EP2514663A1 - Fahrradpedal - Google Patents

Fahrradpedal Download PDF

Info

Publication number
EP2514663A1
EP2514663A1 EP12001832A EP12001832A EP2514663A1 EP 2514663 A1 EP2514663 A1 EP 2514663A1 EP 12001832 A EP12001832 A EP 12001832A EP 12001832 A EP12001832 A EP 12001832A EP 2514663 A1 EP2514663 A1 EP 2514663A1
Authority
EP
European Patent Office
Prior art keywords
pedal
platform
force introduction
force
bicycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12001832A
Other languages
English (en)
French (fr)
Other versions
EP2514663B8 (de
EP2514663B1 (de
Inventor
Jenny Herbert
Heinz Augustin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2514663A1 publication Critical patent/EP2514663A1/de
Application granted granted Critical
Publication of EP2514663B1 publication Critical patent/EP2514663B1/de
Publication of EP2514663B8 publication Critical patent/EP2514663B8/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M3/00Construction of cranks operated by hand or foot
    • B62M3/08Pedals
    • B62M3/086Attachments between shoe and pedal other than toe clips, e.g. cleats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/411Torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/42Sensor arrangements; Mounting thereof characterised by mounting
    • B62J45/421Sensor arrangements; Mounting thereof characterised by mounting at the pedal crank

Definitions

  • the present invention relates to a bicycle pedal with a pedal body, wherein the pedal body has a first platform and at least a second platform and arranged between the platforms PedalachsabilityME, wherein in Pedalachsmore mor a Pedalachsbolzen the bicycle pedal is rotatably arranged or arranged around a pedal axis and the platforms exclusively by means Intermediate webs are force-transmittingly connected to one another and the first platform is in force-transmitting connection exclusively via the intermediate webs and via the second platform with deformation measuring sensors, in particular strain gauges, for measuring a load-related deformation of the pedal body on the first platform and / or the intermediate webs and / or the second platform are arranged.
  • deformation measuring sensors in particular strain gauges
  • Such bicycle pedals can generally be used in the medical-therapeutic field, in particular in rehabilitation but also in competitive sports or in sports, in order to measure the forces introduced into the bicycle pedal by a person when pedaling.
  • the object of the invention is to improve a generic bicycle pedal to the effect that the measuring signals measured by means of deformation measuring sensors are directly proportional to the introduced forces.
  • the goal is thus, from the measured To be able to close signals directly on the introduced forces without the need for a conversion by means of calibration matrix or the like.
  • the bicycle pedal has a force introduction body in addition to the pedal body, which is in force-transmitting connection exclusively with at least two, preferably four, force introduction areas with the first platform, wherein at least one of the force introduction areas arranged on one side of the first platform and at least one other of the force introduction regions is arranged with respect to the pedal axis on an opposite side of the first platform.
  • the first platform is provided so that the forces are introduced into the pedal body when the pedal is pedaled.
  • the first platform is but at no point in direct force-transmitting connection with the PedalachsabilityIER and thus with the rotatably mounted Pedalachsbolzen therein.
  • the first platform transmits forces exclusively on the intermediate webs on the second platform and the second platform on the Pedalachsaurati. This ensures that there is no force bypass within the pedal body.
  • the bicycle pedal according to the invention thus provides, in addition to the pedal body, in addition to the two platforms and the intermediate webs connecting them, a force introduction body via which the pedal of the bicycle pedal forces applied to the first platform.
  • the force introduction body is in force-transmitting connection exclusively with the first platform via the defined or spatially limited force introduction regions. Furthermore, it is provided according to the invention that at least two of the force introduction regions are arranged on opposite sides of the first platform relative to the pedal axle. By means of these force introduction regions, the forces acting on the force introduction body are thus always introduced into the first platform both behind and in front of the pedal axle. As a result, it is achieved according to the invention that the measurement signals are directly proportional to the introduced forces and thus need not be calculated again in one calculation step. The calibration matrix required in the prior art is thus no longer needed. The measurement signals are conveniently in a linear relationship with the forces introduced.
  • the pedal according to the invention is referred to as a bicycle pedal.
  • a bicycle pedal For the sake of completeness, however, it should be noted that this is not to be understood to mean that such bicycle pedals can be mounted exclusively on intended for locomotion bicycles.
  • bicycle pedals according to the invention can also just as well on stationary bicycles such.
  • Important target areas are the medical and therapeutic treatment and analysis of patients, especially during rehabilitation.
  • bicycle pedals according to the invention can just as well be used in the sports sector and in particular in competitive sports, in order to check and optimize the movements and force distribution of the athlete or competitive athlete when riding a bicycle.
  • Another aspect is the optimal training on the road bike with respect to the round kick, i. It can achieve an optimal use of force during the entire crank rotation and thereby be implemented with great efficiency, the pedal performance in the forward movement.
  • a treatment plan for recovery can now be created and also measured and controlled to optimize the healing process.
  • a force-transmitting connection in the sense of the invention means a connection via which forces to be measured can also be transmitted.
  • two webs may theoretically be regarded as interconnected via the interposed air.
  • this is not a force-transmitting connection in the sense of the invention. This is only possible if these webs are connected to each other directly or with the interposition of further, force-transmitting webs.
  • the first as well as the second platform can theoretically be designed as self-contained plates. It is more favorable, however, if at least one of the two, preferably both, platforms are constructed from webs connected to each other in a force-transmitting manner. So z. B. be provided that the first and / or the second platform each have one, two, four or more longitudinal webs, said longitudinal webs are at least one or two transverse webs in force-transmitting connection with each other.
  • the longitudinal webs are conveniently orthogonal arranged to the pedal axle or to a parallel pedal axle.
  • the transverse webs are conveniently parallel to the pedal axis.
  • the at least two force introduction regions which are arranged with respect to the pedal axis on opposite sides of the first platform, are equidistant from the pedal axis.
  • the term spaced is understood to mean that there is a distance greater than zero. It is particularly favorable if the at least two force introduction regions, which are arranged with respect to the pedal axis on opposite sides of the first platform, are mirror-symmetrical with respect to an imaginary plane of symmetry with the pedal axis lying in the plane of symmetry. In terms of the highest possible accuracy of measurement, it is further favorable if in each case two of the intermediate webs are formed and arranged mirror-symmetrically with respect to an imaginary plane of symmetry with the pedal axis lying in the plane of symmetry.
