EP2526741B1 - Schaltungsanordnung und verfahren zur schnellen kommutierung beim rechteckbetrieb von hochdruckentladungslampen - Google Patents

Schaltungsanordnung und verfahren zur schnellen kommutierung beim rechteckbetrieb von hochdruckentladungslampen Download PDF

Info

Publication number
EP2526741B1
EP2526741B1 EP10779504.9A EP10779504A EP2526741B1 EP 2526741 B1 EP2526741 B1 EP 2526741B1 EP 10779504 A EP10779504 A EP 10779504A EP 2526741 B1 EP2526741 B1 EP 2526741B1
Authority
EP
European Patent Office
Prior art keywords
lamp
switch
commutation
com
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10779504.9A
Other languages
English (en)
French (fr)
Other versions
EP2526741A1 (de
Inventor
Herbert Kaestle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2526741A1 publication Critical patent/EP2526741A1/de
Application granted granted Critical
Publication of EP2526741B1 publication Critical patent/EP2526741B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/292Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2928Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the lamp against abnormal operating conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2881Load circuits; Control thereof
    • H05B41/2882Load circuits; Control thereof the control resulting from an action on the static converter
    • H05B41/2883Load circuits; Control thereof the control resulting from an action on the static converter the controlled element being a DC/AC converter in the final stage, e.g. by harmonic mode starting

