EP2498584B1 - Vorschaltgerät für Hochdruckentladungslampe - Google Patents

Vorschaltgerät für Hochdruckentladungslampe Download PDF

Info

Publication number
EP2498584B1
EP2498584B1 EP20110157208 EP11157208A EP2498584B1 EP 2498584 B1 EP2498584 B1 EP 2498584B1 EP 20110157208 EP20110157208 EP 20110157208 EP 11157208 A EP11157208 A EP 11157208A EP 2498584 B1 EP2498584 B1 EP 2498584B1
Authority
EP
European Patent Office
Prior art keywords
lamp
pulse
pulse train
current
gas discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20110157208
Other languages
English (en)
French (fr)
Other versions
EP2498584A1 (de
Inventor
Roland Sing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vossloh Schwabe Deutschland GmbH
Vossloh Schwabe GmbH
Original Assignee
Vossloh Schwabe Deutschland GmbH
Vossloh Schwabe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vossloh Schwabe Deutschland GmbH, Vossloh Schwabe GmbH filed Critical Vossloh Schwabe Deutschland GmbH
Priority to EP20110157208 priority Critical patent/EP2498584B1/de
Publication of EP2498584A1 publication Critical patent/EP2498584A1/de
Application granted granted Critical
Publication of EP2498584B1 publication Critical patent/EP2498584B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/292Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2928Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the lamp against abnormal operating conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2881Load circuits; Control thereof
    • H05B41/2882Load circuits; Control thereof the control resulting from an action on the static converter
    • H05B41/2883Load circuits; Control thereof the control resulting from an action on the static converter the controlled element being a DC/AC converter in the final stage, e.g. by harmonic mode starting

