EP2556230B1 - Verfahren zum anpassen der tatsächlichen einspritzmenge, einspritzvorrichtung und brennkraftmaschine - Google Patents

Verfahren zum anpassen der tatsächlichen einspritzmenge, einspritzvorrichtung und brennkraftmaschine Download PDF

Info

Publication number
EP2556230B1
EP2556230B1 EP11714253.9A EP11714253A EP2556230B1 EP 2556230 B1 EP2556230 B1 EP 2556230B1 EP 11714253 A EP11714253 A EP 11714253A EP 2556230 B1 EP2556230 B1 EP 2556230B1
Authority
EP
European Patent Office
Prior art keywords
injection
internal combustion
combustion engine
test
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11714253.9A
Other languages
English (en)
French (fr)
Other versions
EP2556230A1 (de
Inventor
Hui Li
Christian Hauser
Joachim Engelmann
Armin Stolz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP2556230A1 publication Critical patent/EP2556230A1/de
Application granted granted Critical
Publication of EP2556230B1 publication Critical patent/EP2556230B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • F02D41/247Behaviour for small quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections

Definitions

  • the present invention relates to a method for adjusting the actual injection quantity of an injector of an internal combustion engine to the desired injection quantity according to the preamble of patent claim 1.
  • the invention further relates to an injection device and an internal combustion engine.
  • the inventive method is particularly applicable to internal combustion engines with so-called common rail injections, in which a plurality of - typically all - injectors are supplied with a common fuel line, which is under a substantially uniformly high pressure.
  • the injection quantities to be injected into each cylinder of the internal combustion engine at the beginning of a power stroke are typically primarily metered in that the injection valves or injectors are activated with a shorter or longer selected activation duration during which these injection valves are opened and fuel is injected into the respective cylinder let it penetrate.
  • a need for adapting actually injected injection quantities to desired injection quantities dependent on a respective operating state of the internal combustion engine results, in particular, from changes with time of properties of the injection valves or injectors.
  • signs of wear or deposits can lead to injection parameters, such as the actual opening duration or the actual opening degree of the injection valves, and thus the actual injection quantity changing during the service life of the injection valves.
  • the injection system of an internal combustion engine must be able to inject a defined amount of fuel exactly over the entire lifetime of a corresponding injection valve. Therefore, very high demands are made on the stability and accuracy of the injection.
  • the procedure is such that during a phase (fuel shut-off phase) during which no injection takes place, a test injection pulse is realized and the acceleration of the engine speed caused thereby is determined and used as an indication of the actually injected fuel quantity. On the basis of the determined actually injected fuel quantity then the Control data of the injector of the internal combustion engine corrected.
  • a method having the features of the preamble of claim 1 is known from DE 10 2005 052 024 A1 known.
  • an injection pulse period of initially 3 injections is set to a uniform injection period which is the same as that of the preliminary learning mode, and a reference injection pulse period of the fourth injection is set to a corresponding value.
  • the injection pulse period of the fourth injection is accurately adjusted according to a change in the engine speed.
  • a difference between the adjusted injection pulse duration and the reference injection pulse duration is stored as a correction amount of a change point learning 1 mode in a storage device.
  • From the DE 197 00 711 A1 is a method for compensating the systematic failure of injectors for a Internal combustion engine is known in which by means of a cylinder-selective measurement method for detecting the uneven running in the lower speed range of the internal combustion engine, the actual injected fuel quantities are determined and from each a cylinder-specific correction factor is calculated and stored. At higher speeds and loads, the injection time and / or the injection start angle is then changed individually for each cylinder on account of the correction factors, thereby improving the smooth running of the internal combustion engine.
  • the present invention has for its object to provide a method of the type described above, with a particularly rapid correction or adaptation of the control data of an injector of an internal combustion engine is possible.
  • an online adaptation of at least one injection control parameter is thus carried out.