  • the intermediate webs should therefore not only be arranged symmetrically with respect to the axis of symmetry but also be formed. They should therefore have the same material as well as the same cross-sections at the corresponding points. This also applies to the platforms or the webs from which the platforms are formed.
  • preferred embodiments of the invention provide that the pedal body, so the two platforms, the intermediate webs and the Pedalachsareapian from a single monolithic body z. B. made of aluminum or other suitable metal or plastic. Particularly favorable in this case is the one-piece embodiment of the pedal body, in which this is machined out of a single block.
  • each of the force introduction regions is designed as a receiving opening, preferably in FIG the first platform, is formed with introduced through the receiving opening force introduction bolt, preferably the force introduction body.
  • a separate force introduction bolt can be passed through each receiving opening.
  • the force introduction bolts can also be guided in pairs through two receiving openings in order to transfer the forces from the force introduction body to the first platform of the pedal body.
  • the force introduction body has a binding device for fastening a shoe to the force introduction body.
  • binding devices are known per se in the prior art.
  • the associated pedals with such binding devices are often referred to as clipless pedals.
  • Various binding devices known from the prior art can be fastened to the force introduction body. It is favorable in general when the binding device has a binding plate and at least one, preferably resilient, movable, preferably pivotable, binding jaws for fastening a binding counterpart of the shoe on the binding plate.
  • preferred embodiments of the invention provide that two, four or eight deformation measuring sensors are arranged at respectively different locations of the first platform and / or the second platform and / or the connecting webs and in a Wheatstone half bridge or full bridge or double bridge are interconnected.
  • deformation measuring sensors strain gauges known per se in the prior art, but also other suitable strain gauges, can be used.
  • Fig. 1 shows very schematically how an inventive bicycle pedal 61 can be rotatably mounted on the Pedalachsbolt 66 on the crank 88.
  • the pedal 88 is in turn rotatably mounted on the Kurbelachsbolzen 87 in a corresponding bottom bracket.
  • the pedal crank 88 together with the bicycle pedal 61 can be rotated about the crank axis 89.
  • the pedal body 62 of the bicycle pedal 61 can be rotated about the pedal axis 67 and thus also about the pedal axle bolt 66 relative to the pedal crank 88. This is standard in known bicycle pedals, so this need not be explained further.
  • the bicycle pedal 61 comprises the pedal body 62 and the pedal axle bolt 66 as well as additional additional components according to the invention which are explained in greater detail below.
  • Links next to the bicycle pedal 61 shown schematically are in Fig. 1 nor the directions of the force components to be determined F_X, F_Y and F_Z drawn.
  • F_Y the force component which runs in the direction of the pedal axis 67
  • F_Z is the force component in the vertical direction.
  • F_X is the force component in the third direction, ie in the horizontal direction.
  • T_X and T_Z are the torques that can act on the bicycle pedal 61.
  • T_X is the torque about the axis F_X
  • T_Z is the torque about the vertical axis F_Z.
  • Fig. 2 shows a first inventive embodiment of a pedal body 62 of a bicycle pedal 61 according to the invention, although the force introduction body 72 of this bicycle pedal 61 is not yet attached to the pedal body 62.
  • the pedal body 62 of this embodiment has a first platform 63 and a second platform 64. These two platforms 63, 64 are exclusively interconnected via the four intermediate webs 68, 69, 70 and 71 to transmit power. In operation, the first platform 63 and the second platform 64 are substantially horizontal.
  • the intermediate webs 68, 69, 70 and 71 extend in the operating state usually substantially vertically.
  • the Pedalachsability Sciences 65 serves to accommodate and the rotatable mounting of Pedalachsbolzens 66th In the Fig. 2 to 20 the pedal axle bolt 66 is not shown.
  • both the first platform 63 and the second platform 64 are constructed not as continuous plates but from each other with force-transmitting connected webs.
  • the first platform 63 has for this purpose a total of four longitudinal webs 91, 92, 93 and 94, which are connected to one another via the transverse webs 95 and 96 and via a central transverse web 106 in a force-transmitting manner.
  • the longitudinal webs 91, 92, 93 and 94 together with the transverse webs 95 and 96 form a frame which forms the first platform together with the central web 106 and also limited to the outside.
  • the second platform 64 is at least similar to the first platform 63 formed.
  • These longitudinal webs 97 to 100 and transverse webs 101 and 102 form a frame which bounds the second platform 64 to the outside.
  • the pedal axle receiving body 65 is provided in the second platform 64.
  • the central web 106 is separated from the Pedalachsability Sciences 65 by means of the already mentioned exemption 90, so that there can be no force shunts here, but all introduced to the first platform 63 forces exclusively on the intermediate webs 68, 69, 70 and 71 on the webs of the second Platform 64 are transferred. These then transmit these forces to the Pedalachsing Economics 65th
  • the transverse webs 95, 96, 101 and 102 extend in this embodiment, all parallel to the pedal axis 67.
  • it is, as generally favorable, in the pedal body 62 and its previously described components to an integrally formed body. All components are thus materially connected to each other in the form shown. This is particularly favorable in terms of optimum power transmission.
  • Fig. 2 is still the plane of symmetry 77 drawn, with respect to the pedal body 62, the force introduction areas 73, 74, 75 and 76 and also the first in Fig. 3 shown force introduction body having the symmetries mentioned above.
  • the pedal axle 67 extends in this plane of symmetry 77. If the first platform 63 and the second platform 64 are aligned horizontally, then the plane of symmetry 77 extends vertically.
  • the force introduction body 72 is then connected to the first platform 63 of the pedal body 62 via the force introduction regions 73, 74, 75 and 76.
  • the force introduction regions 73, 74, 75 and 76 constitute the only force-transmitting connection between the force introduction body 72 and the first platform 63 or the entire pedal body 62.
  • the force introduction body 72 has a binding device 80 in the exemplary embodiment shown. This includes a binding plate 81 and two binding jaws 82 and 83.