Definitions

  • the invention relates to a circuit arrangement and method for rapid commutation in the rectangular operation of high-pressure discharge lamps.
  • the invention relates to an electronically controlled operation of high pressure discharge lamps with fast commutation sequence.
  • the invention relates to a circuit arrangement for rapid commutation in the rectangular operation of high-pressure discharge lamps according to the preamble of the main claim.
  • High-pressure discharge lamps In particular high-pressure discharge lamps with a ceramic discharge vessel, a relatively low-frequency rectangular lamp power supply with fast commutation is usually used.
  • High-pressure discharge lamps generally have two rod-shaped electrodes mounted in the discharge vessel, which are often equipped with coiled attachments for conditioning the sheet approach.
  • the current commutation serves to prevent the one-sided electrode wear and must be accomplished with sufficiently fast polarity reversal, so that the lamp does not go out during commutation.
  • a circuit arrangement for operating a high-pressure discharge lamp which has a control circuit which forms current pulses in the vicinity of the zero crossing of the supply voltage in order to stabilize the operation of the high-pressure discharge lamp.
  • the commutation time is typically in the range of less than 100 ⁇ s.
  • the commutation frequency is generally chosen so that, on the one hand, the short-term discontinuities during the commutation process do not manifest as flickering in the light and, on the other hand, the acoustic emissions from both the hot lamp and the operating equipment do not fall within the audible range.
  • This requirement can best be achieved with a commutation frequency in the range between 50 Hz and 200 Hz.
  • the commutation frequency should not be set above the audio hearing range at more than 20 kHz, so that the operation of the lamp, the acoustic resonances of the discharge arc, which are in common lamp geometries in the range between 20 kHz and 150 kHz, not be arbitrarily excited.
  • a resonant excitation of the arc would in most cases lead to arc fluctuation and arc instabilities, which can lead to flickering, ultimately extinction or even destruction of the lamp.
  • a further boundary condition for the rectangular operation of a high-pressure discharge lamp is the minimization of the high-frequency ripples on the rectangular lamp current, so that thereby the acoustic modes in the discharge arc of the Lamp can not be arbitrarily excited, which, as already mentioned, can lead to arc instabilities.
  • the limit value for the high-frequency residual ripple which is permissible for standard rectangular operation of a high-pressure discharge lamp is less than 2%.
  • the high frequency ripple of a standard rectangular lamp current form driver is essentially the remaining residual ripple resulting from the internal high frequency operating method of the switching converter.
  • the visible remaining residual ripple depends directly on the time constant of the smoothing devices, which depends essentially on the size of the smoothing capacitor used at the output of the lamp circuit.
  • a high time constant for smoothing the lamp current leads in the same way to slowing down the natural commutation time or to increase the circuit complexity for the implementation of an actively controlled commutation process.
  • FIG. 1 A schematic circuit topology of an electronic control gear for operating a standard high pressure discharge lamp according to the prior art is shown in which the amount of residual ripple of the lamp current has been reconciled with the achievable commutation time.
  • the intermediate circuit voltage U ZK of 400 VDC is provided by a network power factor correction unit (not shown) via a DC link capacitor C ZK .
  • the half-bridge circuit is designed as a deep-set half-bridge with the transistors Q1_HIGH and Q2_LOW.
  • high-frequency pulse-width modulation is superimposed on the low-frequency operation at approximately 100 Hz in order to be able to reduce the input voltage of the half-bridge to the required lamp voltage. This operation is well known in the art and will therefore not be discussed further here.
  • switch Q1_High is clocked with long pulse widths
  • switch Q2_Low is clocked with short pulse widths
  • a voltage of + 300V is provided.
  • the high-pressure discharge lamp 5, hereinafter also referred to as a lamp, is operated in the two phases, the forward phase and the reverse phase, to the average voltage U CB , which adjusts itself constant at the blocking capacitor C B in the amount of 200VDC.
  • the differential voltage U L occurring at the lamp is + 100V in forward operation and -100V in reverse operation.
  • the current I L occurring at the lamp is in the two operating phases corresponding to Lamp voltage also inverted in each case.
  • the smoothing of the generated operating voltage at the output of the switching converter depends on the operating frequency and the LC time constant of the switching converter.
  • the state of charge of the converter capacitor C is charged from the intermediate circuit capacitor C ZK via the inductance L resonantly to the voltage value 300V.
  • a large LC time constant results in a long resonant recharging time and thus a correspondingly slow commutation time.
  • the time constant of fo 10kHz results in a ripple of less than 2% at an operating frequency of approx.
  • the smoothing requirements and the commutation times conflict with this switching arrangement and must be compensated appropriately.
  • an ignition transformer with a switching transistor for generating one or more ignition pulses is inserted in series into the lamp circuit.
  • the requirement for the current commutation time during operation of these novel lamps is thus high and is in the range of less than 40 ⁇ s.
  • the fillings of these novel lamps usually show one Increased sensitivity for excitation arc-stabilizing acoustic eigenmodes, which increases the requirements for the smoothing capacity of the output circuit (Ripplegrenzute less than 1%), but this, as already mentioned, from a technical point of view, the rapid commutation.
  • the circuit arrangement further comprises a starting inductance and a starting capacitor.
  • a simplified ignition of the high-pressure discharge lamp can be realized in conjunction with the circuit arrangement according to the invention.
  • the circuit arrangement further comprises a power factor correction circuit. It can also be used to operate lamps of higher power in compliance with all prescribed regulations on a public supply network.
  • Fig. 2 shows a circuit arrangement according to the invention, in which the deep-setting half-bridge from the smoothing property of the internal switching converter is decoupled and both characteristics can be set independently.
  • the buck converter switching device arrangement supplied by the intermediate circuit voltage, provides the two different voltage values of 300V and 100V respectively for the forward operation and the reverse operation on the converter capacitor C as in the prior art.
  • the lamp itself is operated to the intermediate voltage level at 200VDC at blocking capacitor C B.
  • the lamp circuit by means of the switch Q_TRANS the lamp circuit and thus the lamp can be temporarily disconnected during the relatively long recharging processes of the converter capacitor C of the switching converter (more than 100 ⁇ s).
  • the lamp can now either bypassing the slow time constant of the converter either to initiate the forward phase directly via the switch Q_COM_FW be placed on the DC link voltage of 400V, or be placed to initiate the reverse phase directly through the switch Q_COM_BW to GND.
  • the forward commutation is understood to mean the commutation from the reverse phase to the forward phase, during which the lamp current has to be changed from a negative value to a positive value.
  • a positive current I L is conducted via the switch Q_COM_FW starting from the intermediate circuit voltage U ZK through the lamp 5 to U CB at the blocking capacitor C B