Definitions

  • the invention relates to an operating method and a circuit arrangement for a ballast, which is particularly suitable for the operation of high-pressure gas discharge lamps.
  • High-pressure gas discharge lamps are usually operated on full bridge circuits, such as those from the US 4,170,747 are known.
  • Each bridge branch contains two electronic switches and thus forms an inverter half-bridge. Between both inverter half-bridges, the bridge diagonal is connected to the high-pressure discharge lamp and a series-connected, current-limiting choke.
  • the electronic switches of this bridge circuit are controlled by a control circuit, which thus dictates the operating regime of the bridge and the gas discharge lamp.
  • a control circuit which thus dictates the operating regime of the bridge and the gas discharge lamp.
  • a first low frequency e.g. diagonally opposite electronic switches are each activated to determine the direction of current flow.
  • a second higher frequency one of the two activated electronic switches is clocked to limit the current flowing through the lamp.
  • the principle of controlling electronic switches with two different frequencies is also applicable to half-bridge inverters.
  • the operating regime of the two electronic switches is to alternate with the low frequency alternately to clock the upper or the lower electronic switch of the bridge branch with high frequency.
  • High-pressure gas discharge lamps require reliable ionization for stable operation. During heating, the plasma recombines rapidly, so that it can spontaneously come to extinction of the lamp. That's why the beats EP 1 994 805 B1 the monitoring of the lamp voltage and readjustment of the lamp current before. When the lamp voltage increases, which means rapid high resistance, the current is increased to promote ionization and restore the lamp to low impedance.
  • the circuit arrangement according to the invention comprises at least one inverter half bridge for feeding the gas discharge lamp, wherein a control circuit, the inverter half bridge with a first pulse train with a first low frequency for reversing the lamp and a second pulse train of a second higher frequency is controlled to control the lamp current.
  • the control circuit varies the second pulse train in such a way that the operating current is preferably increased before the low-frequency polarity reversal of the lamp current. At least, however, a decrease in the lamp current occurring in particular in the case of half-bridge inverters before the polarity reversal is prevented. Thus, cancellation events are prevented, which may otherwise occur with some likelihood, especially at the low frequency reverse polarity.
  • the inventor had recognized that, in particular, the polarity reversal is critical. With the inventive concept can be dispensed based on the lamp voltage monitoring rapid control of the lamp current, which also leads to more stable flackerarmer or flicker-free light generation.
  • the constant current or current increase immediately before the polarity reversal, the degree of ionization of the existing plasma is maintained or increased, in particular in the vicinity of the electrodes, so that it does not even in adverse operating conditions when reversing can come to extinguish the gas discharge.
  • the heating operation of the gas discharge lamp and / or operation with reduced power can thus be made safer.
  • the invention is particularly applicable to inverter half-bridges in which the end of the lamp branch remote from the inverter half-bridge is connected to a capacitive voltage divider.
  • the potential of the voltage divider point gradually shifts to ground or to the operating voltage, respectively, in response to the low reverse pole frequency during a low frequency pulse. This results in a reduction in the voltage drop across the reactor during operation and thus a reduction in the lamp current.
  • By suitable variation of the pulses of the second pulse train this tendency can be counteracted, so that the operating current does not decrease towards the end of a pulse of the first pulse train, but remains constant or even increased.
  • the measure according to the invention can thus be used to make the operation of the gas discharge lamp less susceptible to unintentional extinguishment of the same, in particular in those operating phases in which the plasma recombines relatively easily, which is the case during heating or power reduction.
  • the measure according to the invention can be used to reduce the necessary capacitance of the capacitors of the capacitive voltage divider, which contributes to a reduction of the size and the construction costs of the ballast.
  • At least one inductive choke component is preferably arranged in series with the gas discharge lamp in the lamp branch, one end of the lamp branch having the inverter half bridge connected is.
  • the other end of the lamp branch may be connected to a further inverter half-bridge, so that the ballast operates in full-bridge circuit.
  • diagonally opposite electronic switches may each be activated to determine the direction of current flow.
  • one of the two activated electronic switches is clocked to limit the current flowing through the lamp.
  • the electronic switches of the half-bridges may be any type of suitable electronic switch, such as MOS transistors, bipolar transistors, IGBTs, JFETs, HEXFETs, in both P-channel technology as well as in N-channel technology.
  • MOS transistors MOS transistors
  • bipolar transistors IGBTs
  • JFETs JFETs
  • HEXFETs HEXFETs
  • both transistors of the same conductivity type as well as complementary transistors e.g., npn and pnp, or p-channel combined with n-channel
  • the ballast operates in a half-bridge circuit with only two electronic switches in one bridge branch and two capacitors in the other bridge branch.
  • the capacitors are at least sized so that they can absorb the amount of charge flowing through the lamp branch during a pulse of low frequency.
  • the control circuit operates to open and close the electronic switches of the inverter half-bridge (s) in accordance with the first low and second higher frequency operating regimes. For example, the control circuit alternately switches the upper and lower switches of the inverter half bridge alternately with the first one, lower one free. The released switch is acted upon by a pulse train of higher frequency than the drive signal. Switching whether the upper or the lower switch is clocked, takes place with the lower frequency.
  • the second pulse train which has the higher frequency, in each case varies so that shortly before the polarity reversal a current drop is avoided or the increase of the lamp current is achieved.
  • This can be done for example by raising a current setpoint towards the end of a pulse of the first frequency.
  • the increase can be sudden, step-like, ramped following a steady function or similar.
  • the magnitude of the increase in the current setpoint may be made dependent on external conditions such as temperature, average lamp voltage, lamp age, operating time which has elapsed since the switch-on, desired lamp power and the like, and adjusted if necessary. If the increase of the current setpoint is made dependent on the lamp voltage, this is averaged over at least one, preferably several periods of the first frequency, in order to avoid too fast and thus flickering control.
  • the operation of the ballast according to the invention is particularly suitable for the operation of critical lamp types, which otherwise have a strong tendency to extinguish.
  • Fig. 1 the circuit arrangement 10 for a ballast for a high-pressure gas discharge lamp 11 is illustrated schematically and partly as a block diagram.
  • the high-pressure gas discharge lamp 11 may be an HID gas discharge lamp (metal halide lamp) or other gas discharge lamp, for example, a sodium vapor gas discharge lamp, mercury vapor gas discharge lamp, or the like.
