EP2533436B1 - Contrôle de système de communication numérique dynamique - Google Patents
Contrôle de système de communication numérique dynamique Download PDFInfo
- Publication number
- EP2533436B1 EP2533436B1 EP12167376.8A EP12167376A EP2533436B1 EP 2533436 B1 EP2533436 B1 EP 2533436B1 EP 12167376 A EP12167376 A EP 12167376A EP 2533436 B1 EP2533436 B1 EP 2533436B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- transmission
- block
- crosstalk
- communication
- dsl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/02—Details
- H04B3/32—Reducing cross-talk, e.g. by compensating
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/10—Means associated with receiver for limiting or suppressing noise or interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/10—Means associated with receiver for limiting or suppressing noise or interference
- H04B1/1081—Reduction of multipath noise
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B15/00—Suppression or limitation of noise or interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/02—Details
- H04B3/46—Monitoring; Testing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/02—Details
- H04B3/46—Monitoring; Testing
- H04B3/462—Testing group delay or phase shift, e.g. timing jitter
- H04B3/466—Testing attenuation in combination with at least one of group delay and phase shift
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/02—Details
- H04B3/46—Monitoring; Testing
- H04B3/487—Testing crosstalk effects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0037—Inter-user or inter-terminal allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
- H04L5/0046—Determination of how many bits are transmitted on different sub-channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/006—Quality of the received signal, e.g. BER, SNR, water filling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/0016—Arrangements for synchronising receiver with transmitter correction of synchronization errors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M11/00—Telephonic communication systems specially adapted for combination with other electrical systems
- H04M11/06—Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors
- H04M11/062—Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors using different frequency bands for speech and other data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/10—Means associated with receiver for limiting or suppressing noise or interference
- H04B1/1027—Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/10—Means associated with receiver for limiting or suppressing noise or interference
- H04B1/1027—Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
- H04B2001/1045—Adjacent-channel interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
Definitions
- This invention relates generally to methods, systems and apparatus for managing digital communications systems. More specifically, this invention relates to dynamically controlling system parameters that affect performance in communication systems such as DSL systems.
- the present invention refers to digital communication systems where the transmission medium typically is copper wiring.
- the copper wiring consists of twisted pairs (also referred to as “lines” or “loops") categorized according to several manufacturing specifications (for example, AWG-26, AWG-24, CAT-3, CAT-5, CAT-6).
- Typical communication systems making use of copper wiring include Digital Subscriber Line (DSL) systems, such as ISDN, HDSL, ADSL and VDSL, and Local Area Networks (LAN), such as Ethernet.
- DSL Digital Subscriber Line
- LAN Local Area Networks
- a transceiver for example, a user modem is situated at each end of the communications line that incorporates the copper wiring.
- a data stream 110 is fed to a first transceiver 120, where the data stream 110 is decomposed into multiple component data streams 130 and, if desired modulated using a modulator 140.
- the modulated component data stream is transmitted over a twisted pair 150 to a demodulator 160 and re-composed in a second transceiver 170.
- Data may be sent in the opposite direction by reversing the roles of the various components previously described.
- FIG. 2 Another application is the use of the telephone loop plant for DSL service, one example of which is shown in Figure 2 .
- the twisted pairs 210 emanating from each Customer Premises Equipment (CPE) 220 are grouped into one or more binders 230, which converge at a terminus 240 such as a central office (CO), an optical network unit (ONU), or a remote terminal (RT).
- CO central office
- ONU optical network unit
- RT remote terminal
- hybrid scenarios may also occur, such as the use of multiple pairs by a single DSL customer aiming to improve his overall data rate.
- the bundling of twisted pairs arises either out of necessity (for example, the existing telephone loop infrastructure) or because of the benefits of improved performance (for example, 1000-BaseT Ethernet). In either case however, communications in these settings suffer from interference arising from electromagnetic coupling between neighboring pairs, referred to as "crosstalk" interference.
- crosstalk interference This means that any signal received by a modem at the end of a twisted pair generally contains not only the transmitted signal of the specific pair (which itself is likely distorted to some extent), but also distorted signals transmitted on neighboring pairs. It is apparent, therefore, that the transmission characteristics of a specific pair (for example, the pair's transmitted power) can materially influence communication on a neighboring pair due to the induced crosstalk.
- Unbundling involves the incumbent local exchange carrier's (ILEC's) lease of a telephone line or some part of its bandwidth to a competitive local exchange carrier (CLEC).
- Current unbundling practice with DSL service usually allows the CLEC to place modulated signals directly on leased physical copper-pair phone lines, sometimes referred to as the lease of "dark copper.”
- Such unbundled signals may provide services, and consequently use spectra, that differ among the various service providers. The difference in spectra can aggravate crosstalking incompatibilities caused by electromagnetic leakage between lines existing in close proximity.
- ILECs and CLECs try to ensure mutual spectral compatibility by standardizing the frequency bands and the power spectral densities that can be used by various DSL services.
- DSL spectrum management attempts to define the spectra of various DSL services in order to limit the crosstalk between DSLs that may be deployed in the same binder. Such crosstalk can be the limiting factor in determining the data rates and symmetries of offered DSL services at various loop reaches, so spectrum management finds some level of compromise between the various DSL service offerings that may be simultaneously deployed. Spectrum management studies tend to specify some typical and worst-case loop situations, and then proceed to define fixed spectra for each type of DSL to reduce the mutual degradation between services. Such a fixed spectrum assignment may not produce the desired level of compromise in situations different from those presumed in the studies.
- measured line and signal characteristics of a line 312 can be fed back to the communication adaptation module 315 by a module 316 for a given line to assist in operation of the modem pairs 310, 311 corresponding to the line 312.
- a module 316 for a given line to assist in operation of the modem pairs 310, 311 corresponding to the line 312.
- no independent entity has knowledge of the operation of more than one modem pair and line or of the various pairs' interactions (for example, crosstalk between lines). Instead, the rules, requirements and constraints applied to lines and modems such as those shown in Figure 3 are designed to accommodate the worst cases of crosstalk or other interference, irrespective of the actual conditions present in the system during operation.
- DSL technology provides high speed data services via ordinary telephone copper pairs.
- the DSL environment is considered a multi-user environment because telephone lines from different users are bundled together on the way from the central office, and different lines in the bundle frequently create crosstalk into each other. Such crosstalk can be the dominant noise source in a loop.
- early DSL systems such as ADSL and HDSL are designed as single-user systems. Although single-user systems are considerably easier to design, an actual multi-user system design can realize much higher data rates than those of single-user system designs.
- Power control in DSL systems differs from power control in wireless systems because, although the DSL environment varies from loop to loop, it does not vary over time. Since fading and mobility are not issues, the assumption of perfect channel knowledge is reasonable. This allows the implementation of sophisticated centralized power control schemes. On the other hand, unlike the wireless situation where flat fading can often be assumed, the DSL loops are severely frequency selective. Thus, any advanced power allocation scheme needs to consider not only the total amount of power allocated for each user, but also the allocation of power in each frequency. In particular, VDSL systems suffer from a near-far problem when two transmitters located at different distances from the central offices both attempt to communicate with the central office. When one transmitter is much closer to the central office than the other, the interference due to the closer transmitter often overwhelms the signal from the farther transmitter.
- DSL modems use frequencies above the traditional voice band to carry highspeed data.
- DSL transmission uses Discrete Multitone (DMT) modulation, which divides the frequency band into a large number of sub-channels and lets each sub-channel carry a separate data stream.
- DMT modulation allows implementation of arbitrary power allocation in each frequency tone, allowing spectral shaping.
- a DSL bundle 410 can consist of a number of subscriber lines 412 bundled together which, due to their close proximity, generate crosstalk.
- Near-end crosstalk (NEXT) 414 refers to crosstalk created by transmitters located on the same side as the receiver.
- Far-end crosstalk (FEXT) 416 refers to crosstalk created by transmitters located on the opposite side.
- NEXT typically is much larger than FEXT.
- the examples of the present invention presented herein use frequency duplexed systems for illustrative purposes.
- each user also is subject to a static power spectrum density (PSD) constraint.
- PSD power spectrum density
- the power spectrum density constraint limits the worst-case interference level from any modem; thus, each modem can be designed to withstand the worst-case noise.
- Such a design is conservative in the sense that realistic deployment scenarios often have interference levels much lower than the worst-case noise, and current systems are not designed to take advantage of this fact.
- the same power spectrum density constraint is applied to all modems uniformly regardless of their geographic location.
- Figure 5 illustrates a configuration in which two VDSL loops 510 in the same binder emanate from the central office 512 to a far customer premises 514 and a near customer premises 516.
- the FEXT 526 caused by the short line can overwhelm the data signal in the long line due to the difference in line attenuation.
- the upstream performance of the long line is therefore severely affected by the upstream transmission of the short line.
- the short lines must reduce their upstream power spectral densities so that they do not cause unfair interference into the long lines.
- upstream power back-off This reduction of upstream transmit power spectral density is known as upstream power back-off. Note that the downstream direction does not suffer from a similar problem because, although all transmitters at the CO-side also transmit at the same power spectral density, the FEXT they cause to each other is identical at any fixed distance from CO. This downstream FEXT level is typically much smaller than the data signals, so it does not pose a serious problem to downstream transmission.
- a generalization of this method is called the reference length method where variable levels of back-off are implemented across the frequency so that the received PSD for a shorter loop is the same as some longer reference loop at all frequencies.
- imposing the same PSD limit for shorter loops across the entire frequency band may be too restrictive since high frequency bands usually have too much attenuation to be useful in long loops. Therefore, short loops should be able to transmit at high frequency bands without worrying about their interference.
- ADSL Asymmetric DSL
- VDSL VDSL
- VDSL aims to deliver asymmetric service with downstream rates up to 52 Mbps, and symmetric service with rates up to 13 Mbps.
- DSL communication is still far from reaching its full potential, and the gradual "shortening" of loops presents an opportunity to develop advanced methods that can achieve improved rates and performance.
- LT line termination
- NT network termination
- LT central-office side
- NT network termination
- CLEC equipment may be technically difficult if not physically impossible.
- the difficulty arises because CLEC fiber access to the ONU may be restricted and/or the ONU may not be large enough to accommodate a shelf/rack for each new CLEC. Placement of such CLEC equipment for dark copper is often called "collocation" when it is in the central office.
- an ILEC may only provide what is essentially packet unbundling at the LT terminal (that is, service bandwidth leased at a layer 2 or 3 protocol level, not at the physical layer). This represents a change in the architecture presumed in many spectrum studies.
- Control of all the physical layer signals by a single service provider allows coordination of the transmitted signals in ways that can be beneficial to performance of DSL service.
- Packet unbundling which makes available the digital bandwidth on the twisted pairs, rather than the direct physical layer tease of the line itself, is seen to be a likely step in the evolution of DSL service.
- a developing DSL system topology is shown in Figure 6 .
- Some twisted pairs 616 emanate from the CO 610 and reach out to the customer premises 614.
- the installation of an ONU 612 (at a point between the CO 610 and one or more CPEs 614) shortens loop lengths 618 so that the reach and performance of DSL service are improved.
- the ONU 612 is connected to the CO 610 through a fiber link 622. Pairs 616 and 618 can occupy the same binder 620.
- MIMO Minimum-Mean-Square-Error (MMSE) linear equalizers were derived.
- Another prior method employs the singular value decomposition to achieve crosstalk cancellation assuming co-location of both transmitters and receivers.
- Other earlier methods include "wider than Nyquist" transmitters which were shown to provide performance advantages compared to “Nyquist-limited” ones, and crosstalk cyclostationarity (induced by transmitter synchronization) combined with oversampling which were shown to result in higher SNR values.
- vectored transmission (as defined in this invention) can achieve a high degree of crosstalk reduction without unreasonable complexity.
- use of vectored transmission can accommodate the approaching architectural changes coming to DSL service as well as providing an opportunity for dynamic system management which can overcome the shortcomings of prior systems and methods.
- the present invention relates to methods, apparatus and systems for dynamically controlling a digital communication system, such as a DSL system, according to the accompanying claims.
- Performance of the system may be measured by maximizing data rates to users.
- operators may wish to be able to offer a variety of services to users. For example, if an operator knows all of the available rates for a bundle, that operator may be able to offer certain users higher data rates as a "premium" service or for specialized needs (such as a hospital or emergency care provider).
- premium a service or for specialized needs (such as a hospital or emergency care provider).
- terms such as “optimal” and “optimization” therefore may be subjectively defined and may not necessarily refer to the fastest data rate(s), per se.
- “Static spectrum management” uses fixed, inflexible constraints, limits and requirements in connection with various digital communications systems. By contrast, a system with adaptive determination of spectra is referred to herein as “dynamic spectrum management.” Necessarily, static spectrum management is a special case of dynamic spectrum management, so static spectrum management can never outperform dynamic spectrum management. In fact, substantial improvement can be provided by dynamic spectrum management.
