EP2518724B1 - Combiné audio micro/casque comprenant des moyens de débruitage d'un signal de parole proche, notamment pour un système de téléphonie "mains libres" - Google Patents

Combiné audio micro/casque comprenant des moyens de débruitage d'un signal de parole proche, notamment pour un système de téléphonie "mains libres" Download PDF

Info

Publication number
EP2518724B1
EP2518724B1 EP12164777.0A EP12164777A EP2518724B1 EP 2518724 B1 EP2518724 B1 EP 2518724B1 EP 12164777 A EP12164777 A EP 12164777A EP 2518724 B1 EP2518724 B1 EP 2518724B1
Authority
EP
European Patent Office
Prior art keywords
signal
speech
headset
frequency
physiological sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12164777.0A
Other languages
German (de)
English (en)
Other versions
EP2518724A1 (fr
Inventor
Michael Herve
Guillaume Vitte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Parrot SA
Original Assignee
Parrot SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Parrot SA filed Critical Parrot SA
Publication of EP2518724A1 publication Critical patent/EP2518724A1/fr
Application granted granted Critical
Publication of EP2518724B1 publication Critical patent/EP2518724B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0316Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude
    • G10L21/0364Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude for improving intelligibility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L2021/02085Periodic noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02161Number of inputs available containing the signal or the noise to be suppressed
    • G10L2021/02165Two microphones, one receiving mainly the noise signal and the other one mainly the speech signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers

Definitions

  • the invention relates to a headset type microphone / headset combined.
  • Such a headset can in particular be used for communication functions such as "hands-free" telephony functions, in addition to listening to an audio source (music for example) coming from a device on which the headphones are connected. .
  • one of the difficulties is to ensure sufficient intelligibility of the signal picked up by the microphone (“microphone”), that is to say the speech signal of the close speaker (the helmet wearer).
  • microphone that is to say the speech signal of the close speaker (the helmet wearer).
  • the helmet can indeed be used in a noisy environment (metro, busy street, train, etc.), so that the microphone will not only capture the speech of the wearer of the helmet, but also the surrounding noise.
  • the wearer can be protected from these noises by the helmet, especially if it is a model with closed headphones isolating the ear from the outside, and even more if the headset is provided with an "active control of noise".
  • the distant speaker the one at the other end of the communication channel
  • the noise picked up by the microphone coming to overlap and interfere with the speech signal of the nearby speaker (the helmet wearer).
  • the signal collected by the physiological sensor is usable only in the low frequencies.
  • the noises generally encountered in a usual environment street, metro, train .
  • the physiological sensor delivers a signal naturally devoid of noise component noise (which is not possible with a classic microphone).
  • the JP 2000-261534 A discloses such a headset handset comprising the elements set forth in the preamble of claim 1.
  • the EP 0 683 621 A2 for its part, it describes more precisely how to integrate the physiological sensor and the external microphone into one and the same ear canal.
  • the signal collected by the physiological sensor is not strictly speaking speech since speech is not only formed of voiced sounds, it contains components that are not born at the level of the vocal cords: the frequency content is for example much richer with the sound coming from the throat and emitted through the mouth.
  • the internal bone conduction and the crossing of the skin has the effect of filtering certain vocal components, which makes that the signal delivered by the physiological sensor is exploitable only in the lowest part of the spectrum. That is why this signal is supplemented by another signal, delivered by a conventional microphonic sensor, to which it is combined.
  • the general problem of the invention is, in such a context, to deliver to the remote speaker a voice signal representative of the speech transmitted by the near speaker, a signal which is freed from the parasitic components of external noise present in the environment of the close speaker .
  • Another aspect of the invention resides in the ability to efficiently use the signal from the physiological sensor to control various signal processing functions. This signal makes it possible to access new information concerning the content of the speech, which will then be used for the denoising as well as for various auxiliary functions that will be explained below, in particular the calculation of a cutoff frequency of a dynamic filter.
  • the invention proposes a microphone / headset of the type described above as taught by the JP 2000-261534 A , corresponding to the preamble of claim 1, and further comprising the elements of the invention, set forth in the characterizing part of this claim.
  • the subclaims relate to subsidiary, advantageous forms of implementation.
  • the reference 10 generally designates the helmet according to the invention, which comprises two atria 12 joined by a hoop.
  • Each of the atria is preferably constituted by a closed shell 12, housing a sound reproduction transducer, applied around the ear of the user with the interposition of an insulating pad 16 isolating the ear from the outside.
  • This helmet is provided with a physiological sensor 18 for collecting the vibrations produced by a voiced signal emitted by the wearer of the helmet, and which can be picked up at the level of the cheek or the temple.
  • the sensor 18 is preferably an accelerometer integrated in the pad 16 so as to be applied against the cheek or the temple of the user with the closest possible coupling.
  • the physiological sensor may in particular be placed on the inside of the skin of the pad so that, once the helmet is in place, the physiological sensor is applied against the cheek or the temple of the user under the effect of a slight pressure resulting from the crushing of the material of the pad, with only the interposition of the skin of the pad.
  • the headset also comprises a microphone array or antenna, for example two omnidirectional microphones 20, 22, placed on the shell of the earpiece 12. These two front and rear mics 22 and 20 are omnidirectional microphones arranged relative to each other. other so that their alignment direction 24 is approximately directed towards the mouth 26 of the helmet wearer.
  • the Figure 2 is a block diagram showing the different blocks and functions implemented by the method of the invention as well as their interactions.
  • the method of the invention is implemented by software means, which can be broken down and schematized by a number of illustrated blocks 30 to 64 Figure 2 . These processes are implemented in the form of appropriate algorithms executed by a microcontroller or a digital signal processor. Although, for the sake of clarity, these various treatments are presented in the form of separate blocks, they implement common elements and correspond in practice to a plurality of functions globally executed by the same software.
  • the reference 28 also designates the sound reproduction transducer placed inside the hull. of the earpiece.
  • These various elements deliver signals that are processed by the block referenced 30, which can be coupled to an interface 32 to the communication circuits (telephone circuits) and receives at the input E the sound intended to be reproduced by the transducer 28 (speech of the remote speaker during a telephone call, music source out periods of telephone communication), and delivers on the output S a signal representative of the speech of the next speaker, that is to say, the wearer of the headset.
  • the signal to be reproduced applied to the input E is a digital signal converted into analog by the converter 34, then amplified by the amplifier 36 for reproduction by the transducer 28.
  • the signal collected by the physiological sensor 18 is a signal mainly comprising components in the lower region of the sound spectrum (typically 0-1500 Hz). As explained above, this signal is naturally non-noisy.
  • the signals collected by the microphones 20, 22 will be used mainly for the high spectrum (above 1500 Hz), but these signals are strongly noisy and it will be essential to carry out a strong denoising treatment to eliminate the components of parasitic noise, the level of which may be such, in certain environments, that they completely obscure the speech signal picked up by these microphones 20, 22.
  • the first stage of the treatment is an anti-echo treatment, applied to the signals of the physiological sensor and the microphones.
  • the sound reproduced by the transducer 28 is captured by the physiological sensor 18 and the microphones 20, 22, generating an echo that disrupts the operation of the system, and must be eliminated upstream.
  • This anti-echo treatment is implemented by the blocks 38, 40 and 42, each of these blocks receiving on a first input the signal emitted by the sensor 18, 20 or else 22 and on a second input the signal reproduced by the transducer. 28 (echo generator signal), and outputs, for further processing, a signal whose echo has been eliminated.
  • the anti-echo treatment is for example carried out by an adaptive algorithm treatment such as that described in FIG. FR 2 792 146 A1 (Parrot SA ), which can be referred to for more details.
  • This is an echo cancellation or AEC technique consisting in dynamically defining a compensation filter modeling the acoustic coupling between the transducer 28 and the physiological sensor 18 (or the microphone 20, or the microphone 22, respectively) by a linear transformation between the signal reproduced by the transducer 28 (that is to say the signal E applied at the input of the blocks 38, 40 or 42) and the echo picked up by the physiological sensor 18 (or the microphone 20 or 22).
  • This transformation defines an adaptive filter which is applied to the reproduced incident signal, and the result of this filtering is subtracted from the signal collected by the physiological sensor 18 (or the microphone 20 or 22), which has the effect of canceling the major part acoustic echo.
  • This modeling is based on the search for a correlation between the signal reproduced by the transducer 28 and the signal collected by the physiological sensor 18 (or the microphone 20 or 22), that is to say on an estimate of the impulse response.
  • the coupling constituted by the body of the earphone 12 supporting these various elements.
  • the processing is performed in particular by an adaptive APA ( Affine Projection Algorithm ) algorithm , which provides fast convergence, well suited to hands-free applications with intermittent speech rate and a level that can quickly vary.
  • adaptive APA Affine Projection Algorithm
  • the iterative algorithm is executed with a variable pitch, as described in FIG. FR 2 792 146 A1 supra.
  • the pitch ⁇ varies continuously according to the energy levels of the signal picked up by the microphone, before and after filtering. This step is increased when the energy of the sensed signal is dominated by the energy of the echo, and, conversely, reduced when the energy of the signal picked up is dominated by the energy of the background noise and / or the speech from the remote speaker.
  • the signal collected by the physiological sensor 18 after the anti-echo processing by the block 38 will be used as the input signal of a block 44 for calculating a cutoff frequency FC.
  • the next step consists in filtering the signals, with a low-pass filter 48 for the signal of the physiological sensor 18 and with a filter high pass 50, 52 for the signals collected by the microphones 20, 22, respectively.
  • These filters 48, 50 and 52 are preferably infinite impulse response type IIR (recursive filter) type digital filters, which have a relatively steep transition between the bandwidth and the rejected band.
  • IIR infinite impulse response type
  • these filters are adaptive filters whose cutoff frequency is variable and determined dynamically by the block 44.
  • the cut-off frequency FC which is preferably the same for the low-pass filter 48 and the high-pass filters 50 and 52, is determined from the signal of the physiological sensor 18 after the anti-echo treatment 38.
  • an algorithm calculates the signal-to-noise ratio for a plurality of frequency bands in a range between, for example, 0 and 2500 Hz (the noise level being given by a calculation of the energy in a higher frequency band, for example between 3000 and 4000 Hz, because it is known that in this zone the signal can only be noise, because of the properties of the component constituting the physiological sensor 18).
  • the cutoff frequency chosen will correspond to the maximum frequency for which the signal / noise ratio exceeds a predetermined threshold, for example 10 dB.
  • the following step consists in operating, by means of block 54, a mix to reconstruct the complete spectrum with, on the one hand, the lower region of the spectrum given by the filtered signal of the physiological sensor 18 and, on the other hand, the top of the spectrum given by the filtered signal of the microphones 20 and 22 after passing through a combiner-phase shifter 56 for operating a denoising in this part of the spectrum.
  • This reconstruction is performed by summing the two signals, which are applied synchronously to the mixing block 54 so as to avoid any deformation.
  • the signal that we want to denoise (that is, the signal from the near speaker located in the upper part of the spectrum, typically the components of frequency greater than 1500 Hz) is derived from the two microphones 20, 22 disposed a few centimeters from each other on the shell 14 of one of the earphones of the helmet. As indicated, these two microphones are arranged relative to each other so that the direction 24 they define is approximately oriented in the direction of the mouth 26 of the helmet wearer. As a result, a speech signal emitted from the mouth will reach the microphone before 20 and then the rear microphone 22 with a delay, and therefore a substantially constant phase shift, while the ambient noise will be picked up without phase shift by the two microphones 20 and 22. (which are omnidirectional microphones), given the distance of sources of parasitic noise compared to the two microphones 20 and 22.
  • phase shifter combiner 56 which comprises a phase-shifter 58 applying a delay ⁇ to the signal of the rear microphone 22 and a combiner 60 for subtracting this delayed signal from the signal from the microphone before 20.
  • a differential network of first-order microphones equivalent to a single virtual microphone whose directivity can be adjusted as a function of the value of ⁇ , with 0 ⁇ ⁇ ⁇ ⁇ A ( ⁇ A being the value corresponding to the natural phase difference between the two microphones 20 and 22, equal to the distance between the two microphones divided by the speed of sound, a delay of about 30 microseconds for a spacing of 1 cm).
  • An appropriate choice of this parameter can be achieved by attenuating about 6 dB on surrounding diffuse noises. For more details on this technique, we can for example refer to:
  • This signal is subjected by the block 62 to a frequency noise reduction.
  • this frequency noise reduction is operated differently in the presence or absence of speech, by evaluating a probability p of absence of speech from the signal collected by the physiological sensor 18.
  • this probability of absence of speech is derived from the information given by the physiological sensor.
  • the signal delivered by this sensor has a very good signal / noise ratio up to the cutoff frequency FC determined by the block 44. But beyond this cutoff frequency the signal / noise ratio is still good, and often better than that of the microphones 20 and 22.
  • the sensor information is exploited by calculating (block 64) the frequency intercorrelation between the combined signal delivered by the mixing block 54 and the signal unfiltered physiological sensor, before filtering by the low-pass filter 48.
  • correlation not f ⁇ intercorr * interCorrelaton ⁇ not - 1 , f + 1 - ⁇ intercorr * smix f ⁇ ⁇ Sacc f ⁇
  • Smix ( f ) and Smix ( f ) being the frequency (complex) vector representations, for the n-frame, respectively of the combined signal delivered by the mixing block 54, and of the signal of the physiological sensor 18.
  • the algorithm searches for frequencies for which there is only noise (situation of absence of speech): on the spectrogram of the signal delivered by the mixing block 54 certain harmonics are embedded in the noise, while they stand out more on the signal of the physiological sensor.
  • the intercorrelation calculation by the formula described above produces a result whose figure 3 shows an example, in the frequency domain.
  • the peaks P 1 , P 2 , P 3 , P 4 , ... of this intercorrelation calculation indicate a strong correlation between the combined signal delivered by the mixing block 54, and the signal of the physiological sensor 18, and the Emergence of these correlated frequencies indicates the likely presence of speech for these frequencies.
  • the value coefficient_normalization makes it possible to regulate the distribution of the probabilities according to the value of intercorrelation, and to obtain values between 0 and 1.
  • the system that has just been described makes it possible to obtain excellent overall performance, typically of the order of 30 to 40 dB of noise reduction on the speech signal of the nearby speaker.
  • This gives the impression to the distant speaker (the one with which the wearer of the headset is in communication ) that his interlocutor (the helmet wearer) is in a quiet room.
  • the low frequency content collected at the cheek or temple by the physiological sensor 18 is different from the low frequency content of the sound emitted by the mouth of the user, as it would be captured by a microphone located a few centimeters from the mouth, or even by the ear of an interlocutor.
  • the use of the physiological sensor and the filtering described above certainly makes it possible to obtain a very good signal in terms of signal-to-noise ratio, but which may present for the interlocutor who hears it a tone a little deaf and unnatural.
  • the equalization can be performed automatically, from the signal delivered by the microphones 20, 22, before filtering.
  • the Figure 4 shows an example, in the frequency domain (thus after Fourier transform) of the ACC signal produced by the physiological sensor 18, with respect to a MIC microphone signal that would be captured a few centimeters from the mouth.
  • differentiated gains G 1 , G 2 , G 3 , G 4 ,... are applied to different frequency bands of the part of the spectrum located in the low frequencies.
  • the algorithm calculates respective Fourier transforms of the two signals, providing a series of frequency coefficients (expressed in dB) NormPhysioFreq_dB (i) and NormMicFreq_dB (i) respectively corresponding to the standard of the ⁇ th Fourier coefficient physiological sensor signal and the standard of the ⁇ th Fourier coefficient of the microphonic signal.
  • DifferenceFreq_dB i NormPhysioFreq _ d ⁇ B i - NormMicFreq _db i .
  • the gain that will be applied will be less than unity (negative in dB); Conversely, if the difference is negative, the gain to be applied will be greater than unity (positive in dB).
  • Gain_dB i ⁇ .