  • HID gas discharge lamp metal halide lamp
  • other gas discharge lamp for example, a sodium vapor gas discharge lamp, mercury vapor gas discharge lamp, or the like.
  • the invention is illustrated here for the example of the ballast for a high-pressure gas discharge lamp, it can also be applied to other gas discharge lamps.
  • the circuit arrangement 10 is designed as a half-bridge inverter circuit. It comprises an inverter half-bridge 12, which is arranged between an operating voltage-carrying line 13 and a ground potential-carrying line 14.
  • the operating voltage may be in the range of a few hundred volts (e.g., 400V) and is provided by a feed circuit 15. This can e.g. be the connection of a power rectifier and a boost converter. Alternatively, the operating voltage on line 13 may also be provided by other means.
  • the inverter half-bridge 12 includes an upper switch 16 which is connected to the operating voltage leading line 13, and a lower switch 17 which is connected to the ground-carrying line 14.
  • the switches 16, 17 are connected to one another at a circuit point 18 to which the lamp circuit 19 is connected.
  • the switches 16, 17 may be any type of controlled electronic switch, e.g. MOSFETs, IGBTs or the like. They can have the same or opposite polarity.
  • the lamp circuit 19 includes a current limiting inductor 20 connected in series with the high pressure gas discharge lamp 11 is switched.
  • the remote from the inverter half-bridge 12 end of the lamp circuit 19 is connected to a voltage divider point 21 of a capacitive voltage divider 22.
  • This comprises an upper capacitor 23 and a lower capacitor 24.
  • the capacitors 23, 24 are preferably poled capacitors of higher capacity, for example, switch-resistant electrolytic capacitors with eg some 100 uF.
  • the upper capacitor 23 is connected to the operating voltage leading line 13.
  • the lower capacitor 24 is connected to the ground potential leading line 14.
  • both capacitors 23, 24 are connected with their respective other end.
  • the circuit arrangement 10 can contain further capacitors 25, 26 leading from the lamp circuit 19 to ground and / or operating voltage, which serve, for example, for generating a resonant peak during ignition, for suppressing interference, or for other purposes.
  • the electronic switches 16, 17 are each bridged by diodes 27, 28, which are poled in the rest state in the reverse direction and which may also be formed internally in the switches 16, 17. When you take the lamp current you take over each of the freewheeling current driven by the throttle 20.
  • a driver circuit 29 For driving the switches 16, 17 is a driver circuit 29, the bases, gates or other control electrodes of the switches 16, 17 corresponding to a first low frequency f1 (see Fig. 2 ) and a second higher frequency f2 (see also Fig. 2 ).
  • the driver circuit 29 provides the drive signals in the required form and power available.
  • the driver circuit 29 uses the pulse sequence F1 with the first Frequency f1 to enable or disable each one of the switches 16 or 17. It then uses the pulse train F2 of the second frequency f2 to turn the enabled switch 16 or 17 on and off according to the pulses I2 of the pulse train F2.
  • the pulse train F2 receives the driver circuit 29 from a pulse supply circuit, which includes, for example, a pulse width modulator 30, which is also referred to as a PWM circuit.
  • the pulse width modulator 30 generates signals of varying duty cycle. This can be done at constant frequency or at changing frequency.
  • the pulse break ratio i. the duty cycle of the generated signal of the frequency f2 is predetermined by a manipulated variable S, which is supplied by a control unit 31.
  • the control unit 31 may, for example, also supply the first frequency f1 and forward it to the driver circuit 29.
  • the switches 16, 17 After the ignition of the gas discharge lamp 11, the switches 16, 17 according to the pulse scheme of Fig. 2 driven. For clarity, first the upper transistor 16 is activated. The upper diagram in Fig. 2 illustrates that the first pulse I1a of the frequency f1 the switch 16 releases. The pulse train I2 with the frequency f2 illustrated below is thus applied to the transistor 16. The transistor 17 remains inactive.
  • the pulse train I2 of the frequency f2 is evidently a pulse width modulated signal.
  • the pulse / pause ratio of the pulse train F2 is increased. This is done by specifying a control signal S, which in Fig. 2 below and provided in this manner by the control circuit 31. Due to the flowing lamp current, the capacitor 24 gradually charges, the capacitor 23 discharges and the potential at the voltage dividing point 21 increases. The lamp current would thereby tend to decrease. Due to the significant increase of the control signal S when approaching the switching time t1, however, this tendency is counteracted. The lamp current i L is thereby kept constant or even slightly increased when approaching the switching time t1.
  • the switch 16 is deactivated, ie initially switched off permanently.
  • the switch 17 is activated.
  • the pulse I1b it receives the pulse sequence F2 of the frequency f2, which, according to the control signal S, first begins with a low pulse pause ratio.
  • the control signal S rises again, whereby the pulse / pause ratio of the pulse train F2 increases again accordingly.
  • the current flowing in the negative direction lamp current i L is thereby increased again.
  • the decreasing tendency of the voltage across the voltage divider 21 caused by the flow of current is thus counteracted.
  • the current i L has a low frequency f1 towards the end of the second pulse I1b of the pulse sequence F1 largest, but at least no reduced value.
  • the lamp current i L is raised in each case shortly before the polarity reversal, whereby extinction of the high-pressure gas discharge lamp 11 during polarity reversal is prevented.
  • Fig. 3 illustrates the current and voltage curves of a modified embodiment of a ballast according to the invention.
  • the modification lies in the operating regime of the control unit.
  • the control signal S is initially kept constant during a pulse I of the slow pulse train F1 for a certain time t0 and then rises toward the end of the pulse I, eg in steps.
  • Fig. 4 shows the control signal S towards the end of the pulse I also increase steadily. It arises in both cases in the bottom diagram in Fig. 4 idealized illustrated current flow i L.
  • Fig. 5 a circuit variant is shown, which differs from the presented circuit only by changing the mass reference.
  • the lines 13 and 14 carry positive and negative operating voltage with respect to ground.
  • the ground is connected to the voltage divider point 21.
  • the provisioning circuit also has a voltage-related ground reference. Otherwise, the above description applies accordingly.
  • the natural current profile of a half-bridge circuit 12 with capacitive bridge branch 22 contains a decreasing current characteristic within a half-period of the low-frequency square-wave signal. This can complicate the commutation of the high-pressure gas discharge lamp 11 and lead to an increased Wiederzündposition. It may come to extinguish the lamp.
  • the method proposed here according to the invention is by a step, linear or otherwise Raising the output from the control unit 31 manipulated variable S for the lamp current i L influenced so that it comes within a half-period I1a to an increasing profile of the lamp current i L.
  • the electrodes of the lamp are additionally heated prior to commutation, which facilitates the commutation and leads to the reduction of Wiederzündposition. As a result, the extinction of critical lamps can be avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Description

