EP2560752B1 - Cosmetic preparation comprising a capsule comprising an active ingredient - Google Patents

Cosmetic preparation comprising a capsule comprising an active ingredient Download PDF

Info

Publication number
EP2560752B1
EP2560752B1 EP11714988.0A EP11714988A EP2560752B1 EP 2560752 B1 EP2560752 B1 EP 2560752B1 EP 11714988 A EP11714988 A EP 11714988A EP 2560752 B1 EP2560752 B1 EP 2560752B1
Authority
EP
European Patent Office
Prior art keywords
water
nanoparticles
core
capsule
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11714988.0A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2560752A1 (en
Inventor
Jing Dreher
Roland Ettl
Holger Kreusch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP11714988.0A priority Critical patent/EP2560752B1/en
Publication of EP2560752A1 publication Critical patent/EP2560752A1/en
Application granted granted Critical
Publication of EP2560752B1 publication Critical patent/EP2560752B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • B01J13/185In situ polymerisation with all reactants being present in the same phase in an organic phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • A01N25/28Microcapsules or nanocapsules
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • A23K40/30Shaping or working-up of animal feeding-stuffs by encapsulating; by coating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • A23P10/35Encapsulation of particles, e.g. foodstuff additives with oils, lipids, monoglycerides or diglycerides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/025Explicitly spheroidal or spherical shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/494Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
    • A61K8/4966Triazines or their condensed derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/55Phosphorus compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/61Surface treated
    • A61K2800/62Coated
    • A61K2800/621Coated by inorganic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2989Microcapsule with solid core [includes liposome]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]