  • the actual injected fuel quantity is not detected during a phase (fuel cut-off phase) during which no injection takes place, but during the normal fired operating state of the internal combustion engine (during the normal ignition phase) is determined and corrected.
  • the method is suitable for all types of vehicles, since the normal fired operating state is always present.
  • Correction of the drive data of the injector can be carried out very quickly.
  • the detection of the injected fuel quantity is performed by a comparison of a normal injection cycle with a test cycle corresponding to the normal injection cycle and at least one additional defined test pulse.
  • an injection configuration is set in particular, which has alternating injection patterns with and without test pulses.
  • the normal injection cycle is specified here by the request of the driver or a control unit.
  • the test cycle is a copy of the normal injection cycle with one or more additional test pulses. Both cycles are compared with each other, the difference between the two cycles being an indication of the amount of fuel injected. Absolute fuel quantities can be determined with this method.
  • the detection of the actually injected amount of fuel during an idle phase of the internal combustion engine and / or in the disengaged state thereof is performed.
  • the detection in the disengaged state avoids a corresponding calibration effort for different transmission types.
  • the test cycle is performed as a copy of the configuration of the normal injection cycle established by the speed control with at least one additional defined test pulse by "freezing" the speed control for the test cycle at least in one segment.
  • This is preferably done when the Internal combustion engine is in a control phase of a steady idle speed, ie at least the injection parameters in the test segment correspond to the parameters of the last combustion cycle, apart from the defined test injection pulse.
  • the parameters for other segments are copied from the previous cycle.
  • the injection cycle is preferably divided into n-segments, and the amount of fuel injected by the test pulse is determined from the difference of the speed or acceleration signal of the first n-segments and of the subsequent n-segments.
  • n preferably corresponds to the number of cylinders.
  • a combustion signal for the test pulse is determined by comparing the speed or acceleration signal before and after the test pulse, which corresponds to the effect achieved by the test pulse or the corresponding combustion.
  • a statistically significant value is obtained from a plurality of combustion signals.
  • the actual injected fuel quantity is then determined from the combustion signal or the statistically relevant value of the combustion signals.
  • the drive data of the injector or of the injectors of the internal combustion engine are then corrected or adjusted such that the defined fuel quantity or nominal fuel quantity is injected exactly over the service life of the injector.
  • the invention further relates to an injection device for an internal combustion engine, which comprises a control for injection valves of the internal combustion engine, wherein the controller programmatically designed to carry out a method described above. Furthermore, the invention relates to an internal combustion engine comprising such an injection device.
  • FIG. 1 shows the injection configurations at idle speed with and without test pulse.
  • the normal injection cycle is defined by the idle speed control.
  • the injection test cycle performed is a copy of the injection configuration during the normal injection cycle (ie injection times, injection position, etc.) with an additional test pulse. This means that the idle speed control is "frozen" for the test cycle, ie that the injection parameters of all injection pulses correspond to the parameters of the last combustion cycle, apart from the defined test injection pulse.
  • one combustion cycle has four segments.
  • the difference between the first four segments and the subsequent four segments corresponds exactly to the test pulse.
  • the combustion generated by the test pulse can be determined or calculated.
  • test pulses are performed at idle speed.
  • FIG. 1 On the left side, the injection pattern in the normal cycle (with active control) and on the right side shows the injection pattern in the test cycle (with "frozen” control) over four segments each. In contrast to the normal cycle, there is a test pulse in segment 0. Incidentally, identical parameters exist for identical segments.
  • FIG. 2 shows a schematic representation of a curve representing an example of a calculated from a test pulse acceleration signal N DF.
  • a test pulse in the segment 0 is delivered and realized.
  • the acceleration and deceleration of the crankshaft can be detected in segments 2 and 3.
  • By comparing the acceleration signal before and after the test pulse of the be determined by the test pulse generated "effect" or the combustion caused thereby.