Description

  • L'invention concerne un casque audio du type micro/casque combinés.
  • Un tel casque peut notamment être utilisé pour des fonctions de communication telles que des fonctions de téléphonie "mains libres", en complément de l'écoute d'une source audio (musique par exemple) provenant d'un appareil sur lequel est branché le casque.
  • Dans les fonctions de communication, l'une des difficultés est d'assurer une intelligibilité suffisante du signal capté par le microphone ("micro"), c'est-à-dire le signal de parole du locuteur proche (le porteur du casque). Le casque peut en effet être utilisé dans un environnement bruyant (métro, rue passante, train, etc.), de sorte que le micro captera non seulement la parole du porteur du casque, mais également les bruits parasites environnants.
  • Le porteur peut être protégé de ces bruits par le casque, notamment s'il s'agit d'un modèle à écouteurs fermés isolant l'oreille de l'extérieur, et encore plus si le casque est pourvu d'un "contrôle actif de bruit". En revanche le locuteur distant (celui se trouvant à l'autre bout du canal de communication) souffrira des bruits parasites captés par le micro, venant se superposer et interférer avec le signal de parole du locuteur proche (le porteur du casque).
  • En particulier, certains formants de la parole essentiels à la compréhension de la voix sont souvent noyés dans des composantes de bruit couramment rencontrées dans les environnements habituels, composantes qui sont majoritairement concentrées dans les basses fréquences.
  • Il a été proposé de recueillir certaines vibrations vocales au moyen d'un capteur physiologique appliqué contre la joue ou la tempe du porteur du casque. En effet, lorsqu'une personne émet un son voisé (c'est-à-dire une composante de parole dont la production s'accompagne d'une vibration des cordes vocales), une vibration se propage depuis les cordes vocales jusqu'au pharynx et à la cavité bucco-nasale, où elle est modulée, amplifiée et articulée. La bouche, le voile du palais, le pharynx, les sinus les fosses nasales servent de caisse de résonance ce son voisé et, leurs parois étant élastiques, elles vibrent à leur tour, et ces vibrations sont transmises par conduction osseuse interne et sont perceptibles au niveau de la joue et de la tempe.
  • Ces vibrations vocales au niveau de la joue et de la tempe présentent la caractéristique d'être, par nature, très peu corrompues par le bruit environnant : en effet, en présence de bruits extérieurs, les tissus de la joue et de la tempe ne vibrent quasiment pas et ceci, quelle que soit la composition spectrale du bruit extérieur.
  • Par ailleurs, en raison du filtrage engendré par la propagation des vibrations jusqu'à la tempe, le signal recueilli par le capteur physiologique est utilisable uniquement dans les basses fréquences. Mais comme les bruits généralement rencontrés dans un environnement habituel (rue, métro, train ...) sont majoritairement concentrés dans les basses fréquences, le capteur physiologique délivre un signal naturellement dépourvu de composante parasite de bruit (ce qui n'est pas possible avec un micro classique).
  • Le JP 2000-261534 A décrit un tel combiné micro-casque comprenant les éléments énoncés dans le préambule de la revendication 1.
  • Le EP 0 683 621 A2 , quant à lui, décrit plus précisément la manière d'intégrer à une même oreillette intra-auriculaire à la fois le capteur physiologique et le microphone extérieur.
  • Bien sûr, le signal recueilli par le capteur physiologique n'est pas à proprement parler de la parole puisque la parole n'est pas seulement formée de sons voisés, elle contient des composantes qui ne naissent pas au niveau des cordes vocales : le contenu fréquentiel est par exemple beaucoup plus riche avec le son provenant de la gorge et émis par la bouche. De plus, la conduction osseuse interne et la traversée de la peau a pour effet de filtrer certaines composantes vocales, qui fait que le signal délivré par le capteur physiologique n'est exploitable que dans la partie la plus basse du spectre. C'est pour cela que ce signal est complété par un autre signal, délivré par un capteur microphonique conventionnel, auquel il est combiné.
  • Le problème général de l'invention est, dans un tel contexte, de délivrer au locuteur distant un signal vocal représentatif de la parole émise par le locuteur proche, signal qui soit débarrassé des composantes parasites de bruits extérieurs présents dans l'environnement du locuteur proche.
  • Un aspect important de ce problème est la nécessité de restituer un signal de parole naturel et intelligible, c'est-à-dire non distordu et dont la plage des fréquences utiles ne soit pas amputée par les traitements de combinaison des signaux issus de capteurs exploitant des vibrations qui sont de nature différente et transmises par des voies différentes.
  • Un autre aspect de l'invention réside dans la possibilité d'utiliser de façon efficace le signal issu du capteur physiologique pour contrôler diverses fonctions de traitement du signal. Ce signal permet en effet d'accéder à de nouvelles informations concernant le contenu de la parole, qui seront ensuite utilisées pour le débruitage ainsi que pour diverses fonctions auxiliaires que l'on exposera plus bas, notamment le calcul d'une fréquence de coupure d'un filtre dynamique.
  • Pour résoudre ces problèmes, l'invention propose un combiné micro/casque du type exposé ci-dessus tel qu'enseigné par le JP 2000-261534 A , correspondant au préambule de la revendication 1, et comprenant en outre les éléments propres à l'invention, énoncés dans la partie caractérisante de cette revendication. Les sous-revendications visent des formes de mise en oeuvre subsidiaires, avantageuses.
  • On va maintenant décrire un exemple de mise en oeuvre du dispositif de l'invention, en référence aux dessins annexés où les mêmes références numériques désignent d'une figure à l'autre des éléments identiques ou fonctionnellement semblables.
    • La Figure 1 illustre de façon générale le casque de l'invention, posé sur la tête d'un utilisateur.
    • La Figure 2 est un schéma d'ensemble, sous forme de blocs fonctionnels, expliquant la manière dont est réalisé le traitement du signal permettant de délivrer en sortie un signal débruité représentatif de la parole émise par le porteur du casque.
    • La Figure 3 est une représentation spectrale amplitude/fréquence illustrant le calcul d'intercorrélation servant à évaluer une probabilité de présence de parole.
    • La Figure 4 est une représentation spectrale amplitude/fréquence illustrant le traitement final d'égalisation automatique opéré après la réduction de bruit.
  • Sur la Figure 1, la référence 10 désigne de façon générale le casque selon l'invention, qui comporte deux oreillettes 12 réunies par un arceau. Chacune des oreillettes est de préférence constituée d'une coque fermée 12, logeant un transducteur de reproduction sonore, appliquée autour de l'oreille de l'utilisateur avec interposition d'un coussinet isolant 16 isolant l'oreille de l'extérieur.
  • Ce casque est pourvu d'un capteur physiologique 18 permettant de recueillir les vibrations produites par un signal voisé émis par le porteur du casque, et qui peuvent être captées au niveau de la joue ou de la tempe. Le capteur 18 est de préférence un accéléromètre intégré dans le coussinet 16 de manière à venir s'appliquer contre la joue ou la tempe de l'utilisateur avec un couplage le plus étroit possible. Le capteur physiologique peut notamment être placé sur la face intérieure de la peau du coussinet de sorte que, une fois le casque mis en place, le capteur physiologique soit appliqué contre la joue ou la tempe de l'utilisateur sous l'effet une légère pression résultant de l'écrasement du matériau du coussinet, avec seulement interposition de la peau du coussinet.
  • Le casque comporte également un réseau ou antenne de microphones, par exemple deux micros omnidirectionnels 20, 22, placés sur la coque de l'écouteur 12. Ces deux micros avant 20 et arrière 22 sont des micros omnidirectionnels disposés l'un par rapport à l'autre de manière que leur direction d'alignement 24 soit approximativement dirigée vers la bouche 26 du porteur du casque.
  • La Figure 2 est un schéma par blocs montrant les différents blocs et fonctions mis en oeuvre par le procédé de l'invention ainsi que leurs interactions.
  • Le procédé de l'invention est mis en oeuvre par des moyens logiciels, qu'il est possible de décomposer et schématiser par un certain nombre de blocs 30 à 64 illustrés Figure 2. Ces traitements sont mis en oeuvre sous forme d'algorithmes appropriés exécutés par un microcontrôleur ou un processeur numérique de signal. Bien que, pour la clarté de l'exposé, ces divers traitements soient présentés sous forme de blocs distincts, ils mettent en oeuvre des éléments communs et correspondent en pratique à une pluralité de fonctions globalement exécutées par un même logiciel.
  • On retrouve sur cette figure le capteur physiologique 18 et les deux micros omnidirectionnels avant 20 et arrière 22. La référence 28 désigne par ailleurs le transducteur de reproduction sonore placé à l'intérieur de la coque de l'écouteur. Ces divers éléments délivrent des signaux qui font l'objet d'un traitement par le bloc référencé 30, qui peut être couplé à une interface 32 aux circuits de communication (circuits téléphoniques) et reçoit en entrée E le son destiné à être reproduit par le transducteur 28 (parole du locuteur distant pendant une communication téléphonique, source musicale hors des périodes de communication téléphonique), et délivre sur la sortie S un signal représentatif de la parole du locuteur proche, c'est-à-dire du porteur du casque.
  • Le signal à reproduire appliqué sur l'entrée E est un signal numérique converti en analogique par le convertisseur 34, puis amplifié par l'amplificateur 36 pour reproduction par le transducteur 28.
  • On va maintenant décrire la manière dont est produit le signal débruité représentatif de la parole du locuteur proche, à partir des signaux respectifs recueillis par le capteur physiologique 18 et les micros 20 et 22.
  • Le signal recueilli par le capteur physiologique 18 est un signal comprenant principalement des composantes dans la région inférieure du spectre sonore (typiquement 0-1500 Hz). Comme on l'a expliqué plus haut, ce signal est naturellement non bruité.
  • Les signaux recueillis par les micros 20, 22 seront utilisés principalement pour le haut du spectre (au-dessus de 1500 Hz), mais ces signaux sont fortement bruités et il sera indispensable d'opérer un traitement de débruitage fort pour en éliminer les composantes de bruit parasites, dont le niveau peut être tel, dans certains environnements, qu'elles occultent complètement le signal de parole capté par ces micros 20, 22.
  • La première étape du traitement est un traitement anti-écho, appliqué aux signaux du capteur physiologique et des micros.
  • En effet, le son reproduit par le transducteur 28 est capté par le capteur physiologique 18 et les micros 20, 22, générant un écho qui perturbe le fonctionnement du système, et qui doit donc être éliminé en amont.
  • Ce traitement anti-écho est mis en oeuvre par les blocs 38, 40 et 42, chacun de ces blocs recevant sur une première entrée le signal émis par le capteur 18, 20 ou bien 22 et sur une second entrée le signal reproduit par le transducteur 28 (signal générateur d'écho), et délivre en sortie, pour traitement ultérieur, un signal dont l'écho a été éliminé.
  • Le traitement anti-écho est par exemple réalisé par un traitement à algorithme adaptatif tel que celui décrit dans le FR 2 792 146 A1 (Parrot SA ), auquel on pourra se reporter pour plus de détails. Il s'agit d'une technique d'annulation d'écho ou AEC consistant à définir de façon dynamique un filtre de compensation modélisant le couplage acoustique entre le transducteur 28 et le capteur physiologique 18 (ou le micro 20, ou le micro 22, respectivement) par une transformation linéaire entre le signal reproduit par le transducteur 28 (c'est-à-dire le signal E appliqué en entrée des blocs 38, 40 ou 42) et l'écho capté par le capteur physiologique 18 (ou le micro 20 ou 22). Cette transformation définit un filtre adaptatif qui est appliqué au signal incident reproduit, et le résultat de ce filtrage est soustrait du signal recueilli par le capteur physiologique 18 (ou le micro 20 ou 22), ce qui a pour effet d'annuler la majeure partie de l'écho acoustique.