Definitions

  • the present invention relates to a cosmetic preparation comprising a capsule with a core/shell structure, comprising a core which comprises at least one sparingly water-soluble or water-insoluble organic active ingredient.
  • the encapsulation of active ingredients is undertaken for various reasons. For example, through encapsulation it is possible to increase the storage stability of those active ingredients which are sensitive to light, oxygen or moisture.
  • the active ingredient release can be influenced in a targeted manner by the encapsulation. Or liquid substances can be handled following encapsulation in the form of a pourable powder.
  • encapsulation of organic UV filters for the area of sun protection of the human skin it is ensured through the encapsulation that the contact between human skin and the organic UV filter is reduced or even prevented.
  • WO 2005/009604 A1 describes microcapsules with a high active ingredient content in which a core which comprises an active ingredient is surrounded by a shell, where the shell comprises an inorganic polymer.
  • WO 2007/093252 A1 describes UV filter capsules which comprise at least one amino-substituted hydroxybenzophenone.
  • WO 2009/012871 A2 describes UV filter capsules which comprise a polymeric coating, at least one sparingly soluble organic UV filter and an emollient as solvent for the sparingly soluble organic UV filter.
  • WO 2010/013250 A2 discloses a composition comprising microcapsules comprising a core comprising a pharmaceutically or dermatologically active agent, and a shell, comprising metal oxide nanoparticles, where said nanoparticles are joined together by a hydrolyzed and polymerized sol-gel precursor.
  • capsules which exhibit improved stability against unintended rupture of the shell or which have a denser, less porous shell in order to prevent the active ingredient from escaping.
  • the capsules which can be used in the field of cosmetics should as far as possible release no skin-irritating constituents such as, for example, surfactants.
  • the method for producing the capsules should be as widely usable as possible and easy to carry out. The method for producing the capsules should be stable both towards thermal stresses and also towards mechanical stresses.
  • a capsule with a core/shell structure comprising a core which comprises at least one sparingly water-soluble or water-insoluble organic active ingredient, and a shell which directly surrounds the core, where the shell comprises nanoparticles of a metal oxide or semimetal oxide and these nanoparticles are joined together by at least one further metal oxide or semimetal oxide, where the further metal oxide or semimetal oxide joining the nanoparticles has been formed by hydrolysis and subsequent polycondensation of a water-insoluble or sparingly water-soluble sol-gel precursor.
  • the capsule according to the invention comprises preferably less than 0.1% by weight, particularly preferably less than 0.001% by weight, very particularly preferably less than 0.00001% by weight, of low molecular weight, organic surfactants, in particular no low molecular weight, organic surfactants, based on the total weight of the capsule.
  • No surfactants means that the capsule comprises no detectable amounts of low molecular weight organic surfactants and that no low molecular weight organic surfactant has been used in the production of the capsule.
  • the capsule according to the invention preferably also comprises no high molecular weight protective colloids, such as, for example, gelatin, modified starch or pectins.
  • the mass fraction of the core relative to the total mass of the capsule is usually greater than 50% by weight, preferably from 50 to 99% by weight, particularly preferably from 60 to 90% by weight.
  • the percentages refer to a statistical mean value determined over a large number of capsules.
  • the capsule according to the invention having a core/shell structure comprises in the inside in each case a core which comprises at least one sparingly water-soluble or water-insoluble organic active ingredient.
  • the core may be either liquid or solid at 20°C. If the core is a solid at 20°C, this solid may be crystalline, partially crystalline or amorphous. If the core is a liquid at 20°C, this liquid may be homogeneous phase or a suspension.
  • the core of the capsule according to the invention is a liquid at 20°C.