  • SIG_CMB a 1 ⁇ N_DF 0 + a 2 ⁇ N_DF 1 + a 3 ⁇ N_DF 2 + a 4 ⁇ N_DF 3 Sum of N_DF after test pulse - a 5 ⁇ N_DF 0 + a 6 ⁇ N_DF 1 + a 7 ⁇ N_DF 2 + a 8th ⁇ N_DF 3 Sum of N_DF before test pulse
  • N_DF (0) to N_DF (3) represent the acceleration values to be assigned to the segments 0-3.
  • the values a 1 ... a 8 represent weighting parameters that are configured according to the occurrence of the acceleration and deceleration in the corresponding segment.
  • FIG. 3 shows the combustion signal SIG CMB calculated according to the previous equation for the different test pulses, which was determined according to the described method.
  • filtering or averaging techniques may find application. By simple averaging after excluding the maximum and minimum, the statistical combustion value sig_cmb_mean can be calculated.
  • FIG. 4 shows, purely by way of example, the relationship between calculated combustion values CMB_STC and the respective actually injected fuel quantity MF for a pressure of 80 MPa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Anpassen der tatsächlichen Einspritzmenge eines Injektors einer Brennkraftmaschine an die Soll-Einspritzmenge gemäß dem Oberbegriff von Patentanspruch 1.
  • Die Erfindung bezieht sich ferner auf eine Einspritzvorrichtung und eine Brennkraftmaschine.
  • Das erfindungsgemäße Verfahren ist insbesondere anwendbar bei Brennkraftmaschinen mit sogenannten Common-Rail-Einspritzungen, bei denen mehrere - typischerweise alle - Einspritzventile mit einer gemeinsamen Kraftstoffleitung versorgt werden, die unter einem weitgehend gleichmäßig hohen Druck steht. Die jeweils am Beginn eines Arbeitstaktes in jeden Zylinder der Brennkraftmaschine einzuspritzenden Einspritzmengen werden dabei typischerweise in erster Linie dadurch dosiert, dass die Einspritzventile bzw. Injektoren mit einer kürzer oder länger gewählten Ansteuerdauer angesteuert werden, während der diese Einspritzventile geöffnet werden und Kraftstoff in den jeweiligen Zylinder dringen lassen.
  • Eine Notwendigkeit zum Anpassen dabei tatsächlich eingespritzter Einspritzmengen an von einem jeweiligen Betriebszustand der Brennkraftmaschine abhängende Soll-Einspritzmengen ergibt sich dabei insbesondere aus zeitlichen Änderungen von Eigenschaften der Einspritzventile bzw. Injektoren.
  • So können insbesondere Verschleißerscheinungen oder Ablagerungen dazu führen, dass sich Einspritzparameter, wie die tatsächliche Öffnungsdauer oder der tatsächliche Öffnungsgrad der Einspritzventile, und damit die tatsächliche Einspritzmenge während der Lebensdauer der Einspritzventile verändert.
  • Um die strengen Emissionsstandards einzuhalten und einen geringen Kraftstoffverbrauch zu ermöglichen, muss jedoch das Einspritzsystem einer Brennkraftmaschine in der Lage sein, eine definierte Kraftstoffmenge exakt über die gesamte Lebenszeit eines entsprechenden Einspritzventils einzuspritzen. An die Stabilität und Genauigkeit der Einspritzung werden daher heutzutage sehr hohe Anforderungen gestellt.
  • Es gilt daher, die vorstehend beschriebene Drift von Eigenschaften eines Einspritzventils im Laufe seiner Lebensdauer zu kompensieren. Hierzu ist es bekannt, eine Anpassung der Einspritzparameter unter Verwendung des Kurbelwellen/Motordrehzahlsignals durchzuführen. Wenn eine Verbrennung in der Brennkraftmaschine stattfindet, tritt eine Beschleunigung der Kurbelwelle der Brennkraftmaschine auf. Diese Beschleunigung kann im Drehzahlsignal der Brennkraftmaschine detektiert werden. Hieraus kann die tatsächlich eingespritzte Kraftstoffmenge ermittelt werden.
  • Im Einzelnen wird dabei so vorgegangen, dass während einer Phase (Kraftstoffabsperrphase), während der keine Einspritzung stattfindet, ein Testeinspritzimpuls realisiert wird und die hierdurch bewirkte Beschleunigung der Motordrehzahl ermittelt und als Anzeige für die tatsächlich eingespritzte Kraftstoffmenge verwendet wird. Auf der Basis der ermittelten tatsächlich eingespritzten Kraftstoffmenge werden dann die Ansteuerdaten des Injektors der Brennkraftmaschine korrigiert.
  • Neuere Fahrzeuge besitzen jedoch solche Phasen, in denen keine Einspritzung stattfindet, in einem viel geringeren Umfang. Das bedeutet, dass die entsprechende Anpassung bzw. Korrektur der Ansteuerdaten dramatisch verlangsamt wird. Die gewünschten Emissionsstandards bzw. der gewünschte niedrige Kraftstoffverbrauch können daher in diesem Fall nur unzureichend optimiert werden. Die bekannten Lösungen, bei denen ein einziger Testimpuls während einer Kraftstoffabsperrphase benutzt wird, sind daher verbesserungswürdig.
  • Ein Verfahren mit den Merkmalen des Oberbegriffs von Patentanspruch 1 ist aus der DE 10 2005 052 024 A1 bekannt. Bei diesem bekannten Verfahren wird in einem Fall, bei dem ein stabiler Leerlaufzustand erreicht ist, wenn die Anzahl der Einspritzungen je Zyklus bei einem Änderungspunkt von 5 mal einer vorläufigen Lernbetriebsart zu 4 mal umgeschaltet wird, eine Einspritzpulszeitdauer von anfänglich 3 Einspritzungen auf eine einheitliche Einspritzzeitdauer eingestellt, die die gleiche ist, wie diejenige der vorläufigen Lernbetriebsart, und eine Bezugseinspritzpulszeitdauer der vierten Einspritzung wird auf einen entsprechenden Wert eingestellt. Die Einspritzpulszeitdauer der vierten Einspritzung wird entsprechend einer Änderung in der Maschinendrehzahl genau angepasst. Eine Differenz zwischen der angepassten Einspritzpulszeitdauer und der Bezugseinspritzpulszeitdauer wird als ein Korrekturbetrag einer Änderungspunktlern-1-Betriebsart in einer Speichereinrichtung gespeichert.