  • Die Erfindung betrifft ein Betriebsverfahren und eine Schaltungsanordnung für ein Vorschaltgerät, das insbesondere für den Betrieb von Hochdruckgasentladungslampen geeignet ist.
  • Hochdruckgasentladungslampen werden üblicherweise an Vollbrückenschaltungen betrieben, wie sie beispielsweise aus der US 4,170,747 bekannt sind. Jeder Brückenzweig enthält zwei elektronische Schalter und bildet somit eine Wechselrichterhalbbrücke. Zwischen beiden Wechselrichterhalbbrücken liegt die Brückendiagonale mit der Hochdruckentladungslampe und einer in Reihe geschalteten, strombegrenzenden Drossel.
  • Die elektronischen Schalter dieser Brückenschaltung werden von einer Steuerschaltung gesteuert, die somit das Betriebsregime der Brücke und der Gasentladungslampe vorgibt. Mit einer ersten niedrigen Frequenz werden z.B. diagonal gegenüberliegende elektronische Schalter jeweils aktiviert, um die Stromflussrichtung zu bestimmen. Mit einer zweiten höheren Frequenz wird einer der beiden aktivierten elektronischen Schalter getaktet, um den durch die Lampe fließenden Strom zu begrenzen.
  • Das Prinzip der Ansteuerung elektronischer Schalter mit zwei verschiedenen Frequenzen, um einerseits die Hochdruckgasentladungslampe mit einem Wechselstrom ohne Gleichanteil zu beaufschlagen und andererseits den Strom unter Zuhilfenahme einer relativ kleinen Drossel zu begrenzen, ist auch bei Halbbrückenwechselrichtern anwendbar. Dazu schlägt die EP 1 994 805 B1 vor, die elektronischen Schalter eines Brückenzweigs durch Kondensatoren zu ersetzen. Das Betriebsregime der beiden elektronischen Schalter sieht vor, mit der niedrigen Frequenz abwechselnd, den oberen oder den unteren elektronischen Schalter des Brückenzweigs mit hoher Frequenz zu takten.
  • Aus der DE 100 25 610 A1 ist der Betrieb eienr Hochleistungsentladungslampe in einem induktiven Lampenzweig bekannt, der an einem Ende mit einer mit aktiven Schaltern bestückten Halbbrücke und mit seinem anderen Enden an eine kapazitive Halbbrücke angeschlossen ist. Die Schalter der Halbbrücke werden sowohl beim Zündbetrieb als auch beim Leuchtbetrieb in einem langsamen Abwechslungszyklus mit hoher Frequenz getaktet. Beim Zünden werden die Puls-Pause-Verhältnisse so variiert, dass sich gegen Ende jeder Abwechslungsperiode über der Lampe ein gewünschter Spannungs-Gleichanteil ergibt. Damit soll die Zündfähigkeit verbessert werden.
  • Hochdruckgasentladungslampen benötigen zum stabilen Betrieb eine sichere Ionisierung. Beim Aufheizen rekombiniert das Plasma schnell, so dass es spontan zum Verlöschen der Lampe kommen kann. Deswegen schlägt die EP 1 994 805 B1 die Überwachung der Lampenspannung und Nachregelung des Lampenstroms vor. Steigt die Lampenspannung an, was ein schnelles Hochohmigwerden bedeutet, wird der Strom erhöht, um die Ionisierung zu fördern und die Lampe wieder niederohmig zu machen.
  • Es hat sich aber herausgestellt, dass der Versuch der Erhöhung des Stroms nach Feststellung eines Ansteigens der Lampenspannung bei kritischen Lampentypen zu spät kommen kann.
  • Es ist Aufgabe der Erfindung ein Konzept anzugeben, mit dem sich Hochdruckgasentladungslampen auch in schwierigen Betriebsphasen sicher betreiben lassen.
  • Diese Aufgabe wird mit der Schaltungsordnung nach Anspruch 1 und das Verfahren nach Anspruch 9 gelöst:
  • Die erfindungsgemäße Schaltungsanordnung umfasst mindestens eine Wechselrichterhalbbrücke zur Speisung der Gasentladungslampe, wobei eine Steuerschaltung die Wechselrichterhalbbrücke mit einer ersten Impulsfolge mit einer ersten niedrigen Frequenz zur Umpolung der Lampe und mit einer zweiten Impulsfolge einer zweiten höheren Frequenz zur Steuerung des Lampenstroms angesteuert wird. Die Steuerschaltung variiert die zweite Impulsfolge dabei so, dass der Betriebsstrom vor dem mit niedriger Frequenz erfolgenden Umpolen des Lampenstroms vorzugsweise erhöht wird. Zumindest aber wird ein insbesondere bei Halbbrückenwechselrichtern vor dem Umpolen auftretendes Absinken des Lampenstroms verhindert. Somit wird Löschungsereignissen vorgebeugt, die sonst insbesondere beim mit der niedrigen Frequenz erfolgenden Umpolen mit einiger Wahrscheinlichkeit eintreten können. Der Erfinder hatte erkannt, dass insbesondere das Umpolen kritisch ist. Mit dem erfindungsgemäßen Konzept kann auf eine auf der Lampenspannungsüberwachung basierende schnelle Regelung des Lampenstroms verzichtet werden, was auch zu stabilerer flackerarmer oder flackerfreier Lichterzeugung führt.
  • Durch diese Maßnahme der Stromkonstanthaltung bzw. Stromerhöhung unmittelbar vor dem Umpolen wird der Ionisierungsgrad des vorhandenen Plasmas insbesondere in der Nähe der Elektroden aufrechterhalten oder erhöht, so dass es beim Umpolen auch bei widrigen Betriebsbedingungen nicht zum Verlöschen der Gasentladung kommen kann. Damit lassen sich insbesondere der Aufheizbetrieb der Gasentladungslampe und/oder Betrieb mit reduzierter Leistung sicherer gestalten.
  • Die Erfindung ist insbesondere bei Wechselrichterhalbbrücken anwendbar, bei denen das von der Wechselrichterhalbbrücke abliegende Ende des Lampenzweigs mit einem kapazitiven Spannungsteiler verbunden ist. Das Potenzial des Spannungsteilerpunkts verlagert sich entsprechend der niedrigen Umpolfrequenz während eines Impulses der niedrigen Frequenz jeweils allmählich zur Masse bzw. zur Betriebsspannung hin. Dies hat im Betrieb eine Minderung der über der Drossel abfallenden Spannung und somit eine Minderung des Lampenstroms zur Folge. Durch geeignete Variation der Impulse der zweiten Impulsfolge kann dieser Tendenz entgegengewirkt werden, so dass der Betriebsstrom gegen Ende eines Impulses der ersten Impulsfolge nicht absinkt, sondern konstant bleibt oder sogar erhöht wird.
  • Die erfindungsgemäße Maßnahme kann somit dazu genutzt werden, den Betrieb der Gasentladungslampe weniger anfällig gegen unbeabsichtigtes Verlöschen derselben, insbesondere in solchen Betriebsphasen zu machen, in denen das Plasma relativ leicht rekombiniert, was beim Aufheizen oder bei Leistungsreduktion der Fall ist. Außerdem kann die erfindungsgemäße Maßnahme dazu genutzt werden, die notwendige Kapazität der Kondensatoren des kapazitiven Spannungsteilers zu verringern, was zu einer Verringerung der Baugröße und der Baukosten des Vorschaltgeräts beiträgt.
  • Bei der erfindungsgemäßen Schaltungsanordnung ist in dem Lampenzweig vorzugsweise mindestens ein induktives Drosselbauelement in Reihe mit der Gasentladungslampe angeordnet, wobei ein Ende des Lampenzweigs mit der Wechselrichterhalbbrücke verbunden ist. Das andere Ende des Lampenzweigs kann mit einer weiteren Wechselrichterhalbbrücke verbunden sein, so dass das Vorschaltgerät in Vollbrückenschaltung arbeitet. In diesem Fall können beispielsweise mit einer ersten niedrigen Frequenz in der Brücke diagonal gegenüberliegende elektronische Schalter jeweils aktiviert werden, um die Stromflussrichtung zu bestimmen. Mit einer zweiten höheren Frequenz wird einer der beiden aktivierten elektronischen Schalter getaktet, um den durch die Lampe fließenden Strom zu begrenzen.