  • the front binding jaw 83 is rigidly secured to the binding plate 81, while the rear binding jaw 82 is pivotable with respect to the binding plate 81 and binding jaw 82 so as to enter a one not shown here to allow the bicycle shoe attached connection plate.
  • binding devices 80 are known per se in the prior art and therefore need not be further explained. It should merely be pointed out that the binding device 80 can be designed in a wide variety of known configurations and can be fastened or integrated in the force introduction body 72.
  • the pairs in each case mirror-symmetrical with respect to the plane of symmetry 77 arranged force introduction areas 73, 74, 75 and 76 are executed in the embodiment shown as a receiving opening 78 in the first platform 63 and guided through this receiving opening 78 force introduction bolt 79.
  • a force introduction pin 79 is guided through two mutually opposite receiving openings 78. But this does not have to be this way. It can also be provided for each force introduction region 73, 74, 75 and 76, a separate force introduction pin 79.
  • a force introduction body 72 By using a force introduction body 72 according to the invention, it is possible to directly measure measuring signals with the arrangements of deformation measuring sensors 1 to 58, which are directly proportional to the force components F_X, F_Y and / or F_Z and / or directly proportional to the introduced torques T_X or T_Z are.
  • a further advantage of the connection according to the invention of the force introduction body 72 with the first platform 63 via defined force introduction regions 73, 74, 75 and 76 lying in front of and behind the pedal axis 67 is that the measurement signal reproduces the correct value of the force component or torque component introduced onto the force introduction body 72, regardless of where exactly the binding plate 81 and the force introduction body 72 is loaded.
  • Points 107, 108 and 109 exemplify various force introduction points on the binding plate 81 and the force introduction body 72, respectively.
  • the Fig. 4 to 10 show different views of the bicycle pedal 61 of the first embodiment, wherein the here as known per se strain gauges deformation measurement sensors 1 to 58, as far as can be represented in the respective image drawn. It is anticipated that, in the case of sensors according to the invention, of course not all of the deformation measuring sensors 1 to 58 shown here must be realized. Which deformation measuring sensors 1 to 58 are actually present on the bicycle pedal 61 depends on which force and Torque components to be measured. As subsequently shown by way of example, for measuring a single force component two, four or even eight deformation measuring sensors 1 to 58 mounted at different locations of the bicycle pedal 61 can be used. There are also, as explained later, different ways to measure a single component.
  • Fig. 4 shows a longitudinal section through the bicycle pedal 61 along a first cutting plane.
  • This first cutting plane is normal to the plane of symmetry 77 and the pedal axis 67 forms a surface normal to this cutting plane.
  • Fig. 5 is also shown a longitudinal section.
  • the cutting plane is normal to the plane of symmetry 77, it also extends along the pedal axis 67 Fig. 5
  • a plan view of the second platform 64 is shown.
  • Fig. 6 shows a rear view of the bicycle pedal 61 and Fig. 7 a bottom view of the second platform 64th
  • Fig. 8 shows a side view, Fig. 9 a top view and Fig. 10 again a view from the back, so from the same perspective as Fig. 6 , on the bicycle pedal 61.
  • Fig. 8 It can be seen particularly well that at least one of the force introduction regions 73-76 is arranged on one side of the first platform 63 and at least one other of the force introduction regions 73-76 is arranged with respect to the pedal axis 67 on an opposite side of the first platform 63.
  • Fig. 8 Before discussing the position and interconnection of the deformation measuring sensors 1 to 58, reference is again made to the symmetries realized in this bicycle pedal 61. These are especially good in Fig. 4 and 8th to recognize.
  • Fig. 8 First, it is good to see that the two force introduction regions 74 and 75 visible in this perspective are equidistant from the pedal axis.
  • both the first platform 63 and the second platform 64 are mirror-symmetrical with respect to the already mentioned axis of symmetry 77.
  • the intermediate webs 68 to 71 are arranged with respect to this plane of symmetry 77 both mirror-symmetrical and formed.
  • the focus is above all on the fact that the same deformations occur in the part of the pedal body 62 in front of the plane of symmetry 77 as in the part of the pedal body 62 which lies behind the plane of symmetry 77.
  • the term "front” designates in the embodiment shown the part of the pedal body 62, on the side of which with respect to the plane of symmetry 77 of the binding jaws 83 is arranged.
  • the area behind the symmetry axis 77 can be recognized by the fact that the binding jaw 82 is arranged there.
  • FIGS. 21, 22 and 23 show ways in which these individual deformation measuring sensors can be interconnected to each other, the respective measurement signal, which then proportional to the respective Force or torque component is to determine.
  • Fig. 21 shows a Wheatstone full bridge.
  • Fig. 22 shows a Wheatstone half bridge.
  • Fig. 23 shows a Wheatstone double bridge.
  • the positions of the strain gauges in the respective Wheatstone bridges 84, 85 and 86 are indicated by the letters A, B, C, D, E and F.
  • the assignment results for the first embodiment according to the Fig. 2 to 10 from the table in Fig. 24 are given by way of example. So z. B., when a to the force component F_Z proportional measurement signal is to be measured, the deformation measuring sensors 1, 2, 3 and 4 are used. These can be found in the in Fig.
  • the deformation measuring sensor 1 is moved to the position A, the deformation measuring sensor 2 to the position B, the deformation measuring sensor 3 to the position C and the deformation measuring sensor 4 to the position D of Wheatstone's full bridge puts, like this Fig. 24 evident.
  • a measurement signal proportional to the force component F_Z can also be generated by the use of only two deformation measurement sensors 9 and 10. So you can z. B. the deformation measuring sensor 9 to the position E of the Wheatstone half bridge 84 from Fig. 22 and set the deformation measuring sensor 10 to the position F of this Wheatstone half bridge 84. But it is also just as possible to use eight deformation measuring sensors 11 to 18 for measuring a signal proportional to the force component F_Z signal.
  • the deformation measuring sensors 11 to 14 to the position A to D of the first full bridge and the deformation measuring sensors 15 to 18 to the positions A to D of the second full bridge of in Fig. 23 Wheatstone double bridge are set.
  • the deformation measuring sensors it is favorable if at least two of the deformation measuring sensors interconnected in a respective Wheatstone half, full or double bridge 84 to 86 are arranged on opposite sides of the plane of symmetry 77 or pedal axis 67.