- the present invention illustrates that the level of improvement varies with loop characteristics, crosstalk coupling functions, data rates and symmetries offered, but can be significant. The level of relative improvement increases as loop lengths get shorter and data rates get more symmetric, as is likely to be the case with the present evolution of DSL. Importantly, dynamic spectrum management according to the present invention allows a greater mix of high-performance asymmetric and symmetric services in the same binder.
- FDD Frequency Divisional Duplexing
- Line unbundling occurs when different service providers place electric physical-layer signals on copper wire lines within a telephone cable, which is the current practice when lines terminate in a central office.
- spectrum balancing A specific illustrative example of the present invention (spectrum balancing) will be presented below and is applicable in a line unbundling environment.
- Packet unbundling occurs when service providers instead lease bit streams from a single common carrier who manages all signals on a telephone cable, meaning that different service providers are utilizing the same telephone cable.
- the present invention uses methods which make use of some level of knowledge regarding the neighboring systems and the transmission environment, in order to improve performance on all pairs.
- some level of knowledge regarding the neighboring systems and the transmission environment in order to improve performance on all pairs.
- systems on neighboring pairs may shape their power spectral densities so that the mutually induced crosstalk is minimized and their performance targets are met.
- the present invention further is defined to include methods and apparatus which determine and control physical layer communication parameters, based on information obtained about the whole transmission environment (the set of all neighboring twisted pairs) and where optimization criteria may relate to all the corresponding links.
- the communication parameters also may refer to the time periods over which transmission on a pair is allowed, implying schemes similar to time division multiple access.
- the communication parameter adaptation can occur once (for example, during modem initialization), periodically, or even continuously.
- the joint adaptation utilizes information about channel characteristics and about link requirements and constraints, which results in the provisioning of improved services.
- information is gathered for all links, but the joint adaptation applies only to a single subset of those links.
- information is gathered about all of the links, but the joint adaptation is applied independently to subsets of those links.
- information may be gathered about only a subset of the links, with the joint adaptation being applied to all or a subset of the links.
- a digital communications system 700 uses pairs of modems 710, 711 which are connected by twisted pair lines 712. Universal requirements and constraints (for example, total system power and power constraints on each line) can be applied to all links in the system by a module 714.
- line and signal characteristics for each line 712 can be acquired and provided to the communication adaptation module 715.
- the operator of the module 715 may be a single service provider, a group of service providers or an independent entity 716 that collects and evaluates system data and provides instructions to users or, in some cases, possibly controls system parameters to achieve desirable operational characteristics.
- the line and signal characteristics can be acquired for all (or a subset of) lines and can be coordinated or otherwise considered in a joint manner.
- Line characteristics can include, but are not limited to, loop topology, transfer functions and crosstalk coupling functions.
- knowledge of crosstalk coupling can allow performance improvements, since the amount of degradation of a link due to transmission on a neighboring link can be accurately estimated, and thus it may be realized that an increase in the transmitted power will improve the performance of the link without degrading the neighboring links.
- Signaling characteristics can include, but are not limited to, transmitted power spectral density, bandwidth utilization and allocation, modulation type and bit allocation. This may allow the application of a new class of methods and apparatus, such as those involving the distribution in frequency of available power, so that the impact among neighboring links is minimized.
- joint signal processing methods can be employed which will utilize knowledge of the transmitted bit streams.
- This coordination level is directly related to the concept of "vectored" transmission, where crosstalk is essentially removed. Again, this allows a different class of adaptation methods, where the power and frequency resources of all links can be optimally allocated in order to achieve the desired requirements.
- Such a system is useful in a line unbundling environment where different service providers may have access to different lines in a binder and/or different services that potentially negatively affect one another are provided on the lines in the binder.
- the digital subscriber line (DSL) environment can be viewed as a multi-user system.
- One embodiment of the present invention is intended to optimize power allocation to identify the maximum achievable data rates for multiple DSL modems in the presence of mutual interference.
- the following discussion will use VDSL as an example, and show that a multi-user system design with an advanced power allocation scheme can provide a system with substantial performance improvement as compared to a single-user design that does not take the multi-user aspect into account.
- This advanced power allocation method can be implemented either in a centralized fashion or a distributed fashion.
- the centralized approach assumes the existence of an entity which acquires knowledge of channel and crosstalk coupling functions, determines the desired signaling characteristics and parameters for each user, and finally instructs each user to employ these transmission characteristics and parameters.
- Another embodiment does not require knowledge of the crosstalk coupling functions.
- the modems of each user enter a phase during which each user individually adjusts its own signaling characteristics with the aim of attaining its own desired performance level, while minimizing the crosstalk it induces on the other users.
- a centralized entity may still exist, but its role may be restricted to setting the target performance levels of each user.
- An interference channel model 800 is shown in Figure 8 .
- each receiver also sees a background noise whose power spectrum density is denoted as ⁇ i ( f ) .
- the power allocation for each transmitter is denoted as P i ( f ), which must satisfy a power constraint: ⁇ 0 F s P i f d f ⁇ P i
- ⁇ denotes the SNR-gap which depends on the probability of error, the modulation scheme and the coding applied.
- the objective of the system design is to maximize the set of rates ⁇ R 1 ,..., R N ⁇ subject to the power constraints of Equation (1). It will be apparent to those of skill in the art that, for each transmitter, increasing its power at any frequency band will increase its own data rate. However, such an increase also causes more interference to other users and is therefore detrimental to other users' transmissions. Thus, an optimization or other advanced design must consider the trade-off among the data rates of all users.
- Realistic DSL deployment often requires multiple service rates be supported for all users, and the required level of service of each user could be arbitrary. Therefore, a single figure of merit frequently is inadequate to represent system performance. Also, as noted above, one may wish to know all achievable data rate combinations for the users in a system. For example, if the objective is to maximize the sum rate, then there is no guarantee of a minimal data rate to any one user.
- the rate region characterizes all possible data rate combinations among all users. Although in theory, the rate region can be found by an exhaustive search through all possible power allocations, or by a series of optimizations involving weighted sums of data rates, computational complexities of these approaches typically are prohibitively high. This is because the rate formula is a non-convex function of power allocations. Consequently, the usual numerical algorithms are able to find only local maxima and not the global maximum. The present invention avoids these complexities by defining a different concept of competitive optimality. Although the methodology of this embodiment of the present invention does not achieve all points in the rate region defined above, it nevertheless performs much better than the current DSL systems.
- the present invention utilizes competitive optimality, which has the advantage of providing the locally optimal solution toward which all users have an incentive to move.
- competitively optimal points are easy to characterize, and they lead to a power control method that offers a number of advantages compared to the previous methods.
- the new power allocation method of the present invention strikes a balance between maximizing each user's own data rate and minimizing its interference emission. In particular, the frequency selective nature of the channel is dealt with explicitly.
- the method of the present invention offers the loops an opportunity to negotiate the best use of power and frequency with each other.
- the usual PSD constraint which is in place for the purpose of controlling interference, is no longer needed. Only total power constraints apply.
- the proposed method does not involve arbitrary decisions on the reference noise or reference length.
- the traditional information-theoretic view of an interference channel allows the different transmitters, while sending independent data streams, to be cooperative in their respective coding strategies, so that interference cancellation can take place in the receivers. If such cooperation cannot be assumed, the interference channel can be better modeled as a non-cooperative game.
- each user competes for data rates with the sole objective of maximizing its performance, regardless of all other users. This scenario is particularly realistic in the current unbundled environment where different loops in the same binder could belong to different service providers, and they indeed compete in the local access market.
- each modem has a fixed power budget, each user should adjust its power allocation to maximize its own data rate, while regarding all other interference as noise.
- Nash equilibrium is defined as a strategy profile in which each player's strategy is an optimal response to each other player's strategy. The following discussion will characterize the Nash equilibrium in the Gaussian interference channel game, and determine its existence and uniqueness in realistic channels.
- a two-user interference channel provides the following simplified model: where the channel transfer functions are normalized to unity.
- N 1 ( f ) and N 2 ( f ) denote noise power spectrum densities.
- the two senders are considered as two players in a game.
- the structure of the game that is, the interference coupling functions and noise power
- a strategy for each player is its transmit power spectrum, P 1 ( f ) and P 2 ( f ), subject to the power constraints ⁇ 0 P 1 f d f ⁇ P 1 and ⁇ 0 P 2 f d f ⁇ P 2 , respectively, considering only deterministic, or pure strategy here.
- the payoff for each user is its respective data rate.
- the data rate game discussed here is not a zero-sum game. That is, one player's loss is not equal to the other player's gain. Since at a Nash equilibrium, each user's strategy is the optimal response to the other player's strategy, and for each user, the optimal power allocation given other player's power level is the water-filling of the power against the combined noise and interference, a Nash equilibrium is reached if water-filling is simultaneously achieved for all users.
- the goal is to achieve certain target rates for each user.
- the adaptive process runs in two stages.
- the inner stage uses given power constraints for each user as the input and derives the competitive optimal power allocation and data rates as output. This is accomplished by the iterative water-filling procedure.
- the first user updates its power allocation as the waterfilling spectrum of its channel regarding all other users' crosstalk as noise. Waterfilling is then applied successively to the second user, the third user, and so forth, then again to the first user, second user, etc., until each user's power allocation converges.
- Alternative (or even random) orderings also will work, provided that all users are "served" in due course.
- the outer stage finds the optimal total power constraint for each user.
- the outer procedure adjusts each user's power constraint based on the outcome of the inner iterative water-flling. If a user's data rate is below the user's target rate, then the user's power constraint will be increased, unless it is already at the modem power limit, in which case its power stays the same. If a user's data rate is above its target rate by a prescribed amount, its power will be decreased. If the data rate is only slightly above the target rate (less than the prescribed amount), its power will be unchanged. The outer procedure converges when the set of target rates is achieved.
- the method described above applies to the distributed version, where each user acts independently, apart from the fact that its target data rate has been "imposed" on the user by an outside agent or entity. It is easy to derive a centralized version, where a central entity performs the inner and outer iteration steps, and then determines power allocations, which it then instructs the users to adopt.
- the centralized version implies that the entity has acquired knowledge of some or all of the line and/or signal characteristics.
- rate maximization criterion can be replaced by a margin maximization criterion, where the target data rates are fixed for each user.
- This implementation of the present invention is useful in a packet unbundling environment where a single line is used by multiple users (for example, when leased by a single operator or where a fiber connection ends at an ONU and provides multiple parties with service from multiple service providers).
- the DSL channel model for the architecture of Figure 4 is now presented.
- the L users 420-1 through 420-L are assumed to correspond to a subset of the twisted-pairs of a group in binder 410.
- the sampled output for a specific user for either upstream or downstream transmission depends on the present and past input symbols of both the intended user and the other crosstalking users.
- H i , c , ... , H i , L c convolution matrices derived from the channel impulse response matrix
- y i is the vector of N output samples of receiver i
- x k p is the vector of N + v input symbols of user k
- n is the vector of N noise samples of receiver i .
- v represents the maximum memory of the transfer and crosstalk coupling functions expressed in number of samples.
- the noise samples represent the superposition of several noise sources such as crosstalk from neighboring DSL systems, radio frequency ingress and impulse noise.
- n i is considered to be white and gaussian and, without loss of generality, has unit variance.
- synchronized block transmission is relatively straightforward to implement.
- synchronized block reception requires additional consideration, although various methods and configurations will be apparent to those of ordinary skill in the art.
- the block boundaries for upstream transmission are aligned so that the blocks of all users arrive simultaneously at the CO/ONU. This block-level synchronization can be performed during initialization, and is analogous to the problem of synchronized uplink transmission in a wireless environment.
- Synchronization at the CO/ONU is automatically achieved when "zipper” FDD is used.
- a cyclic suffix (CS) larger than the channel propagation delay is included in addition to the CP.
- This "zippering” offers the benefit of eliminating residual NEXT and near-echo resulting from "spectral leakage" at frequencies close to the upstream/downstream band edges. Nevertheless, in this disclosure, the less stringent assumptions noted above will be used, understanding that residual NEXT and near-echo are mitigated by transmitter pulse-shaping and receiver windowing which are known in the art.
- x k is a vector of N input symbols of user k
- y y 1 T y 2 T ... y L T T
- x x 1 T x 2 T ... x L T T
- n n 1 T n 2 T ... n L T T
- H a matrix whose (i, j ) block is H i,j .
- DFT Discrete Fourier Transform
- IDFT Inverse Discrete Fourier Transform
- the block P ij contains all zeros, except for a one at position ( j,i ).
- matrix P is right-multiplied with a vector of size NL, the elements of P are re-ordered from L groups of N components into N groups of L components.
- Z i , U, and N contain the received samples, transmitted symbols and noise samples of all users corresponding to tone i, and T i fully characterizes MIMO transmission within tone i .
- T i upstream and downstream will be made by adopting the notation T i,up . and T i,down .