  • Aus der DE 197 00 711 A1 ist ein Verfahren zum Ausgleich des systematischen Fehlers an Einspritzvorrichtungen für eine Brennkraftmaschine bekannt, bei dem mittels einer zylinderselektiven Messmethode zur Erfassung der Laufunruhe im unteren Drehzahlbereich der Brennkraftmaschine die tatsächlich eingespritzten Kraftstoffmengen bestimmt werden und daraus jeweils ein zylinderspezifischer Korrekturfaktor berechnet und abgespeichert wird. Bei höheren Drehzahlen und Lasten wird dann aufgrund der Korrekturfaktoren die Einspritzzeit und/oder der Einspritzbeginnwinkel zylinderindividuell geändert und damit die Laufruhe der Brennkraftmaschine verbessert.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs beschriebenen Art zur Verfügung zu stellen, mit dem eine besonders rasche Korrektur bzw. Anpassung der Ansteuerdaten eines Injektors einer Brennkraftmaschine möglich ist.
  • Diese Aufgabe wird erfindungsgemäß bei einem Verfahren der angegebenen Art durch die kennzeichnenden Merkmale von Patentanspruch 1 gelöst.
  • Erfindungsgemäß wird somit eine Online-Anpassung von mindestens einem Einspritzsteuerparameter durchgeführt.
  • Bei dem erfindungsgemäßen Verfahren wird die tatsächlich eingespritzte Kraftstoffmenge nicht während einer Phase (Kraftstoffabsperrphase), während der keine Einspritzung stattfindet, detektiert, sondern während des normalen befeuerten Betriebszustandes der Brennkraftmaschine (während der normalen Zündphase) ermittelt und korrigiert. Damit ist das Verfahren für sämtliche Fahrzeugarten geeignet, da der normale befeuerte Betriebszustand immer vorhanden ist. Die Anpassung bzw.
  • Korrektur der Ansteuerdaten des Injektors kann sehr rasch durchgeführt werden.
  • Für die Durchführung des erfindungsgemäßen Verfahrens wird die Detektion der eingespritzten Kraftstoffmenge durch einen Vergleich eines normalen Einspritzzyklus mit einem dem normalen Einspritzzyklus und mindestens einem zusätzlichen definierten Testimpuls entsprechenden Testzyklus vorgenommen. Hierbei wird speziell eine Einspritzkonfiguration eingestellt, die abwechselnde Einspritzmuster mit und ohne Testimpulse aufweist. Der normale Einspritzzyklus wird hierbei durch die Anforderung des Fahrers oder eine Steuereinheit vorgegeben. Bei dem Testzyklus handelt es sich um eine Kopie des normalen Einspritzzyklus mit einem oder mehreren zusätzlichen Testimpulsen. Beide Zyklen werden miteinander verglichen, wobei die Differenz von beiden Zyklen eine Anzeige für die eingespritzte Kraftstoffmenge darstellt. Mit diesem Verfahren können absolute Kraftstoffmengen ermittelt werden.
  • Bevorzugt wird die Detektion der tatsächlich eingespritzten Kraftstoffmenge während einer Leerlaufphase der Brennkraftmaschine und/oder im ausgekuppelten Zustand derselben durchgeführt. Durch die Detektion im ausgekuppelten Zustand wird ein entsprechender Kalibrierungsaufwand für unterschiedliche Getriebetypen vermieden.
  • Vorzugsweise wird der Testzyklus als Kopie der Konfiguration des durch die Drehzahlsteuerung festgelegten normalen Einspritzzyklus mit mindestens einem zusätzlichen definierten Testimpuls durchgeführt, indem die Drehzahlsteuerung für den Testzyklus mindestens in einem Segment "eingefroren" wird. Dies wird vorzugsweise dann durchgeführt, wenn sich die Brennkraftmaschine in einer Steuerphase einer stetigen Leerlaufdrehzahl befindet, d.h. mindestens die Einspritzparameter im Testsegment entsprechen den Parametern des letzten Verbrennungszyklus, abgesehen vom definierten Testeinspritzimpuls. Je nach Signalverlauf und Auswertung werden die Parameter für weitere Segmente vom vorhergehenden Zyklus kopiert.
  • Der Einspritzzyklus wird vorzugsweise in n-Segmente aufgeteilt, und die durch den Testimpuls eingespritzte Kraftstoffmenge wird aus der Differenz des Drehzahl- oder Beschleunigungssignals der ersten n-Segmente und der der nachfolgenden n-Segmente ermittelt. n entspricht vorzugsweise der Anzahl der Zylinder.
  • In Weiterbildung des erfindungsgemäßen Verfahrens wird durch einen Vergleich des Drehzahl- oder Beschleunigungssignals vor und nach dem Testimpuls ein Verbrennungssignal für den Testimpuls ermittelt, das dem durch den Testimpuls erreichten Effekt bzw. der entsprechenden Verbrennung entspricht. Insbesondere wird ein statistisch relevanter Wert, speziell der Mittelwert, von mehreren Verbrennungssignalen gewonnen. Aus dem Verbrennungssignal bzw. dem statistisch relevanten Wert der Verbrennungssignale wird dann die tatsächlich eingespritzte Kraftstoffmenge ermittelt. Mit Hilfe der ermittelten tatsächlich eingespritzten Kraftstoffmenge werden dann die Ansteuerdaten des Injektors bzw. der Injektoren der Brennkraftmaschine so korrigiert bzw. angepasst, dass die definierte Kraftstoffmenge bzw. Soll-Kraftstoffmenge exakt über die Lebensdauer des Injektors eingespritzt wird.