  • the switch-on duration of the forward commutation is selected such that the commutation current that arises is the For a short time the lamp heats up sufficiently so that the subsequent coupling back of the lamp to a converter capacitor C of the switching converter can be accomplished without danger of extinction.
  • Backward commutation is understood to mean the commutation from the forward phase to the backward phase at which the lamp current must be changed from a positive value to a negative value.
  • the switching duration of the remindicamuttechnik is chosen so that the adjusting commutation current heats the lamp sufficiently so that the subsequent feedback of the lamp to a converter capacitor C of the switching converter can be accomplished without a lamp extinguishing.
  • the duty cycle of the impressed current for the forward and backward commutation is chosen so that the adjusting commutation current sufficiently heats the electrodes of the lamp for a short time so that the subsequent feeding back of the lamp to a converter capacitor C of the switching converter can be accomplished without risking a lamp extinguishing.
  • the typical current run times for the lamp current commutation are approximately 20 ⁇ s and the switch-off or the reconnecting lamp to the switching converter output for the continuation of the stationary forward operation or reverse operation can take place after approximately 50 ⁇ s to 70 ⁇ s ,
  • Another advantage of the circuit arrangement according to the invention is that with the three decoupling switches Q_TRANS, Q_COM_FW and Q_COM_BW together with L_ZÜND for the lamp start also a resonant ignition sequence can continue to be realized.
  • the lamp circuit via Q_TRANS decoupled from the Wegmanerschaltkonverter which can be realized with the two switches Q_COM_FW and Q_COM_BW via the Zünddrossel L_ZÜND and the ignition capacitor C_ZÜND a half-bridge operation for a resonant ignition sequence.
  • Such circuit arrangements for the ignition of high-pressure discharge lamps are known in the prior art and are therefore not explained here.
  • the lamp can still continue to drive high-frequency via the half-bridge still disconnected in a warm-up phase as needed until coupling to the switching converter to record the rectangular operation is indicated.
  • Fig. 3a shows the relevant signals to explain the operation of the circuit arrangement according to the invention.
  • the top curve 1 shows the constant intermediate circuit voltage U ZK in the amount of 400VDC, which is provided by the power factor correction circuit via C_PFC.
  • Curve 2 shows the constant average voltage U CB of 200VDC, which adjusts to the blocking capacitor C B , towards which the lamp is operated.
  • buck converter switching converter C are alternately generated at intervals of 100Hz, the voltage values of 300V and 100V and provided at its converter capacitor C, with which the lamp is fed in the two phases of operation phase, forward operation and reverse operation.
  • the curve 3 shows this alternating voltage U C on the capacitor C.
  • the coupled to the output of the switching converter lamp is operated to the constant 200V voltage across the blocking capacitor C B and thus experiences the difference voltage U L between C B and C, which is inverted in each case at 100V in each phase of operation.
  • the curve 5 shows the self-adjusting lamp current I L analog to the lamp voltage U L at curve. 4
  • Fig. 3b shows a detailed switching sequence of the circuit arrangement according to the invention in the commutation in the forward mode.
  • the curve 1 shows the switching state or the gate voltage UQ_TRANS of the coupling transistor Q_TRANS.
  • the lamp circuit is disconnected via the coupling transistor Q_TRANS from the output of the switching converter for about 70 ⁇ s.
  • Curve 2 shows the switching state or the gate voltage UQ_COM_FW of the switching transistor Q_COM_FW.
  • the lamp circuit is coupled via the switching transistor Q_COM_FW for approx. 70 ⁇ s to the intermediate circuit voltage of 400VDC, thus enabling a fast and strong lamp current in the forward direction.
  • the curve 3 shows the switching state or the gate voltage UQ_COM_BW of the switching transistor Q_COM_BW. During commutation in the forward mode, the switching transistor Q_COM_BW remains closed.
  • the curve 4 shows the pulsed lamp current I L on the lamp for initiating the forward operation.
  • the self-adjusting current pulse at the lamp is due to the coupling of the lamp circuit via the switching transistor Q_COM_FW to the positive intermediate circuit voltage of 400VDC, bypassing the current-braking lamp inductor L.
  • the curve 5 shows the pulse-shaped lamp current I L in the forward commutation in higher temporal resolution.
  • the current direction at the lamp changes from -1A to + 2.5A within 20usec, which corresponds to a current commutation time of less than 20 ⁇ s.
  • the curve 6 shows the switching state or the gate voltage UQ_COM_FW of the switching transistor Q_COM_FW in higher temporal resolution.
  • the forward commutation process is terminated after 70 ⁇ s in which the switch Q_COM_FW is reopened, the lamp circuit is again coupled to the output capacitor C of the buck converter by the switch Q_COM_FW is closed again.
  • Fig. 3c shows a detailed switching sequence of the circuit arrangement according to the invention in the commutation in the reverse mode.
  • the curve 1 shows the switching state or the gate voltage UQ_TRANS of the coupling transistor Q_TRANS.
  • the lamp circuit is disconnected via the coupling transistor Q_TRANS from the output of the switching converter for about 70 ⁇ s.
  • Curve 2 shows the switching state or the gate voltage UQ_COM_FW of the switching transistor Q_COM_FW. During commutation in reverse operation, the switching transistor Q_COM_FW remains closed.
  • the curve 3 shows the switching state or the gate voltage UQ_COM_BW of the switching transistor Q_COM_BW.
  • the curve 4 shows the pulse-shaped lamp current I L for initiating the reverse operation.
  • the curve 5 shows the pulse-shaped lamp current I L in the reverse commutation in higher temporal resolution.
  • the current direction at the lamp changes from + 1A to -2.5A within 20usec, which corresponds to a current commutation time of less than 20 ⁇ s.
  • the curve 6 shows the switching state or the gate voltage UQ_COM_BW of the switching transistor Q_COM_BW in higher temporal resolution.
  • the backward commutation process is terminated after 70 ⁇ s in which the switch Q_COM_BW is reopened, with the lamp circuit again being coupled to the output capacitor C of the buck converter by closing the switch Q_COM_FW again.
  • Fig. 4 shows a simplified circuit arrangement, which in a ballast for rectangular operation only the fast backward commutation to initiate the stationary reverse phase is possible.
  • this switching arrangement thus has one less switch and is less expensive to manufacture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft eine Schaltungsanordnung und Verfahren zur schnellen Kommutierung beim Rechteckbetrieb von Hochdruckentladungslampen. Die Erfindung betrifft insbesondere einen elektronisch gesteuerten Betrieb von Hochdruckentladungslampen mit schneller Kommutierungssequenz.
  • Hintergrund
  • Die Erfindung geht aus von einer Schaltungsanordnung zur schnellen Kommutierung beim Rechteckbetrieb von Hochdruckentladungslampen nach der Gattung des Hauptanspruchs.
  • Zum Betrieb von Hochdruckentladungslampen, insbesondere von Hochdruckentladungslampen mit einem keramischen Entladungsgefäß, wird meist eine relativ niederfrequente rechteckförmige Lampenstromversorgung mit schneller Kommutierung verwendet. Hochdruckentladungslampen haben in der Regel zwei im Entladungsgefäß gegenüber angebrachte stabförmige Elektroden, die zur Konditionierung des Bogenansatzes oft mit gewendelten Aufsätzen bestückt sind. Die Stromkommutierung dient zur Verhinderung der einseitigen Elektrodenabnutzung und muss mit hinreichend schneller Umpolung bewerkstelligt werden, damit die Lampe während der Kommutierung nicht erlöscht.