  • the core in the inside of a capsule according to the invention consists preferably to more than 50% by weight, particularly preferably to more than 60% by weight, very particularly preferably to more than 80% by weight, in particular to more than 90% by weight, of at least one sparingly water-soluble or water-insoluble organic active ingredient, based on the mass of the core.
  • the core consists preferably exclusively of the sparingly water-soluble or water-insoluble active ingredient.
  • the core preferably exhibits hydrophobic properties, i.e. the core is only sparingly water-soluble or water-insoluble.
  • the capsules according to the invention ordinarily have an average particle size (d50 value) of less than 1000 ⁇ m, preferably an average particle size of from 0.05 ⁇ m to 100 ⁇ m, particularly preferably a particle size of from 0.5 ⁇ m to 20 ⁇ m, in particular from 1 ⁇ m to 10 ⁇ m.
  • the d50 value is defined as being that 50% by weight of the particles have a diameter which is less than the value which corresponds to the d50 value, and 50% by weight of the particles have a diameter which is larger than the value which corresponds to the d50 value.
  • the d50 value can be read off from a particle size distribution curve, as can be generated, for example, by means of light scattering according to ISO 13320-1 (e.g. Microtrac S3500 Bluewave from Microtrac).
  • a capsule according to the invention has a particle size of from 0.5 to 20 ⁇ m, in particular from 1 ⁇ m to 10 ⁇ m.
  • the shells of the capsules according to the invention ordinarily have an average shell thickness of from 1 to 2000 nm, preferably from 1 to 200 nm.
  • the ratio between the average thickness of the shell and the average diameter of the capsule is preferably from 1:50 to 1:500, particularly preferably from 1:100 to 1:200.
  • the average particle size of the capsules and the thickness of the shells can be determined by means of TEM (transmission electron microscopy).
  • the average particle size can be determined using the methods of light scattering (static and dynamic light scattering).
  • the shape of the cores in the capsules according to the invention is arbitrary and can be, for example, irregular or spherical, preferably spherical.
  • an organic UV filter selected from.
  • Octocrylene Ethylhexyl Methoxycinnamate, Ethylhexyl Triazone, Diethylamino Hydroxybenzoyl Hexyl Benzoate, Methylene Bis-Benzotriazolyl Tetramethylbutylphenol or Bis-Ethylhexyloxyphenol Methoxyphenyl Triazine, and mixtures of these UV filters is used as sparingly water-soluble or water-soluble organic active ingredient.
  • the sparingly water-soluble or water-insoluble organic active ingredient may be a liquid or a solid at 20°C, where the solid itself may also be present in a suitable lipophilic solvent, such as an oil, in dissolved form or as suspension.
  • a suitable lipophilic solvent such as an oil, in dissolved form or as suspension.
  • the sparingly water-soluble or water-insoluble organic active ingredient used in the capsule according to the invention is a liquid at 20°C.
  • the core of the capsule according to the invention can also comprise hydrophobic auxiliaries such as oils or solvents which are usually used in the respective fields of application.
  • hydrophobic auxiliaries such as oils or solvents which are usually used in the respective fields of application.
  • the sparingly water-soluble or water-insoluble organic active ingredient can be dissolved or suspended in typical oil components, as are used in cosmetics.
  • Customary oil components in cosmetics are, for example, paraffin oil, glyceryl stearate, isopropyl myristate, diisopropyl adipate, cetylstearyl 2-ethylhexanoate, hydrogenated polyisobutene, vaseline, caprylic/capric triglycerides, microcrystalline wax, lanolin and stearic acid.
  • paraffin oil glyceryl stearate
  • isopropyl myristate diisopropyl adipate
  • cetylstearyl 2-ethylhexanoate hydrogenated polyisobutene
  • vaseline aric/capric triglycerides
  • caprylic/capric triglycerides microcrystalline wax
  • lanolin and stearic acid stearic acid
  • the shell of the capsule according to the invention which directly surrounds the core comprises nanoparticles of a metal oxide or semimetal oxide, where these nanoparticles are joined together by at least one further metal oxide or semimetal oxide, where the further metal oxide or semimetal oxide joining the nanoparticles has been formed by hydrolysis and subsequent polycondensation of a water-insoluble or sparingly water-soluble sol-gel precursor.