  • Cette modélisation repose sur la recherche d'une corrélation entre le signal reproduit par le transducteur 28 et le signal recueilli par le capteur physiologique 18 (ou le micro 20 ou 22), c'est-à-dire sur une estimation de la réponse impulsionnelle du couplage constituée par le corps de l'écouteur 12 supportant ces divers éléments.
  • Le traitement est notamment opéré par un algorithme de type APA (Affine Projection Algorithm) adaptatif, qui assure une convergence rapide, bien adaptée à des applications de type "mains libres" avec un débit vocal intermittent et un niveau pouvant rapidement varier.
  • Avantageusement, l'algorithme itératif est exécuté avec un pas variable, comme décrit dans le FR 2 792 146 A1 précité. Avec cette technique, le pas µ varie de façon continue en fonction des niveaux d'énergie du signal capté par le micro, avant et après filtrage. Ce pas est accru lorsque l'énergie du signal capté est dominée par l'énergie de l'écho, et, inversement, réduit lorsque l'énergie du signal capté est dominée par l'énergie du bruit de fond et/ou de la parole du locuteur distant.
  • Le signal recueilli par le capteur physiologique 18 après le traitement anti-écho par le bloc 38 sera utilisé comme signal d'entrée d'un bloc 44 de calcul d'une fréquence de coupure FC.
  • L'étape suivante consiste à opérer un filtrage des signaux, avec un filtre passe-bas 48 pour le signal du capteur physiologique 18 et avec un filtre passe-haut 50, 52 pour les signaux recueillis par les micros 20, 22, respectivement.
  • Ces filtres 48, 50 et 52 sont de préférence des filtres numériques du type à réponse impulsionnelle infinie IIR (filtres récursifs), qui présentent une transition relativement abrupte entre la bande passante et la bande rejetée.
  • Avantageusement, ces filtres sont des filtres adaptatifs dont la fréquence de coupure est variable et déterminée dynamiquement par le bloc 44.
  • Ceci permet d'adapter le filtrage aux conditions particulières d'utilisation du casque : voix plus ou moins haute du porteur lorsqu'il parle, couplage plus ou moins étroit entre le capteur physiologique 18 et la joue ou la tempe du porteur, etc. La fréquence de coupure FC, qui est de préférence la même pour le filtre passe-bas 48 et les filtres passe-haut 50 et 52, est déterminée à partir du signal du capteur physiologique 18 après le traitement anti-écho 38. Pour cela, un algorithme calcule le rapport signal/bruit pour plusieurs bandes de fréquences situées dans une plage comprise entre par exemple 0 et 2500 Hz (le niveau de bruit étant donné par un calcul de l'énergie dans une bande de fréquences plus haute, par exemple entre 3000 et 4000 Hz, car l'on sait que dans cette zone le signal ne peut être que du bruit, du fait des propriétés du composant constituant le capteur physiologique 18). La fréquence de coupure choisie correspondra à la fréquence maximale pour laquelle le rapport signal/bruit dépasse un seuil prédéterminé, par exemple 10 dB.
  • L'étape suivante consiste à opérer au moyen du bloc 54 un mixage pour reconstruire le spectre complet avec, d'une part, la région inférieure du spectre donnée par le signal filtré du capteur physiologique 18 et, d'autre part, le haut du spectre donné par le signal filtré des micros 20 et 22 après passage dans un combineur-déphaseur 56 permettant d'opérer un débruitage dans cette partie du spectre. Cette reconstruction est opérée par sommation des deux signaux, qui sont appliqués en synchronisme au bloc de mixage 54 de manière à éviter toute déformation.
  • On va maintenant décrire plus précisément la manière dont est opérée la réduction du bruit par le combineur-déphaseur 56.
  • Le signal que l'on souhaite débruiter (c'est-à-dire le signal du locuteur proche situé dans la partie haute du spectre, typiquement les composantes de fréquence supérieure à 1500 Hz) est issu des deux micros 20, 22 disposés à quelques centimètres l'un de l'autre sur la coque 14 de l'un des écouteurs du casque. Comme on l'a indiqué, ces deux micros sont disposés l'un par rapport à l'autre de manière que la direction 24 qu'ils définissent soit approximativement orientée dans la direction de la bouche 26 du porteur du casque. De ce fait, un signal de parole émis depuis la bouche atteindra le micro avant 20 puis le micro arrière 22 avec un retard, et donc un déphasage, sensiblement constant, tandis que les bruits ambiants seront captés sans déphasage par les deux micros 20 et 22 (qui sont des micros omnidirectionnels), compte tenu de l'éloignement des sources de bruits parasites par rapport aux deux micros 20 et 22.
  • La réduction de bruit sur les signaux captés par les micros 20 et 22 n'est pas opérée dans le domaine fréquentiel (comme cela est souvent le cas), mais dans le domaine temporel, au moyen du combineur-déphaseur 56 qui comprend un déphaseur 58 appliquant un retard τ au signal du micro arrière 22 et un combineur 60 permettant de soustraire ce signal retardé au signal issu du micro avant 20.
  • On constitue ainsi un réseau différentiel de micros du premier ordre, équivalent à un micro virtuel unique dont la directivité pourra être ajustée en fonction de la valeur de τ, avec 0 ≤ τ ≤ τAA étant la valeur correspondant au déphasage naturel entre les deux micros 20 et 22, égale à la distance entre les deux micros divisée par la vitesse du son, soit un retard d'environ 30 µs pour un espacement de 1 cm). Une valeur τ = τA donnera un diagramme de directivité cardioïde, une valeur τ = τA /3 un diagramme hypercardioïde, et une valeur τ = 0 un diagramme dipolaire. On peut obtenir par un choix approprié de ce paramètre une atténuation d'environ 6 dB sur des bruits diffus environnants. Pour plus de détails sur cette technique, on pourra par exemple se référer à :
  • M. Buck et M. Rößler, First Order Differential Microphones Arrays for Automotive Applications, Proceedings of the 7th International Workshop on Acoustic echo and Noise control (IWAENC), Darmstadt, 10-13 Sept 2001.
    On va maintenant décrire les traitements opérés sur le signal global (haut et bas du spectre) délivré en sortie des moyens de mixage 54.
  • Ce signal est soumis par le bloc 62 à une réduction de bruit fréquentielle.
  • De préférence, cette réduction de bruit fréquentielle est opérée de façon différente en présence ou en l'absence de parole, en évaluant une probabilité p d'absence de parole à partir du signal recueilli par le capteur physiologique 18.
  • Avantageusement, cette probabilité d'absence de parole est dérivée de l'information donnée par le capteur physiologique.
  • En effet, comme on l'a indiqué plus haut, le signal délivré par ce capteur présente un très bon rapport signal/bruit jusqu'à la fréquence de coupure FC déterminée par le bloc 44. Mais au-delà de cette fréquence de coupure le rapport signal/bruit reste encore bon, et souvent meilleur que celui des micros 20 et 22. L'information du capteur est exploitée en calculant (bloc 64) l'intercorrélation fréquentielle entre le signal combiné délivré par le bloc de mixage 54 et le signal non filtré du capteur physiologique, avant filtrage par le filtre passe-bas 48.
  • Ainsi, pour chaque fréquence f comprise par exemple entre FC et 4000 Hz, et pour chaque trame n, le calcul suivant est réalisé par le bloc 64 : interCorrelation n f = α intercorr * interCorrelaton n - 1 , f + 1 - α intercorr * Smix f Sacc f
    Figure imgb0001
  • Smix(f) et Smix(f) étant les représentations vectorielles (complexes) fréquentielles, pour la trame n, respectivement du signal combiné délivré par le bloc de mixage 54, et du signal du capteur physiologique 18.
  • Pour évaluer une probabilité d'absence de parole, l'algorithme recherche les fréquences pour lesquelles il n'y a que du bruit (situation d'absence de parole) : sur le spectrogramme du signal délivré par le bloc de mixage 54 certaines harmoniques sont noyées dans le bruit, alors qu'elles ressortent plus sur le signal du capteur physiologique.
  • Le calcul d'intercorrélation par la formule décrite ci-dessus produit un résultat dont la figure 3 montre un exemple, dans le domaine fréquentiel. Les pics P1, P2, P3, P4, ... de ce calcul d'intercorrélation indiquent une forte corrélation entre le signal combiné délivré par le bloc de mixage 54, et le signal du capteur physiologique 18, et l'émergence de ces fréquences corrélées indique la présence probable de parole pour ces fréquences.
  • Pour obtenir une probabilité d'absence de parole (bloc 66), on considère la valeur complémentaire : AbsProba n f = 1 - InterCorrelation n f / coefficient_normalisation
    Figure imgb0002
  • La valeur coefficient_normalisation permet de régler la répartition des probabilités en fonction de la valeur de l'intercorrélation, et obtenir des valeurs entre 0 et 1.
  • La probabilité p d'absence de parole ainsi obtenue est appliquée au bloc 62 qui opère sur le signal délivré par le bloc de mixage 54 une réduction de bruit fréquentielle de façon sélective par rapport à un seuil donné de probabilité d'absence de parole :
    • en l'absence probable de parole, la réduction de bruit est appliquée sur toutes les bandes de fréquences, c'est-à-dire que le gain maximal de réduction est appliqué de la même façon sur toutes les composantes du signal (puisque dans ce cas celui-ci ne contient vraisemblablement pas de composante utile) ;
    • en revanche, en présence probable de parole, la réduction de bruit est une réduction de bruit fréquentielle appliquée sélectivement selon les différentes bandes de fréquences en fonction de la valeur p de la probabilité de présence de parole, selon un schéma classique, par exemple comparable à celui décrit dans le WO 2007/099222 A1 (Parrot ).
  • Le système que l'on vient de décrire permet d'obtenir d'excellentes performances globales, typiquement de l'ordre de 30 à 40 dB de réduction de bruit sur le signal de parole du locuteur proche. Grâce à l'élimination de tous les bruits parasites, notamment les plus gênants (train, métro, etc.) qui sont concentrés dans les basses fréquences, cela donne l'impression au locuteur distant (celui avec lequel le porteur du casque est en communication) que son interlocuteur (le porteur du casque) se trouve dans une pièce silencieuse.
  • Enfin, il est avantageux d'appliquer au signal une égalisation finale (bloc 68), notamment sur le bas du spectre.
  • En effet, le contenu basse fréquence recueilli au niveau de la joue ou de la tempe par le capteur physiologique 18 est différent du contenu basse fréquence du son émis par la bouche de l'utilisateur, tel qu'il serait capté par un micro situé à quelques centimètres de la bouche, ou même par l'oreille d'un interlocuteur. L'utilisation du capteur physiologique et le filtrage que l'on a décrit plus haut permet certes d'obtenir un signal très bon en termes de rapport signal/bruit, mais qui peut présenter pour l'interlocuteur qui l'entend un timbre un peu sourd et peu naturel.
  • Pour pallier cette difficulté, il est avantageux d'opérer une égalisation du signal de sortie avec des gains ajustés sélectivement sur différentes bandes de fréquences dans la région du spectre correspondant au signal recueilli par le capteur physiologique. L'égalisation peut être réalisée de manière automatique, à partir du signal délivré par les micros 20, 22, avant filtrage.
  • La Figure 4 montre un exemple, dans le domaine fréquentiel (donc après transformée de Fourier) du signal ACC produit par le capteur physiologique 18, par rapport à un signal microphonique MIC qui serait capté à quelques centimètres de la bouche.
  • De manière à optimiser le rendu du signal recueilli par le capteur physiologique, des gains différenciés G1, G2, G3, G4, ... sont appliqués à différentes bandes de fréquences de la partie du spectre située dans les basses fréquences.
  • Ces gains sont évalués par comparaison des signaux captés, dans une bande de fréquences commune, à la fois par le capteur physiologique 18 et par les micros 20 et/ou 22.
  • Plus précisément, l'algorithme calcule les transformées de Fourier respectives de ces deux signaux, donnant une série de coefficients fréquentiels (exprimés en dB) NormPhysioFreq_dB(i) et NormMicFreq_dB(i), correspondant respectivement à la norme du ¡ ième coefficient de Fourier du signal du capteur physiologique et à la norme du ¡ ième coefficient Fourier du signal microphonique.
  • Pour chaque coefficient fréquentiel de rang i, si la différence : DifferenceFreq_dB i = NormPhysioFreq _ d B i - NormMicFreq _dB i .
    Figure imgb0003