  • at least two of these deformation measuring sensors which are interconnected in a half, full or double bridge, are each arranged diagonally opposite or point symmetrical with respect to a symmetry point lying in the plane of symmetry 77.
  • the mentioned deformation sensors 1 to 58 which are interconnected correspondingly one behind the other, are expediently equally spaced in pairs from the plane of symmetry 77.
  • the deformation measuring sensors 1 to 18 provided for the force component F_Z for measuring signal determination are preferably arranged on the second platform 64 or on their longitudinal webs 97 to 100.
  • the measuring signals used to determine the force component F_X are conveniently generated by deformation measuring sensors 23 to 32, which are attached to the intermediate webs 68 to 71 and measure their deformation.
  • the deformation measuring sensors 33 to 36 can be arranged in the transition regions between the intermediate webs 68 and 71 and the first and second platforms 63 and 64 or their transverse webs 95, 96, 101 and 102, as shown especially good from the Fig. 8 to 10 evident.
  • the for measuring the Torque component T_Z used deformation measuring sensors 19 to 22 are particularly good in Fig. 5 to see. Conveniently, as shown here, they are arranged in the points of intersection between the longitudinal webs 97 to 100 of the second platform 64 and the pedal axle receiving body 65.
  • the second embodiment of a bicycle pedal 61 according to the invention is in the Fig. 11 to 20 shown.
  • the symmetries already explained with respect to the first embodiment are also realized here.
  • the symmetry plane 77 is in Fig. 12 drawn by way of example.
  • Fig. 11 shows a perspective view from above of the bicycle pedal 61.
  • the FIGS. 12 and 13 show side views of the opposite sides.
  • Fig. 14 shows a plan view, Fig. 15 a view from below.
  • Fig. 16 shows the view from the front, Fig. 17 the view from behind.
  • Fig. 18 another view from below.
  • Fig. 19 another view from the front and Fig. 20 another view from the rear of this bicycle pedal 61 of the second embodiment.
  • the assignment table of the deformation measuring sensors 39 to 58 used here is to the positions A to F in the various Wheatstone bridges 84 to 86 in Fig. 25 played.
  • the structure of the first platform 63 and the attachment of the force introduction body 72 via the force introduction regions 73 to 76 in the second embodiment corresponds to the structure of the first embodiment.
  • the essential difference from the first embodiment lies in the construction of the second platform 64.
  • the second platform 64 of the second embodiment has only two centrally arranged longitudinal webs 98 and 99. Accordingly, the two platforms 63 and 64 of this second embodiment are also connected to one another via two intermediate webs 68 and 70 in a force-transmitting manner.
  • Fig. 26 shows a graphical representation of the proportionality between the tapped between the signal taps 104 measurement signal and the actually introduced to be determined force component.
  • the vertical force component F_Z and the associated measurement signal Fzm are shown here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

Fahrradpedal (61) mit einem Pedalkörper (62), wobei der Pedalkörper (62) eine erste Plattform (63) und zumindest eine zweite Plattform (64) und einen zwischen den Plattformen (63, 64) angeordneten Pedalachsäufnahmekörper (65) aufweist, wobei im Pedalachsaufnahmekörper (65) ein Pedalachsbolzen (66) des Fahrradpedals (61) um eine Pedalachse (67) drehbar angeordnet oder anordenbar ist und die Plattformen (63, 64) ausschließlich mittels Zwischenstegen kraftübertragend miteinander verbunden sind und die erste Plattform (63) ausschließlich über die Zwischenstege (68 -71) und über die zweite Plattform (64) mit dem Pedalachsaufnahmekörper (65) in kraftübertragender Verbindung steht, wobei das Fahrradpedal (61) zusätzlich zum Pedalkörper (62) einen Krafteinleitungskörper (72) aufweist, welcher ausschließlich über zumindest zwei, vorzugsweise vier, Krafteinleitungsbereiche (73 - 76) mit der ersten Plattform (63) in kraftübertragender Verbindung steht, wobei zumindest einer der Krafteinleitungsbereiche (73 - 76) auf einer Seite der ersten Plattform (63) angeordnet ist und zumindest ein anderer der Krafteinleitungsbereiche (73 - 76) bezüglich der Pedalachse (67) auf einer dazu gegenüberliegenden Seite der ersten Plattform (63) angeordnet ist.

Description

  • Die vorliegende Erfindung betrifft ein Fahrradpedal mit einem Pedalkörper, wobei der Pedalkörper eine erste Plattform und zumindest eine zweite Plattform und einen zwischen den Plattformen angeordneten Pedalachsaufnahmekörper aufweist, wobei im Pedalachsaufnahmekörper ein Pedalachsbolzen des Fahrradpedals um eine Pedalachse drehbar angeordnet oder anordenbar ist und die Plattformen ausschließlich mittels Zwischenstegen kraftübertragend miteinander verbunden sind und die erste Plattform ausschließlich über die Zwischenstege und über die zweite Plattform mit dem Pedalachsaufnahmekörper in kraftübertragender Verbindung steht, wobei Verformungsmesssensoren, insbesondere Dehnmessstreifen, zur Messung einer belastungsbedingten Verformung des Pedalkörpers an der ersten Plattform und/oder den Zwischenstegen und/oder der zweiten Plattform angeordnet sind.
  • Solche Fahrradpedale können im medizinisch-therapeutischen-Bereich, insbesondere in der Rehabilitation aber auch im Leistungssport bzw. im Sportbereich allgemein eingesetzt werden, um die für eine Person beim Treten in das Fahrradpedal eingeleiteten Kräfte zu messen.
  • Aus dem Artikel "Development of a triaxial force plateform for the measurement of force at a bicycle pedal" ISBS 2002, Cäceres -Extremadura - Spain, Seite 290 ff sind theoretische Berechnungen für ein solches Fahrradpedal bekannt. Allerdings ist es bei dem dort zumindest theoretisch berechneten Fahrradpedal notwendig, eine Kalibrierungsmatrix zu verwenden, um die mittels der Verformungsmesssensoren erzeugten Messsignale in die tatsächlich eingeleiteten Kräfte umrechnen zu können.