  • the nanoparticles of a metal oxide or semimetal oxide usually have an average particle size of from 3 nm to 500 nm, preferably from 5 nm to 300 nm, particularly preferably from 5 nm to 150 nm, very particularly preferably 10 nm to 100 nm.
  • the particle size of the nanoparticles can be determined by known methods, for example by means of TEM (transmission electron microscopy) or using the methods of light scattering (static and dynamic light scattering).
  • the nanoparticles of a metal oxide or semimetal oxide used according to the invention are preferably approximately spherical.
  • Suitable metal oxides or semimetal oxides for the nanoparticles are in particular those oxides which are sparingly soluble in water.
  • Examples of preferred metal oxides or semimetal oxides suitable according to the invention are TiO 2 , ZrO 2 , HfO 2 , Fe 2 O 3 , ZnO, Al 2 O 3 and SiO 2 .
  • Particular preference is given to silicon dioxide (SiO 2 ), in particular in the form of a silica gel.
  • the nanoparticles of a metal oxide or semimetal oxide used according to the invention preferably have a charged, particularly preferably a negatively charged, surface and are thereby stabilized against aggregation. Particular preference is given to those nanoparticles which are stabilized against aggregation at a pH greater than 8, in particular in a pH range from 9 to 10.
  • the nanoparticles of a metal oxide or semimetal oxide used according to the invention are particularly preferably nanoparticles of silica gel, in particular colloidal silica gel, where the particles are approximately spherical, nonporous and dispersible in water.
  • these particles have a dense core and a surface covered with silanol groups (Si-OH).
  • Si-OH silanol groups
  • either some of the silanol groups on the silica gel surface are deprotonated through reaction with a base, i.e. are anionically modified, or are cationically modified through reaction with Al 3+ ions.
  • preference is given to using anionically modified silica gel nanoparticles.
  • Nanoparticles of silica are available for example from Grace under the name LUDOX in the form of aqueous dispersions.
  • the surfaces of these nanoparticles of the silica gel have, as described above, a negative charge or a positive charge in order to prevent aggregation of the nanoparticles with one another.
  • those nanoparticles of silica gel, the surface of which is negatively charged have proven to be particularly suitable.
  • anionic silica gel types sodium cations or ammonium cations usually serve as counterions to the negatively charged surface.
  • the further metal oxide or semimetal oxide present in the capsule according to the invention which has been formed by hydrolysis and subsequent polycondensation of a water-insoluble or sparingly water-soluble sol-gel precursor and joins the nanoparticles with one another, is usually an oxide that is sparingly soluble in water.
  • preferred metal oxides or semimetal oxides suitable according to the invention are TiO 2 , ZrO 2 , HfO 2 , ZnO, Al 2 O 3 and SiO 2 .
  • the metal oxide or semimetal oxide of the nanoparticles and the metal oxide or semimetal oxide formed by hydrolysis of the water-insoluble or sparingly water-soluble sol-gel precursor are in each case silicon dioxide, in particular a silica gel.
  • Water-insoluble or sparingly water-soluble sol-gel precursors which can be used according to the invention are described, for example, in WO 2005/009604 A1 page 10, line 1 to page 11, line 11.
  • Water-insoluble or sparingly water-soluble sol-gel precursors which can be used are preferably metal or semimetal alkoxide monomers, metal esters, semimetal esters or partially hydrolyzed and partially condensed polymers or mixtures thereof. These sol-gel precursors are preferably homogeneously miscible with the organic active ingredient. Particularly preferably, the organic active ingredient can be homogeneously dissolved in the sol-gel precursor, or the sol-gel precursor and the organic active ingredient form a homogeneous solution, it being necessary, if appropriate, to warm or heat the mixture. Alternatively, it is also possible to use a suitable organic solvent which is likewise immiscible or only poorly miscible with water, in order to provide a homogeneous solution comprising the active ingredient and the sol-gel precursor.
  • Suitable and preferred sol-gel precursors are compounds of the formula M(R) n (P) m , in which M is a metal or semimetal, such as, for example, Si, Ti, Zr, Hf, Zn or Al, preferably Si, R is a hydrolyzable substituent and n is an integer from 2 to 4, P is a nonpolymerizable substituent and m is an integer from 0 to 4 or a partially hydrolyzed or partially condensed polymer thereof or some mixture thereof.