    est positive, le gain qui sera appliqué sera inférieur à l'unité (négatif en dB) ; réciproquement si la différence est négative le gain à appliquer sera supérieur à l'unité (positif en dB).
  • Si le gain était appliqué tel quel, les différences n'étant pas exactement constantes d'une trame à une autre, notamment lorsqu'il ne s'agit pas de sons voisés, il y aurait des variations importantes d'égalisation dans le timbre. Pour éviter ces variations, l'algorithme opère un lissage de la différence, qui permet d'affiner l'égalisation : Gain_dB i = λ . Gain_dB i - 1 - λ DifferenceFreq_dB i .
    Figure imgb0004
  • Plus le coefficient λ sera proche de 1, moins l'information de la trame courante sera prise en compte pour le calcul du gain du i ième coefficient. Inversement, plus le coefficient λ sera proche de 0, plus l'information instantanée sera prise en compte. En pratique, pour que le lissage soit efficace, on prendra une valeur λ proche de 1, par exemple λ = 0,99. Le gain appliqué sur chaque bande de fréquences du signal issu du capteur physiologique donnera, pour la i ième fréquence modifiée : NormPhysioFreq_dB_corrigée i = NormPhysioFreq_dB i + Gain_dB i
    Figure imgb0005
  • C'est cette norme qui sera utilisée par l'algorithme d'égalisation.
  • L'application de gains différenciés permet de rendre plus naturel le signal de parole dans le bas du spectre. Une étude subjective a montré que, dans un environnement silencieux et lorsqu'une telle égalisation est appliquée, la différence entre un signal microphonique de référence et le signal produit par le capteur physiologique dans le bas du spectre est pratiquement imperceptible.