- Equation (22) shows that crosstalk cancellation can be performed independently in each tone. Therefore, as explained in more detail below, an array of canceller blocks can be employed at the CO/ONU to remove crosstalk within each tone for upstream communication. Similarly, precoder blocks can be used at the CO/ONU to pre-distort the transmitted signals within each tone, so that signals received at the CPE are crosstalk-free. Determining the parameters of the canceller/precoder blocks relies on perfect knowledge of the channel matrix and noise covariance matrix at the CO/ONU. This assumption is reasonable for DSL, since the twisted pair channels are stationary, and systems can afford training-based channel identification during initialization.
- Figure 10 shows FEXT coupling measurements for loops with length of 1640 feet. Since only magnitude data is provided, linear phase was assumed in order to derive the impulse responses. It was found that 99.9% of the signal energy is contained within 9 ⁇ sec. With a DMT block size of 4096 samples and sampling rate of 17.664 MHz, this corresponds to 159 samples. Therefore, a CP length of 320 samples (corresponding to a 7-8% toss) is more than adequate.
- the average delay of a typical twisted pair is approximately 1.5 ⁇ s/kft. Given that VDSL loops usually have lengths shorter than 6000 ft, and with the previous DMT assumptions, the propagation delay corresponds to fewer than 160 samples. Therefore, even if "zippering" is used, the length of the CP plus the CS does not exceed the proposed 320 samples. As is known to those of ordinary skill in the art, in cases where the channel has unusually long memory, various techniques are available for "shortening" the memory. For example, a MIMO Time-Domain-Equalizer may be used at the CO/ONU and a MIMO extension of an appropriate precoder may be utilized for downstream communication.
- Equation (22) the methods to remove crosstalk within each tone are described first for upstream and then for downstream communication.
- the matrices T i,up and T i,down are assumed to be non-singular (the justification for this assumption and the consequences of ill-conditioning are discussed below).
- a decision feedback structure 1100 is created with the feedforward matrix module 1110 using Q i * , and the feedback matrix module 1120 using I-R i .
- a system 1200 for upstream vectored DMT transmission is shown in Figure 12 .
- the transmitters 1210-1 through 1210-L send their respective signals through channel 1220.
- the receivers 1230-1 through 1230-L receive the signals from channel 1220 and process the received signals using canceller blocks 1240-1 through 1240-L which, in the preferred embodiment, resemble the block of Figure 11 .
- M i,k is the constellation size of user k on tone i , while d is the constellation point spacing.
- ⁇ M i , k x ⁇ M i , k R x + j ⁇ M i , k I x .
- Z ⁇ i U ⁇ i + diag R i T ⁇ 1 N i which implies crosstalk-free reception.
- the preferred MIMO precoder described above corresponds to a single tone and is shown in Figure 13 .
- Figure 14 Combining the precoders of all tones and including the DMT transmitters and receivers, the vectored DMT system for downstream transmission is shown in Figure 14 . This system resembles the system of Figure 12 , except that signals are "pre-processed" with precoders 1420-1 through 1420-L before being sent by the system transmitters 1410-1 through 1410-L, respectively.
- Equations (23) and (27) give the QR decomposition of the same matrix.
- the diagonal element of a column of T i is larger in magnitude than the off-diagonal elements of the same column. This occurs because, in upstream transmission, the crosstalk coupled signal originating from a specific transmitter can never exceed the "directly" received signal of the same transmitter, and typically the magnitude difference is more than 20 dB.
- the insertion loss of a signal is always smaller than the coupling loss that it experiences when it propagates into a neighboring pair.
- the computational cost incurred by the QR cancellation is decomposed into the cost of the QR decompositions and the cost associated with signal processing.
- DSL channels are stationary, so the QR decompositions need to be computed infrequently (preferably during initialization).
- the number of flops per tone can be greatly reduced by taking advantage of the crosstalk environment characteristics. It is known that the crosstalk noise in a pair originates mostly from just three or four neighboring pairs, which implies that a typical T i matrix is almost sparse with only three or four relatively large off-diagonal elements per row. Therefore, approximating T i as a sparse matrix, Givens rotations can be employed to triangularize T i with a reduced number of flops.
- the real-time computational burden due to the canceller and precoder blocks cannot be reduced. In a straightforward implementation, the operations dominating the total cost are those of Equations (24) and (28).
- the upstream channel matrix for a given tone can be estimated, including a channel estimation error. Then, the QR decomposition with the reciprocity assumption can be performed to get the QR factor estimates. Starting from Equation (24), the effect on upstream communication can be computed. Doing this, it is found that the estimation errors impact transmission by introducing a "bias" in the detection and also by permitting some residual crosstalk. A similar analysis can be applied for downstream communication, but modulo arithmetic complicates the expressions. Ignoring the modulo operations, the effects of the estimation errors can be separated into a detection bias term and a residual crosstalk term.
- Transmission optimization as used in the following example will refer to maximization of a weighted data rate sum. However, in the broadest sense of the present invention, the term “optimization” is not so limited. Optimization may also mean determining the maximum rates available and allocating or provisioning available resources (including data rates for various users) within a digital communication system.
- the methods disclosed in the following discussion concern energy allocation in frequency generally, energy allocation in frequency while observing constraints on induced crosstalk, and energy allocation combined with upstream/downstream frequency selection.
- a k ⁇ 0 is the weight assigned to the K th user
- R k is the achievable data rate of the K th user, which may refer to either the upstream or the downstream direction.
- an appropriate known gap approximation is employed.
- ⁇ is defined as the transmission gap, and depends on the probability of error requirement, the coding gain and the required margin.
- N up , and N down are the sets of upstream and downstream tone indices correspondingly, which depend on the FDD plan. Error propagation effects are generally limited since DSL systems operate at very small probabilities of error.
- the parameters with respect to which optimization takes place are ⁇ k , up i for upstream transmission and ⁇ k , down i for downstream transmission. These parameters are constrained by limits on the transmitted energy.
- the total transmit energy is constrained by: ⁇ i ⁇ N up ⁇ k i ⁇ ⁇ k , up where ⁇ k i is the energy of ( U i ) k in Equation (25), and ⁇ k , up is the maximum allowed upstream transmitted energy of user k .
- Equation (38) for downstream becomes: ⁇ i ⁇ N down ⁇ k , down i ⁇ ⁇ k , down
- Equation (33) With this in mind, it is seen that the energy allocation problem of Equation (33) becomes independent for each user, and thus the a k weights are irrelevant in this scenario.
- the optimization problem for each transmission direction is broken into k waterfilling problems expressed by:
- VDSL systems suffer from the fact that upstream signals on short lines detrimentally affect upstream performance on long lines (similarly to the near-far situation in wireless communications).
- power back-off methods have been proposed which effectively make the PSD mask dependent solely on the loop length of the specific user.
- FIG 16 A similar scenario, where the downstream communication of neighboring DSL systems may suffer considerably is shown in Figure 16 . Dramatic loop length differences will occur more frequently as ONUs are installed on some lines while twisted pair connections to the COs remain.
- Vectoring combined with full channel matrix knowledge can prove effective in limiting the crosstalk induced by vectored systems, without resorting to the introduction of a universal PSD mask, or the use of power back-off methods (which do not necessarily take into account knowledge about crosstalk coupling resulting from matrix channel identification).
- the definitions of the block matrices C, C n and T n depend on both the channel and the characteristics of the alien DSL systems; and, although T is block diagonal, this property will not generally hold for the other matrices.
- MN N M is the number of neighboring systems
- N N is the number of "dimensions" (for example, the number of tones) per neighboring system
- ⁇ j , up c , ⁇ j , down c are the maximum allowable crosstalk energies in sample j of the neighboring systems for upstream and downstream
- c j,l is the ( j,l ) element of the MN ⁇ LN matrix C. Note that this approach can be generalized, so that both FEXT and NEXT are restricted.
- Equation (33) The set of inequalities in Equations (45) and (46), combined correspondingly with those of Equations (37) and (39), form a set of linear inequality constraints.
- a dynamically configured band plan may offer significant advantages. Such a plan is common for all users, but is determined during modem initialization, depending on the specific transmission environment, as well as user requirements.
- the optimization parameters involve not just the energies assigned but also the selection of upstream/downstream tones. However, if Equations (34) and (35) are used, the partition of the set of tones into N up and N down is a binary constrained problem, whose solution has very high complexity.
- the objective function is concave, because it is a sum of functions of the form x log 1 + y x , which are known to be concave in x,y ⁇ 0.
- the constraint sets are clearly convex, since they are defined by linear inequalities. Therefore, the problem is convex and a variety of methods can be used to efficiently derive a solution.
- the objective has been the maximization of a weighted data rate sum. It will be apparent to one of ordinary skill, however, that by adjusting the weights, different surface points of the data rate region achievable by vectored transmission can be determined, and thus the whole multi-dimensional surface can be determined as well. However, visualizing the inherent tradeoffs becomes difficult when the weighted sums include more than three terms.
- One practical question that can be posed to a service provider is whether a given vectored system can support a set of rate requirements and, if so, what energy allocation is required for achieving the requirements. This problem actually has a duality relationship with the weighted data rate sum problem, and thus the weighted sum problem provides an alternative method to solve the "feasibility" problem.
- VDMT Vectoring without power back-off or frequency planning can improve performance significantly in several respects.
- VDMT allows the achievement of much higher data rates. These rate increases are considerable for lengths in the range of 3500-4500 feet or less. The gains can be even greater in short loops, where transmission is obviously FEXT-limited.
- vectored DMT can extend the maximum loop length given a data rate requirement. For example, a downstream rate requirement of 50 Mbps typically limits a standard DMT system to loop lengths shorter than 1150 feet. Use of the present invention can extend the reach to lengths on the order of 2650 feet and possibly longer.
- embodiments of the present invention employ various processes involving data transferred through one or more computer systems and/or modems.
- Embodiments of the present invention also relate to a hardware device or other apparatus for performing these operations.
- This apparatus may be specially constructed for the required purposes, or it may be a general-purpose computer selectively activated or reconfigured by a computer program and/or data structure stored in the computer.
- the processes presented herein are not inherently related to any particular computer or other apparatus.
- various general-purpose machines may be used with programs written in accordance with the teachings herein, or it may be more convenient to construct a more specialized apparatus to perform the required method steps. A particular structure for a variety of these machines will be apparent to those of ordinary skill in the art based on the present description.
- embodiments of the present invention relate to computer readable media or computer program products that include program instructions and/or data (including data structures) for performing various computer-implemented operations.
- Examples of computer-readable media include, but are not limited to, magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROM disks; magneto-optical media; semiconductor memory devices, and hardware devices that are specially configured to store and perform program instructions, such as read-only memory devices (ROM) and random access memory (RAM).
- ROM read-only memory devices
- RAM random access memory
- the data and program instructions of this invention may also be embodied on a carrier wave or other transport medium.
- Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher level code that may be executed by the computer using an interpreter.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Telephonic Communication Services (AREA)
- Communication Control (AREA)
- Noise Elimination (AREA)
Claims (22)
- Procédé de transmission vectorielle dans un système de ligne d'abonné numérique, DSL, utilisant des communications à multi-tonalité discrète sur une pluralité de lignes de communications, chacune de la pluralité de lignes de communications a au moins un émetteur et au moins un récepteur, et dans lequel une interférence de diaphonie entre la pluralité de lignes de communications se produit pendant la transmission, le procédé comprenant :la fourniture de signaux dans une pluralité de tonalités à un bloc précodeur,la détermination de paramètres du bloc précodeur utilisant une unité d'adaptation de communication et de caractéristiques de ligne et de signal de la pluralité de lignes de communications,la pré-déformation des signaux dans la pluralité de tonalités utilisant le bloc précodeur et les paramètres déterminés, etla transmission des signaux pré-déformés sur au moins l'une de la pluralité de lignes de communications, dans lequel l'interférence de diaphonie est éliminée ou réduite par transmission du signal pré-déformé sur au moins l'une de la pluralité de lignes de communications en utilisant le système DSL pour réaliser une transmission par blocs synchronisée, caractérisé en ce que :l'élimination ou la réduction de l'interférence de diaphonie utilise une allocation d'énergie en fréquence qui est déterminée par optimisation de remplissage d'eau, réalisée indépendamment pour des utilisateurs respectifs émettant simultanément sur la pluralité de lignes de communications, etdans lequel la transmission par blocs désigne la transmission de blocs ayant un préfixe cyclique et un suffixe cyclique d'au moins une longueur minimale, plus grande que le retard de propagation de canal.
- Procédé selon la revendication 1, dans lequel la réduction ou l'élimination de diaphonie par pré-déformation est réalisée indépendamment sur chaque tonalité de la pluralité de tonalités.
- Procédé selon la revendication 1, comportant en outre l'alignement des limites de bloc pour une transmission en amont de sorte que les blocs de tous les utilisateurs fournissant une transmission en amont soient reçus simultanément.