  • M-R bond RH is cleaved off and forms a M-OH bond.
  • two M-OH fragments react to form a M-O-M group with the elimination of water.
  • hydrolyzable substituents R are alkoxy radicals, such as, for example, methanolate, ethanolate or isopropanolate, or carboxylate radicals, such as, for example, acetate, palmitate or stearate.
  • tetraethyl orthosilicate tetraethoxysilane or Si(OEt) 4
  • Si(OEt) 4 tetraethoxysilane or Si(OEt) 4
  • tetraethyl orthosilicate as sol-gel precursor.
  • the shell of the capsules according to the invention is preferably transparent, especially in the case of a UV filter as active ingredient.
  • the present disclosure further provides a method for producing capsules with a core/shell structure, comprising in each case a core which comprises at least one sparingly water-soluble or water-insoluble organic active ingredient, and a shell which directly surrounds the core, where the shell comprises nanoparticles of a metal oxide or semimetal oxide and these nanoparticles are joined together by at least one further metal oxide or semimetal oxide, where the further metal oxide or semimetal oxide joining the nanoparticles has been formed by hydrolysis and subsequent polycondensation of a water-insoluble or sparingly water-soluble sol-gel precursor, comprising the steps
  • step i) the preparation of an oil-in-water emulsion by emulsifying an oil phase which comprises at least one water-insoluble or sparingly water-soluble sol-gel precursor, and at least one sparingly water-soluble or water-insoluble organic active ingredient in a water phase which comprises nanoparticles of a metal oxide or semimetal oxide using shear forces is described.
  • emulsifying centrifuges colloid mills or atomizers
  • the person skilled in the art selects the suitable method and the appropriate emulsifying tool depending on the result desired, for example the desired droplet size in the emulsion, and depending on the physiochemical properties of the selected feed materials, for example their viscosity or else their thermal resistance.
  • the fraction of the oil phase in the emulsion is preferably from 5 to 70% by weight, particularly preferably from 10 to 50% by weight, based on the total mass of the emulsion.
  • the fraction of the mass of the water-insoluble or sparingly water-soluble sol-gel precursor in the overall mass of the oil phase to be emulsified is preferably in the range from 5 to 70% by weight, particularly preferably 20 to 50% by weight, based on the sol-gel precursor tetraethoxysilane.
  • the mass fraction of this component relative to the overall mass of the oil phase can be calculated taking into consideration the different molar masses of the precursor compounds.
  • the preferred sol-gel precursor in step i) is tetraethoxysilane (Si(OEt) 4 ).
  • the nanoparticles of a metal oxide or semimetal oxide are present in the water phase before the emulsifying step usually in a concentration of from 0.01 to 4% by weight, preferably from 0.05 to 2% by weight, particularly preferably 0.1 to 1% by weight, based on the mass of the water phase.
  • the mass of the colloidal silica gel used is preferably 1 to 15% by weight, particularly preferably 5 to 10% by weight, based on the mass of the oil phase.
  • the preparation of the emulsion in step i) is usually carried out in the temperature range from 1°C to 90°C, preferably from 15°C to 25°C, in particular from 19°C to 23°C.
  • a suitable pH for example by adding acid or base, the hydrolysis and polycondensation of the sol-gel precursor at the oil/water boundary is triggered.
  • the suspension of capsules obtained at the end of step ii) can also be stabilized by adding additives such as, for example, nonionic, cationic or anionic polymers or surfactants or mixtures thereof.
  • additives such as, for example, nonionic, cationic or anionic polymers or surfactants or mixtures thereof.
  • the capsules according to the invention are notable for the fact that, during their production, the use of surfactants is largely or preferably completely dispensed with.
  • the capsules with a core/shell structure produced in step ii) are, if appropriate, purified and/or isolated.
  • Appropriate purification and isolation methods are known to the person skilled in the art, such as, for example, centrifugation, filtration, evaporation of the solvents, resuspension and dialysis methods. For example, by removing the solvents, in particular by removing the water, from the aqueous suspension of the capsules it is possible to obtain a powder.