  • Aus der DE 10 2009 016 579 A1 ist eine Schaltungsanordnung zum Betrieb einer Hochdruckentladungslampe bekannt, die eine Halbbrücke aufweist, bei der der obere und der untere Schalter zum Zwecke der Begradigung des Entladungsbogens unabhängig voneinander ansteuerbar sind.
  • Aus der DE 10 2008 016 888 A1 ist eine Schaltungsanordnung zum Betrieb einer Hochdruckentladungslampe bekannt, die einen Speicherkondensator zum Erhöhen der Kommutierspannung des Inverters der Schaltungsanordnung aufweist.
  • Aus der WO 2007 / 00 31 71 A1 ist eine Schaltungsanordnung zum Betreiben einer Hochdruckentladungslampe bekannt, die eine Regelschaltung aufweist, die in der Nähe des Nulldurchgangs der Versorgungsspannung Strompulse formt, um den Betrieb der Hochdruckentladungslampe zu stabilisieren.
  • Bei Standard-Hochdruckentladungslampen liegt die Kommutierungszeit typischerweise im Bereich kleiner 100 µs.
  • Die Kommutierfrequenz wird im Allgemeinen so gewählt, dass einerseits die kurzzeitigen Diskontinuitäten während des Kommutierungsvorgangs sich nicht als Flackern im Licht zeigen und anderseits die akustischen Emissionen sowohl von der heißen Lampe als auch von dem betreibenden Betriebsgerät möglichst nicht in den hörbaren Bereich fallen.
  • Diese Anforderung lässt sich am besten mit einer Kommutierfrequenz im Bereich zwischen 50 Hz und 200 Hz realisieren.
  • Die besten Ergebnisse erzielt man, wenn man die Kommutierfrequenz bei 100 Hz (europäisch) oder bei 120Hz (amerikanisch) auf das Netz synchronisiert und sich damit die niederfrequenten und leicht sichtbaren Mischungsmoden zwischen dem allfälligen 100 Hz-Ripple beziehungsweise 120Hz-Ripple der Netzversorgung und den Schwankungen der Kommutierungsübergänge unterdrücken lassen.
  • Die Kommutierfrequenz sollte aber auch nicht über den Audiohörbereich bei mehr als 20 kHz gelegt werden, damit beim Betrieb der Lampe die akustischen Eigenresonanzen des Entladungsbogens, die bei gängigen Lampengeometrien im Bereich zwischen 20 kHz und 150 kHz liegen, nicht willkürlich angeregt werden.
  • Eine resonante Anregung des Lichtbogens würde in den meisten Fällen zu Bogenfluktuation und Bogeninstabilitäten führen, die zum Flackern, letztlich zum Erlöschen oder gar zur Zerstörung der Lampe führen können.
  • Eine weitere Randbedingung zum rechteckigen Betrieb einer Hochdruckentladungslampe ist die Minimierung des hochfrequenten Ripples auf dem rechteckförmigen Lampenstrom, damit hierdurch die akustischen Moden im Entladungsbogen der Lampe nicht willkürlich angeregt werden, was wie bereits erwähnt zu Bogeninstabilitäten führen kann.
  • Der bei rechteckigem Standard-Betrieb einer Hochdruckentladungslampe zulässige Grenzwert für die hochfreqente Restwelligkeit liegt im Bereich kleiner als 2%.
  • Der sich ausbildende hochfrequente Ripple eines Standard-Betriebsgerätes mit rechteckförmiger Lampenstromform ist im Wesentlichen der verbleibende Restripple, der vom internen hochfrequenten Betriebsverfahren des Schaltkonverters herrührt.
  • Der sichtbare verbleibende Restripple hängt dabei direkt von der Zeitkonstante der Glättungsvorrichtungen ab, was im Wesentlichen von der Größe des verwendeten Glättungskondensators am Ausgang des Lampenstromkreises abhängt.
  • An dieser Stelle verdeutlicht sich der Umstand, dass bei einem Standard-Betriebsgerät mit rechteckförmiger Lampenstromform zum Betrieb einer Hochdruckentladungslampe die Implementierung einer hinreichend starken Lampenstromglättung der Anforderung einer hinreichend schnellen Stromkommutierung entgegen steht.
  • Eine hohe Zeitkonstante zur starken Glättung des Lampenstroms führt in gleicher Weise zur Verlangsamung der natürlichen Kommutierungszeit bzw. zur Erhöhung des Schaltungsaufwands für die Implementierung eines aktiv gesteuerten Kommutierungsvorgangs.
  • Bei einem Standard-Betriebsgerät mit rechteckförmiger Lampenstromform zum Betrieb von Standard-Hochdruckentladungslampen wird daher in der Regel ein Ausgleich zwischen der Glättungsanforderung (Restripple kleiner als 2%) und der Kommutierungszeit (Kommutierungszeit t_com kleiner als 100 µs) angestrebt.
  • In Fig. 1 ist eine schematische Schaltungstopologie eines elektronischen Betriebsgerätes zum Betrieb einer Standard-Hochdruckentladungslampe nach dem Stand der Technik dargestellt, bei der der Betrag der Restwelligkeit des Lampenstroms mit der erreichbaren Kommutierungszeit in Einklang gebracht wurde.
  • Die Zwischenkreisspannung UZK von 400 VDC wird von einer Netzleistungsfaktorkorrektureinheit (nicht gezeigt) über einen Zwischenkreiskondensator CZK bereitgestellt.
  • Die Halbrückenschaltung ist als tiefsetzende Halbbrücke mit den Transistoren Q1_HIGH und Q2_LOW ausgeführt. Bei einer tiefsetzenden Halbbrücke wird dem niederfrequenten Betrieb bei ca. 100Hz eine hochfrequente Pulsweitenmodulation überlagert, um die Eingangsspannung der Halbbrücke auf die erforderliche Lampenspannung heruntersetzen zu können. Dieser Betrieb ist im Stand der Technik weithin bekannt und wird hier deshalb nicht näher erläutert. An der Halbbrücke wird an dessen Ausgang alternativ im 100Hz-Takt für den Vorwärtsbetrieb (Schalter Q1_High wird mit langen Pulsweiten getaktet, Schalter Q2_Low wird mit kurzen Pulsweiten getaktet) eine Spannung von +300V und für den Rückwärtsbetrieb (Schalter Q2_LOW wird mit langen Pulsweiten getaktet, Schalter Q1_High wird mit kurzen Pulsweiten getaktet) eine Spannung von +100V bereitgestellt.
  • Die Hochdruckentladungslampe 5, im Folgenden auch als Lampe bezeichnet, wird in den beiden Phasen, der Vorwärtsphase und der Rückwärtsphase, auf die mittlere Spannung UCB hin betrieben, die sich am Blockkondensator CB in Höhe von 200VDC konstant einstellt. Die an der Lampe auftretende Differenzspannung UL beträgt im Vorwärtsbetrieb +100V und im Rückwärtsbetrieb -100V. Der an der Lampe auftretende Strom IL ist in den beiden Betriebsphasen entsprechend der Lampenspannung ebenfalls jeweils invertiert. Die Glättung der erzeugten Betriebsspannung am Ausgang des Schaltkonverters hängt von der Betriebsfrequenz und der LC-Zeitkonstante des Schaltkonverters ab.
  • Zur Minimierung des verbleibenden hochfrequenten Schaltripples auf der Lampenspannung UL, sollte die Zeitkonstante (beziehungsweise die aus dieser Zeitkonstante herleitbare Frequenz fo) der Schaltkonverterbauteile verglichen mit der Betriebsfrequenz fbetrieb möglichst groß gewählt werden: fo : = 1 2 π 1 L C = 1 2 π 1 0.5 mH nF = 10 KHz < < fbetrieb : = 60 kHz .
    Figure imgb0001
  • Bei der Vorwärtskommutierung wird der Ladezustand des Konverterkondensators C vom Zwischenkreiskondensator CZK aus über die Induktivität L resonant bis auf den Spannungswert 300V aufgeladen.
  • Bei der Rückwätskommutierung wird der Ladezustand des Konverterkondensators C umgekehrt über die Induktivität L resonant bis auf den Spannungswert 100V in den Zwischenkreiskondensator CZK zurückgeladen. Der resonante Umladevorgang läuft im Idealfall bei hinreichend hohen Bauteilegüten dissipationsfrei ab. Die Kommutierungszeiten für die resonanten Umladevorgänge hängen im Wesentlichen von der LC-Zeitkonstante des Schaltkonverters ab.
  • Eine große LC-Zeitkonstante hat eine lange resonante Umladezeit und damit eine entsprechend langsame Kommutierungszeit zur Folge.
  • Die Resonanzfrequenz des LC-Kreises von fo : = 1 2 π 1 L C =
    Figure imgb0002
    1 2 π 1 0.5 mH 500 nF = 10 KHz
    Figure imgb0003
    entspricht einer Umlade- bzw. Kommutierungszeit von 100 µs.
  • Die Zeitkonstante von fo=10kHz führt bei einer Betriebsfrequenz von ca. fbetrieb:=60kHz zur einer Restwelligkeit von kleiner 2%. Die Glättungsanforderungen und die Kommutierungszeiten stehen sich bei dieser Schaltanordnung entgegen und müssen zweckmäßig ausgeglichen werden.
  • Zur Erzeugung der Zündspannung ist in den Lampenkreis seriell ein Zündtrafo mit Schalttransistor zur Erzeugung eines oder mehrerer Zündpulse eingebracht.
  • Mit dem oben beschriebenen einfachen Rechteckbetrieb können in der Regel die meisten standardisierten Hochdruckentladungslampen betrieben werden, ohne dass es dabei zu nennenswerten Bogeninstabilititäten und Bogenauslenkungen kommt.