  • Die Erfindung bezieht sich ferner auf eine Einspritzvorrichtung für eine Brennkraftmaschine, die eine Steuerung für Einspritzventile der Brennkraftmaschine umfasst, wobei die Steuerung programmtechnisch zur Durchführung eines vorstehend beschriebenen Verfahrens ausgebildet ist. Ferner betrifft die Erfindung eine Brennkraftmaschine, die eine derartige Einspritzvorrichtung umfasst.
  • Die Erfindung wird nachfolgend anhand eines Ausführungsbeispieles in Verbindung mit der Zeichnung im Einzelnen erläutert. Es zeigen:
  • Figur 1
    eine schematische Darstellung von Beispielen von Einspritzkonfigurationen;
    Figur 2
    ein Diagramm, das ein Beispiel der durch einen Testimpuls erreichten Beschleunigung zeigt;
    Figur 3
    ein Diagramm, das ein berechnetes Verbrennungssignal für Testimpulse zeigt; und
    Figur 4
    ein Diagramm, das schematisch die eingespritzte Kraftstoffmenge in Abhängigkeit von Verbrennungssignalen zeigt.
  • Es wird nunmehr eine Ausführungsform des erfindungsgemäßen Verfahren beschrieben, bei der eine Testeinspritzung durchgeführt wird, während sich die Brennkraftmaschine in einer Steuerphase mit stetiger Leerlaufdrehzahl befindet. Figur 1 zeigt das Einspritzkonfigurationen bei der Leerlaufdrehzahl ohne und mit Testimpuls. Der normale Einspritzzyklus wird durch die Leerlaufdrehzahlsteuerung definiert. Bei dem durchgeführten Einspritztestzyklus handelt es sich um eine Kopie der Einspritzkonfiguration beim normalen Einspritzzyklus (d.h. Einspritzzeiten, Einspritzposition etc.) mit zusätzlichem Testimpuls. Das bedeutet, dass die Leerlaufdrehzahlsteuerung für den Testzyklus "eingefroren" wird, d.h. dass die Einspritzparameter sämtlicher Einspritzimpulse den Parametern des letzten Verbrennungszyklus entsprechen, abgesehen vom definierten Testeinspritzimpuls.
  • Für die hier beschriebene Brennkraftmaschine mit vier Zylindern besitzt ein Verbrennungszyklus vier Segmente. Der Unterschied zwischen den ersten vier Segmenten und den nachfolgenden vier Segmenten entspricht exakt dem Testimpuls. Durch Vergleich des Drehzahlsignals oder Beschleunigungssignals der Brennkraftmaschine für die ersten vier Segmente mit dem der nachfolgenden vier Segmente kann die durch den Testimpuls erzeugte Verbrennung ermittelt bzw. berechnet werden.
  • Beispielsweise werden mehrere Testimpulse bei Leerlaufdrehzahl durchgeführt.
  • Figur 1 zeigt auf der linken Seite das Einspritzmuster im normalen Zyklus (mit aktiver Steuerung) und auf der rechten Seite das Einspritzmuster im Testzyklus (mit "eingefrorener" Steuerung) über jeweils vier Segmente. Im Unterschied zum Normalzyklus ist im Segment 0 ein Testimpuls vorhanden. Es sind im Übrigen identische Parameter für identische Segmente vorhanden.
  • Figur 2 zeigt eine schematische Darstellung einer Kurve, die ein Beispiel eines aus einem Testimpuls berechneten Beschleunigungssignals N DF repräsentiert. Wie erwähnt, wird ein Testimpuls im Segment 0 abgegeben und realisiert. Die Beschleunigung und Verzögerung der Kurbelwelle kann in den Segmenten 2 und 3 festgestellt werden. Durch Vergleich des Beschleunigungssignals vor und nach dem Testimpuls kann der durch den Testimpuls erzeugte "Effekt" oder die hierdurch bewirkte Verbrennung ermittelt werden.
  • Zum Konfigurieren des "Verbrennungssignals" kann folgendes Berechnungsverfahren angewendet werden: SIG_CMB = a 1 N_DF 0 + a 2 N_DF 1 + a 3 N_DF 2 + a 4 N_DF 3
    Figure imgb0001
    Summe von N_DF nach Testimpuls a 5 N_DF 0 + a 6 N_DF 1 + a 7 N_DF 2 + a 8 N_DF 3
    Figure imgb0002
    Summe von N_DF vor Testimpuls
  • Hierbei stellen N_DF(0) bis N_DF(3) die den Segmenten 0-3 zuzuordnenden Beschleunigungswerte dar.
  • Die Werte a1...a8 stellen Gewichtungsparameter dar, die je nach dem Auftreten der Beschleunigung und Verzögerung im entsprechenden Segment konfiguriert werden.
  • Figur 3 zeigt das gemäß vorheriger Gleichung berechnete Verbrennungssignal SIG CMB für die unterschiedlichen Testimpulse, das gemäß dem beschriebenen Verfahren ermittelt wurde. Um ein zuverlässigeres Ergebnis zu erreichen, können Filterverfahren oder Mittelwertbildungsverfahren Anwendung finden. Durch einfache Mittelwertbildung nach Ausschließen des Maximums und Minimums kann der statistische Verbrennungswert sig_cmb_mean berechnet werden.
  • Die Beziehung oder Korrelation zwischen den Werten sig_cmb_mean und einer tatsächlich eingespritzten Kraftstoffmenge ist bekannt, da sie experimentell ermittelt werden kann. Auf der Basis der ermittelten tatsächlich eingespritzten Kraftstoffmenge werden dann die Ansteuerdaten des entsprechenden Injektors der Brennkraftmaschine korrigiert.
  • Figur 4 zeigt nur rein beispielhaft zur Verdeutlichung die Beziehung zwischen berechneten Verbrennungswerten CMB_STC und der jeweiligen tatsächlich eingespritzten Kraftstoffmenge MF für einen Druck von 80 MPa.