- Procédé selon la revendication 3, dans lequel la réalisation de la transmission par blocs synchronisée comporte en outre la réalisation d'une synchronisation par niveau de bloc pendant l'initialisation.
- Procédé selon la revendication 1, dans lequel la détermination des paramètres du bloc précodeur repose sur la connaissance d'au moins l'une d'une matrice de canal et d'une matrice de covariance de bruit.
- Procédé de transmission vectorielle pour un système de ligne d'abonné numérique, DSL, le système DSL utilisant une transmission à multi-tonalité discrète, dans lequel le système DSL comporte une pluralité de lignes de communications qui ont chacune au moins un émetteur et au moins un récepteur, et dans lequel une interférence de diaphonie se produit entre la pluralité de lignes de communications, le procédé comprenant :la réception de signaux dans une pluralité de tonalités en provenance d'au moins l'une de la pluralité de lignes de communications,la détermination de paramètres d'un bloc de soustraction utilisant une unité d'adaptation de communication et de caractéristiques de ligne et de signal de la pluralité de lignes de communications,l'élimination ou la réduction, utilisant le bloc de soustraction et les paramètres déterminés, de diaphonie dans chaque tonalité de la pluralité de tonalités des signaux reçus en provenance d'au moins l'une de la pluralité de lignes de communications,la réception de signaux dans chaque tonalité en provenance du bloc de soustraction, etl'emploi d'une transmission par blocs synchronisée à l'aide du système DSL pour faciliter l'élimination ou la réduction de diaphonie, caractérisé en ce que l'élimination ou la réduction de l'interférence de diaphonie utilise une allocation d'énergie en fréquence qui est déterminée par optimisation de remplissage d'eau, réalisée indépendamment pour des utilisateurs respectifs émettant simultanément sur la pluralité de lignes de communications, etdans lequel la transmission par blocs désigne la transmission de blocs ayant un préfixe cyclique et un suffixe cyclique d'au moins une longueur minimale, plus grande que le retard de propagation de canal.
- Procédé selon la revendication 6, dans lequel l'élimination ou la réduction de diaphonie est réalisée indépendamment sur chaque tonalité.
- Procédé selon la revendication 6, comportant en outre l'alignement des limites de bloc pour une transmission en amont de sorte que les blocs de tous les utilisateurs fournissant une transmission en amont soient reçus simultanément.
- Procédé selon la revendication 8, dans lequel l'emploi de transmission par blocs synchronisée à l'aide du système DSL comporte la réalisation d'une synchronisation par niveau de bloc pendant l'initialisation.
- Procédé selon la revendication 6, dans lequel la détermination des paramètres du bloc de soustraction repose sur la connaissance d'au moins l'une d'une matrice de canal et d'une matrice de covariance de bruit.
- Procédé selon les revendications 5 ou 10, comportant en outre l'étape d'obtention de la connaissance de matrice de canal par une identification de canal par apprentissage réalisée pendant l'initialisation.
- Procédé selon les revendications 1 ou 6, dans lequel la transmission est au moins l'une d'une communication en amont, et d'une communication en aval.
- Procédé selon la revendication 1, dans lequel l'émetteur est situé dans un central téléphonique et/ou une unité de réseau optique.
- Procédé selon la revendication 1, dans lequel l'au moins un affixe comporte au moins un préfixe cyclique.
- Procédé selon la revendication 1, dans lequel l'au moins un affixe comporte au moins un suffixe.
- Procédé selon la revendication 1, dans lequel l'au moins un affixe comporte à la fois un suffixe cyclique et un préfixe cyclique.
- Système de ligne d'abonné numérique, DSL, pour une transmission vectorielle comprenant :une pluralité d'émetteurs (1410) configurés et agencés pour utiliser des communications à multi-tonalité discrète sur une pluralité de lignes de communications (230), dans lequel une interférence de diaphonie entre les lignes de communications se produit pendant la transmission ;un bloc précodeur (1420) configuré et agencé pour recevoir des signaux dans une pluralité de tonalités et pour pré-déformer les signaux dans chaque tonalité en réponse à une pluralité de paramètres, et pour fournir les signaux pré-déformés à au moins l'un de la pluralité d'émetteurs pour une transmission sur au moins l'une de la pluralité de lignes de communications (1430),une unité d'adaptation de communication (715) configurée et agencée pour déterminer, d'après des caractéristiques de ligne et de signal de la pluralité de lignes de communications, l'ensemble de paramètres du bloc précodeur, dans lequel l'interférence de diaphonie est éliminée ou réduite des signaux pré-déformés transmis sur au moins l'une de la pluralité de lignes de communications, etdans lequel la pluralité d'émetteurs est en outre configurée et agencée pour réaliser une transmission par blocs et pour synchroniser la transmission par blocs facilitant ainsi l'élimination ou la réduction de diaphonie, le système étant en outre caractérisé en ce que :l'élimination ou la réduction de l'interférence de diaphonie utilise une allocation d'énergie en fréquence qui est déterminée par optimisation de remplissage d'eau, réalisée indépendamment pour des utilisateurs respectifs émettant simultanément sur la pluralité de lignes de communications, etdans lequel la transmission par blocs désigne la transmission de blocs ayant un préfixe cyclique et un suffixe cyclique d'au moins une longueur minimale, plus grande que le retard de propagation de canal.
- Système selon la revendication 17, dans lequel le bloc précodeur est en outre configuré et agencé pour réaliser une réduction ou une élimination d'interférence de diaphonie en réalisant une pré-déformation indépendamment sur chaque tonalité de la pluralité de tonalités.
- Système de ligne d'abonné numérique, DSL, pour une transmission vectorielle, le système comprenant :une pluralité de récepteurs (1230) configurés et agencés pour la réception à multi-tonalité discrète de signaux dans une pluralité de tonalités en provenance d'une pluralité de lignes de communications (230), dans lequel une interférence de diaphonie se produit entre la pluralité de lignes de communications,un bloc de soustraction (1240) configuré et agencé pour éliminer ou réduire une diaphonie dans chaque tonalité de la pluralité de tonalités des signaux reçus en provenance d'au moins l'une des lignes de communications, à l'aide du bloc de soustraction et de paramètres, et pour fournir des signaux dans chaque tonalité, etune unité d'adaptation de communication (715) configurée et agencée pour déterminer les paramètres du bloc de soustraction, utilisant des caractéristiques de ligne et de signal de la pluralité de lignes de communications, etune pluralité d'émetteurs (1210) qui sont configurés et agencés pour réaliser une transmission par blocs, et pour synchroniser la transmission par blocs facilitant ainsi l'élimination ou la réduction de diaphonie, le système étant en outre caractérisé en ce que :l'élimination ou la réduction de l'interférence de diaphonie utilise une allocation d'énergie en fréquence qui est déterminée par optimisation de remplissage d'eau, réalisée indépendamment pour des utilisateurs respectifs émettant simultanément sur la pluralité de lignes de communications, etdans lequel la transmission par blocs désigne la transmission de blocs ayant un préfixe cyclique et un suffixe cyclique d'au moins une longueur minimale, plus grande que le retard de propagation de canal.
- Système selon les revendications 17 ou 19, dans lequel l'unité d'adaptation de communication est en outre configurée et agencée pour déterminer les paramètres du bloc de soustraction d'après la connaissance d'au moins l'une d'une matrice de canal et d'une matrice de covariance de bruit.
- Système selon les revendications 17 et 20, dans lequel l'unité d'adaptation de communication est en outre configurée et agencée pour obtenir la connaissance de matrice de canal par identification de canal par apprentissage réalisée pendant l'initialisation.
- Système selon la revendication 19, dans lequel la pluralité de récepteurs est configurée et agencée pour au moins l'une d'une communication en amont, et d'une communication en aval.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17172944.5A EP3242420A1 (fr) | 2001-06-01 | 2002-05-31 | Commande de système de communication numérique dynamique |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29539201P | 2001-06-01 | 2001-06-01 | |
US09/877,724 US7158563B2 (en) | 2001-06-01 | 2001-06-08 | Dynamic digital communication system control |
EP02734610A EP1396101B1 (fr) | 2001-06-01 | 2002-05-31 | Commande dynamique de systeme de communication numerique |
Related Parent Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/017117 Previously-Filed-Application WO2002100008A1 (fr) | 2001-06-01 | 2002-05-31 | Commande dynamique de systeme de communication numerique |
EP02734610.5 Division | 2002-05-31 | ||
WOPCT/US02/17117 Previously-Filed-Application | 2002-05-31 | ||
EP02734610A Division EP1396101B1 (fr) | 2001-06-01 | 2002-05-31 | Commande dynamique de systeme de communication numerique |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17172944.5A Division EP3242420A1 (fr) | 2001-06-01 | 2002-05-31 | Commande de système de communication numérique dynamique |
EP17172944.5A Division-Into EP3242420A1 (fr) | 2001-06-01 | 2002-05-31 | Commande de système de communication numérique dynamique |
EP17167938.4 Division-Into | 2017-04-25 | ||
EP17167945.9 Division-Into | 2017-04-25 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2533436A1 EP2533436A1 (fr) | 2012-12-12 |
EP2533436B1 true EP2533436B1 (fr) | 2017-07-12 |
EP2533436B8 EP2533436B8 (fr) | 2017-08-30 |
Family
ID=26969097
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17172944.5A Withdrawn EP3242420A1 (fr) | 2001-06-01 | 2002-05-31 | Commande de système de communication numérique dynamique |
EP10178213.4A Expired - Lifetime EP2259456B1 (fr) | 2001-06-01 | 2002-05-31 | Commande dynamique de systéme de communication numérique |
EP02734610A Expired - Lifetime EP1396101B1 (fr) | 2001-06-01 | 2002-05-31 | Commande dynamique de systeme de communication numerique |
EP12167376.8A Expired - Lifetime EP2533436B8 (fr) | 2001-06-01 | 2002-05-31 | Contrôle de système de communication numérique dynamique |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17172944.5A Withdrawn EP3242420A1 (fr) | 2001-06-01 | 2002-05-31 | Commande de système de communication numérique dynamique |
EP10178213.4A Expired - Lifetime EP2259456B1 (fr) | 2001-06-01 | 2002-05-31 | Commande dynamique de systéme de communication numérique |
EP02734610A Expired - Lifetime EP1396101B1 (fr) | 2001-06-01 | 2002-05-31 | Commande dynamique de systeme de communication numerique |
Country Status (8)
Country | Link |
---|---|
US (8) | US7158563B2 (fr) |
EP (4) | EP3242420A1 (fr) |
JP (3) | JP4370418B2 (fr) |
KR (1) | KR100893458B1 (fr) |
CN (2) | CN101005323B (fr) |
DK (1) | DK2533436T3 (fr) |
ES (1) | ES2643690T3 (fr) |
WO (1) | WO2002100008A1 (fr) |
Families Citing this family (211)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6885746B2 (en) * | 2001-07-31 | 2005-04-26 | Telecordia Technologies, Inc. | Crosstalk identification for spectrum management in broadband telecommunications systems |
US20090031419A1 (en) | 2001-05-24 | 2009-01-29 | Indra Laksono | Multimedia system and server and methods for use therewith |