  • the capsules according to the invention with a core/shell structure are suitable, depending on the encapsulated active ingredient, as addition to cosmetics, pharmaceutical compositions, crop protection preparations, animal feeds, foods or nutritional supplements.
  • the present disclosure further provides the use of the capsules with a core/shell structure which have been described above or which have been produced by the method described above as addition to cosmetics, pharmaceutical compositions, crop protection preparations, animal feeds, foods or nutritional supplements.
  • the present invention further provides pulverulent or liquid preparations comprising the above-described capsules having a core/shell structure or the particles having a core/shell structure produced by the above-described method.
  • the pulverulent or liquid preparations usually comprise at least one of the customary additives and/or auxiliaries which are known to the person skilled in the art for the particular field of application, such as, for example, in the field of cosmetics or pharmaceutical compositions, in the crop protection sector, in the animal feed, food or nutritional supplement field.
  • pulverulent or liquid preparations as addition to cosmetics, pharmaceutical compositions, crop protection preparations, animal feeds, foods or nutritional supplements.
  • the present invention provides cosmetics comprising the capsules according to the invention having a core/shell structure which have been described above or which have been produced by the above-described method. Particular preference is given to cosmetics for the area of skin protection against solar UV radiation.
  • the oil phase was then homogenized with an aqueous solution of colloidal silica gel (LUDOX® LS 30) consisting of 7.2 g of silica gel (average particle size 12 nm; 220 m 2 surface area per g of silica gel; pH of the surface: 8), 3.6 g of sodium chloride and 288 g of water using a high-pressure homogenizer (M-110F Microfluidizer, Microfluidics) at 500 bar for 2 minutes.
  • M-110F Microfluidizer Microfluidics
  • Ethylhexyl Triazone (Uvinul® T 150) were dissolved at room temperature (22°C) in 50 g of ethyl acetate. 40 g of tetraethoxysilane were added thereto.
  • the oil phase prepared in this way was homogenized at room temperature (22°C) with an aqueous solution of colloidal silica gel (LUDOX® TM 40) consisting of 1.0 g of silica gel (average particle size 22 nm; 140 m 2 surface area per g of silica gel; pH of the surface: 9) and 290 g of water using an ultrasound rod (200 W, 7 mm) for 2 minutes.
  • the formed emulsion was admixed with stirring (magnetic stirrer) with 25 g of sodium tetraborate buffer solution (pH 9) and stirred for 24 hours.
  • the samples A and B were in each case firstly spray-dried using a B-290 mini-spray dryer (Büchi, Switzerland).
  • the spray-drying was carried out under the following conditions: entry temperature of ca. 120°C; exit temperature of ca. 55°C; use of a twin-material nozzle; use of nitrogen as spray gas.
  • the fine powders were dried further for 30 minutes using a HR73 moisture analyzer from Mettler Toledo at 105°C.
  • the weight loss of the powder from sample A before and after the drying at 105°C was ca. 4.5% by weight; the weight loss of the powder from sample B before and after drying at 105°C was ca. 9.0% by weight.
  • the fine powders were dried further at 130°C for 15 minutes.
  • the weight loss of the powder from sample A before and after drying at 130°C was ca. 7.8% by weight; the weight loss of the powder from sample B before and after drying at 130°C was ca. 13.2% by weight.
  • the powder prepared from sample A exhibits better thermal stability than the powder prepared from sample B.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Zoology (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Inorganic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Toxicology (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Biophysics (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • General Preparation And Processing Of Foods (AREA)
EP11714988.0A 2010-04-20 2011-04-19 Cosmetic preparation comprising a capsule comprising an active ingredient Active EP2560752B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11714988.0A EP2560752B1 (en) 2010-04-20 2011-04-19 Cosmetic preparation comprising a capsule comprising an active ingredient