  • In jedem Fall können die elektronischen Schalter der Halbbrücken, unabhängig davon, ob das Vorschaltgerät in Halbbrücken- oder Vollbrückenschaltung ausgebildet ist, jede Art geeigneter elektronischer Schalter sein, beispielsweise MOS-Transistoren, bipolare Transistoren, IGBTs, JFETs, HEXFETs, sowohl in P-Kanaltechnik als auch in N-Kanaltechnik. Insbesondere können in einer Halbbrücke sowohl Transistoren gleichen Leitungstyps wie auch komplementäre Transistoren (z.B. npn und pnp oder auch p-Kanal kombiniert mit n-Kanal) eingesetzt werden.
  • In der bevorzugten Ausführungsform arbeitet das Vorschaltgerät in Halbbrückenschaltung mit lediglich zwei elektronischen Schaltern in einem Brückenzweig und zwei Kondensatoren in dem anderen Brückenzweig. Die Kondensatoren sind dabei wenigstens so groß bemessen, dass sie die während eines Impulses der niedrigen Frequenz durch den Lampenzweig fließende Ladungsmenge aufnehmen können. Die Steuerschaltung bewirkt das Öffnen und Schließen der elektronischen Schalter der Wechselrichterhalbbrücke(n) entsprechend dem Betriebsregime mit der ersten niedrigen und der zweiten höheren Frequenz. Beispielsweise gibt die Steuerschaltung den oberen und den unteren Schalter der Wechselrichterhalbbrücke abwechselnd mit der ersten, niedrigen abwechselnd frei. Der freigegebene Schalter wird mit einem Impulszug der höheren Frequenz als Ansteuersignal beaufschlagt. Das Umschalten, ob der obere oder der untere Schalter getaktet wird, erfolgt mit der niedrigeren Frequenz. Erfindungsgemäß wird die zweite Impulsfolge, die die höhere Frequenz aufweist, dabei jeweils so variiert, dass kurz vor dem Umpolen ein Stromabfall vermieden bzw. das Erhöhen des Lampenstroms erreicht wird. Dies kann beispielsweise durch Anhebung eines Stromsollwerts gegen Ende eines Impulses der ersten Frequenz erfolgen. Die Anhebung kann sprungartig, stufenartig, rampenartig einer stetigen Funktion folgend oder ähnlich gestaltet sein. Die Größe der Anhebung des Stromsollwerts kann von äußeren Bedingungen, wie z.B. Temperatur, mittleren Lampenspannung, Lampenalter, Betriebszeit, die seit dem Einschalten vergangen ist, gewünschter Lampenleistung und dergleichen abhängig gemacht werden und gegebenenfalls nachgestellt. Wird die Anhebung des Stromsollwerts von der Lampenspannung abhängig gemacht, wird diese dazu über mindestens eine, vorzugsweise mehrere Perioden der ersten Frequenz gemittelt, um eine zu schnelle und somit flackernde Regelung zu vermeiden.
  • Die erfindungsgemäße Betriebsweise des Vorschaltgeräts eignet sich besonders auch für den Betrieb kritischer Lampentypen, die sonst stark zum Verlöschen neigen.
  • Weitere Einzelheiten vorteilhafter Ausführungsformen der Erfindung sind im Zusammenhang mit einem Ausführungsbeispiel beschrieben oder gehen aus der Zeichnung oder Unteransprüchen hervor. Es zeigen:
    • Fig. 1 eine erfindungsgemäße Schaltungsanordnung in schematisierter Darstellung;
    • Fig. 2 Strom- und Spannungsverläufe der Schaltungsanordnung nach Fig. 1 zur Verdeutlichung der Funktion der Steuerschaltung;
    • Fig. 3 und 4 Strom- und Spannungsverläufe von Vorschaltgeräten mit abgewandelten Betriebsregimes und
    • Fig. 5 eine abgewandelte Schaltungsstruktur der erfindungsgemäßen Schaltungsanordnung.
  • In Fig. 1 ist die Schaltungsanordnung 10 für ein Vorschaltgerät für eine Hochdruckgasentladungslampe 11 schematisch und teilweise als Blockschaltbild veranschaulicht. Die Hochdruckgasentladungslampe 11 kann eine HID-Gasentladungslampe (Halogenmetalldampflampe) oder eine anderweitige Gasentladungslampe, beispielsweise eine Natriumdampfgasentladungslampe, Quecksilberdampfgasentladungslampe oder dergleichen sein. Obwohl die Erfindung, hier am Beispiel des Vorschaltgeräts, für eine Hochdruckgasentladungslampe veranschaulicht wird, kann sie auch bei anderen Gasentladungslampen Anwendung finden.
  • Die Schaltungsordnung 10 ist als Halbbrückenwechselrichterschaltung ausgebildet. Sie umfasst eine Wechselrichterhalbbrücke 12, die zwischen einer Betriebsspannung führenden Leitung 13 und einer Massepotenzial führenden Leitung 14 angeordnet ist. Die Betriebsspannung kann im Bereich einiger 100 Volt liegen (z.B. 400 V) und wird von einer Speiseschaltung 15 bereitgestellt. Diese kann z.B. die Verbindung aus einem Netzgleichrichter und einem Hochsetzsteller sein. Alternativ kann die Betriebsspannung an der Leitung 13 auch durch andere Mittel bereitgestellt werden.
  • Die Wechselrichterhalbbrücke 12 umfasst einen oberen Schalter 16, der mit der Betriebsspannung führenden Leitung 13 verbunden ist, sowie einen unteren Schalter 17, der mit der Masse führenden Leitung 14 verbunden ist. Untereinander sind die Schalter 16, 17 an einem Schaltungspunkt 18 verbunden, an den der Lampenkreis 19 angeschlossen ist. Die Schalter 16, 17 können jede Art gesteuerter elektronischer Schalter sein, z.B. MOSFETs, IGBTs oder dergleichen. Sie können gleiche oder gegensätzliche Polarität haben.
  • Der Lampenkreis 19 umfasst eine Strombegrenzungsdrossel 20, die mit der Hochdruckgasentladungslampe 11 in Reihe geschaltet ist. Das von der Wechselrichterhalbbrücke 12 abliegende Ende des Lampenkreises 19 ist an einen Spannungsteilerpunkt 21 eines kapazitiven Spannungsteilers 22 angeschlossen. Dieser umfasst einen oberen Kondensator 23 und einen unteren Kondensator 24. Die Kondensatoren 23, 24 sind vorzugsweise gepolte Kondensatoren höherer Kapazität, z.B. schaltfeste Elektrolytkondensatoren mit z.B. einigen 100 µF. Der obere Kondensator 23 ist an die Betriebsspannung führende Leitung 13 angeschlossen. Der untere Kondensator 24 ist an die Massepotenzial führende Leitung 14 angeschlossen. An den Spannungsteilerpunkt 21 sind beide Kondensatoren 23, 24 mit ihrem jeweiligen anderen Ende angeschlossen.
  • Die Schaltungsanordnung 10 kann von dem Lampenkreis 19 gegen Masse und/oder Betriebsspannung führende weitere Kondensatoren 25, 26 enthalten, die beispielsweise der Erzeugung einer Resonanzüberhöhung beim Zünden, zum Entstören oder zu sonstigen Zwecken dienen.
  • Die elektronischen Schalter 16, 17 sind jeweils durch Dioden 27, 28 überbrückt, die im Ruhezustand in Sperrrichtung gepolt sind und die auch in den Schaltern 16, 17 intern ausgebildet sein können. Sie übernehmen beim Takten des Lampenstroms jeweils den von der Drossel 20 getriebenen Freilaufstrom.