  • Aufgabe der Erfindung ist es, ein gattungsgemäßes Fahrradpedal dahingehend zu verbessern, dass die mittels Verformungsmesssensoren gemessenen Messsignale direkt proportional zu den eingeleiteten Kräften sind. Ziel ist es somit, aus den gemessenen Signalen direkt auf die eingeleiteten Kräfte schließen zu können, ohne dass hierfür eine Umrechnung mittels Kalibrierungsmatrix oder dergleichen notwendig ist.
  • Um dies zu erreichen, ist erfindungsgemäß vorgesehen, dass das Fahrradpedal zusätzlich zum Pedalkörper einen Krafteinleitungskörper aufweist, welcher ausschließlich über zumindest zwei, vorzugsweise vier, Krafteinleitungsbereiche mit der ersten Plattform in kraftübertragender Verbindung steht, wobei zumindest einer der Krafteinleitungsbereiche auf einer Seite der ersten Plattform angeordnet ist und zumindest ein anderer der Krafteinleitungsbereiche bezüglich der Pedalachse auf einer dazu gegenüberliegenden Seite der ersten Plattform angeordnet ist.
  • Zunächst ist darauf hinzuweisen, dass bei erfindungsgemäßen wie auch bei gattungsgemäßen Fahrradpedalen die erste Plattform dazu vorgesehen ist, dass über sie beim Treten des Pedals die Kräfte in den Pedalkörper eingeleitet werden. Die erste Plattform steht aber an keiner Stelle in direkter kraftübertragender Verbindung mit dem Pedalachsaufnahmekörper und damit mit dem darin drehbar gelagerten Pedalachsbolzen. Vielmehr ist bei gattungsgemäßen wie bei erfindungsgemäßen Pedalkörpern vorgesehen, dass die erste Plattform ausschließlich über die Zwischenstege Kräfte auf die zweite Plattform und über die zweite Plattform auf den Pedalachsaufnahmekörper überträgt. Hierdurch wird dafür gesorgt, dass innerhalb des Pedalkörpers kein Kraftnebenschluss vorliegt. Dadurch wird sichergestellt, dass alle in die erste Plattform eingeleiteten Kräfte in entsprechenden Verformungen der Zwischenstege und der beiden Plattformen resultieren, sodass aus der Messung dieser Verformungen mittels der Verformungsmesssensoren auf die in den Pedalkörper eingeleiteten Kräfte geschlossen werden kann. Bei gattungsgemäßen Fahrradpedalen reicht dies aber noch nicht dazu aus, dass man direkt aus den Messsignalen der Verformungsmesssensoren auf die eingeleiteten Kräfte schließen kann. Um die beim Stand der Technik noch benötigte Umrechnung der Messgrößen in die Kräfte zu vermeiden, sieht das erfindungsgemäße Fahrradpedal zusätzlich zum Pedalkörper also zusätzlich zu den beiden Plattformen und den sie verbindenden Zwischenstegen einen Krafteinleitungskörper vor, über welchen die von der das Fahrradpedal betätigenden Person aufgebrachten Kräfte auf die erste Plattform übertragen werden. Hierbei ist es vorgesehen, dass der Krafteinleitungskörper ausschließlich über die, definierten bzw. räumlich begrenzten Krafteinleitungsbereiche mit der ersten Plattform in kraftübertragender Verbindung steht. Weiters ist erfindungsgemäß vorgesehen, dass zumindest zwei der Krafteinleitungsbereiche bezogen auf die Pedalachse auf einander gegenüberliegenden Seiten der ersten Plattform angeordnet sind. Mittels dieser Krafteinleitungsbereiche werden die auf den Krafteinleitungskörper einwirkenden Kräfte somit immer sowohl hinter als auch vor der Pedalachse in die erste Plattform eingeleitet. Hierdurch wird erfindungsgemäß erreicht, dass die Messsignale direkt proportional zu den eingeleiteten Kräften sind und damit nicht noch einmal in einem Rechenschritt errechnet werden müssen. Die beim Stand der Technik benötigte Kalibrierungsmatrix wird somit nicht mehr benötigt. Die Messsignale stehen günstigerweise in einem linearen Zusammenhang mit den eingeleiteten Kräften.
  • Das erfindungsgemäße Pedal wird als Fahrradpedal bezeichnet. Der Vollständigkeit halber wird aber darauf hingewiesen, dass dies nicht dahingehend zu verstehen ist, dass solche Fahrradpedale ausschließlich an für die Fortbewegung vorgesehenen Fahrrädern montiert werden können. Erfindungsgemäße Fahrradpedale können natürlich auch genauso gut an stationären Fahrrädern wie z. B. Ergometern, Hometrainern u. dgl. eingesetzt werden. Wichtige Zielbereiche sind die medizinische und therapeutische Behandlung und Analyse von Patienten, insbesondere während der Rehabilitation. Erfindungsgemäße Fahrradpedale können aber genauso gut im Sportbereich und insbesondere im Leistungssport eingesetzt werden, um die Bewegungen und Kräfteverteilungen des Sportlers bzw. Leistungssportlers beim Fahrradfahren zu überprüfen und zu optimieren.
  • Mittels der Erfindung ist es erstmalig bei einem solchen Fahrradpedal bzw. Messkörper gelungen, unabhängig vom jeweiligen Pedalwinkel mit hoher Genauigkeit beide Kräfte in Z- und in X-Achse getrennt und ohne gegenseitigen Einfluss zu messen und damit visuell sichtbar machbar zu machen.
  • Diese Lösung ermöglicht es, die Kräfte mit einer Genauigkeit in allen 3 Achsen unter 0,5 % Linearitätsfehler zu messen.
  • Damit kann jetzt auch die muskuläre Belastung sowie die Belastung der Fuß-, Knie- und Hüftgelenke mit hoher Genauigkeit gemessen werden.
  • Ein weiterer Aspekt ist das optimale Trainieren auf dem Rennrad bezüglich des runden Tritts, d.h. es kann ein optimaler Krafteinsatz während der ganzen Kurbelumdrehung erreicht und dadurch mit großer Effizienz die Pedalleistung in die Vorwärtsbewegung umgesetzt werden.