  • Anders dagegen verhält es sich beim Betrieb von quecksilberfreien molekularstrahlungsdominierten Hochdruckentladungslampen oder auch von gesättigten kapillarfreien Hochdruckentladungslampen, bei denen die verwendeten Lampenfüllungen oft hohe Temperaturleitfähigkeit aufweisen, was zur schnellen Auskühlung der Elektroden und des Lampenplasmas während der Stromkommutierung und damit auch zur spontanen Erlöschung der Lampen an dieser Stelle führen kann.
  • Die Anforderung an die Stromkommutierungszeit beim Betrieb dieser neuartigen Lampen ist damit hoch und liegt im Bereich kleiner 40µs.
  • Zusätzlich zur Anforderung der schnellen Stromkommutierung zeigen die Füllungen dieser neuartigen Lampen meist eine erhöhte Empfindlichkeit zur Anregung bogendestabilisierender akustischer Eigenmoden, wodurch sich die Anforderungen an das Glättungsvermögen des Ausgangskreises erhöhen (Ripplegrenzwerte kleiner als 1%), was aber, wie bereits erwähnt, aus technischer Sicht der schnellen Kommutierung entgegensteht.
  • Des weiteren werden beim Betrieb derartiger Lampen meist zur Stabilisierung des Entladungsbogens gezielt besondere Modulations-Betriebsverfahren benötigt, was aus schaltungstechnischer Sicht bezüglich der Größe der Zeitkonstanten des internen Schaltkonverters bzw. der Glättungseigenschaften des Ausgangskreises zusätzliche definierte Randbedingungen darstellt, die ebenfalls mit den hohen Anforderungen einer schnellen Kommutierung nur schwer vereinbar sind.
  • Aufgabe
  • Es ist Aufgabe der Erfindung eine Schaltungsanordnung zur schnellen Kommutierung beim Rechteckbetrieb von Hochdruckentladungslampen bereitzustellen, mit der die Glättung des Lampenstroms aus dem Tiefsetzsteller beliebig groß einstellbar ist, wobei aber die Stromkommutierungen unabhängig davon mit hoher Geschwindigkeit vollzogen werden können.
  • Darstellung der Erfindung
  • Die Lösung der Aufgabe bezüglich der Schaltungsanordnung erfolgt erfindungsgemäß mit einer Schaltungsanordnung gemäß Anspruch 1 zur schnellen Kommutierung beim Rechteckbetrieb von Hochdruckentladungslampen, aufweisend eine tiefsetzende Halbbrückenanordnung mit einer Halbbrücke, einer Lampendrossel, einem Konverterkondensator, einem Blockkondensator, einen ersten Schalter zur Kopplung der Halbbrückenanordnung mit der Lampe, einen zweiten Schalter zum Vollzug der Vorwärtsstromkommutierung und zur Einleitung einer Vorwärtsphase, einen dritten Schalter zum Vollzug der Rückwärtsstromkommutierung und zur Einleitung einer Rückwärtsphase. Durch diese Maßnahme kann die Halbbrücke wie im Stand der Technik langsam umgeladen werden, da ja der Lampenkreis über ersten Schalter von der Halbbrücke weggekoppelt ist. Wenn die langsame Umladung an der Halbbrücke abgeschlossen ist, dann kann der Lampenkreis wieder angekoppelt werden. Durch den zweiten Schalter wird die Lampe erfindungsgemäß einer sehr schnellen Kommutierung unterzogen.
  • Bevorzugt weist die Schaltungsanordnung weiterhin eine Zündinduktivität und einen Zündkondensator auf. Mit dieser kann im Zusammenspiel mit der erfindungsgemäßen Schaltungsanordnung eine vereinfachte Zündung der Hochdruckentladungslampe realisiert werden.
  • In einer weiteren bevorzugten Ausführungsform weist die Schaltungsanordnung weiterhin eine Leistungsfaktorkorrekturschaltung auf. Mit dieser können auch Lampen höherer Leistung unter Einhaltung aller vorgeschriebenen Vorschriften an einem öffentlichen Versorgungsnetz betrieben werden.
  • Die Lösung der Aufgabe bezüglich des Verfahrens erfolgt erfindungsgemäß mit einem Verfahren gemäß Anspruch 4 zum Betreiben einer Hochdruckentladungslampe mittels einer Schaltungsanordnung mit einer Halbbrückenanordnung mit einer Halbbrücke und einer Lampendrossel, einem Konverterkondensator sowie einem Blockkondensator, mit folgenden Schritten:
    • vor dem Einleiten einer Kommutierung abkoppeln der Halbbrückenanordnung von der Hochdruckentladungslampe durch Öffnen eines ersten Schalters,
    • Vollzug der Vorwärtskommutierung durch Schließen eines zweiten Schalters zur Einleitung einer Vorwärtsphase und durch Öffnen eines dritten Schalters, oder Vollzug der Rückwärtskommutierung durch Schließen eines dritten Schalters zur Einleitung einer Rückwärtsphase und durch Öffnen eines zweiten Schalters,
    • Ankoppeln der Halbbrückenanordnung an die Hochdruckentladungslampe durch Schließen des ersten Schalters,
    • Öffnen des zweiten Schalters und des dritten Schalters.
  • Weitere vorteilhafte Weiterbildungen und Ausgestaltungen der erfindungsgemäßen Schaltungsanordnung zur schnellen Kommutierung beim Rechteckbetrieb von Hochdruckentladungslampen ergeben sich aus den abhängigen Ansprüchen und aus der folgenden Beschreibung.
  • Kurze Beschreibung der Zeichnungen
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich anhand der nachfolgenden Beschreibung von Ausführungsbeispielen sowie anhand der Zeichnungen, in welchen gleiche oder funktionsgleiche Elemente mit identischen Bezugszeichen versehen sind. Dabei zeigen:
  • Fig.1
    eine Schaltungstopologie nach dem Stand der Technik dargestellt, bei der der Betrag der Restwelligkeit des Lampenstroms mit der erreichbaren Kommutierungszeit in Einklang gebracht wurde,
    Fig. 2
    eine erfindungsgemäße Schaltungsanordnung in einer ersten Ausführungsform, bei der die tiefsetzende Halbbrücke von der Glättungseigenschaft des internen Schaltkonverters entkoppelt wird und beide Charakteristika unabhängig voneinander eingestellt werden können,
    Fig. 3a
    eine Gesamtansicht zur Funktionalität der Schaltanordnung für den Rechteckbetrieb,
    Fig. 3b
    eine detaillierte Schaltsequenz der Kommutierung in den Vorwärtsbetrieb,
    Fig. 3c
    eine detaillierte Schaltsequenz der Kommutierung in den Rückwärtsbetrieb,
    Fig. 4
    eine erfindungsgemäße Schaltungsanordnung in einer zweiten Ausführungsform zur Erzielung einer schnellen Lampenstromkommutation ausschließlich für die Rückwärtskommutierung zur Einleitung der stationären Rückwärtsphase bei einem EVG für Rechteckbetrieb.
    Bevorzugte Ausführung der Erfindung
  • Fig. 2 zeigt eine erfindungsgemäße Schaltungsanordnung, bei der die tiefsetzende Halbbrücke von der Glättungseigenschaft des internen Schaltkonverters entkoppelt wird und beide Charakteristika unabhängig voneinander eingestellt werden können.
  • Die von der Zwischenkreisspannung versorgte Tiefsetzer-Schaltkonverteranordnung stellt wie nach dem Stand der Technik jeweils für den Vorwärtsbetrieb und den Rückwärtsbetrieb auf dem Konverterkondensator C die beiden unterschiedlichen Spannungswerte von 300V bzw. 100V bereit.
  • Die Umladung des Konverterkondensators C auf die beiden Spannungswerte erfolgt wie nach Stand der Technik resonant über die Zeitkonstanten des LC-Kreises, die möglichst groß gewählt werden kann um am Ende eine ausreichend gute Glättung des Lampenbetriebsstroms zu gewährleisten.
  • Die Lampe selbst wird auf den mittleren Spannungspegel bei 200VDC am Blockkondensator CB betrieben.
  • Insbesondere kann nun mittels des Schalters Q_TRANS der Lampenkreis und damit die Lampe während der relativ langen Umladevorgänge des Konverterkondensators C des Schaltkonverters (mehr als 100 µs) kurzzeitig weggekoppelt werden.
  • Während der Zeit der Abkopplung kann nun die Lampe unter Umgehung der langsamen Zeitkonstante des Konverters wahlweise entweder zur Einleitung der Vorwärtsphase direkt über den Schalter Q_COM_FW an die Zwischenkreisspannung von 400V gelegt werden, oder zur Einleitung der Rückwärtsphase direkt über den Schalter Q_COM_BW auf GND gelegt werden.
  • Bei der Einleitung der Vorwärtsphase, bei der der Schalter Q_COM_FW auf UZK=400VDC leitend geschaltet wird, wird über die eingebrachte Zünddrossel L_Zünd unmittelbar ein kräftiger Lampenstrom in Vorwärtsrichtung in Gang gesetzt, dessen Höhe neben der vorherrschenden Lampenimpedanz von der Größe der Induktivität der Zünddrossel L_zünd und der Einschaltdauer abhängt.
  • Unter der Vorwärtskommutierung wird die Kommutierung von der Rückwärtsphase in die Vorwärtsphase verstanden, bei der der Lampenstrom von einem negativen Wert zu einem positiven Wert gewechselt werden muss.
  • Bei der Vorwärtsphase wird in der vorliegenden Schaltungsanordnung über den Schalter Q_COM_FW ein positiver Strom IL ausgehend von der Zwischenkreisspannung UZK durch die Lampe 5 auf UCB am Blockkondensator CB geleitet