  • Zur Ansteuerung der Schalter 16, 17 dient eine Treiberschaltung 29, die die Basen, Gates oder sonstigen Steuerelektroden der Schalter 16, 17 entsprechend einer ersten niedrigen Frequenz f1 (siehe Fig. 2) und einer zweiten höheren Frequenz f2 (siehe ebenfalls Fig. 2) ansteuert. Die Treiberschaltung 29 stellt die Ansteuersignale dabei in der erforderlichen Form und Leistung zur Verfügung. Die Treiberschaltung 29 nutzt dabei die Impulsfolge F1 mit erster Frequenz f1, um jeweils einen der Schalter 16 oder 17 freizugeben oder zu sperren. Sie nutzt dann die Impulsfolge F2 der zweiten Frequenz f2, um den freigegebenen Schalter 16 oder 17 entsprechend den Impulsen I2 der Impulsfolge F2 ein- und auszuschalten. Die Impulsfolge F2 erhält die Treiberschaltung 29 von einer Impulsbereitstellungsschaltung, die z.B. einen Pulsbreitenmodulator 30 enthält, der auch als PWM-Schaltung bezeichnet wird. Der Pulsbreitenmodulator 30 erzeugt Signale variierenden Tastverhältnisses. Dies kann bei konstanter Frequenz oder auch bei wechselnder Frequenz erfolgen.
  • Das Impulspauseverhältnis, d.h. das Tastverhältnis des erzeugten Signals der Frequenz f2, wird dabei von einer Stellgröße S vorgegeben, die von einer Steuereinheit 31 geliefert wird. Die Steuereinheit 31 kann beispielsweise auch die erste Frequenz f1 liefern, und an die Treiberschaltung 29 leiten.
  • Die insoweit beschriebene Schaltungsanordnung 10 arbeitet wie folgt:
    • In Betrieb wird über die Speiseschaltung 15 Betriebsspannung an der Leitung 13 bereitgestellt, so dass diese gegen die Leitung 14 eine Spannung, beispielsweise 400 Volt, aufweist. Entsprechend sind die Kondensatoren 23, 24 jeweils etwa auf die halbe Betriebsspannung aufgeladen, so dass an dem Spannungsteilerpunkt 21 z.B. 200 Volt bereitstehen.
  • Nach dem Zünden der Gasentladungslampe 11 werden die Schalter 16, 17 nach dem Impulsschema der Fig. 2 angesteuert. Zur Verdeutlichung wird zunächst der obere Transistor 16 aktiviert. Das obere Diagramm in Fig. 2 veranschaulicht, dass der erste Impuls I1a der Frequenz f1 den Schalter 16 freigibt. Der darunter veranschaulichte Impulszug I2 mit der Frequenz f2 wird somit an den Transistor 16 gegeben. Der Transistor 17 bleibt inaktiv.
  • Der Impulszug I2 der Frequenz f2 ist ersichtlicherweise ein pulsbreitenmoduliertes Signal. Gegen Ende des ersten Impulses I1a, d.h. mit Annäherung an den Zeitpunkt t1, wird das Puls/Pausen-Verhältnis des Impulszugs F2 vergrößert. Dies erfolgt durch Vorgabe eines Steuersignals S, das in Fig. 2 unten veranschaulicht ist und in dieser Weise von der Steuerschaltung 31 bereitgestellt ist. Durch den fließenden Lampenstrom lädt sich der Kondensator 24 allmählich auf, der Kondensator 23 entlädt sich und das Potenzial an dem Spannungsteilerpunkt 21 steigt an. Der Lampenstrom hätte dadurch die Tendenz abzunehmen. Durch den deutlichen Anstieg des Steuersignals S bei Annäherung an den Umschaltzeitpunkt t1 wird dieser Tendenz jedoch entgegengewirkt. Der Lampenstrom iL wird dadurch konstant gehalten oder bei Annäherung an den Umschaltzeitpunkt t1 sogar etwas erhöht.
  • Zum Zeitpunkt t1 endet der erste Impuls I1a der langsamen Impulsfolge F1 der Frequenz f1. Damit wird der Schalter 16 deaktiviert, d.h. zunächst dauernd ausgeschaltet. Der Schalter 17 wird aktiviert. Nun erhält er während des Impulses I1b die Impulsfolge F2 der Frequenz f2, die entsprechend dem Steuersignal S zunächst mit geringem Pulspauseverhältnis beginnt. Bei Annäherung an den nächsten Umschaltzeitpunkt t2 steigt das Steuersignal S wieder an, womit entsprechend das Puls/Pause-Verhältnis der Impulsfolge F2 wieder zunimmt. Der in negativer Richtung fließende Lampenstrom iL wird dadurch wieder erhöht. Der durch den Stromfluss bewirkten abnehmenden Tendenz der Spannung an dem Spannungsteiler 21 wird somit entgegengewirkt. Ersichtlicherweise hat der Strom iL gegen Ende des zweiten Impulses I1b der Impulsfolge F1 der niedrigen Frequenz f1 einen größten, zumindest aber keinen reduzierten Wert.
  • Wie ersichtlich wird der Lampenstrom iL jeweils kurz vor dem Umpolen angehoben, wodurch ein Verlöschen der Hochdruckgasentladungslampe 11 beim Umpolen unterbunden wird.
  • Fig. 3 veranschaulicht die Strom- und Spannungsverläufe einer abgewandelten Ausführungsform eines erfindungsgemäßen Vorschaltgeräts. Die Abwandlung liegt in dem Betriebsregime der Steuereinheit. Das Steuersignal S wird während eines Impulses I der langsamen Impulsfolge F1 zunächst für eine gewisse Zeit t0 konstant gehalten und steigt dann gegen Ende des Impulses I, z.B. treppenartig, an. Wie Fig. 4 zeigt kann das Steuersignal S gegen Ende des Impulses I auch stetig ansteigen. Es entsteht in beiden Fällen der im untersten Diagramm in Fig. 4 idealisiert dargestellte Stromverlauf iL.
  • In Fig. 5 ist eine Schaltungsvariante dargestellt, die sich von der vorgestellten Schaltung lediglich durch geänderten Massebezug unterscheidet. Die Leitungen 13 und 14 führen positive und negative Betriebsspannung bezüglich Masse. Die Masse ist mit dem Spannungsteilerpunkt 21 verbunden. Auch die Bereitstellungsschaltung weist einen spannungsmittigen Massebezug auf. Ansonsten gilt die vorstehende Beschreibung entsprechend.
  • Der natürliche Stromverlauf einer Halbbrückenschaltung 12 mit kapazitivem Brückenzweig 22 enthält innerhalb einer Halbperiode des niederfrequenten Rechtecksignals einen abnehmenden Stromverlauf. Dies kann das Kommutieren der Hochdruckgasentladungslampe 11 erschweren und zu einer erhöhten Wiederzündspannung führen. Es kann zum Verlöschen der Lampe kommen. Bei dem hier vorgeschlagenen erfindungsgemäßen Verfahren wird durch eine stufige, lineare oder anderweitige Anhebung der von der Steuereinheit 31 ausgegebenen Stellgröße S für den Lampenstrom iL dieser so beeinflusst, dass es innerhalb einer Halbperiode I1a zu einem ansteigenden Verlauf des Lampenstroms iL kommt. Dadurch werden die Elektroden der Lampe vor der Kommutierung zusätzlich aufgeheizt, was die Kommutierung erleichtert und zur Reduzierung der Wiederzündspannung führt. Hierdurch kann das Verlöschen von kritischen Lampen vermieden werden.
  • Bezugszeichenliste:
  • 10
    Schaltungsanordnung
    11
    Hochdruckgasentladungslampe
    12
    Wechselrichterhalbbrücke
    13
    Betriebsspannung führende Leitung
    14
    Masse führende Leitung
    15
    Speiseschaltung
    16
    Oberer Schalter
    17
    Unterer Schalter
    18
    Schaltungspunkt
    19
    Lampenkreis
    20
    Drossel
    21
    Spannungsteilerpunkt
    22
    Kapazitiver Spannungsteiler
    23
    Oberer Kondensator
    24
    Unterer Kondensator
    25, 26
    Kondensatoren
    27, 28
    Dioden
    29
    Treiberschaltung
    30
    Pulsbreitenmodulator
    31
    Steuereinheit
    F1
    Impulsfoge erster, niedriger Frequenz
    I1
    Impuls(e) der ersten Impulsfolge F1
    I1a, b ...
    Einzelimpuls der ersten Impulsfolge F1
    F2
    Impulsfoge zweiter, hoher Frequenz
    I2
    Impuls(e) der zweiten Impulsfolge F2
    f2
    Erste Frequenz, z.B. 500Hz ... 40kHz
    S
    Stellgröße/Stromsollwert
    t1
    Ende des ersten Impulses der Impulsfolge F1
    t2
    Ende des zweiten Impulses der Impulsfolge F1
    t0
    Zeitspanne innerhalb der Impulse der ersten Folge F1

