Pending
-
2012
- 2012-08-29 EP EP12182123.5A patent/EP2565562B1/de active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP2565562A3 (de) | 2017-04-19 |
JP2013053757A (ja) | 2013-03-21 |
EP2565562A2 (de) | 2013-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110041523A1 (en) | Charge management in refrigerant vapor compression systems | |
US9976783B2 (en) | Refrigeration cycle apparatus | |
KR101566096B1 (ko) | 초임계 사이클 및 그것을 사용한 히트 펌프 급탕기 | |
US11543162B2 (en) | Circulation system of air conditioner, air conditioner, and air conditioner control method | |
CN107024045B (zh) | 冷凝器蒸发器系统及其操作方法 | |
EP2910871B1 (de) | Kühlvorrichtung | |
CN104321598A (zh) | 冷冻装置 | |
US9404681B2 (en) | Air-conditioning apparatus | |
CN104185766A (zh) | 热泵式加热装置 | |
EP2565562B1 (de) | Kühlmittelkreislaufsystem | |
JP2012087978A (ja) | 冷凍装置 | |
US20240093921A1 (en) | Cooling system with flooded low side heat exchangers | |
JP5759076B2 (ja) | 冷凍装置 | |
WO2012002248A1 (ja) | 冷凍装置 | |
US9903625B2 (en) | Air-conditioning apparatus | |
US11519645B2 (en) | Air conditioning apparatus | |
JP2011232000A (ja) | Co2冷媒を用いたヒートポンプ給湯装置 | |
US11859881B2 (en) | Refrigeration system and control method therefor | |
EP2525168B1 (de) | Überkritische Dampfkompressionswärmepumpe und Heißwasserversorgungseinheit | |
CN102889704B (zh) | 气液分离型冷冻装置 | |
US11226144B2 (en) | R-744 system with hot gas defrost by the transcritical compressors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F25B 43/00 20060101AFI20170316BHEP Ipc: F25B 31/00 20060101ALI20170316BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171019 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MITSUBISHI HEAVY INDUSTRIES THERMAL SYSTEMS, LTD. |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180530 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1046486 Country of ref document: AT Kind code of ref document: T Effective date: 20181015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012051465 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181227 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1046486 Country of ref document: AT Kind code of ref document: T Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190126 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190126 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012051465 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190829 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120829 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180926 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602012051465 Country of ref document: DE Representative=s name: CBDL PATENTANWAELTE GBR, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240702 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240701 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240702 Year of fee payment: 13 |