Claims (11)

  1. Verfahren zum Anpassen der tatsächlichen Einspritzmenge eines Injektors einer Brennkraftmaschine an die Soll-Einspritzmenge, bei dem die durch einen Testeinspritzimpuls erzielte Kurbelwellenbeschleunigung im Drehzahlsignal der Brennkraftmaschine detektiert und hieraus die eingespritzte Kraftstoffmenge des Injektors ermittelt wird und bei dem auf der Basis der ermittelten eingespritzten Kraftstoffmenge die Ansteuerdaten des Injektors der Brennkraftmaschine korrigiert werden, wobei die eingespritzte Kraftstoffmenge des Injektors durch einen Testeinspritzimpuls entsprechend einem zusätzlich zur normalen Einspritzung erzeugten Impuls während des normalen befeuerten Betriebszustandes der Brennkraftmaschine detektiert und korrigiert wird, dadurch gekennzeichnet, dass die Detektion durch einen Vergleich eines normalen Einspritzzyklus mit einem dem normalen Einspritzzyklus und mindestens einem zusätzlichen definierten Testimpuls entsprechenden Testzyklus durchgeführt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Detektion während einer Leerlaufphase der Brennkraftmaschine durchgeführt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Detektion im ausgekuppelten Zustand der Brennkraftmaschine durchgeführt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Testzyklus als Kopie der Konfiguration des normalen Einspritzzyklus mindestens in einem Segment und mindestens einem zusätzlichen definierten Testimpuls durchgeführt wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Testzyklus als Kopie der Konfiguration des durch die Drehzahlsteuerung, insbesondere Leerlaufdrehzahlsteuerung, festgelegten normalen Einspritzzyklus und mindestens einem zusätzlichen definierten Testimpuls durchgeführt wird, indem die Drehzahlsteuerung, insbesondere Leerlaufdrehzahlsteuerung, für den Testzyklus eingefroren wird.
  6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Einspritzzyklus in n Segmente aufgeteilt wird und die durch den Testimpuls eingespritzte Kraftstoffmenge aus der Differenz des Drehzahl- oder Beschleunigungssignals der ersten n Segmente und dem der nachfolgenden n Segmente ermittelt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass durch einen Vergleich des Drehzahl- oder Beschleunigungssignals vor und nach dem Testimpuls ein Verbrennungssignal für den Testimpuls ermittelt wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass ein statistisch relevanter Wert, insbesondere der Mittelwert, von mehreren Verbrennungssignalen gewonnen wird.
  9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass aus dem Verbrennungssignal oder dem statistisch relevanten Wert der Verbrennungssignale die tatsächlich eingespritzte Kraftstoffmenge ermittelt wird.
  10. Einspritzvorrichtung für eine Brennkraftmaschine, die eine Steuerung für Einspritzventile der Brennkraftmaschine umfasst, wobei die Steuerung programmtechnisch zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 9 ausgebildet ist.
  11. Brennkraftmaschine umfassend eine Einspritzvorrichtung nach Anspruch 10.
EP11714253.9A 2010-04-09 2011-04-06 Verfahren zum anpassen der tatsächlichen einspritzmenge, einspritzvorrichtung und brennkraftmaschine Active EP2556230B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010014320.0A DE102010014320B4 (de) 2010-04-09 2010-04-09 Verfahren zum Anpassen der tatsächlichen Einspritzmenge, Einspritzvorrichtung und Brennkraftmaschine
PCT/EP2011/055306 WO2011124584A1 (de) 2010-04-09 2011-04-06 Verfahren zum anpassen der tatsächlichen einspritzmenge, einspritzvorrichtung und brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP2556230A1 EP2556230A1 (de) 2013-02-13
EP2556230B1 true EP2556230B1 (de) 2017-06-14