Claims (7)

  1. Un casque audio (10) du type combiné micro/casque, comprenant :
    - au moins un écouteur (12) comportant un transducteur (28) de reproduction sonore d'un signal audio ;
    - un capteur physiologique (18), apte à capter des vibrations vocales non acoustiques transmises par conduction osseuse interne, ce capteur physiologique délivrant un premier signal de parole ;
    - un ensemble microphonique, comprenant deux microphones (20, 22) placé sur une coque (14) de l'écouteur (12) et aptes à capter les vibrations vocales acoustiques transmises par voie aérienne depuis la bouche du porteur du casque, cet ensemble microphonique délivrant un second signal de parole ;
    - des moyens de mixage (54), pour combiner le premier signal de parole et le second signal de parole, et donner en sortie un troisième signal de parole représentatif de la parole émise par le porteur du casque ; et
    des moyens (56) de réduction de bruit du second signal de parole, aptes à opérer un débruitage du signal de parole proche émis par le porteur du casque ;
    - des moyens (48) de filtrage passe-bas du premier signal de parole avant combinaison par les moyens de mixage, et/ou des moyens (50, 52) de filtrage passe-haut du second signal de parole avant débruitage et combinaison par les moyens de mixage,
    caractérisé en ce que :
    - le casque comprend deux desdits écouteurs (12), comportant chacun un transducteur de reproduction sonore du signal audio (28) ;
    - le capteur physiologique (18) est incorporé à un coussinet circumaural (16) d'une coque (14) de l'un des écouteurs et il est apte à venir en contact avec la joue ou la tempe du porteur du casque pour y être couplé ;
    - les deux microphones (20, 22) sont alignés en un réseau linéaire suivant une direction principale (24) dirigée vers la bouche (26) du porteur du casque ;
    - les moyens (56) de réduction de bruit du second signal de parole sont des moyens de réduction de bruit non fréquentielle, comprenant un combineur apte à appliquer un retard au signal délivré par l'un des microphones et à soustraire ce signal retardé du signal délivré par l'autre microphone ;
    - les moyens de filtrage passe-bas et/ou passe-haut (48, 50, 52) comprennent un filtre à fréquence de coupure ajustable ; et
    - il est en outre prévu des moyens (44) de calcul de la fréquence de coupure, opérant en fonction du signal délivré par le capteur physiologique, et comprenant des moyens d'analyse du contenu spectral du signal délivré par le capteur physiologique, aptes à déterminer la fréquence de coupure en fonction des niveaux relatifs du rapport signal/bruit évalué dans une pluralité de bandes de fréquences distinctes du signal délivré par le capteur physiologique.
  2. Le casque audio de la revendication 1, comprenant en outre :
    - des moyens (62) de débruitage du troisième signal de parole délivré par les moyens de mixage, opérant par réduction de bruit fréquentielle.
  3. Le casque audio de la revendication 2, comprenant en outre des moyens recevant en entrée, et opérant une intercorrélation entre, ledit premier et ledit troisième signal de parole, et délivrant en sortie un signal de probabilité de présence de parole fonction du résultat de ladite intercorrélation.
  4. Le casque audio de la revendication 3, dans lequel les moyens (62) de débruitage du troisième signal de parole reçoivent en entrée ledit signal de probabilité de présence de parole et sont aptes à, sélectivement :
    i) opérer une réduction de bruit différenciée selon les bandes de fréquences en fonction de la valeur dudit signal de probabilité de présence de parole, et
    ii) opérer une réduction de bruit maximale sur toutes les bandes de fréquences en l'absence de parole.
  5. Le casque audio de la revendication 1, comprenant en outre :
    - des moyens (64) de post-traitement, aptes à opérer une égalisation sélective par bandes de fréquences dans la partie du spectre correspondant au signal recueilli par le capteur physiologique.
  6. Le casque audio de la revendication 5, dans lequel les moyens de post-traitement sont aptes à déterminer un gain d'égalisation pour chacune desdites bandes de fréquences, ce gain étant calculé à partir des coefficients fréquentiels respectifs des signaux délivrés par le(s) microphones et des signaux délivrés par le capteur physiologique, considérés dans le domaine fréquentiel.
  7. Le casque audio de la revendication 6, dans lequel les moyens de post-traitement sont en outre aptes à opérer un lissage sur une pluralité des trames successives de signal dudit gain d'égalisation calculé.
EP12164777.0A 2011-04-26 2012-04-19 Combiné audio micro/casque comprenant des moyens de débruitage d'un signal de parole proche, notamment pour un système de téléphonie "mains libres" Not-in-force EP2518724B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1153572A FR2974655B1 (fr) 2011-04-26 2011-04-26 Combine audio micro/casque comprenant des moyens de debruitage d'un signal de parole proche, notamment pour un systeme de telephonie "mains libres".

Publications (2)

Publication Number Publication Date
EP2518724A1 EP2518724A1 (fr) 2012-10-31
EP2518724B1 true EP2518724B1 (fr) 2013-10-02

Family

ID=45939241

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12164777.0A Not-in-force EP2518724B1 (fr) 2011-04-26 2012-04-19 Combiné audio micro/casque comprenant des moyens de débruitage d'un signal de parole proche, notamment pour un système de téléphonie "mains libres"

Country Status (5)

Country Link
US (1) US8751224B2 (fr)
EP (1) EP2518724B1 (fr)
JP (1) JP6017825B2 (fr)
CN (1) CN102761643B (fr)
FR (1) FR2974655B1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105100990A (zh) * 2014-05-16 2015-11-25 鹦鹉股份有限公司 防止反馈话筒信号的饱和效应的anc噪声有源控制音频头戴组件
CN110265056A (zh) * 2019-06-11 2019-09-20 安克创新科技股份有限公司 音源的控制方法以及扬声设备、装置