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US32583210P 2010-04-20 2010-04-20
EP10160468 2010-04-20
EP11714988.0A EP2560752B1 (en) 2010-04-20 2011-04-19 Cosmetic preparation comprising a capsule comprising an active ingredient
PCT/EP2011/056191 WO2011131644A1 (en) 2010-04-20 2011-04-19 Capsule comprising active ingredient

Publications (2)

Publication Number Publication Date
EP2560752A1 EP2560752A1 (en) 2013-02-27
EP2560752B1 true EP2560752B1 (en) 2019-06-19

Family

ID=44314159

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11714988.0A Active EP2560752B1 (en) 2010-04-20 2011-04-19 Cosmetic preparation comprising a capsule comprising an active ingredient

Country Status (7)

Country Link
US (1) US20130040817A1 (ko)
EP (1) EP2560752B1 (ko)
JP (2) JP6054289B2 (ko)
KR (1) KR101457287B1 (ko)
CN (1) CN102858449B (ko)
BR (1) BR112012026758B1 (ko)
WO (1) WO2011131644A1 (ko)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013087405A2 (en) * 2011-12-13 2013-06-20 Basf Se Release capsules, manufacture and uses thereof
CN103750050B (zh) * 2014-01-21 2016-07-06 武汉轻工大学 棕榈油纳米乳液的制备方法
WO2016100479A1 (en) * 2014-12-16 2016-06-23 The Procter & Gamble Company Coated microcapsules
US9944887B2 (en) * 2014-12-16 2018-04-17 Noxell Corporation Coated microcapsules
US9962321B2 (en) * 2014-12-16 2018-05-08 Noxell Corporation Compositions providing delayed release of actives
CN107001979B (zh) * 2014-12-16 2021-05-28 诺赛尔股份有限公司 包衣微胶囊
US9951293B2 (en) * 2014-12-16 2018-04-24 Noxell Corporation Coated microcapsules
WO2016198494A1 (de) * 2015-06-10 2016-12-15 Basf Se Verfahren zur herstellung von anorganischen mikrohohlkugeln
JP6659019B2 (ja) * 2015-12-22 2020-03-04 花王株式会社 マイクロカプセル及びその製造方法
FR3077066B1 (fr) 2018-01-23 2022-06-10 Agro Innovation Int Composite a base de materiau lamellaire et de materiau poreux comprenant une substance active et/ou un microorganisme
FR3077067B1 (fr) * 2018-01-23 2022-06-10 Agro Innovation Int Encapsulation de substances actives et/ou de microorganismes dans un materiau lamellaire
EP3866962A4 (en) * 2018-10-16 2021-11-24 Silicycle Inc. ADJUSTABLE PROCESS FOR MANUFACTURING SILICON DIOXIDE CAPSULES / BALLS AND THEIR USE
CA3118736A1 (en) * 2018-11-13 2020-05-22 Silicycle Inc. Hydrophobicity/hydrophilicity-tunable organosiloxane nano-/microspheres and process to make them
JP7395611B2 (ja) * 2019-04-17 2023-12-11 ザ プロクター アンド ギャンブル カンパニー カプセル
EP3956054A1 (en) * 2019-04-17 2022-02-23 The Procter & Gamble Company Methods of making capsules
CA3213930A1 (en) * 2019-04-17 2020-10-22 The Procter & Gamble Company Capsules
CN110186213A (zh) * 2019-05-28 2019-08-30 山东森瑞空调设备有限公司 一种低温增焓双相热源热泵系统
CN110918016B (zh) * 2019-12-17 2021-09-14 中国科学院兰州化学物理研究所 一种硅胶表面原位生长纳米石墨化碳球制备核-壳型复合材料的方法
MX2023004226A (es) 2020-10-16 2023-04-21 Procter & Gamble Composiciones antitranspirantes y desodorantes que comprenden capsulas.
CA3193109A1 (en) * 2020-10-16 2022-04-21 Andre Martim Barros Water-soluble unit dose article containing a core/shell capsule
MX2023004227A (es) 2020-10-16 2023-04-21 Procter & Gamble Composiciones liquidas para el cuidado de telas que comprenden capsulas.
WO2023078784A1 (en) 2021-11-05 2023-05-11 Byk-Chemie Gmbh Surfactant-free capsules of surface-active substances
WO2023078783A1 (en) 2021-11-05 2023-05-11 Byk-Chemie Gmbh Process of encapsulation
US20230320949A1 (en) 2022-04-12 2023-10-12 The Procter & Gamble Company Compositions Having Capsules