Family

ID=44275672

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11714253.9A Active EP2556230B1 (de) 2010-04-09 2011-04-06 Verfahren zum anpassen der tatsächlichen einspritzmenge, einspritzvorrichtung und brennkraftmaschine

Country Status (5)

Country Link
US (1) US9074547B2 (de)
EP (1) EP2556230B1 (de)
CN (1) CN102812225B (de)
DE (1) DE102010014320B4 (de)
WO (1) WO2011124584A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010014320B4 (de) 2010-04-09 2016-10-27 Continental Automotive Gmbh Verfahren zum Anpassen der tatsächlichen Einspritzmenge, Einspritzvorrichtung und Brennkraftmaschine
DE102010024568B4 (de) 2010-06-22 2015-12-10 Continental Automotive Gmbh Erfassungsverfahren und Adaptionsverfahren einer von einem Injektor eingespritzten Kraftstoffmenge sowie dazugehörige Steuereinheit und Kraftfahrzeug
DE102010043989B4 (de) 2010-11-16 2020-06-25 Continental Automotive Gmbh Adaptionsverfahren eines Injektors einer Brennkraftmaschine
GB2495755A (en) * 2011-10-20 2013-04-24 Gm Global Tech Operations Inc Correction of fuel injection timings in an internal combustion engine
DE102013207555B3 (de) * 2013-04-25 2014-10-09 Continental Automotive Gmbh Verfahren zur Einspritzmengenadaption
DE102013208268B4 (de) * 2013-05-06 2018-05-09 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Einspritzvorrichtung
US9708998B2 (en) 2014-04-01 2017-07-18 GM Global Technology Operations LLC System and method for improving fuel delivery accuracy by detecting and compensating for fuel injector characteristics
US9683510B2 (en) * 2014-04-01 2017-06-20 GM Global Technology Operations LLC System and method for improving fuel delivery accuracy by learning and compensating for fuel injector characteristics
US9435289B2 (en) 2014-04-01 2016-09-06 GM Global Technology Operations LLC Systems and methods for minimizing throughput
US9458789B2 (en) 2014-04-01 2016-10-04 GM Global Technology Operations LLC Missed fuel injection diagnostic systems and methods
DE102015217945A1 (de) * 2014-10-21 2016-04-21 Robert Bosch Gmbh Vorrichtung zur Steuerung von wenigstens einem schaltbaren Ventil
GB2533464A (en) * 2015-10-20 2016-06-22 Gm Global Tech Operations Llc Method of operating a fuel injector of an internal combustion engine
US20170314498A1 (en) * 2016-04-28 2017-11-02 General Electric Company System and method for fuel injection control
DE102016226132A1 (de) * 2016-12-23 2018-06-28 Robert Bosch Gmbh Verfahren zum Ermitteln einer Einspritzmenge eines Injektors
DE102017203794A1 (de) * 2017-03-08 2018-09-13 Robert Bosch Gmbh Verfahren zur Nullmengenkalibrierung von mittels Injektoren zugemessenem Kraftstoff in einer Brennkraftmaschine
US11352973B2 (en) * 2019-04-04 2022-06-07 Caterpillar Inc. Machine system and operating strategy using auto-population of trim files
DE102022209727B4 (de) 2022-09-16 2024-03-28 Vitesco Technologies GmbH Verfahren zum Betreiben eines Kraftstoff-Einspritzsystems eines Verbrennungsmotors

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385129A (en) * 1991-07-04 1995-01-31 Robert Bosch Gmbh System and method for equalizing fuel-injection quantities among cylinders of an internal combustion engine
DE19700711C2 (de) 1997-01-10 1999-05-12 Siemens Ag Verfahren zum Ausgleich des systematischen Fehlers an Einspritzvorrichtungen für eine Brennkraftmaschine
DE19741965C1 (de) * 1997-09-23 1999-01-21 Siemens Ag Verfahren zur Laufruheregelung
JP2001349243A (ja) * 2000-06-07 2001-12-21 Isuzu Motors Ltd エンジンの燃料噴射制御装置
ITTO20020698A1 (it) 2002-08-06 2004-02-07 Fiat Ricerche Metodo e dispositivo di controllo della qualita'
DE10257686A1 (de) * 2002-12-10 2004-07-15 Siemens Ag Verfahren zum Anpassen der Charakteristik eines Einspritzventils
DE10305523A1 (de) * 2003-02-11 2004-08-19 Robert Bosch Gmbh Verfahren und Vorrichtung zur Nullmengenkalibrierung eines Kraftstoffeinspritzsystems eines Kraftfahrzeuges im Fahrbetrieb
DE102004006554B3 (de) * 2004-02-10 2005-06-30 Siemens Ag Verfahren zur Zylindergleichstellung bezüglich der Kraftstoff-Einspritzmengen bei einer Brennkraftmaschine
JP4289280B2 (ja) 2004-11-01 2009-07-01 株式会社デンソー 噴射量学習制御装置
DE102006026640A1 (de) * 2006-06-08 2007-12-13 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
JP4442670B2 (ja) 2007-09-19 2010-03-31 株式会社デンソー 内燃機関の燃料噴射制御装置
DE102010014320B4 (de) 2010-04-09 2016-10-27 Continental Automotive Gmbh Verfahren zum Anpassen der tatsächlichen Einspritzmenge, Einspritzvorrichtung und Brennkraftmaschine
DE102010043989B4 (de) * 2010-11-16 2020-06-25 Continental Automotive Gmbh Adaptionsverfahren eines Injektors einer Brennkraftmaschine
GB2498783A (en) * 2012-01-27 2013-07-31 Gm Global Tech Operations Inc A method of operating an internal combustion engine to provide correction of fuel injection times and indication of injector failure
GB2500890A (en) * 2012-04-02 2013-10-09 Gm Global Tech Operations Inc Method of compensating an injection timing drift in a fuel injection system