US8291457B2 (en) | 2001-05-24 | 2012-10-16 | Vixs Systems, Inc. | Channel selection in a multimedia system |
US7158563B2 (en) | 2001-06-01 | 2007-01-02 | The Board Of Trustees Of The Leland Stanford Junior University | Dynamic digital communication system control |
US20030099286A1 (en) * | 2001-07-31 | 2003-05-29 | Graziano Michael J. | Method and system for shaping transmitted power spectral density according to line conditions |
US20030099285A1 (en) * | 2001-07-31 | 2003-05-29 | Graziano Michael J. | Method and system for determining data rate using sub-band capacity |
US20030031239A1 (en) * | 2001-08-08 | 2003-02-13 | Posthuma Carl Robert | Maximizing DSL throughput |
US20030123487A1 (en) * | 2001-09-05 | 2003-07-03 | Blackwell Steven R. | SHDSL over POTS |
US7218681B2 (en) * | 2001-10-11 | 2007-05-15 | Agere Systems Inc. | Method and apparatus for cross-talk mitigation through joint multiuser adaptive pre-coding |
AU2002224269A1 (en) * | 2001-11-21 | 2003-06-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Dynamic allocation of frequency spectrum |
US7356049B1 (en) | 2001-12-28 | 2008-04-08 | Ikanos Communication, Inc. | Method and apparatus for optimization of channel capacity in multi-line communication systems using spectrum management techniques |
US7042934B2 (en) * | 2002-01-23 | 2006-05-09 | Actelis Networks Inc. | Crosstalk mitigation in a modem pool environment |
US6862271B2 (en) | 2002-02-26 | 2005-03-01 | Qualcomm Incorporated | Multiple-input, multiple-output (MIMO) systems with multiple transmission modes |
US7152025B2 (en) * | 2002-02-28 | 2006-12-19 | Texas Instruments Incorporated | Noise identification in a communication system |
US7362719B2 (en) * | 2002-03-22 | 2008-04-22 | Agere Systems Inc. | Method and apparatus for cross-talk cancellation in frequency division multiplexed transmission systems |
US7151803B1 (en) * | 2002-04-01 | 2006-12-19 | At&T Corp. | Multiuser allocation method for maximizing transmission capacity |
US7313130B2 (en) * | 2002-04-01 | 2007-12-25 | Texas Instruments Incorporated | Spectrally compatible mask for enhanced upstream data rates in DSL systems |
CA2380246A1 (fr) * | 2002-04-04 | 2003-10-04 | Catena Networks Canada Inc. | Brouillage diaphonique pour boucles d'acces numerique |
WO2003105339A1 (fr) * | 2002-06-07 | 2003-12-18 | Tokyo Electron Limited | Transmission par lignes multiples dans des systemes de communication |
EP1620967A1 (fr) * | 2002-07-03 | 2006-02-01 | Wireless Lan Systems Oy | Commande de puissance de ligne d'abonne numerique |
US20040071165A1 (en) * | 2002-07-08 | 2004-04-15 | Redfern Arthur J. | Multitone hybrid FDD/TDD duplex |
TWI271070B (en) * | 2002-07-08 | 2007-01-11 | Texas Instruments Inc | Shaped PSD design for DSL systems |
US8194770B2 (en) | 2002-08-27 | 2012-06-05 | Qualcomm Incorporated | Coded MIMO systems with selective channel inversion applied per eigenmode |
US7260153B2 (en) * | 2002-09-09 | 2007-08-21 | Mimopro Ltd. | Multi input multi output wireless communication method and apparatus providing extended range and extended rate across imperfectly estimated channels |
AU2003250430A1 (en) * | 2002-09-09 | 2004-03-29 | Koninklijke Philips Electronics N.V. | Filterbank modulation system with pre-equalization |
WO2004027579A2 (fr) * | 2002-09-19 | 2004-04-01 | Tokyo Electron Ltd. | Procede et systeme de reception a paires divisees dans des systemes de communication a paires symetriques |
US20040081131A1 (en) | 2002-10-25 | 2004-04-29 | Walton Jay Rod | OFDM communication system with multiple OFDM symbol sizes |
US8170513B2 (en) | 2002-10-25 | 2012-05-01 | Qualcomm Incorporated | Data detection and demodulation for wireless communication systems |
US8320301B2 (en) | 2002-10-25 | 2012-11-27 | Qualcomm Incorporated | MIMO WLAN system |
US8570988B2 (en) * | 2002-10-25 | 2013-10-29 | Qualcomm Incorporated | Channel calibration for a time division duplexed communication system |
US7324429B2 (en) | 2002-10-25 | 2008-01-29 | Qualcomm, Incorporated | Multi-mode terminal in a wireless MIMO system |
US7986742B2 (en) | 2002-10-25 | 2011-07-26 | Qualcomm Incorporated | Pilots for MIMO communication system |
US7002900B2 (en) | 2002-10-25 | 2006-02-21 | Qualcomm Incorporated | Transmit diversity processing for a multi-antenna communication system |
US8208364B2 (en) * | 2002-10-25 | 2012-06-26 | Qualcomm Incorporated | MIMO system with multiple spatial multiplexing modes |
US8169944B2 (en) | 2002-10-25 | 2012-05-01 | Qualcomm Incorporated | Random access for wireless multiple-access communication systems |
US8218609B2 (en) * | 2002-10-25 | 2012-07-10 | Qualcomm Incorporated | Closed-loop rate control for a multi-channel communication system |
US8134976B2 (en) | 2002-10-25 | 2012-03-13 | Qualcomm Incorporated | Channel calibration for a time division duplexed communication system |
US7106833B2 (en) * | 2002-11-19 | 2006-09-12 | Telcordia Technologies, Inc. | Automated system and method for management of digital subscriber lines |
US7697408B2 (en) * | 2002-12-13 | 2010-04-13 | Adtran, Inc. | Data communication system and method capable of limiting effects of crosstalk by adjusting transceiver power levels |
US7072449B2 (en) * | 2002-12-13 | 2006-07-04 | Alcatel Canada Inc. | System and method for establishing a power level for a communication signal transmitted in a conductor |
US7620154B2 (en) * | 2002-12-23 | 2009-11-17 | Cambron G Keith | Equivalent working length determinative system for digital subscriber line circuits |
US7106688B2 (en) * | 2003-04-14 | 2006-09-12 | Cisco Technology, Inc. | System and method for preventing phantom data communication links |
US7315592B2 (en) * | 2003-09-08 | 2008-01-01 | Aktino, Inc. | Common mode noise cancellation |
DE10345541A1 (de) * | 2003-09-30 | 2005-04-28 | Siemens Ag | Verfahren zum Einstellen der Übertragungsparameter von in einer Gruppe zusammengefassten, breitbandigen Übertragungskanälen |
US7227883B2 (en) * | 2003-10-28 | 2007-06-05 | Teranetics, Inc. | Method and apparatus for domain transformation multiple signal processing |
US7239885B2 (en) * | 2003-11-05 | 2007-07-03 | Interdigital Technology Corporation | Initial downlink transmit power adjustment for non-real-time services using dedicated or shared channel |
US9473269B2 (en) | 2003-12-01 | 2016-10-18 | Qualcomm Incorporated | Method and apparatus for providing an efficient control channel structure in a wireless communication system |
US7809116B2 (en) | 2003-12-07 | 2010-10-05 | Adaptive Spectrum And Signal Alignment, Inc. | DSL system estimation including known DSL line scanning and bad splice detection capability |
US7302379B2 (en) * | 2003-12-07 | 2007-11-27 | Adaptive Spectrum And Signal Alignment, Inc. | DSL system estimation and parameter recommendation |
EP3264683A1 (fr) * | 2003-12-07 | 2018-01-03 | Adaptive Spectrum and Signal Alignment, Inc. | Commande adaptative de marge et de bande |
US7639596B2 (en) * | 2003-12-07 | 2009-12-29 | Adaptive Spectrum And Signal Alignment, Inc. | High speed multiple loop DSL system |
US7428669B2 (en) * | 2003-12-07 | 2008-09-23 | Adaptive Spectrum And Signal Alignment, Inc. | Adaptive FEC codeword management |
US8031761B2 (en) * | 2003-12-07 | 2011-10-04 | Adaptive Spectrum And Signal Alignment, Inc. | Adaptive margin and band control |
WO2007008835A2 (fr) * | 2005-07-10 | 2007-01-18 | Adaptive Spectrum And Signal Alignment, Inc. | Estimation de systeme dsl |
US7239696B2 (en) * | 2003-12-15 | 2007-07-03 | International Business Machines Corporation | Automatic reset for DSL lines |
JP4181492B2 (ja) | 2003-12-25 | 2008-11-12 | 株式会社日立製作所 | 制御監視用通信システムおよび変調方式の設定方法 |
US7274734B2 (en) * | 2004-02-20 | 2007-09-25 | Aktino, Inc. | Iterative waterfiling with explicit bandwidth constraints |
US7342937B2 (en) * | 2004-03-05 | 2008-03-11 | Texas Instruments Incorporated | Spectrally flexible band plans with reduced filtering requirements |
US20050195892A1 (en) * | 2004-03-05 | 2005-09-08 | Texas Instruments Incorporated | Training and updating for multiple input-output wireline communications |
US7573819B2 (en) * | 2004-04-01 | 2009-08-11 | Verizon Services Corp. | Methods and apparatus for controlling bandwidth and service in a communications system |
US7408980B2 (en) * | 2004-04-02 | 2008-08-05 | Texas Instruments Incorporated | Semi-distributed power spectrum control for digital subscriber line communications |
US7489746B1 (en) * | 2004-04-22 | 2009-02-10 | Qualcomm, Inc. | MIMO receiver using maximum likelihood detector in combination with QR decomposition |
US7593458B2 (en) * | 2004-05-18 | 2009-09-22 | Adaptive Spectrum And Signal Alignment, Inc. | FEXT determination system |
US20060029148A1 (en) * | 2004-08-06 | 2006-02-09 | Tsatsanis Michail K | Method and apparatus for training using variable transmit signal power levels |
US20060056282A1 (en) * | 2004-09-13 | 2006-03-16 | Suman Das | Method of scheduling and forward link resource allocation in OFDM systems |
US20060062288A1 (en) * | 2004-09-21 | 2006-03-23 | Texas Instruments Incorporated | Short loop ADSL power spectral density management |
US7400720B2 (en) * | 2004-10-05 | 2008-07-15 | Sbc Knowledge Ventures, L.P. | System and method for optimizing digital subscriber line based services |
EP2333981A3 (fr) * | 2004-10-13 | 2011-12-14 | McMASTER UNIVERSITY | Techniques de commande de puissance de transmission pour systèmes de communication sans fil |
US8468041B1 (en) * | 2004-10-26 | 2013-06-18 | Oracle America, Inc. | Using reinforcement learning to facilitate dynamic resource allocation |
EP1670202B1 (fr) * | 2004-12-08 | 2008-07-30 | Alcatel Lucent | Procédé et dispositif de gestion du spectre pour canaux de communications avec diaphonie |
US7295603B2 (en) * | 2004-12-13 | 2007-11-13 | Conexant Systems, Inc. | Method and system for virtual exchange reference impact (VERI) for use in mixed spectrum management in DSL |
US20100197233A1 (en) * | 2004-12-14 | 2010-08-05 | Andrew Joo Kim | Method and System for Automatic Control in an Interference Cancellation Device |
FR2879379A1 (fr) * | 2004-12-14 | 2006-06-16 | St Microelectronics Sa | Transmission en vdsl entre deux groupes de modems |
US7522883B2 (en) * | 2004-12-14 | 2009-04-21 | Quellan, Inc. | Method and system for reducing signal interference |
ATE460012T1 (de) * | 2004-12-20 | 2010-03-15 | Alcatel Lucent | Verfahren und apparat für die bestimmung der sender-psd an einer entfernten au enstelle |
US20060159026A1 (en) * | 2005-01-14 | 2006-07-20 | Sbc Knowledge Ventures L.P. | Method and apparatus for managing a quality of service for a communication link |
US7453822B2 (en) * | 2005-01-18 | 2008-11-18 | At&T Intellectual Property I, L.P. | System and method for managing broadband services |
US7590195B2 (en) * | 2005-02-23 | 2009-09-15 | Nec Laboratories America, Inc. | Reduced-complexity multiple-input multiple-output (MIMO) channel detection via sequential Monte Carlo |
US7460588B2 (en) * | 2005-03-03 | 2008-12-02 | Adaptive Spectrum And Signal Alignment, Inc. | Digital subscriber line (DSL) state and line profile control |
US7773497B2 (en) * | 2005-05-09 | 2010-08-10 | Adaptive Spectrum And Signal Alignment, Inc. | Phantom use in DSL systems |
US7684546B2 (en) * | 2005-05-09 | 2010-03-23 | Adaptive Spectrum And Signal Alignment, Inc. | DSL system estimation and control |
US8073135B2 (en) * | 2005-05-10 | 2011-12-06 | Adaptive Spectrum And Signal Alignment, Inc. | Binder identification |
US7774398B2 (en) * | 2005-05-10 | 2010-08-10 | Adaptive Spectrum And Signal Alignment, Inc. | Tonal rotors |
US7466749B2 (en) | 2005-05-12 | 2008-12-16 | Qualcomm Incorporated | Rate selection with margin sharing |