  • Bezüglich einer Rehabilitation nach Bein- oder Fußoperationen kann jetzt ein Therapieplan für die Genesungsfortschritte erstellt und auch gemessen und so kontrolliert werden, um den Heilungsprozess zu optimieren.
  • Der Vollständigkeit halber wird auch darauf hingewiesen, dass unter einer kraftübertragenden Verbindung im Sinne der Erfindung eine Verbindung verstanden wird, über die zu messende Kräfte auch übertragen werden können. So können zwei Stege zwar theoretisch gesehen über die dazwischen angeordnete Luft als miteinander verbunden angesehen werden. Es handelt sich dabei aber nicht um eine im Sinne der Erfindung kraftübertragende Verbindung. Diese ist erst gegeben, wenn diese Stege direkt oder unter Zwischenschaltung weiterer, kraftübertragender Stege miteinander in Verbindung stehen.
  • Die erste wie auch die zweite Plattform können theoretisch als in sich geschlossene Platten ausgebildet sein. Günstiger ist es jedoch, wenn zumindest eine der beiden, vorzugsweise beide, Plattformen aus miteinander kraftübertragend verbundenen Stegen aufgebaut sind. So kann z. B. vorgesehen sein, dass die erste und/oder die zweite Plattform jeweils ein, zwei, vier oder mehr Längsstege aufweisen, wobei diese Längsstege mittels zumindest ein oder zwei Querstegen miteinander in kraftübertragender Verbindung stehen. Die Längsstege sind dabei günstigerweise orthogonal zur Pedalachse oder zu einer parallelen Pedalachse angeordnet. Die Querstege verlaufen günstigerweise parallel zur Pedalachse.
  • Besonders bevorzugte Ausgestaltungsformen der Erfindung sehen vor, dass die zumindest zwei Krafteinleitungsbereiche, welche bezüglich der Pedalachse auf einander gegenüberliegenden Seiten der ersten Plattform angeordnet sind, von der Pedalachse gleich weit beabstandet sind. Der Begriff beabstandet wird dabei dahingehend verstanden, dass ein Abstand größer Null vorliegt. Besonders günstig ist es, wenn die zumindest zwei Krafteinleitungsbereiche, welche bezüglich der Pedalachse auf einander gegenüberliegenden Seiten der ersten Plattform angeordnet sind, zueinander spiegelsymmetrisch bezüglich einer gedachten Symmetrieebene sind, wobei die Pedalachse in der Symmetrieebene liegt. Im Sinne einer möglichst hohen Messgenauigkeit ist es weiters günstig, wenn jeweils zwei der Zwischenstege zueinander spiegelsymmetrisch bezüglich einer gedachten Symmetrieebene ausgebildet und angeordnet sind, wobei die Pedalachse in der Symmetrieebene liegt. Die Zwischenstege sollten also günstigerweise nicht nur symmetrisch bezüglich der Symmetrieachse angeordnet sondern auch ausgebildet sein. Sie sollten an den einander entsprechenden Stellen somit sowohl das gleiche Material, als auch die gleichen Querschnitte aufweisen. Dies gilt auch für die Plattformen bzw. die Stege, aus denen die Plattformen gebildet sind.
  • In diesem Zusammenhang ist auch darauf hinzuweisen, dass bevorzugte Ausgestaltungsformen der Erfindung vorsehen, dass der Pedalkörper, also die beiden Plattformen, die Zwischenstege und der Pedalachsaufnahmekörper aus einem einzigen monolithischen Körper z. B. aus Aluminium oder einem anderen geeigneten Metall oder Kunststoff hergestellt ist. Besonders günstig ist hierbei die einstückige Ausführungsform des Pedalkörpers, bei der dieser aus einem einzigen Block herausgearbeitet wird.
  • Im Sinne einer definierten Übertragung der Kräfte von dem Krafteinleitungskörper auf die erste Plattform sehen bevorzugte Ausgestaltungsformen der Erfindung vor, dass jeder der Krafteinleitungsbereiche als eine Aufnahmeöffnung, vorzugsweise in der ersten Plattform, mit durch die Aufnahmeöffnung hindurchgeführtem Krafteinleitungsbolzen, vorzugsweise des Krafteinleitungskörpers, ausgebildet ist. Dabei kann durch jede Aufnahmeöffnung ein separater Krafteinleitungsbolzen hindurchgeführt sein. Die Krafteinleitungsbolzen können aber auch paarweise durch jeweils zwei Aufnahmeöffnungen hindurchgeführt sein, um die Kräfte vom Krafteinleitungskörper auf die erste Plattform des Pedalkörpers zu übertragen.
  • Um einen Schuh der das Fahrradpedal betätigenden Person definiert am Krafteinleitungskörper befestigen zu können, sehen bevorzugte Ausgestaltungsformen der Erfindung vor, dass der Krafteinleitungskörper eine Bindungseinrichtung zur Befestigung eines Schuhs am Krafteinleitungskörpers aufweist. Solche Bindungseinrichtungen sind an sich beim Stand der Technik bekannt. Die zugeordneten Pedale mit solchen Bindungseinrichtungen werden häufig als Klickpedale bezeichnet. Es können verschiedenste beim Stand der Technik bekannte Bindungseinrichtungen am Krafteinleitungskörper befestigt werden. Günstig ist es dabei im Allgemeinen, wenn die Bindungseinrichtung eine Bindungsplatte und zumindest einen, vorzugsweise federnd, bewegbaren, vorzugsweise schwenkbaren, Bindungsbacken zur Befestigung eines Bindungsgegenstücks des Schuhs auf der Bindungsplatte aufweist.