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9021061D0 (en) * 1990-09-27 1990-11-07 Unilever Plc Encapsulating method and products containing encapsulated material
US6103379A (en) * 1994-10-06 2000-08-15 Bar-Ilan University Process for the preparation of microspheres and microspheres made thereby
IL111186A (en) * 1994-10-06 1999-09-22 Univ Bar Ilan Process for the preparation of microspheres and microspheres made thereby
IL120022A (en) * 1997-01-16 2003-02-12 Yissum Res Dev Co Sunscreens for protection from sun radiation
FR2760641B1 (fr) * 1997-03-13 2000-08-18 Oreal Emulsion huile-dans-eau stable, son procede de fabrication et son utilisation dans les domaines cosmetique et dermatologique
AUPQ573300A0 (en) * 2000-02-21 2000-03-16 Australian Nuclear Science & Technology Organisation Controlled release ceramic particles, compositions thereof, processes of preparation and methods of use
BRPI0413131A (pt) 2003-07-31 2007-04-10 Sol Gel Technologies Ltd micro-cápsulas carregadas com ingredientes ativos e um método para sua preparação
DE102006006413A1 (de) 2006-02-13 2007-08-23 Merck Patent Gmbh UV-Filter-Kapsel
KR101374756B1 (ko) * 2006-06-27 2014-03-17 다우 코닝 코포레이션 테트라알콕시실란의 에멀젼 중합에 의해 제조된 마이크로캡슐
AU2006203016B2 (en) * 2006-07-14 2008-10-09 Nano-Sports Technologies Ltd. Preparation of composite nano/microcapsules comprising nanoparticles
WO2008088586A2 (en) * 2006-09-11 2008-07-24 William Marsh Rice University New phototherapeutic materials prepared through nanoparticle assembly
GB0623748D0 (en) * 2006-11-28 2007-01-10 Ciba Sc Holding Ag Microcapsules, their use and processes for their manufacture
EP2104558A2 (en) * 2006-12-12 2009-09-30 Sol-Gel Technologies Ltd. Formation of nanometric core-shell particles having a metal oxide shell
EP2120891B9 (en) * 2006-12-28 2019-04-24 Dow Silicones Corporation Polynuclear microcapsules
JP2008308475A (ja) * 2007-06-14 2008-12-25 Hiroshi Machida ペースト
JP2008308477A (ja) * 2007-06-16 2008-12-25 Cosme Techno:Kk 有機系紫外線吸収剤固定化粉末及びその配合化粧料
DE102007035567A1 (de) 2007-07-26 2009-01-29 Basf Se UV-Filter-Kapsel
CA2732368C (en) * 2008-07-31 2017-11-14 Sol-Gel Technologies Ltd. Microcapsules comprising active ingredients and a metal oxide shell, a method for their preparation and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP6054289B2 (ja) 2016-12-27
CN102858449B (zh) 2015-11-25
US20130040817A1 (en) 2013-02-14
JP2013531614A (ja) 2013-08-08
EP2560752A1 (en) 2013-02-27
BR112012026758B1 (pt) 2019-05-28
CN102858449A (zh) 2013-01-02
KR20130029401A (ko) 2013-03-22
KR101457287B1 (ko) 2014-11-04
JP2015129116A (ja) 2015-07-16
WO2011131644A1 (en) 2011-10-27
BR112012026758A2 (pt) 2017-10-10

Similar Documents

Publication Publication Date Title
EP2560752B1 (en) Cosmetic preparation comprising a capsule comprising an active ingredient
EP1257259B1 (en) Controlled release ceramic particles, compositions thereof, processes of preparation and methods of use
US10525433B2 (en) Formation of nanometric core-shell particles having a metal oxide shell
JP5923065B2 (ja) 過酸化物及びレチノイドを含む局所適用用組成物
US20170007628A1 (en) Dosage form comprising an active ingredient and a plurality of solid porous microcarriers
KR20120118075A (ko) 방출 가능한 도펀트를 함유한 입자
US9763862B2 (en) Multicompartmentalized material for the thermostimulated delivery of substances of interest, preparation method thereof and uses of the same
Qian et al. Effect of synthesis time on morphology of hollow porous silica microspheres
US20190282990A1 (en) Capsule comprising active ingredient
US9649277B2 (en) Multicompartmentalized material for the thermostimulated delivery of substances of interest, preparation process and applications
AU2001235236B2 (en) Controlled release ceramic particles, compositions thereof, processes of preparation and methods of use
AU2001235236A1 (en) Controlled release ceramic particles, compositions thereof, processes of preparation and methods of use

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170223

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: A61K 9/50 20060101ALI20181112BHEP

Ipc: A61K 8/11 20060101ALI20181112BHEP

Ipc: A01N 25/28 20060101ALI20181112BHEP

Ipc: B01J 13/18 20060101AFI20181112BHEP

INTG Intention to grant announced

Effective date: 20181213

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011059834

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1144791

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190919

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190919

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190920

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1144791

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191021

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191019

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2746188

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011059834

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200419

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230314

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230421

Year of fee payment: 13

Ref country code: FR

Payment date: 20230421

Year of fee payment: 13

Ref country code: ES

Payment date: 20230515

Year of fee payment: 13

Ref country code: DE

Payment date: 20230427

Year of fee payment: 13

Ref country code: CH

Payment date: 20230502

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230418

Year of fee payment: 13