US7489944B2 (en) * | 2005-06-01 | 2009-02-10 | Alcatel-Lucent Usa Inc. | Method of allocating power over channels of a communication system |
US7991122B2 (en) * | 2005-06-02 | 2011-08-02 | Adaptive Spectrum And Signal Alignment, Inc. | DSL system training |
US7817745B2 (en) * | 2005-06-02 | 2010-10-19 | Adaptive Spectrum And Signal Alignment, Inc. | Tonal precoding |
US7881438B2 (en) * | 2005-06-02 | 2011-02-01 | Adaptive Spectrum And Signal Alignment, Inc. | Self-learning and self-adjusting DSL system |
US7813420B2 (en) * | 2005-06-02 | 2010-10-12 | Adaptive Spectrum And Signal Alignment, Inc. | Adaptive GDFE |
US7852952B2 (en) * | 2005-06-10 | 2010-12-14 | Adaptive Spectrum And Signal Alignment, Inc. | DSL system loading and ordering |
US7688884B2 (en) * | 2005-06-10 | 2010-03-30 | Adaptive Spectrum And Signal Alignment, Inc. | Vectored DSL nesting |
US7558213B2 (en) | 2005-06-15 | 2009-07-07 | AT&T Intellectual Property I, LLP | Methods and apparatus to determine digital subscriber line configuration parameters |
US8358714B2 (en) * | 2005-06-16 | 2013-01-22 | Qualcomm Incorporated | Coding and modulation for multiple data streams in a communication system |
CN104618085A (zh) * | 2005-07-10 | 2015-05-13 | 适应性频谱和信号校正股份有限公司 | 自适应容限和频带控制的方法和装置 |
CN1866938B (zh) * | 2005-09-21 | 2010-08-18 | 华为技术有限公司 | 基于降低dsl线路串扰的自适应功率调整的方法及装置 |
JP4980362B2 (ja) * | 2005-10-04 | 2012-07-18 | アダプティブ スペクトラム アンド シグナル アラインメント インコーポレイテッド | Dslシステム |
TWI274482B (en) * | 2005-10-18 | 2007-02-21 | Ind Tech Res Inst | MIMO-OFDM system and pre-coding and feedback method therein |
US7769100B2 (en) * | 2005-12-10 | 2010-08-03 | Electronics And Telecommunications Research Institute | Method and apparatus for cancellation of cross-talk signals using multi-dimensional coordination and vectored transmission |
DE102006017245B4 (de) * | 2006-04-12 | 2012-11-22 | Lantiq Deutschland Gmbh | Datenübertragungsvorrichtung |
CN101416443B (zh) | 2006-04-13 | 2013-06-12 | 艾利森电话股份有限公司 | 配置数字用户线路的装置和方法 |
US7813293B2 (en) * | 2006-05-12 | 2010-10-12 | John Papandriopoulos | Method for distributed spectrum management of digital communications systems |
AU2006202136B2 (en) * | 2006-05-19 | 2012-02-02 | Ericsson Ab | Method for distributed spectrum management of digital communication systems |
US7860020B2 (en) * | 2006-05-22 | 2010-12-28 | Plx Technology, Inc. | Master/slave transceiver power back-off |
CN101083553A (zh) | 2006-05-30 | 2007-12-05 | 华为技术有限公司 | xDSL上下行共用频率动态频谱管理方法和装置 |
US20140369480A1 (en) | 2013-06-12 | 2014-12-18 | Adaptive Spectrum And Signal Alignment, Inc. | Systems, methods, and apparatuses for implementing a dsl system |
CN101461253B (zh) * | 2006-06-06 | 2011-05-25 | 自适应谱与信号定位公司 | 矢量dsl系统 |
WO2008024967A2 (fr) * | 2006-08-25 | 2008-02-28 | Conexant Systems, Inc. | systèmes et procédés pour un précodage mimo dans un système xdsl |
US8009574B2 (en) | 2006-09-25 | 2011-08-30 | Lantiq Deutschland Gmbh | Power level settings for transmission lines |
US9515857B2 (en) * | 2006-10-11 | 2016-12-06 | Lantiq Beteiligungs-GmbH & Co. KG | Methods and systems for adaptive communication |
US20080089433A1 (en) * | 2006-10-13 | 2008-04-17 | Jun Hyok Cho | Method and apparatus for adapting to dynamic channel conditions in a multi-channel communication system |
US20080130496A1 (en) * | 2006-12-01 | 2008-06-05 | Bandrich Inc. | Method and system for video transmission using 3g mobile network |
US8369205B2 (en) | 2006-12-22 | 2013-02-05 | Lantiq Deutschland Gmbh | Determining information indicating a length of a part of a first cable |
WO2008089293A1 (fr) * | 2007-01-16 | 2008-07-24 | Nxp, B.V. | Procédé et système pour faire fonctionner un point d'accès sans fil en présence d'une interférence par rafales |
US7974334B2 (en) * | 2007-01-30 | 2011-07-05 | Texas Instruments Incorporated | Systems and methods for hybrid-MIMO equalization |
US7839919B2 (en) * | 2007-02-13 | 2010-11-23 | Infineon Technologies Ag | Adjusting transmit power spectra of transceiver devices in a communications network |
CN101272160B (zh) | 2007-03-20 | 2013-06-05 | 华为技术有限公司 | Dsl参考虚拟噪声的确定方法及装置、配置方法及系统 |
US7978591B2 (en) * | 2007-03-31 | 2011-07-12 | Tokyo Electron Limited | Mitigation of interference and crosstalk in communications systems |
US9041241B2 (en) | 2007-05-07 | 2015-05-26 | Analogix Semiconductor, Inc. | Systems and methods for powering a charging circuit of a communications interface |
US8063504B2 (en) | 2007-05-07 | 2011-11-22 | Analogix Semiconductor, Inc. | Systems and methods for powering circuits for a communications interface |
US8175555B2 (en) * | 2007-05-07 | 2012-05-08 | Analogix Semiconductor, Inc. | Apparatus and method for termination powered differential interface periphery |
US8035359B2 (en) | 2007-05-07 | 2011-10-11 | Analogix Semiconductor, Inc. | Apparatus and method for recovery of wasted power from differential drivers |
AU2007203630B2 (en) * | 2007-08-03 | 2012-01-12 | Ericsson Ab | Adapted method for spectrum management of digital communication systems |
US7864697B2 (en) * | 2007-08-03 | 2011-01-04 | John Papandriopoulos | Adapted method for spectrum management of digital communication systems |
JP4412505B2 (ja) * | 2007-08-08 | 2010-02-10 | 日本電気株式会社 | 無線通信システム |
CN101453242B (zh) * | 2007-08-15 | 2013-01-09 | 华为技术有限公司 | Dsl参考虚拟噪声的确定方法及装置、配置方法及系统 |
EP2034622A1 (fr) * | 2007-09-10 | 2009-03-11 | Alcatel Lucent | Dispositif et procédé associé pour mesurer la diaphonie |
US8892221B2 (en) * | 2007-09-18 | 2014-11-18 | Groundswell Technologies, Inc. | Integrated resource monitoring system with interactive logic control for well water extraction |
US20090076632A1 (en) * | 2007-09-18 | 2009-03-19 | Groundswell Technologies, Inc. | Integrated resource monitoring system with interactive logic control |
WO2009058412A1 (fr) * | 2007-10-29 | 2009-05-07 | Nec Laboratories America, Inc. | Découverte de configurations de système optimales à l'aide d'un échantillonnage actif à base de probabilité décentralisée |
KR101267799B1 (ko) | 2007-11-12 | 2013-06-04 | 삼성전자주식회사 | 이동 통신 시스템에서 직교 부호화된 신호간의 간섭을제거하는 장치 및 방법 |
US8369444B2 (en) * | 2008-02-04 | 2013-02-05 | Samsung Electronics Co., Ltd. | Apparatus and method for beamforming in a multi-antenna system |
US8817907B2 (en) * | 2008-03-26 | 2014-08-26 | Ikanos Communications, Inc. | Systems and methods for signaling for vectoring of DSL systems |
CN101562487B (zh) * | 2008-04-18 | 2013-09-11 | 华为技术有限公司 | 频谱优化方法、装置及数字用户线系统 |
CN102090026A (zh) * | 2008-06-09 | 2011-06-08 | 创世纪技术系统公司 | 本地网络的接合互连 |
WO2009152188A2 (fr) * | 2008-06-10 | 2009-12-17 | Vector Silicon, Inc. | Annulation de diaphonie dsl vectorielle |
EP2297912A4 (fr) | 2008-07-01 | 2016-11-30 | Ikanos Communications Inc | Dsl vectorisé à mémoire réduite |
FR2933828B1 (fr) * | 2008-07-08 | 2011-10-28 | Excem | Dispositif d'interference multicanal avec circuit de terminaison |
EP2302855A4 (fr) * | 2008-07-18 | 2012-10-03 | Alcatel Lucent | Procédés et dispositifs destinés au traitement de commutation pour des signaux de sous-canaux multiples dans un système sc-fdma |
US8249540B1 (en) | 2008-08-07 | 2012-08-21 | Hypres, Inc. | Two stage radio frequency interference cancellation system and method |
TWI441464B (zh) * | 2008-10-17 | 2014-06-11 | Realtek Semiconductor Corp | 可增加連線品質之網路通訊裝置及其方法 |
CA2743510A1 (fr) | 2008-11-21 | 2010-05-27 | Buckman Laboratories International, Inc. | Procede pour controler la decomposition enzymatique de peroxyde et de produits de celui-ci |
US8848555B2 (en) | 2008-11-27 | 2014-09-30 | Telefonaktiebolaget L M Ericsson (Publ) | Method and a system for management of transmission resources in digital communication systems |
EP2371170A1 (fr) * | 2008-12-01 | 2011-10-05 | Telefonaktiebolaget L M Ericsson (PUBL) | Procédé et appareil d'attribution de puissance dans un système à plusieurs porteuses |
US8422611B2 (en) * | 2009-06-17 | 2013-04-16 | Techwell, Inc. | Analog equalizer systems and methods for baseband video signals |
US8217802B2 (en) * | 2009-02-03 | 2012-07-10 | Schlumberger Technology Corporation | Methods and systems for borehole telemetry |
US8362916B2 (en) * | 2009-02-05 | 2013-01-29 | Schlumberger Technology Corporation | Methods and systems for borehole telemetry |
US8218419B2 (en) * | 2009-02-12 | 2012-07-10 | Alcatel Lucent | Simultaneous estimation of multiple channel coefficients using a common probing sequence |
US8724799B2 (en) * | 2009-05-29 | 2014-05-13 | Telefonaktiebolaget L M Ericsson (Publ) | Operating points for spectrum management in digital subscriber lines |
US20110007623A1 (en) * | 2009-07-10 | 2011-01-13 | Futurewei Technologies, Inc. | Method for Estimating the Strength of a Crosstalk Channel |
JP5348418B2 (ja) * | 2009-11-19 | 2013-11-20 | 横河電機株式会社 | コントローラ |
WO2011084253A1 (fr) * | 2009-12-17 | 2011-07-14 | Alcatel-Lucent Usa Inc. | Procédé et appareil de commande de la diaphonie utilisant une interface de précodage à largeur de bande adaptative |
US20110273268A1 (en) * | 2010-05-10 | 2011-11-10 | Fred Bassali | Sparse coding systems for highly secure operations of garage doors, alarms and remote keyless entry |
WO2011141064A1 (fr) * | 2010-05-12 | 2011-11-17 | Nokia Siemens Networks Oy | Ajustement d'une attribution de puissance pour des utilisateurs dans un environnement de lignes d'abonnés numériques |
EP3334054B1 (fr) * | 2010-06-01 | 2021-08-04 | Telefonaktiebolaget LM Ericsson (publ) | Procédé et agencement dans un système de vectorisation dsl |
CN103125104B (zh) * | 2010-07-22 | 2015-10-21 | 伊卡诺斯通讯公司 | 用于操作矢量化vdsl线路组的方法 |
CN105471473A (zh) * | 2010-07-28 | 2016-04-06 | 伊卡诺斯通讯公司 | 改进矢量化数字用户线路的上行功率削减的系统和方法 |
US8605567B2 (en) * | 2010-12-02 | 2013-12-10 | Adtran, Inc. | Apparatuses and methods for enabling crosstalk vectoring in expandable communication systems |
US8369485B2 (en) | 2010-12-07 | 2013-02-05 | At&T Intellectual Property I, L.P. | Methods, apparatus, and articles of manufacture to trigger preemptive maintenance in vectored digital subscriber line (DSL) systems |
EP2464026B1 (fr) * | 2010-12-10 | 2016-07-06 | Alcatel Lucent | Alignement temporel de phases d'acquisition de diaphonie entre plusieurs lignes de raccordement |
JP5664295B2 (ja) * | 2011-02-03 | 2015-02-04 | 富士通株式会社 | 通信装置および通信装置設定方法 |
EP2681859B1 (fr) * | 2011-03-02 | 2017-12-06 | Adtran, Inc. | Systèmes et procédés pour gérer des pannes de vectorisation dans le but d'annuler une diaphonie dans des groupes de vectorisation multicarte |
EP2506496B1 (fr) * | 2011-03-29 | 2015-05-13 | Alcatel Lucent | Procédé d'exécution de gestion de spectre dans un réseau de site d'abonnés |
US9143195B2 (en) * | 2011-07-07 | 2015-09-22 | Adtran, Inc. | Systems and methods for communicating among network distribution points |
US8804798B2 (en) | 2011-09-16 | 2014-08-12 | Aquantia Corporation | Transceiver spectrum control for cross-talk mitigation |
WO2012167537A1 (fr) * | 2011-11-03 | 2012-12-13 | 华为技术有限公司 | Procédé, appareil et système pour réduire les interférences dans une ligne d'abonné numérique |
US20150124959A1 (en) * | 2012-03-30 | 2015-05-07 | Nokia Solutions And Networks Oy | Method, system and device for reducing interference between a first and a second digital subscriber line |
EP2675099A1 (fr) * | 2012-06-11 | 2013-12-18 | Lantiq Deutschland GmbH | Gestion dynamique de spectre s'adaptant au débit |
US10033430B2 (en) | 2012-10-30 | 2018-07-24 | Lantiq Deutschland Gmbh | Spectrum management |
EP2755333B1 (fr) * | 2013-01-11 | 2018-11-28 | Alcatel Lucent | Adaptation de gain pour des systèmes de vectorisation en aval |
JP2014179793A (ja) * | 2013-03-14 | 2014-09-25 | Kddi Corp | 無線通信システム及びその方法、送信装置及びその方法、受信装置及びその方法、並びに無線通信装置 |