Claims (7)

  1. Schaltungsanordnung (10) zum Betreiben einer Entladungslampe (11), insbesondere einer Hochdruckentladungslampe,
    mit wenigstens einer Wechselrichterhalbbrücke (12), die mit der Gasentladungslampe (11) speisend verbunden ist, um einen Lampenstrom (iL) durch diese zu erzeugen,
    wobei die Gasentladungslampe (11) in einem Lampenzweig (19) mit einem induktiven Drosselbauelement (20) in Reihe angeordnet ist, wobei ein Ende des Lampenzweigs (19) mit der Wechselrichterhalbbrücke (12) verbunden ist,
    wobei ein anderes Ende des Lampenzweigs (19) mit einer Kondensatorhalbbrücke (22) verbunden ist,
    mit einer Steuerschaltung (29, 30, 31) zur Steuerung der Wechselrichterhalbbrücke (12) mit:
    - einer ersten Impulsfolge (F1) einer ersten niedrigen Frequenz (F1) zur Umpolung des Lampenstroms (iL), sowie mit
    - einer zweiten Impulsfolge (F2) einer zweiten, höheren Frequenz (f2) zur Steuerung der Größe des Lampenstroms (iL),
    dadurch gekennzeichnet, dass die Steuerschaltung (29, 30, 31) dazu eingerichtet ist, in zumindest einer Betriebsart nach dem Zünden die zweite Impulsfolge (F2) während eines Impulses (I1a) der ersten Impulsfolge (F1) zu variieren, um die Größe des Lampenstroms (iL) während des Impulses (I1a) der ersten Impulsfolge (F1) gegen Ende des Impulses (I1a) konstant zu halten oder anzuheben.
  2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Steuerschaltung (29, 30, 31) die zweite Impulsfolge (F2) entsprechend eines Stromsollwerts (S) einstellt, der während eines Impulses der ersten Impulsfolge (F1) mindestens einmal vergrößert wird.
  3. Schaltungsanordnung nach Anspruch 2, dadurch gekennzeichnet, dass der Stromsollwert (S) während eines Impulses mehrmals vergrößert wird.
  4. Schaltungsanordnung nach Anspruch 2, dadurch gekennzeichnet, dass der Stromsollwert (S) während jedes Impulses (I1a, Ilb...)der Impulsfolge (F1) von einem Wert ausgehend vergrößert wird.
  5. Schaltungsanordnung nach Anspruch 2, dadurch gekennzeichnet, dass der Stromsollwert (S) in jedem Impuls der Impulsfolge (F1) am Anfang des jeweiligen Impulses einen verminderten Wert aufweist.
  6. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Betriebsart Aufheizbetrieb und/oder leistungsreduzierter Betrieb ist.
  7. Verfahren zum Betreiben einer Schaltungsanordnung (10) für eine Entladungslampe (11), insbesondere eine Hochdruckentladungslampe,
    mit wenigstens einer Wechselrichterhalbbrücke (12), die mit der Gasentladungslampe (11) speisend verbunden ist, um einen Lampenstrom (iL) durch diese zu erzeugen,
    wobei die Gasentladungslampe (11) in einem Lampenzweig (19) mit einem induktiven Drosselbauelement (20) in Reihe angeordnet ist, wobei ein Ende des Lampenzweigs (19) mit der Wechselrichterhalbbrücke (12) verbunden ist,
    wobei ein anderes Ende des Lampenzweigs (19) mit einer Kondensatorhalbbrücke (22) verbunden ist,
    mit einer Steuerschaltung (29, 30, 31), die zur Steuerung der Wechselrichterhalbbrücke (12):
    - eine erste Impulsfolge (F1) einer ersten niedrigen Frequenz (F1) zur Umpolung des Lampenstroms (iL), sowie
    - eine zweite Impulsfolge (F2) einer zweiten, höheren Frequenz (f2) zur Steuerung der Größe des Lampenstroms (iL) erzeugt
    wobei das Verfahren dadurch gekennzeichnet ist, dass die Steuerschaltung (29, 30, 31) in zumindest einer Betriebsart nach dem Zünden die zweite Impulsfolge (F2) während eines Impulses (I1a) der ersten Impulsfolge (F1) variiert, um die Größe des Lampenstroms (iL) während des Impulses (I1a) der ersten Impulsfolge (F1) gegen Ende des Impulses (I1a) konstant zu halten oder anzuheben.
EP20110157208 2011-03-07 2011-03-07 Vorschaltgerät für Hochdruckentladungslampe Not-in-force EP2498584B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20110157208 EP2498584B1 (de) 2011-03-07 2011-03-07 Vorschaltgerät für Hochdruckentladungslampe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20110157208 EP2498584B1 (de) 2011-03-07 2011-03-07 Vorschaltgerät für Hochdruckentladungslampe