  • Die Einschaltdauer der Vorwärtskommutierung wird so gewählt, dass der sich einstellende Kommutierungsstrom die Lampe kurzeitig ausreichend aufheizt, damit das anschließende Zurückkoppeln der Lampe an einen Konverterkondensator C des Schaltkonverters ohne Gefahrlaufens des Erlöschens bewerkstelligt werden kann.
  • In gleicher Weise wird für die Einleitung der Rückwärtsphase, bei der der Schalter Q_COM_BW auf GND leitend geschaltet wird, ebenfalls über die eingebrachte Zünddrossel ein kräftiger Lampenstrom in Rückwärtsrichtung in Gang gesetzt, dessen Höhe ebenfalls neben der vorherrschenden Lampenimpedanz von der Induktivität der Zünddrossel L_ZÜND und der Einschaltdauer abhängt.
  • Unter der Rückwärtskommutierung wird die Kommutierung von der Vorwärtsphase in die Rückwärtsphase verstanden, bei der der Lampenstrom von einem positiven Wert zu einem negativen Wert gewechselt werden muss.
  • Bei der Rückwärtsphase wird in der vorliegenden Schaltungsanordnung über den Schalter Q_COM_BW ein negativer Strom IL ausgehend von UCB am Blockkondensator durch die Lampe 5 auf Masse geleitet.
  • Auch hierbei wird die Schaltdauer der Rückwärtskommutierung so gewählt, dass der sich einstellende Kommutierungsstrom die Lampe ausreichend aufheizt, damit das anschließende Zurückkoppeln der Lampe an einen Konverterkondensator C des Schaltkonverters ohne ein Lampenerlöschen bewerkstelligt werden kann.
  • Die Einschaltdauer des eingeprägten Stromes für die Vorwärts- und Rückwärtskommutierung wird so gewählt, dass der sich einstellende Kommutierungsstrom die Elektroden der Lampe kurzeitig ausreichend aufheizt, damit das anschließende Zurückkoppeln der Lampe an einen Konverterkondensator C des Schaltkonverters ohne Gefahrlaufen eines Lampenerlöschens bewerkstelligt werden kann.
  • Wird eine Zündinduktivität von typischerweise 1mH zugrunde gelegt, betragen die typischen Stromanlaufzeiten für die Lampenstromkommutierung ca. 20 µs und die Abschaltung, bzw. das Zurückkoppeln Lampe an den Schaltkonverterausgang zur Fortführung des stationären Vorwärtsbetriebs bzw. Rückwärtsbetriebs kann nach ca. 50 µs bis 70 µs erfolgen.
  • Ein weiterer Vorteil der erfindungsgemäßen Schaltungsanordnung ist der, dass mit den drei Entkopplungsschaltern Q_TRANS, Q_COM_FW und Q_COM_BW zusammen mit L_ZÜND für den Lampenstart weiterhin auch eine resonante Zündsequenz realisiert werden kann.
  • Hierzu wird zum Zünden der Lampe der Lampenkreis über Q_TRANS vom Tiefsetzerschaltkonverter abgekoppelt wodurch mit den beiden Schaltern Q_COM_FW und Q_COM_BW über die Zünddrossel L_ZÜND und des Zündkondensators C_ZÜND ein Halbbrückenbetrieb für eine resonante Zündsequenz realisiert werden kann. Solche Schaltungsanordnungen zur Zündung von Hochdruckentladungslampen sind im Stand der Technik bekannt und werden daher hier nicht näher erläutert.
  • Nachdem die Lampe gezündet hat, lässt sich die Lampe über die immer noch abgekoppelte Halbbrücke in einer Warmup-Phase je nach Bedarf weiterhin hochfrequent antreiben, bis ein Ankoppeln an den Schaltkonverter zur Aufnahme des Rechteckbetriebs angezeigt ist.
  • Fig. 3a zeigt die relevanten Signale zur Erläuterung der Funktionsweise der erfindungsgemäßen Schaltungsanordnung.
  • Die oberste Kurve 1 zeigt die konstante Zwischenkreisspannung UZK in der Höhe von 400VDC, die von der Leistungsfaktorkorrekturschaltung über C_PFC bereitgestellt wird. Kurve 2 zeigt die konstante mittlere Spannung UCB von 200VDC, die sich am Blockkondensator CB einstellt, auf welche hin die Lampe betrieben wird.
  • Über den Tiefsetzer-Schaltkonverter werden an seinem Konverterkondensator C abwechselnd im Takt von 100Hz die Spannungswerte von 300V und 100V erzeugt und bereitgestellt, mit denen die Lampe in den beiden Betriebsphasenhasen, Vorwärtsbetrieb und Rückwärtsbetrieb gespeist wird.
  • Die Kurve 3 zeigt diese wechselnde Spannung UC am Kondensator C.
  • Die an den Ausgang des Schaltkonverters angekoppelte Lampe wird auf die konstante 200V-Spannung am Blockkondensator CB hin betrieben und erfährt damit die Differenzspannung UL zwischen CB und C, die in beiden Betriebsphasen jeweils zu einander invertiert bei 100V liegt.
  • Die Kurve 5 zeigt den sich einstellenden Lampenstrom IL analog zur Lampenspannung UL bei Kurve 4.
  • Fig. 3b zeigt eine detaillierte Schaltsequenz der erfindungsgemäßen Schaltungsanordnung bei der Kommutierung in den Vorwärtsbetrieb. Die Kurve 1 zeigt den Schaltzustand bzw. die Gatespannung UQ_TRANS des Koppeltransistors Q_TRANS. Zu Beginn des Kommutierungsvorgangs wird der Lampenkreis über den Koppeltransistor Q_TRANS vom Ausgang des Schaltkonverters für ca. 70 µs getrennt.
  • Die Kurve 2 zeigt den Schaltzustand bzw. die Gatespannung UQ_COM_FW des Schalttransistors Q_COM_FW. Während der Kommutierung in den Vorwärtsbetrieb wird der Lampenkreis über den Schalttransistor Q_COM_FW für ca. 70 µs an die Zwischenkreisspannung von 400VDC angekoppelt und ermöglicht damit einen schnellen und starken Lampenstrom in Vorwärtsrichtung.
  • Die Kurve 3 zeigt den Schaltzustand bzw. die Gatespannung UQ_COM_BW des Schalttransistors Q_COM_BW. Während der Kommutierung in den Vorwärtsbetrieb bleibt der Schalttransistor Q_COM_BW geschlossen.
  • Die Kurve 4 zeigt den pulsförmigen Lampenstrom IL an der Lampe zur Einleitung des Vorwärtsbetriebes. Der sich einstellende Strompuls an der Lampe entsteht infolge der Ankopplung des Lampenkreises über den Schalttransistor Q_COM_FW an die positive Zwischenkreisspannung von 400VDC unter Umgehung der den Strom bremsenden Lampendrossel L.
  • Die Kurve 5 zeigt den pulsförmigen Lampenstrom IL bei der Vorwärtskommutierung in höherer zeitlicher Auflösung.
  • Die Stromrichtung an der Lampe ändert sich innerhalb von 20usec von -1A auf + 2.5A, was einer Stromkommutierungszeit von unter 20 µs entspricht.
  • Die Kurve 6 zeigt den Schaltzustand bzw. die Gatespannung UQ_COM_FW des Schalttransistors Q_COM_FW in höherer zeitlicher Auflösung.
  • Der Vorwärtskommutierungsvorgang wird nach 70 µs beendet in dem der Schalter Q_COM_FW wieder geöffnet wird, wobei der Lampenkreis wieder an den Ausgangskondensator C des Tiefsetzers angekoppelt wird, indem der Schalter Q_COM_FW wieder geschlossen wird.
  • Fig. 3c zeigt eine detaillierte Schaltsequenz der erfindungsgemäßen Schaltungsanordnung bei der Kommutierung in den Rückwärtsbetrieb. Die Kurve 1 zeigt den Schaltzustand bzw. die Gatespannung UQ_TRANS des Koppeltransistors Q_TRANS. Zu Beginn des Kommutierungsvorgangs wird der Lampenkreis über den Koppeltransistor Q_TRANS vom Ausgang des Schaltkonverters für ca. 70 µs getrennt.
  • Die Kurve 2 zeigt den Schaltzustand bzw. die Gatespannung UQ_COM_FW des Schalttransistors Q_COM_FW. Während der Kommutierung in den Rückwärtsbetrieb bleibt der Schalttransistor Q_COM_FW geschlossen.
  • Die Kurve 3 zeigt den Schaltzustand bzw. die Gatespannung UQ_COM_BW des Schalttransistors Q_COM_BW. Während der Kommutierung in den Rückwärtsbetrieb wird der Lampenkreis über den Schalttransistor Q_COM_BW für ca. 70 µs an 0V=GND angekoppelt und ermöglicht damit einen schnellen und starken Lampenstrom in Rückwärtsrichtung.
  • Die Kurve 4 zeigt den pulsförmigen Lampenstrom IL zur Einleitung des Rückwärtsbetriebes. Der zur Einleitung des Rückwärtsbetrieb sich einstellende Strompuls an der Lampe entsteht infolge der Ankopplung des Lampenkreises über den Schalttransistors Q_COM_BW an 0V=GND.
  • Die Kurve 5 zeigt den pulsförmigen Lampenstrom IL bei der Rückwärtskommutierung in höherer zeitlicher Auflösung.
  • Die Stromrichtung an der Lampe ändert sich innerhalb von 20usec von +1A auf -2.5A, was einer Stromkommutierungszeit von unter 20 µs entspricht.
  • Die Kurve 6 zeigt den Schaltzustand bzw. die Gatespannung UQ_COM_BW des Schalttransistors Q_COM_BW in höherer zeitlicher Auflösung.
  • Der Rückwärtskommutierungsvorgang wird nach 70 µs beendet in dem der Schalter Q_COM_BW wieder geöffnet wird, wobei der Lampenkreis wieder an den Ausgangskondensator C des Tiefsetzers angekoppelt wird, indem der Schalter Q_COM_FW wieder geschlossen wird.
  • Fig. 4 zeigt eine vereinfachte Schaltanordnung, mit der in einem EVG für Rechteckbetrieb nur die schnelle Rückwärtskommutierung zur Einleitung der stationären Rückwärtsphase möglich ist.
  • Mit dem fehlenden Schalter Q_COM_FW hat diese Schaltanordnung damit auch einen Schalter weniger und ist kostengünstiger in der Herstellung.