  • Bezüglich der Zahl und Anordnung der Verformungsmesssensoren sehen bevorzugte Ausgestaltungsformen der Erfindung vor, dass zwei, vier oder acht Verformungsmesssensoren an jeweils unterschiedlichen Stellen der ersten Plattform und/oder der zweiten Plattform und/oder der Verbindungsstege angeordnet sind und in einer Wheatstone'schen Halbbrücke oder Vollbrücke oder Doppelbrücke miteinander verschaltet sind. Als Verformungsmesssensoren können vor allem beim Stand der Technik an sich bekannte Dehnmessstreifen aber auch andere geeignete Verformungsmesssensoren eingesetzt werden. Bevorzugt ist jedenfalls vorgesehen, dass zumindest zwei der, in einer Wheatstone'schen Halbbrücke oder Vollbrücke oder Doppelbrücke miteinander verschalteten Verformungsmesssensoren bezogen auf die Pedalachse auf einander gegenüberliegenden Seiten des Pedalkörpers angeordnet sind, und vorzugsweise von der Pedalachse gleich weit beabstandet sind. Weiters ist es günstig, wenn zumindest zwei der in der Wheatstone'schen Halb-, Voll- oder Doppelbrücke miteinander verschalteten Verformungsmesssensoren bezüglich der Pedalachse diagonal auf einander gegenüberliegenden Seiten des Pedalkörpers angeordnet sind. Günstig ist hierbei eine spiegelsymmetrische Anordnung bezüglich eines auf der Pedalachse liegenden Symmetriepunktes. Grundsätzlich gibt es eine Vielzahl von Möglichkeiten der Anordnung von Verformungsmesssensoren um verschiedene Kraftkomponenten bestimmen zu können.
  • In der nachfolgenden Figurenbeschreibung werden unterschiedliche Ausgestaltungsformen der Erfindung beispielhaft vorgestellt. Die Fig. zeigen:
  • Fig. 1
    ein stark schematisiert dargestelltes Fahrradpedal an einer Tretkurbel;
    Fig. 2
    den Pedalkörper einer ersten erfindungsgemäßen Ausgestaltungsform eines Fahrradpedals in Form eines sogenannten 4-Stegpedals;
    Fig. 3
    das erfindungsgemäße Fahrradpedal, wobei der Pedalkörper aus Fig. 2 mit einem erfindungsgemäßen Krafteinleitungskörper in den Krafteinleitungsbereichen verbunden ist;
    die Fig. 4 bis 10
    verschiedene Ansichten und Schnitte durch das Fahrradpedal aus Fig. 3, wobei verschiedene Anordnungen von Verformungsmesssensoren am Pedalkörper des Fahrradpedals eingezeichnet sind;
    die Fig. 11 bis 20
    eine Darstellung zu einem zweiten erfindungsgemäßen Ausführungsbeispiels eines Fahrradpedals mit daran angeordneten Verformungsmesssensoren.
    Fig. 21
    eine Wheatstone'sche Vollbrücke;
    Fig. 22
    eine Wheatstone'sche Halbbrücke und
    Fig. 23
    eine Wheatstone'sche Doppelbrücke.
    Fig. 24
    ein Verschaltungsschema für das erste Ausführungsbeispiel.
    Fig. 25
    ein Verschaltungsschema für das zweite Ausführungsbeispiel und
    Fig. 26
    beispielhaft den linearen Zusammenhang zwischen den gemessenen Signalen und den tatsächlich eingeleiteten Kräften.
  • Fig. 1 zeigt stark schematisiert, wie ein erfindungsgemäßes Fahrradpedal 61 über den Pedalachsbolzen 66 an der Tretkurbel 88 drehbar befestigt sein kann. Die Tretkurbel 88 ist wiederum über den Kurbelachsbolzen 87 in einem entsprechenden Tretlager drehbar gelagert. Dabei kann die Tretkurbel 88 samt Fahrradpedal 61 um die Kurbelachse 89 gedreht werden. Der Pedalkörper 62 des Fahrradpedals 61 kann um die Pedalachse 67 und damit auch um den Pedalachsbolzen 66 relativ zur Tretkurbel 88 gedreht werden. Dies ist Standard bei an sich bekannten Fahrradpedalen, sodass dies nicht weiter erläutert werden muss. Es wird lediglich darauf hingewiesen, dass das Fahrradpedal 61 den Pedalkörper 62 und den Pedalachsbolzen 66 sowie weitere, unten noch näher erläuterte zusätzliche erfindungsgemäße Bauteile umfasst. Links neben dem schematisch dargestellten Fahrradpedal 61 sind in Fig. 1 noch die Richtungen der zu bestimmenden Kraftkomponenten F_X, F_Y und F_Z eingezeichnet. Als F_Ywird im Folgenden die Kraftkomponente bezeichnet, welche in Richtung der Pedalachse 67 verläuft. F_Z ist die Kraftkomponente in Vertikalrichtung. F_X ist die Kraftkomponente in die dritte Richtung, also in die Horizontalrichtung. T_X und T_Z sind die Drehmomente, welche auf das Fahrradpedal 61 einwirken können. T_X ist dabei das Drehmoment um die Achse F_X, T_Z ist das Drehmoment um die Vertikalachse F_Z.
  • Fig. 2 zeigt ein erstes erfindungsgemäßes Ausführungsbeispiel eines Pedalkörpers 62 eines erfindungsgemäßen Fahrradpedals 61, wobei allerdings der Krafteinleitungskörper 72 dieses Fahrradpedals 61 noch nicht am Pedalkörper 62 befestigt ist. Der Pedalkörper 62 dieses Ausführungsbeispiels weist eine erste Plattform 63 und eine zweite Plattform 64 auf. Diese beiden Plattformen 63, 64 sind ausschließlich über die vier Zwischenstege 68, 69, 70 und 71 miteinander kraftübertragend verbunden. Im Betrieb liegen die erste Plattform 63 und die zweite Plattform 64 im Wesentlichen horizontal. Die Zwischenstege 68, 69, 70 und 71 verlaufen im Betriebszustand in der Regel im Wesentlichen vertikal.
  • An der zweiten Plattform 64 ist der Pedalachsaufnahmekörper 65 befestigt. Der Pedalachsaufnahmekörper 65 dient der Aufnahme und der drehbaren Lagerung des Pedalachsbolzens 66. In den Fig. 2 bis 20 ist der Pedalachsbolzen 66 nicht dargestellt. Die Lagerung des Pedalachsbolzens 66 im Pedalachsaufnahmekörper 65 kann, wie beim Stand der Technik bekannt, erfolgen. Wichtig ist bei gattungs- wie auch bei erfindungsgemäßen Pedalen, dass die erste Plattform 63 ausschließlich über die Zwischenstege 68, 69, 70 und 71 mit der zweiten Plattform 64 und damit ausschließlich über diese Zwischenstege und die zweite Plattform mit dem Pedalachsaufnahmekörper 65 kraftübertragend verbunden ist. Um Kraftnebenschlüsse, also die Möglichkeit einer direkten Kraftübertragung zwischen erster Plattform 63 und Pedalachsaufnahmekörper 65 sicher auszuschalten, ist es günstig, wenn wie im gezeigten Ausführungsbeispiel eine Freistellung 90 bzw. ein entsprechender Freiraum zwischen erster Plattform 63 und Pedalachsaufnahmekörper 65 vorgesehen ist.