Publications (2)

Publication Number Publication Date
EP2498584A1 EP2498584A1 (de) 2012-09-12
EP2498584B1 true EP2498584B1 (de) 2013-09-25

Family

ID=44281126

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110157208 Not-in-force EP2498584B1 (de) 2011-03-07 2011-03-07 Vorschaltgerät für Hochdruckentladungslampe

Country Status (1)

Country Link
EP (1) EP2498584B1 (de)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4170747A (en) 1978-09-22 1979-10-09 Esquire, Inc. Fixed frequency, variable duty cycle, square wave dimmer for high intensity gaseous discharge lamp
US6437515B1 (en) * 2000-01-18 2002-08-20 Matsushita Electric Works, Ltd. Discharge lamp lighting device of high startability with high pulse voltage
DE102006007754A1 (de) 2006-02-20 2007-08-23 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung und Verfahren zum Betreiben einer Hochdruckentladungslampe

Also Published As

Publication number Publication date
EP2498584A1 (de) 2012-09-12

Similar Documents

Publication Publication Date Title
EP1935213B1 (de) Verfahren zum betrieb einer induktionsheizeinrichtung
EP1114571B1 (de) Schaltungsanordnung zum betreiben von gasentladungslampen
DE102006061357B4 (de) Verfahren zur Ansteuerung einer Leuchtstofflampe
DE3623306A1 (de) Entladungslampen-treiber
DE112006001948B4 (de) DC/DC-Umrichtervorrichtung und Entladelampen-Leuchtvorrichtung
EP2089961A1 (de) Selbstschwingender dc-dc-wandler und verfahren dazu
DE20221985U1 (de) Elektronisches Vorschaltgerät für Gasentladungslampe
EP2000010B1 (de) Ausschaltzeitregelung eines inverters zum betreiben einer lampe
DE102005034505A1 (de) Schaltungsanorndung mit transformatorlosem Wandler mit Drossel für den gepulsten Betrieb von dielektrischen Barriere-Entladungslampen
EP2837265B1 (de) Wandler für ein leuchtmittel, led-konverter und verfahren zum betreiben eines llc-resonanzwandlers
DE102004037388A1 (de) Verfahren zur Detektion eines Nicht-Nullspannungsschaltbetriebs eines Vorschaltgeräts für Leuchtstofflampen und Vorschaltgerät
DE4441140A1 (de) Dimmschaltung für Leuchtstofflampen
DE19964551B4 (de) Schaltungsanordnung zum Betreiben von Gasentladungslampen
EP2498584B1 (de) Vorschaltgerät für Hochdruckentladungslampe
EP2124510B1 (de) Verfahren zur Ansteuerung einer Leuchtstofflampe und Lampenvorschaltgerät
DE102008017545A1 (de) Schaltungsanordnung zum Betreiben von HID-Ladungslampen
DE112005000771T5 (de) Entladungslampen-Schaltvorrichtung
EP2263423B1 (de) Schaltungsanordnung zum zünden von hid-gasentladungslampen
EP2389047B1 (de) Schaltungsanordnung und Verfahren für den effizienten Betrieb einer kapazitiven Last
EP3524037B1 (de) Synchroner abwärtswandler zum betreiben von einem oder mehreren leuchtmitteln, dazugehöriges verfahren und betriebsgerät
EP2992738A1 (de) Fehlererkennung für led
EP2837260A1 (de) Wandler für ein leuchtmittel, led-konverter und verfahren zum betrei- ben eines llc-resonanzwandlers
EP2526741B1 (de) Schaltungsanordnung und verfahren zur schnellen kommutierung beim rechteckbetrieb von hochdruckentladungslampen
DE102016223998A1 (de) Synchroner Abwärtswandler zum Betreiben von einem oder mehreren Leuchtmitteln, dazugehöriges Verfahren und Betriebsgerät
AT14041U1 (de) Betriebsschaltung für Leuchtdioden mit Filterelement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20120927

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130606

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 634137

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011001388

Country of ref document: DE

Effective date: 20131121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130925

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131226

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140125

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140319

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011001388

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

26N No opposition filed

Effective date: 20140626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011001388

Country of ref document: DE

Effective date: 20140626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140307

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140307

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150307

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110307

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 634137

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130925

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210430

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011001388

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001