Claims (4)

  1. Schaltungsanordnung zur schnellen Kommutierung beim Rechteckbetrieb von Hochdruckentladungslampen, aufweisend:
    - eine erste Halbbrückenanordnung mit einer Halbbrücke (Q1_HIGH, Q2_LOW), die an eine Zwischenkreisspannung angeschlossen ist,
    - eine Lampendrossel (L), deren erster Anschluss mit dem Mittelpunkt der Halbbrücke gekoppelt ist,
    - einen Konverterkondensator (C), dessen erster Anschluss mit dem zweiten Anschluss der Lampendrossel gekoppelt ist, und dessen zweiter Anschluss mit dem Bezugspotential der ersten Halbbrückenanordnung gekoppelt ist,
    - einen ersten Schalter (UQ_TRANS) zur Kopplung der Halbbrückenanordnung mit der Lampe, wobei der zweite Anschluss der Lampendrossel mit einem ersten Anschluss des ersten Schalters gekoppelt ist und wobei mittels des ersten Schalters die Lampe während der Umladevorgänge des Konverterkondensators weggekoppelt werden kann,
    - einen Blockkondensator (CB), der die Lampe mit dem Bezugspotential der ersten Halbbrückenanordnung koppelt,
    dadurch gekennzeichnet, dass die Schaltungsanordnung weiterhin aufweist:
    - einen zweiten Schalter (Q_COM_FW) zum Vollzug einer Vorwärts kommutierung, d.h. die Kommutierung von der Rückwärtsphase in die Vorwärtsphase, bei der der Lampenstrom von einem negativen Wert zu einem positiven Wert gewechselt wird, und zur Einleitung einer Vorwärtsphase, wobei in der Vorwärtsphase ein positiver Strom ausgehend von der Zwischenkreisspannung durch die Lampe auf den Blockkondensator geleitet wird,
    - einen dritten Schalter (Q_COM_BW) zum Vollzug einer Rückwärts kommutierung, d.h. die Kommutierung von der Vorwärtsphase in die Rückwärtsphase, bei der der Lampenstrom von einem positiven Wert zu einem negativen Wert gewechselt wird, und zur Einleitung einer Rückwärtsphase, wobei in der Rückwärtsphase ein negativer Strom ausgehend von der Spannung am Blockkondensator durch die Lampe auf das Bezugspotential der ersten Halbbrückenanordnung geleitet wird, wobei der zweite (Q_COM_FW) und der dritte (Q_COM_BW) Schalter eine zweite Halbbrückenanordnung bilden, die zur ersten Halbbrückenanordnung parallel geschaltet ist, wobei der Mittelpunkt der zweiten Halbbrückenanordnung mit dem Mittelpunkt der Halbbrücke der ersten Halbrückenordnung durch die Schaltung aus der Lampendrossel und dem ersten Schalter gekoppelt ist und wobei ein zweiter Anschluss des ersten Schalters mit dem Mittelpunkt der zweiten Halbbrückenanordnung gekoppelt ist.
  2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Schaltungsanordnung weiterhin eine Zündinduktivität (L_ZÜND) und einen Zündkondensator (C_ZÜND) aufweist.
  3. Schaltungsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Schaltungsanordnung weiterhin eine Leistungsfaktorkorrekturschaltung aufweist.
  4. Verfahren zum Betreiben einer Hochdruckentladungslampe (5) mittels einer Schaltungsanordnung gemäß einem der Ansprüche 1 bis 3, gekennzeichnet durch folgende Schritte:
    - vor dem Einleiten einer Kommutierung abkoppeln der ersten Halbbrückenanordnung von der Hochdruckentladungslampe (5) durch Öffnen des ersten Schalters (UQ_TRANS),
    - Vollzug einer Vorwärtskommutierung durch Öffnen des dritten Schalters (Q_COM_BW) und durch Schließen des zweiten Schalters (Q_COM_FW) zur Einleitung einer Vorwärtsphase, oder Vollzug einer Rückwärtskommutierung durch Öffnen des zweiten Schalters (Q_COM_FW) und durch Schließen des dritten Schalters (Q_COM_BW) zur Einleitung einer Rückwärtsphase,
    - Ankoppeln der ersten Halbbrückenanordnung an die Hochdruckentladungslampe (5) durch Schließen des ersten Schalters (UQ_TRANS),
    - Öffnen des zweiten Schalters (Q_COM_FW) und des dritten Schalters (Q_COM_BW).
EP10779504.9A 2010-11-08 2010-11-08 Schaltungsanordnung und verfahren zur schnellen kommutierung beim rechteckbetrieb von hochdruckentladungslampen Not-in-force EP2526741B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2010/066966 WO2012062346A1 (de) 2010-11-08 2010-11-08 Schaltungsanordnung und verfahren zur schnellen kommutierung beim rechteckbetrieb von hochdruckentladungslampen