Also Published As

Publication number Publication date
EP2556230A1 (de) 2013-02-13
WO2011124584A1 (de) 2011-10-13
CN102812225A (zh) 2012-12-05
DE102010014320B4 (de) 2016-10-27
US9074547B2 (en) 2015-07-07
CN102812225B (zh) 2015-11-25
US20130024098A1 (en) 2013-01-24
DE102010014320A1 (de) 2011-10-13

Similar Documents

Publication Publication Date Title
EP2556230B1 (de) Verfahren zum anpassen der tatsächlichen einspritzmenge, einspritzvorrichtung und brennkraftmaschine
DE102008054690B4 (de) Verfahren und Vorrichtung zur Kalibrierung von Teileinspritzungen in einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
DE102010043989B4 (de) Adaptionsverfahren eines Injektors einer Brennkraftmaschine
DE102012218176A1 (de) Verfahren zum Betreiben eines Kraftstoffeinspritzsystems
WO2009059854A1 (de) Verfahren und vorrichtung zur durchführung sowohl einer adaption wie einer diagnose bei emissionsrelevanten steuereinrichtungen in einem fahrzeug
DE102007024823B4 (de) Verfahren und Vorrichtung zur Bestimmung eines Ansteuerparameters für einen Kraftstoffinjektor einer Brennkraftmaschine
DE102014107903A1 (de) Technik zur Bestimmung des Einspritzverhaltens eines Kraftstoffinjektors
WO2014121980A1 (de) Verfahren und vorrichtung zum betrieb einer kraftstoffeinspritzeinrichtung insbesondere eines kraftfahrzeuges
DE102012210937A1 (de) Verfahren zur Steuerung einer Brennkraftmaschine und System mit einer Brennkraftmaschine und einem Steuergerät
DE102012217741A1 (de) Verfahren zur Plausibilisierung des Ausgangssignals eines Raildrucksensors
DE102015214780A1 (de) Verfahren zur Erkennung fehlerhafter Komponenten eines Kraftstoffeinspritzsystems
DE102012205839A1 (de) Verfahren zum Betreiben wenigstens eines Injektors
DE102008043971A1 (de) Verfahren zur Bestimmung mindestens eines Ansteuerparameters
DE102014211314A1 (de) Verfahren zum Korrigieren einer pumpenverursachten Abweichung einer Ist-Einspritzmenge von einer Soll-Einspritzmenge
DE102004053418B4 (de) Verfahren und Vorrichtung zur druckwellenkompensierenden Steuerung zeitlich aufeinanderfolgender Einspritzungen in einem Einspritzsystem einer Brennkraftmaschine
DE102006001368B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102011075876A1 (de) Verfahren zum Betreiben einer Einspritzdüse
DE102007058228A1 (de) Fehlermessung der Vor- oder Nacheinspritzung bei Verbrennungsmotoren
EP1618296B1 (de) Verfahren zur ermittlung der benötigten aktorenergie für die verschiedenen einspritzarten eines aktors einer brennkraftmaschine
DE102016211388B3 (de) Verfahren zum Erkennen einer Leistungsmanipulation beim Betrieb einer Brennkraftmaschine
DE102014223117A1 (de) Verfahren und Vorrichtung zur Kleinmengenkalibrierung eines Common-Rail-Einspritzsystems einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE102015200565A1 (de) Verfahren und Einrichtung zum Adaptieren eines Bauteils einer Brennkraftmaschine
EP2896809A2 (de) Verfahren zum Ermitteln eines Einspritzdruckes und Kraftfahrzeug
WO2013156377A1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
DE102013208268B4 (de) Verfahren und Vorrichtung zum Betreiben einer Einspritzvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 901213

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011012440

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170614

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170915

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170914

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171014

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011012440

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

26N No opposition filed

Effective date: 20180315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180406

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180406

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180406

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 901213

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110406

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011012440

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170614

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011012440

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502011012440

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240430

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240426

Year of fee payment: 14