EP2784987A1 (fr) * | 2013-03-28 | 2014-10-01 | British Telecommunications public limited company | Gestion de réseau d'accès |
TWI517639B (zh) * | 2013-04-10 | 2016-01-11 | 瑞昱半導體股份有限公司 | 類比前端電路傳送端與其連線方法 |
EP3020138B1 (fr) * | 2013-04-23 | 2018-06-06 | Assia Spe, Llc | Procédés, systèmes et appareils pour mettre en oeuvre une commande de puissance amont pour dsl |
EP2995074B1 (fr) | 2013-05-05 | 2019-09-11 | Lantiq Beteiligungs-GmbH & Co.KG | Partage de temps destiné aux modes à faible consommation d'énergie |
EP3525440B1 (fr) | 2013-05-13 | 2020-11-04 | Lantiq Beteiligungs-GmbH & Co.KG | Procédés, dispositifs et systèmes destinés à soutenir une opération discontinue dans des systèmes de communication en utilisant une vectorisation |
EP3103207B1 (fr) * | 2014-03-14 | 2018-09-26 | Huawei Technologies Co., Ltd. | Procédé et appareil pour des communications à liaisons multiples à paire torsadée |
EP3123618B1 (fr) * | 2014-03-25 | 2020-05-27 | Lantiq Beteiligungs-GmbH & Co.KG | Atténuation des interférences |
EP2938095B1 (fr) * | 2014-04-25 | 2017-03-01 | Alcatel Lucent | Communication en duplex intégral sur un support de transmission partagé |
CN106464766B (zh) | 2014-05-30 | 2019-12-24 | 英国电讯有限公司 | 控制接入网络的方法、接入网络节点 |
CN106664344B (zh) * | 2014-07-30 | 2018-08-17 | 英国电讯有限公司 | 为数字用户线路网络中的发送分配功率级别的方法和装置 |
US9379791B2 (en) * | 2014-08-01 | 2016-06-28 | Qualcomm Incorporated | Multiple input multiple output (MIMO) communication systems and methods for chip to chip and intrachip communication |
EP2996254A1 (fr) * | 2014-09-12 | 2016-03-16 | Alcatel Lucent | Assemblage de complexe bas pour précodeurs non linéaires |
US9319113B2 (en) | 2014-09-19 | 2016-04-19 | Qualcomm Incorporated | Simplified multiple input multiple output (MIMO) communication schemes for interchip and intrachip communications |
EP3514976A1 (fr) * | 2014-10-24 | 2019-07-24 | Lantiq Beteiligungs-GmbH & Co.KG | Coexistence de communication dans un spectre superposé |
EP3032789B1 (fr) * | 2014-12-11 | 2018-11-14 | Alcatel Lucent | Précodage non linéaire avec un mélange de lignes supportant NLP et ne supportant pas NLP |
US10069521B1 (en) | 2015-01-29 | 2018-09-04 | Aquantia Corp. | Intelligent power balancing for NBASE-T ethernet |
US9756112B2 (en) | 2015-02-11 | 2017-09-05 | At&T Intellectual Property I, L.P. | Method and system for managing service quality according to network status predictions |
US9948371B2 (en) * | 2015-05-11 | 2018-04-17 | Futurewei Technologies, Inc. | Multi-user multiple-input and multiple-output for digital subscriber line |
JP2016220121A (ja) * | 2015-05-25 | 2016-12-22 | 三菱電機株式会社 | Ofdm通信システム |
US9584518B1 (en) * | 2015-09-09 | 2017-02-28 | Callware Technologies, Inc. | Dynamic communications controller |
GB2542437A (en) * | 2015-09-16 | 2017-03-22 | British Telecomm | Method and apparatus for operating a digital subscriber line arrangement |
WO2017052514A1 (fr) * | 2015-09-22 | 2017-03-30 | Halliburton Energy Services, Inc. | Système de communication évolutif pour puits d'hydrocarbures |
PL3154205T3 (pl) * | 2015-10-06 | 2018-12-31 | Alcatel Lucent | Ukierunkowane dopasowywanie prostokątne |
WO2017083185A1 (fr) * | 2015-11-09 | 2017-05-18 | Commscope, Inc. Of North Carolina | Procédés pour effectuer des essais de rapport signal sur bruit limités en diaphonie étrangère à perturbateurs multiples |
US10827211B2 (en) | 2016-10-10 | 2020-11-03 | At&T Intellectual Property I, L.P. | Method and apparatus for managing over-the-top video rate |
CN106209262B (zh) * | 2016-10-10 | 2019-02-05 | 深圳市共进电子股份有限公司 | 一种家庭网关的接地结构 |
CN110036625B (zh) | 2016-11-08 | 2021-11-19 | 英国电讯有限公司 | 用于发送数据的系统 |
EP3539283B1 (fr) | 2016-11-08 | 2021-03-31 | British Telecommunications Public Limited Company | Procédé et appareil permettant de faire fonctionner un système de ligne d'abonné numérique |
EP3560116B1 (fr) | 2016-12-21 | 2021-12-22 | British Telecommunications Public Limited Company | Noeud de réseau |
EP3343786B1 (fr) * | 2016-12-28 | 2020-02-26 | Alcatel Lucent | Procede et dispositif pour configurer une transmission de donnees sur une pluralite de ligne de donnees |
WO2019158526A1 (fr) * | 2018-02-15 | 2019-08-22 | British Telecommunications Public Limited Company | Identification d'interférence de ligne d'abonné numérique |
CN109101464A (zh) * | 2018-07-13 | 2018-12-28 | 清华大学 | 基于矩阵修正的电力系统稀疏矩阵并行求解方法及系统 |
US10840971B2 (en) | 2018-08-21 | 2020-11-17 | Micron Technology, Inc. | Pre-distortion for multi-level signaling |
US10693575B2 (en) | 2018-08-31 | 2020-06-23 | At&T Intellectual Property I, L.P. | System and method for throughput prediction for cellular networks |
US10868726B2 (en) | 2018-12-07 | 2020-12-15 | At&T Intellectual Property I, L.P. | Apparatus and method for selecting a bandwidth prediction source |
US11490149B2 (en) | 2019-03-15 | 2022-11-01 | At&T Intellectual Property I, L.P. | Cap-based client-network interaction for improved streaming experience |
US10771100B1 (en) | 2019-03-22 | 2020-09-08 | Marvell Asia Pte., Ltd. | Method and apparatus for efficient fast retraining of ethernet transceivers |
US11115151B1 (en) | 2019-03-22 | 2021-09-07 | Marvell Asia Pte, Ltd. | Method and apparatus for fast retraining of ethernet transceivers based on trickling error |
US11228465B1 (en) | 2019-03-22 | 2022-01-18 | Marvell Asia Pte, Ltd. | Rapid training method for high-speed ethernet |
US11228340B1 (en) * | 2019-08-28 | 2022-01-18 | Marvell Asia Pte, Ltd. | Ethernet link transmit power method based on network provided alien crosstalk feedback |
CN112054977B (zh) * | 2020-09-16 | 2022-05-27 | 湖南工商大学 | 一种基于功率谱整形的光传输方法及装置 |
Family Cites Families (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4191926A (en) * | 1977-09-16 | 1980-03-04 | Communications Satellite Corporation | Method and apparatus for interference cancellation at base-band using multiplication of the desired interfering carriers |
US5282222A (en) * | 1992-03-31 | 1994-01-25 | Michel Fattouche | Method and apparatus for multiple access between transceivers in wireless communications using OFDM spread spectrum |
US5377230A (en) * | 1992-05-01 | 1994-12-27 | At&T Corp. | Extended bandwidth transmitter for crosstalk channels |
US5471647A (en) * | 1993-04-14 | 1995-11-28 | The Leland Stanford Junior University | Method for minimizing cross-talk in adaptive transmission antennas |
JPH06326723A (ja) * | 1993-05-12 | 1994-11-25 | Nec Corp | スター型光加入者システムの上り方向送信タイミング決定方式 |
US5521925A (en) * | 1993-09-09 | 1996-05-28 | Hughes Aircraft Company | Method and apparatus for providing mixed voice and data communication in a time division multiple access radio communication system |
US5604769A (en) * | 1994-10-13 | 1997-02-18 | Lucent Technologies Inc. | Hybrid equalizer arrangement for use in data communications equipment |
US5809033A (en) * | 1995-08-18 | 1998-09-15 | Adtran, Inc. | Use of modified line encoding and low signal-to-noise ratio based signal processing to extend range of digital data transmission over repeaterless two-wire telephone link |
US6307868B1 (en) * | 1995-08-25 | 2001-10-23 | Terayon Communication Systems, Inc. | Apparatus and method for SCDMA digital data transmission using orthogonal codes and a head end modem with no tracking loops |
EP0767543A3 (fr) * | 1995-10-06 | 2000-07-26 | Siemens Aktiengesellschaft | Communication à multiplexage par répartition de code avec suppression d'interférence |
US5683432A (en) * | 1996-01-11 | 1997-11-04 | Medtronic, Inc. | Adaptive, performance-optimizing communication system for communicating with an implanted medical device |
US5887034A (en) * | 1996-03-29 | 1999-03-23 | Nec Corporation | DS-CDMA multiple user serial interference canceler unit and method of transmitting interference replica signal of the same |
US5995567A (en) * | 1996-04-19 | 1999-11-30 | Texas Instruments Incorporated | Radio frequency noise canceller |
US6035000A (en) * | 1996-04-19 | 2000-03-07 | Amati Communications Corporation | Mitigating radio frequency interference in multi-carrier transmission systems |
US6014412A (en) * | 1996-04-19 | 2000-01-11 | Amati Communications Corporation | Digital radio frequency interference canceller |
KR101478890B1 (ko) * | 1996-06-27 | 2015-01-05 | 인터디지탈 테크날러지 코포레이션 | 쇼트 코드를 사용하여 cdma 시스템에서 초기 전력 램프-업을 제어하는 방법 |
US5887032A (en) * | 1996-09-03 | 1999-03-23 | Amati Communications Corp. | Method and apparatus for crosstalk cancellation |
JPH10200975A (ja) * | 1997-01-08 | 1998-07-31 | Matsushita Electric Ind Co Ltd | スター型光加入者システムの加入者装置間の同期方式 |
EP0854619A1 (fr) * | 1997-01-15 | 1998-07-22 | Alcatel | Méthode d'allocation de bits de données, émetteur et récepteur multiporteuse utilisant ce procédé, et générateur de messages d'allocation associé |
US5731706A (en) * | 1997-02-18 | 1998-03-24 | Koeman; Henriecus | Method for efficient calculation of power sum cross-talk loss |
US6064692A (en) * | 1997-06-20 | 2000-05-16 | Amati Communications Corporation | Protocol for transceiver initialization |
US6553085B1 (en) * | 1997-07-31 | 2003-04-22 | Francois Trans | Means and method for increasing performance of interference-suppression based receivers |
US6101216A (en) * | 1997-10-03 | 2000-08-08 | Rockwell International Corporation | Splitterless digital subscriber line communication system |
US5991311A (en) * | 1997-10-25 | 1999-11-23 | Centillium Technology | Time-multiplexed transmission on digital-subscriber lines synchronized to existing TCM-ISDN for reduced cross-talk |
US6134283A (en) * | 1997-11-18 | 2000-10-17 | Amati Communications Corporation | Method and system for synchronizing time-division-duplexed transceivers |
US6292559B1 (en) * | 1997-12-19 | 2001-09-18 | Rice University | Spectral optimization and joint signaling techniques with upstream/downstream separation for communication in the presence of crosstalk |
US6144695A (en) * | 1997-12-23 | 2000-11-07 | At&T Corp. | Method and apparatus for reducing near-end crosstalk (NEXT) in discrete multi-tone modulator/demodulators |
US6236645B1 (en) * | 1998-03-09 | 2001-05-22 | Broadcom Corporation | Apparatus for, and method of, reducing noise in a communications system |
WO1999050679A2 (fr) * | 1998-03-30 | 1999-10-07 | 3Com Corporation | Estimateur de frequence faible complexite, suppression d'interferences, et dispositif correspondant |
US6226356B1 (en) * | 1998-06-12 | 2001-05-01 | Legerity Inc. | Method and apparatus for power regulation of digital data transmission |
JP2000049724A (ja) * | 1998-07-13 | 2000-02-18 | Integrated Telecom Express | 将来的互換性及び拡張性を備えた高速通信システム及びその操作方法 |
US6597705B1 (en) * | 1998-09-10 | 2003-07-22 | Qualcomm Incorporated | Method and apparatus for distributed optimal reverse link scheduling of resources, such as a rate and power in a wireless communication system |
SE9900788L (sv) * | 1998-11-21 | 2000-05-22 | Telia Ab | Förbättringar av, eller med avseende på, VDSL- transmissionssystem |
GB9828216D0 (en) * | 1998-12-21 | 1999-02-17 | Northern Telecom Ltd | A downlink beamforming approach for frequency division duplex cellular systems |
US6985548B1 (en) * | 1999-02-03 | 2006-01-10 | Conexant Systems, Inc. | System and method for timing recovery in a discrete multi-tone system |
US6516027B1 (en) * | 1999-02-18 | 2003-02-04 | Nec Usa, Inc. | Method and apparatus for discrete multitone communication bit allocation |
AU3374500A (en) | 1999-02-23 | 2000-09-14 | Aware, Inc. | Apparatus and method of tone allocation in digital subscriber line systems |
US7035400B1 (en) * | 1999-03-01 | 2006-04-25 | Wm. Marsh Rice University | Signaling Techniques in channels with asymmetric powers and capacities |