Publications (2)

Publication Number Publication Date
EP2526741A1 EP2526741A1 (de) 2012-11-28
EP2526741B1 true EP2526741B1 (de) 2014-04-30

Family

ID=44624901

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10779504.9A Not-in-force EP2526741B1 (de) 2010-11-08 2010-11-08 Schaltungsanordnung und verfahren zur schnellen kommutierung beim rechteckbetrieb von hochdruckentladungslampen

Country Status (2)

Country Link
EP (1) EP2526741B1 (de)
WO (1) WO2012062346A1 (de)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW339496B (en) * 1994-06-22 1998-09-01 Philips Electronics Nv Method and circuit arrangement for operating a high-pressure discharge lamp
CN1082330C (zh) * 1994-08-24 2002-04-03 皇家菲利浦电子有限公司 电路装置
DE102004020397A1 (de) * 2004-04-23 2005-11-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Verfahren zum Betreiben einer Hochdruckentladungslampe
DE102005031835A1 (de) * 2005-07-06 2007-01-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Vorrichtung zum Betreiben einer Hochdruckentladungslampe
DE102007060035A1 (de) * 2007-12-05 2009-06-10 Osram Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zum Betreiben einer Hochdruckentladungslampe
DE102008016888A1 (de) * 2008-04-02 2009-10-08 Osram Gesellschaft mit beschränkter Haftung Schaltungsanordnung und Verfahren zum Erzeugen einer Lampenspannung
DE102009016579A1 (de) * 2009-04-06 2010-10-14 Osram Gesellschaft mit beschränkter Haftung Schaltungsanordnung und Verfahren zum Betreiben einer Hochdruckentladungslampe

Also Published As

Publication number Publication date
WO2012062346A1 (de) 2012-05-18
EP2526741A1 (de) 2012-11-28

Similar Documents

Publication Publication Date Title
DE60024215T2 (de) Modulares hochfrequenz-vorschaltgerät
DE60305576T2 (de) EVG mit Dimmung für Entladungslampe
DE10220509A1 (de) Verfahren und Schaltungsanordnung zum Betrieb einer Hochdruckgasentladungslampe
EP2090143B1 (de) Schaltungsanordnung zum betrieb von entladungslampen und verfahren zum betrieb von entladungslampen
DE60224094T2 (de) Elektronische schaltung und verfahren zum betrieb einer hochdrucklampe
EP1737279A2 (de) Vorrichtung zum Bereitstellen einer sinusförmig amplitudenmodulierten Betriebsspannung Beleuchtungssystem und Verfahren zum Erzeugen einer amplitudenmodulierten Spannung
EP2417837B1 (de) Schaltungsanordnung und verfahren zum betreiben einer hochdruckentladungslampe
EP1585372A1 (de) EVG mit Resonanzanregung zur Übernahmespannungserzeugung
EP2382846A2 (de) Verfahren und elektronisches betriebsgerät zum betreiben einer gasentladungslampe sowie projektor
DE19964551B4 (de) Schaltungsanordnung zum Betreiben von Gasentladungslampen
EP1583403B1 (de) Vorschaltgerät für mindestens eine Lampe
EP2526741B1 (de) Schaltungsanordnung und verfahren zur schnellen kommutierung beim rechteckbetrieb von hochdruckentladungslampen
DE102007057772A1 (de) Schaltungsanordnung zum Betrieb von Entladungslampen und Verfahren zum Betrieb von Entladungslampen
EP1276355B1 (de) Schaltungsanordnung zum Bestimmen eines Vorheizleistungswerts
DE19845228A1 (de) Dimmbare Entladungslampe für dielektrisch behinderte Entladungen
DE102005056229B4 (de) Steuerschaltung sowie Verfahren zur Ansteuerung einer Gasentladungslampe
DE10238373A1 (de) Elektronische Schaltung zum Speisen einer Hochdrucklichtbogenlampe
WO2008055544A1 (de) Schaltungsanordnung und verfahren zum betreiben einer hochdruckentladungslampe
DE102004021243B3 (de) Vorrichtung zur Erzeugung von elektrischen Spannungsimpulsfolgen, insbesondere zum Betrieb von kapazitiven Entladungslampen und ihre Verwendung
DE112005000771T5 (de) Entladungslampen-Schaltvorrichtung
EP1294215B1 (de) Vorschaltgerät für mindestens eine elektrische Glühlampe, und Verfahren zum Betreiben solch eines Vorschaltgeräts
EP2263423B1 (de) Schaltungsanordnung zum zünden von hid-gasentladungslampen
EP1243165A1 (de) Schaltungsanordnung zum betreiben einer gasentladungslampe
DE102008017545A1 (de) Schaltungsanordnung zum Betreiben von HID-Ladungslampen
EP2498584B1 (de) Vorschaltgerät für Hochdruckentladungslampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120822

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

17Q First examination report despatched

Effective date: 20130719

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20140110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 665828

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010006836

Country of ref document: DE

Effective date: 20140612

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140731

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140830

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010006836

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

26N No opposition filed

Effective date: 20150202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010006836

Country of ref document: DE

Effective date: 20150202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010006836

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141108

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141108

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141108

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101108

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 665828

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430