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9247346B2 (en) 2007-12-07 2016-01-26 Northern Illinois Research Foundation Apparatus, system and method for noise cancellation and communication for incubators and related devices
US9135915B1 (en) * 2012-07-26 2015-09-15 Google Inc. Augmenting speech segmentation and recognition using head-mounted vibration and/or motion sensors
US9704486B2 (en) * 2012-12-11 2017-07-11 Amazon Technologies, Inc. Speech recognition power management
CN103208291A (zh) * 2013-03-08 2013-07-17 华南理工大学 一种可用于强噪声环境的语音增强方法及装置
US9560444B2 (en) * 2013-03-13 2017-01-31 Cisco Technology, Inc. Kinetic event detection in microphones
JP6123503B2 (ja) * 2013-06-07 2017-05-10 富士通株式会社 音声補正装置、音声補正プログラム、および、音声補正方法
CN104254049B (zh) 2013-06-28 2018-12-21 哈曼国际工业有限公司 头戴式耳机响应测量和均衡
DE102013216133A1 (de) * 2013-08-14 2015-02-19 Sennheiser Electronic Gmbh & Co. Kg Hörer oder Headset
US9180055B2 (en) * 2013-10-25 2015-11-10 Harman International Industries, Incorporated Electronic hearing protector with quadrant sound localization
US20150118960A1 (en) * 2013-10-28 2015-04-30 Aliphcom Wearable communication device
US9036844B1 (en) 2013-11-10 2015-05-19 Avraham Suhami Hearing devices based on the plasticity of the brain
EP2882203A1 (fr) 2013-12-06 2015-06-10 Oticon A/s Dispositif d'aide auditive pour communication mains libres
FR3019422B1 (fr) * 2014-03-25 2017-07-21 Elno Appareil acoustique comprenant au moins un microphone electroacoustique, un microphone osteophonique et des moyens de calcul d'un signal corrige, et equipement de tete associe
EP3186976B1 (fr) 2014-08-29 2020-06-10 Harman International Industries, Incorporated Casque à réduction de bruit à auto-étalonnage
US9942848B2 (en) * 2014-12-05 2018-04-10 Silicon Laboratories Inc. Bi-directional communications in a wearable monitor
CN104486286B (zh) * 2015-01-19 2018-01-05 武汉邮电科学研究院 一种连续子载波ofdma系统的上行帧同步方法
US9905216B2 (en) 2015-03-13 2018-02-27 Bose Corporation Voice sensing using multiple microphones
US9847093B2 (en) * 2015-06-19 2017-12-19 Samsung Electronics Co., Ltd. Method and apparatus for processing speech signal
US20160379661A1 (en) * 2015-06-26 2016-12-29 Intel IP Corporation Noise reduction for electronic devices
US9633672B1 (en) * 2015-10-29 2017-04-25 Blackberry Limited Method and device for suppressing ambient noise in a speech signal generated at a microphone of the device
FR3044197A1 (fr) 2015-11-19 2017-05-26 Parrot Casque audio a controle actif de bruit, controle anti-occlusion et annulation de l'attenuation passive, en fonction de la presence ou de l'absence d'une activite vocale de l'utilisateur de casque.
GB2552178A (en) * 2016-07-12 2018-01-17 Samsung Electronics Co Ltd Noise suppressor
CN106211012B (zh) * 2016-07-15 2019-11-29 成都定为电子技术有限公司 一种耳机时频响应的测量与校正系统及其方法
JP6634354B2 (ja) * 2016-07-20 2020-01-22 ホシデン株式会社 緊急通報システム用ハンズフリー通話装置
JP2020502607A (ja) * 2016-09-14 2020-01-23 ソニックセンソリー、インコーポレイテッド 同期化を伴うマルチデバイスオーディオストリーミングシステム
WO2018083511A1 (fr) * 2016-11-03 2018-05-11 北京金锐德路科技有限公司 Appareil et procédé de lecture audio
US10311889B2 (en) * 2017-03-20 2019-06-04 Bose Corporation Audio signal processing for noise reduction
SG11201909878XA (en) * 2017-04-23 2019-11-28 Audio Zoom Pte Ltd Transducer apparatus for high speech intelligibility in noisy environments
US10341759B2 (en) * 2017-05-26 2019-07-02 Apple Inc. System and method of wind and noise reduction for a headphone
CN107180627B (zh) * 2017-06-22 2020-10-09 潍坊歌尔微电子有限公司 去除噪声的方法和装置
US10706868B2 (en) 2017-09-06 2020-07-07 Realwear, Inc. Multi-mode noise cancellation for voice detection
US10764668B2 (en) 2017-09-07 2020-09-01 Lightspeed Aviation, Inc. Sensor mount and circumaural headset or headphones with adjustable sensor
US10701470B2 (en) 2017-09-07 2020-06-30 Light Speed Aviation, Inc. Circumaural headset or headphones with adjustable biometric sensor
CN109729463A (zh) * 2017-10-27 2019-05-07 北京金锐德路科技有限公司 用于脖戴式语音交互耳机的声麦骨麦复合收音装置
JP7194912B2 (ja) * 2017-10-30 2022-12-23 パナソニックIpマネジメント株式会社 ヘッドセット
CN107886967B (zh) * 2017-11-18 2018-11-13 中国人民解放军陆军工程大学 一种深度双向门递归神经网络的骨导语音增强方法
US10438605B1 (en) * 2018-03-19 2019-10-08 Bose Corporation Echo control in binaural adaptive noise cancellation systems in headsets
CN110931027A (zh) * 2018-09-18 2020-03-27 北京三星通信技术研究有限公司 音频处理方法、装置、电子设备及计算机可读存储介质
CN109413539A (zh) * 2018-12-25 2019-03-01 珠海蓝宝石声学设备有限公司 一种耳机及其调节装置
EP3737115A1 (fr) * 2019-05-06 2020-11-11 GN Hearing A/S Appareil auditif avec capteur de conduction osseuse
CN110121129B (zh) * 2019-06-20 2021-04-20 歌尔股份有限公司 耳机的麦克风阵列降噪方法、装置、耳机及tws耳机
EP4005226A4 (fr) 2019-09-12 2022-08-17 Shenzhen Shokz Co., Ltd. Systèmes et procédés de génération de signaux audio
WO2021068120A1 (fr) * 2019-10-09 2021-04-15 大象声科(深圳)科技有限公司 Procédé d'extraction de parole à apprentissage profond et réduction de bruit qui fusionne des signaux d'un capteur de vibrations osseuses et d'un microphone
TWI735986B (zh) * 2019-10-24 2021-08-11 瑞昱半導體股份有限公司 收音裝置及方法
CN113038318B (zh) * 2019-12-25 2022-06-07 荣耀终端有限公司 一种语音信号处理方法及装置
TWI745845B (zh) * 2020-01-31 2021-11-11 美律實業股份有限公司 耳機及耳機組
KR20220017080A (ko) * 2020-08-04 2022-02-11 삼성전자주식회사 음성 신호를 처리하는 방법 및 이를 이용한 장치
CN111935573B (zh) * 2020-08-11 2022-06-14 Oppo广东移动通信有限公司 音频增强方法、装置、存储介质及可穿戴设备
CN111954143B (zh) * 2020-08-29 2021-12-24 深圳市韶音科技有限公司 一种获取振动传递函数的方法和系统
US20230360662A1 (en) * 2020-09-15 2023-11-09 Dolby Laboratories Licensing Corporation Method and device for processing a binaural recording
US11259119B1 (en) 2020-10-06 2022-02-22 Qualcomm Incorporated Active self-voice naturalization using a bone conduction sensor
US11337000B1 (en) * 2020-10-23 2022-05-17 Knowles Electronics, Llc Wearable audio device having improved output
JP7467317B2 (ja) * 2020-11-12 2024-04-15 株式会社東芝 音響検査装置及び音響検査方法
US20230050954A1 (en) * 2021-08-13 2023-02-16 Meta Platforms Technologies, Llc Contact and acoustic microphones for voice wake and voice processing for ar/vr applications
US11943601B2 (en) 2021-08-13 2024-03-26 Meta Platforms Technologies, Llc Audio beam steering, tracking and audio effects for AR/VR applications
US20230253002A1 (en) * 2022-02-08 2023-08-10 Analog Devices International Unlimited Company Audio signal processing method and system for noise mitigation of a voice signal measured by air and bone conduction sensors
CN114333883B (zh) * 2022-03-12 2022-05-31 广州思正电子股份有限公司 一种头戴式智能语音识别装置
US20230326474A1 (en) * 2022-04-06 2023-10-12 Analog Devices International Unlimited Company Audio signal processing method and system for noise mitigation of a voice signal measured by a bone conduction sensor, a feedback sensor and a feedforward sensor