US6680978B1 (en) * | 1999-03-01 | 2004-01-20 | Adtran, Inc. | Method and apparatus for nonlinear filtering and controlling the peak-to-average ratio |
US7027537B1 (en) * | 1999-03-05 | 2006-04-11 | The Board Of Trustees Of The Leland Stanford Junior University | Iterative multi-user detection |
JP2000269919A (ja) | 1999-03-16 | 2000-09-29 | Matsushita Electric Ind Co Ltd | Ofdm通信装置 |
SE514948C2 (sv) * | 1999-03-29 | 2001-05-21 | Ericsson Telefon Ab L M | Förfarande och anordning för att reducera överhörning |
JP3084368B1 (ja) | 1999-03-30 | 2000-09-04 | 株式会社次世代デジタルテレビジョン放送システム研究所 | Ofdm用受信装置 |
US6597745B1 (en) * | 1999-04-06 | 2003-07-22 | Eric M. Dowling | Reduced complexity multicarrier precoder |
JP2000311302A (ja) * | 1999-04-28 | 2000-11-07 | Toshiba Corp | ディスク記憶装置及び同装置に適用するデータ再生装置 |
JP2000349800A (ja) * | 1999-06-08 | 2000-12-15 | Nec Corp | 光バースト信号多重伝送システム |
US6975603B1 (en) * | 1999-08-20 | 2005-12-13 | Siemens Communications Inc. | System and method for minimizing the loss of information in cordless communications |
JP3492565B2 (ja) | 1999-09-13 | 2004-02-03 | 松下電器産業株式会社 | Ofdm通信装置および検波方法 |
US7409007B1 (en) * | 1999-09-14 | 2008-08-05 | Lucent Technologies Inc. | Method and apparatus for reducing adjacent channel power in wireless communication systems |
US6400761B1 (en) * | 1999-09-15 | 2002-06-04 | Princeton University | Method and apparatus for adaptively compensating channel or system variations in precoded communications system |
JP3116090B1 (ja) | 1999-09-17 | 2000-12-11 | 郵政省通信総合研究所長 | 通信システム、送信装置、受信装置、送信方法、受信方法、および、情報記録媒体 |
JP2001086007A (ja) | 1999-09-17 | 2001-03-30 | Mitsubishi Electric Corp | 通信装置および通信方法 |
TW472469B (en) * | 1999-10-07 | 2002-01-11 | Ibm | Adaptive power control in wideband CDMA cellular systems (WCDMA) and methods of operation |
MXPA02003903A (es) * | 1999-10-19 | 2002-09-30 | Interdigital Tech Corp | Receptor para deteccion de usuarios multiples de senales cdma. |
US6978015B1 (en) * | 1999-11-11 | 2005-12-20 | Tokyo Electron Limited | Method and apparatus for cooperative diagnosis of impairments and mitigation of disturbers in communication systems |
US6970560B1 (en) * | 1999-11-11 | 2005-11-29 | Tokyo Electron Limited | Method and apparatus for impairment diagnosis in communication systems |
US6965657B1 (en) * | 1999-12-01 | 2005-11-15 | Velocity Communication, Inc. | Method and apparatus for interference cancellation in shared communication mediums |
US6873653B1 (en) * | 1999-12-17 | 2005-03-29 | Ikanos Communication, Inc. | Method and apparatus for pre-distortion of an X-DSL line driver |
WO2001050697A1 (fr) * | 1999-12-30 | 2001-07-12 | Bandspeed, Inc. | Procede de traitement de donnees recues depuis un canal de communication dans des applications arithmetiques a precision finie |
US6477210B2 (en) * | 2000-02-07 | 2002-11-05 | At&T Corp. | System for near optimal joint channel estimation and data detection for COFDM systems |
US6393052B2 (en) * | 2000-02-17 | 2002-05-21 | At&T Corporation | Method and apparatus for minimizing near end cross talk due to discrete multi-tone transmission in cable binders |
DE10009401C2 (de) * | 2000-02-28 | 2003-07-24 | Siemens Ag | Verfahren, Mobilfunksystem und Station zur Ermittlung einer Vorhaltezeit für eine Verbindung zwischen zwei Stationen |
US6724849B1 (en) * | 2000-02-29 | 2004-04-20 | Centillium Communications, Inc. | Method and apparatus for timing recovery in ADSL transceivers under a TCM-ISDN crosstalk environment |
US6795392B1 (en) * | 2000-03-27 | 2004-09-21 | At&T Corp. | Clustered OFDM with channel estimation |
US20020027985A1 (en) * | 2000-06-12 | 2002-03-07 | Farrokh Rashid-Farrokhi | Parallel processing for multiple-input, multiple-output, DSL systems |
US7248841B2 (en) * | 2000-06-13 | 2007-07-24 | Agee Brian G | Method and apparatus for optimization of wireless multipoint electromagnetic communication networks |
US7016822B2 (en) * | 2000-06-30 | 2006-03-21 | Qwest Communications International, Inc. | Method and system for modeling near end crosstalk in a binder group |
US6704367B1 (en) * | 2000-07-26 | 2004-03-09 | Proscend Communications Inc. | Optimal discrete loading algorithm for DMT modulation |
US6999583B2 (en) * | 2000-08-03 | 2006-02-14 | Telcordia Technologies, Inc. | Crosstalk identification for spectrum management in broadband telecommunications systems |
US6885746B2 (en) * | 2001-07-31 | 2005-04-26 | Telecordia Technologies, Inc. | Crosstalk identification for spectrum management in broadband telecommunications systems |
WO2002058369A2 (fr) * | 2000-10-19 | 2002-07-25 | Teradyne, Inc. | Procede et systeme pour analyser l'impact d'un branchement en derivation |
US6999504B1 (en) * | 2000-11-21 | 2006-02-14 | Globespanvirata, Inc. | System and method for canceling crosstalk |
US7010069B2 (en) * | 2000-12-04 | 2006-03-07 | Trellisware Technologies, Inc. | Method for co-channel interference identification and mitigation |
US7002930B2 (en) * | 2000-12-11 | 2006-02-21 | Texas Instruments Incorporated | Method of optimal power distribution for communication systems |
US6470047B1 (en) * | 2001-02-20 | 2002-10-22 | Comsys Communications Signal Processing Ltd. | Apparatus for and method of reducing interference in a communications receiver |
US20020172166A1 (en) * | 2001-03-22 | 2002-11-21 | Huseyin Arslan | Communications system and method for measuring short-term and long-term channel characteristics |
US20020141347A1 (en) * | 2001-03-30 | 2002-10-03 | Harp Jeffrey C. | System and method of reducing ingress noise |
US7009515B2 (en) * | 2001-04-11 | 2006-03-07 | Battelle Memorial Institute K1-53 | Frequency-hopping RFID system |
US7158563B2 (en) | 2001-06-01 | 2007-01-02 | The Board Of Trustees Of The Leland Stanford Junior University | Dynamic digital communication system control |
US7778550B2 (en) * | 2007-07-27 | 2010-08-17 | Tyco Electronics Subsea Communications Llc | System and method for wavelength monitoring and control |
-
2001
- 2001-06-08 US US09/877,724 patent/US7158563B2/en not_active Expired - Lifetime
-
2002
- 2002-05-31 EP EP17172944.5A patent/EP3242420A1/fr not_active Withdrawn
- 2002-05-31 ES ES12167376.8T patent/ES2643690T3/es not_active Expired - Lifetime
- 2002-05-31 EP EP10178213.4A patent/EP2259456B1/fr not_active Expired - Lifetime
- 2002-05-31 EP EP02734610A patent/EP1396101B1/fr not_active Expired - Lifetime
- 2002-05-31 CN CN2006101628742A patent/CN101005323B/zh not_active Expired - Fee Related
- 2002-05-31 DK DK12167376.8T patent/DK2533436T3/en active
- 2002-05-31 JP JP2003501859A patent/JP4370418B2/ja not_active Expired - Fee Related
- 2002-05-31 WO PCT/US2002/017117 patent/WO2002100008A1/fr active Application Filing
- 2002-05-31 EP EP12167376.8A patent/EP2533436B8/fr not_active Expired - Lifetime
- 2002-05-31 KR KR1020037015756A patent/KR100893458B1/ko not_active IP Right Cessation
- 2002-05-31 CN CNB028149564A patent/CN100508432C/zh not_active Expired - Fee Related
-
2006
- 2006-12-08 US US11/636,316 patent/US8081704B2/en not_active Expired - Fee Related
-
2009
- 2009-05-08 JP JP2009113406A patent/JP2009189049A/ja active Pending
-
2011
- 2011-11-22 US US13/302,522 patent/US20120063531A1/en not_active Abandoned
-
2012
- 2012-06-19 US US13/527,074 patent/US8681897B2/en not_active Expired - Fee Related
-
2013
- 2013-06-05 JP JP2013119199A patent/JP5735582B2/ja not_active Expired - Fee Related
-
2014
- 2014-03-17 US US14/216,573 patent/US9160385B2/en not_active Expired - Fee Related
-
2015
- 2015-10-07 US US14/877,720 patent/US9843348B2/en not_active Expired - Fee Related
-
2017
- 2017-12-12 US US15/838,684 patent/US10404300B2/en not_active Expired - Fee Related
-
2019
- 2019-07-25 US US16/522,514 patent/US10938427B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
FRANK SJOBERG ET AL: "Zipper: A Duplex Method for VDSL Based on DMT", IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE SERVICE CENTER, PISCATAWAY, NJ. USA, vol. 47, no. 8, 1 August 1999 (1999-08-01), XP011009479, ISSN: 0090-6778 * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10938427B2 (en) | Dynamic digital communication system control | |
Ginis et al. | Vectored transmission for digital subscriber line systems | |
EP1583308B1 (fr) | Gestion de spectre de puissance semi-reparti pour communications DSL | |
EP1894377B1 (fr) | Chargement et mise en sequence de systeme dsl | |
US9425858B2 (en) | UPBO for vectored DSL | |
CN101174855B (zh) | 频谱管理方法和装置 | |
US9544423B2 (en) | Channel ordering for multi-channel multi-carrier communication systems | |
EP3251223B1 (fr) | Entrées multiples et sorties multiples multi-utilisateur pour une ligne d'abonné numérique | |
Cendrillon | Multi-user signal and spectra coordination for digital subscriber lines | |
Strobel et al. | Coexistence of G. fast and VDSL in FTTDP and FTTC deployments | |
US20040071165A1 (en) | Multitone hybrid FDD/TDD duplex | |
Forouzan et al. | Dynamic bandplanning for vectored DSL | |
Chung | Dynamic Spectrum Management |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120703 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1396101 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: YU, WEI Inventor name: CIOFFI, JOHN Inventor name: GINIS, GEORGIOS Inventor name: ZENG, CHAOHUANG |
|
17Q | First examination report despatched |
Effective date: 20140224 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151207 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160907 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1396101 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 909245 Country of ref document: AT Kind code of ref document: T Effective date: 20170715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIO |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 60248973 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ISLER AND PEDRAZZINI AG, CH |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20171013 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2643690 Country of ref document: ES Kind code of ref document: T3 Effective date: 20171123 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 909245 Country of ref document: AT Kind code of ref document: T Effective date: 20170712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171013 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60248973 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180413 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20200513 Year of fee payment: 19 Ref country code: FR Payment date: 20200528 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20200528 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20210514 Year of fee payment: 20 Ref country code: IT Payment date: 20210526 Year of fee payment: 20 Ref country code: FI Payment date: 20210514 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20210517 Year of fee payment: 20 Ref country code: ES Payment date: 20210602 Year of fee payment: 20 Ref country code: GB Payment date: 20210528 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20210927 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210708 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20210531 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60248973 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210601 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20220530 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MK Effective date: 20220531 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20220530 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MAE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20220530 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20220930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20220601 |