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394918A (en) * 1977-01-28 1978-08-19 Masahisa Ikegami Combtned mtcrophone
DE69527731T2 (de) * 1994-05-18 2003-04-03 Nippon Telegraph & Telephone Sender-Empfänger mit einem akustischen Wandler vom Ohrpassstück-Typ
JP2835009B2 (ja) * 1995-02-03 1998-12-14 岩崎通信機株式会社 骨導気導複合型イヤーマイクロホン装置
JPH08223677A (ja) * 1995-02-15 1996-08-30 Nippon Telegr & Teleph Corp <Ntt> 送話器
JPH11265199A (ja) * 1998-03-18 1999-09-28 Nippon Telegr & Teleph Corp <Ntt> 送話器
WO2000021194A1 (fr) * 1998-10-08 2000-04-13 Resound Corporation Systeme de transmission de la voix a capteurs jumeles
JP2000261534A (ja) * 1999-03-10 2000-09-22 Nippon Telegr & Teleph Corp <Ntt> 送受話器
FR2792146B1 (fr) 1999-04-07 2001-05-25 Parrot Sa Procede de suppression de l'echo acoustique d'un signal audio, notamment dans le signal capte par un microphone
JP2002125298A (ja) * 2000-10-13 2002-04-26 Yamaha Corp マイク装置およびイヤホンマイク装置
JP2003264883A (ja) * 2002-03-08 2003-09-19 Denso Corp 音声処理装置および音声処理方法
WO2004034734A1 (fr) * 2002-10-08 2004-04-22 Nec Corporation Dispositif reseau et terminal portatif
CN1701528A (zh) * 2003-07-17 2005-11-23 松下电器产业株式会社 通话装置
US7383181B2 (en) * 2003-07-29 2008-06-03 Microsoft Corporation Multi-sensory speech detection system
US7492889B2 (en) * 2004-04-23 2009-02-17 Acoustic Technologies, Inc. Noise suppression based on bark band wiener filtering and modified doblinger noise estimate
US7813923B2 (en) * 2005-10-14 2010-10-12 Microsoft Corporation Calibration based beamforming, non-linear adaptive filtering, and multi-sensor headset
US7930178B2 (en) * 2005-12-23 2011-04-19 Microsoft Corporation Speech modeling and enhancement based on magnitude-normalized spectra
FR2898209B1 (fr) 2006-03-01 2008-12-12 Parrot Sa Procede de debruitage d'un signal audio
JP2007264132A (ja) * 2006-03-27 2007-10-11 Toshiba Corp 音声検出装置及びその方法
WO2009141828A2 (fr) * 2008-05-22 2009-11-26 Bone Tone Communications Ltd. Procédé et système de traitement de signaux
JP5499633B2 (ja) * 2009-10-28 2014-05-21 ソニー株式会社 再生装置、ヘッドホン及び再生方法
FR2976111B1 (fr) * 2011-06-01 2013-07-05 Parrot Equipement audio comprenant des moyens de debruitage d'un signal de parole par filtrage a delai fractionnaire, notamment pour un systeme de telephonie "mains libres"
US9020168B2 (en) * 2011-08-30 2015-04-28 Nokia Corporation Apparatus and method for audio delivery with different sound conduction transducers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105100990A (zh) * 2014-05-16 2015-11-25 鹦鹉股份有限公司 防止反馈话筒信号的饱和效应的anc噪声有源控制音频头戴组件
CN110265056A (zh) * 2019-06-11 2019-09-20 安克创新科技股份有限公司 音源的控制方法以及扬声设备、装置
CN110265056B (zh) * 2019-06-11 2021-09-17 安克创新科技股份有限公司 音源的控制方法以及扬声设备、装置

Also Published As

Publication number Publication date
EP2518724A1 (fr) 2012-10-31
FR2974655B1 (fr) 2013-12-20
US20120278070A1 (en) 2012-11-01
JP2012231468A (ja) 2012-11-22
FR2974655A1 (fr) 2012-11-02
CN102761643A (zh) 2012-10-31
US8751224B2 (en) 2014-06-10
JP6017825B2 (ja) 2016-11-02
CN102761643B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
EP2518724B1 (fr) Combiné audio micro/casque comprenant des moyens de débruitage d&#39;un signal de parole proche, notamment pour un système de téléphonie &#34;mains libres&#34;
EP2530673B1 (fr) Equipement audio comprenant des moyens de débruitage d&#39;un signal de parole par filtrage à délai fractionnaire
CN107533838B (zh) 使用多个麦克风的语音感测
EP3011758B1 (fr) Casque doté d&#39;un réseau de microphones à rayonnement longitudinal, et étalonnage automatique d&#39;un réseau à rayonnement longitudinal
EP2930942A1 (fr) Casque audio à contrôle actif de bruit anc avec réduction du souffle électrique
EP2680262B1 (fr) Procédé de débruitage d&#39;un signal acoustique pour un dispositif audio multi-microphone opérant dans un milieu bruité
EP2945399A1 (fr) Casque audio à contrôle actif de bruit anc avec prévention des effets d&#39;une saturation du signal microphonique feedback
FR2983026A1 (fr) Casque audio a controle actif de bruit de type non-adaptatif, pour l&#39;ecoute d&#39;une source musicale audio et/ou pour des fonctions de telephonie &#34;mains-libres&#34;
JP2010011117A (ja) ノイズ低減音声再生装置およびノイズ低減音声再生方法
FR2595498A1 (fr) Procedes et dispositifs pour attenuer les bruits d&#39;origine externe parvenant au tympan et ameliorer l&#39;intelligibilite des communications electro-acoustiques
WO1998047276A1 (fr) Procede d&#39;annulation d&#39;echo acoustique multi-voies et annuleur d&#39;echo acoustique multi-voies
EP0818121B1 (fr) Systeme de prise de son et d&#39;ecoute pour equipement de tete en ambiance bruitee
EP1518394B1 (fr) Dispositifs de traitement d echo pour systemes de communicat ion de type monovoie ou multivoies
EP3123740B1 (fr) Appareil acoustique comprenant au moins un microphone électroacoustique, un microphone ostéophonique et des moyens de calcul d&#39;un signal corrigé, et équipement de tête associé
FR2857551A1 (fr) Dispositif pour capter ou reproduire des signaux audio
FR2764469A1 (fr) Procede et dispositif de traitement optimise d&#39;un signal perturbateur lors d&#39;une prise de son
WO2017207286A1 (fr) Combine audio micro/casque comprenant des moyens de detection d&#39;activite vocale multiples a classifieur supervise
US11533555B1 (en) Wearable audio device with enhanced voice pick-up
US20230328462A1 (en) Method, device, headphones and computer program for actively suppressing the occlusion effect during the playback of audio signals
JP2009015209A (ja) 音声明瞭度改善システム及び音声明瞭度改善方法
US11330376B1 (en) Hearing device with multiple delay paths
FR2566658A1 (fr) Prothese auditive multivoie
FR3039310A1 (fr) Dispositif de controle actif de bruit
FR3109687A1 (fr) Système Acoustique
FR3136308A1 (fr) Casque audio à réducteur de bruit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130418

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G10L 21/02 20130101AFI20130606BHEP

Ipc: G10L 21/0208 20130101ALI20130606BHEP

Ipc: G10L 21/0216 20130101ALI20130606BHEP

Ipc: H04R 3/00 20060101ALI20130606BHEP

INTG Intention to grant announced

Effective date: 20130621

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 634970

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012000351

Country of ref document: DE

Effective date: 20131205

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 634970

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140102

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012000351

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

26N No opposition filed

Effective date: 20140703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012000351

Country of ref document: DE

Effective date: 20140703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140419

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140419

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140103

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602012000351

Country of ref document: DE

Owner name: PARROT DRONES, FR

Free format text: FORMER OWNER: PARROT, PARIS, FR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120419

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20160811 AND 20160817

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: PARROT DRONES; FR

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), OVERDRACHT; FORMER OWNER NAME: PARROT

Effective date: 20160804

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: PARROT DRONES, FR

Effective date: 20161010

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170424

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170425

Year of fee payment: 6

Ref country code: DE

Payment date: 20170425

Year of fee payment: 6

Ref country code: FR

Payment date: 20170418

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170420

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012000351

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180419

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430