  • Im gezeigten wie auch in anderen Ausführungsbeispielen sind sowohl die erste Plattform 63 als auch die zweite Plattform 64 nicht als durchgehende Platten sondern aus miteinander kraftübertragend verbundenen Stegen aufgebaut. Die erste Plattform 63 weist hierzu insgesamt vier Längsstege 91, 92, 93 und 94 auf, welche über die Querstege 95 und 96 sowie über einen mittleren Quersteg 106 miteinander kraftübertragend verbunden sind. Im gezeigten Ausführungsbeispiel bilden die Längsstege 91, 92, 93 und 94 zusammen mit den Querstegen 95 und 96 einen Rahmen, der die erste Plattform zusammen mit dem Mittelsteg 106 bildet und auch nach außen begrenzt.
  • Im ersten Ausführungsbeispiel gemäß der Fig. 2 bis 10 ist die zweite Plattform 64 zumindest ähnlich zur ersten Plattform 63 ausgebildet. Auch hier gibt es insgesamt vier Längsstege 97, 98, 99 und 100, sowie zwei diese miteinander verbindende Querstege 101 und 102. Auch diese Längsstege 97 bis 100 und Querstege 101 und 102 bilden einen Rahmen, der die zweite Plattform 64 nach außen begrenzt. Anstelle des Mittelsteges 106 ist in der zweiten Plattform 64 der Pedalachsaufnahmekörper 65 vorgesehen. Der Mittelsteg 106 ist mittels der bereits genannten Freistellung 90 vom Pedalachsaufnahmekörper 65 getrennt, sodass es auch hier zu keinen Kraftnebenschlüssen kommen kann, sondern alle auf die erste Plattform 63 eingeleiteten Kräfte ausschließlich über die Zwischenstege 68, 69, 70 und 71 auf die Stege der zweiten Plattform 64 übertragen werden. Diese übertragen diese Kräfte dann auf den Pedalachsaufnahmekörper 65.
  • Die Querstege 95, 96, 101 und 102 verlaufen in diesem Ausführungsbeispiel alle parallel zur Pedalachse 67. Die Längsstege 91 bis 94 und 98 bis 100 verlaufen in diesem Ausführungsbeispiel alle orthogonal zur Pedalachse 67 bzw. zu einer Parallelen durch die Pedalachse 67. Im gezeigten Ausführungsbeispiel handelt es sich, wie allgemein günstig, bei dem Pedalkörper 62 und seinen bisher geschilderten Komponenten um einen einstückig ausgebildeten Körper. Alle Bauteile sind somit in der gezeigten Form materialschlüssig miteinander verbunden. Dies ist im Sinne einer optimalen Kraftübertragung besonders günstig.
  • In Fig. 2 ist noch die Symmetrieebene 77 eingezeichnet, bezüglich der der Pedalkörper 62, die Krafteinleitungsbereiche 73, 74, 75 und 76 und auch der erst in Fig. 3 dargestellte Krafteinleitungskörper die eingangs genannten Symmetrien aufweist. Die Pedalachse 67 verläuft in dieser Symmetrieebene 77. Sind die erste Plattform 63 und die zweite Plattform 64 horizontal ausgerichtet, so verläuft die Symmetrieebene 77 vertikal.
  • In Fig. 3 ist nun erfindungsgemäß der Krafteinleitungskörper 72 über die Krafteinleitungsbereiche 73, 74, 75 und 76 mit der ersten Plattform 63 des Pedalkörpers 62 verbunden. Die Krafteinleitungsbereiche 73, 74, 75 und 76 stellen die einzigen kraftübertragenden Verbindung zwischen Krafteinleitungskörper 72 und der ersten Plattform 63 bzw. dem gesamten Pedalkörper 62 dar. Der Krafteinleitungskörper 72 weist im gezeigten Ausführungsbeispiel eine Bindungseinrichtung 80 auf. Diese umfasst eine Bindungsplatte 81 sowie zwei Bindungsbacken 82 und 83. Im gezeigten Ausführungsbeispiel ist der vordere Bindungsbacken 83 starr an der Bindungsplatte 81 befestigt, während der hintere Bindungsbacken 82 gegenüber der Bindungsplatte 81 und dem Bindungsbacken 82 verschwenkbar ist, um das Einsteigen einer hier nicht dargestellten, am Fahrradschuh angebrachten Verbindungsplatte zu ermöglichen. Solche Bindungseinrichtungen 80 sind beim Stand der Technik an sich bekannt und müssen daher nicht weiter erläutert werden. Es sei lediglich darauf hingewiesen, dass die Bindungseinrichtung 80 in unterschiedlichsten an sich bekannten Ausgestaltungen ausgeführt und am Krafteinleitungskörper 72 befestigt bzw. in diesem integriert sein können. Die jeweils paarweise spiegelsymmetrisch bezüglich der Symmetrieebene 77 angeordneten Krafteinleitungsbereiche 73, 74, 75 und 76 sind im gezeigten Ausführungsbeispiel als Aufnahmeöffnung 78 in der ersten Plattform 63 und durch diese Aufnahmeöffnung 78 hindurchgeführte Krafteinleitungsbolzen 79 ausgeführt. Im gezeigten Ausführungsbeispiel ist jeweils ein Krafteinleitungsbolzen 79 durch zwei einander gegenüberliegende Aufnahmeöffnungen 78 hindurchgeführt. Dies muss aber nicht so sein. Es kann auch für jeden Krafteinleitungsbereich 73, 74, 75 und 76 ein separater Krafteinleitungsbolzen 79 vorgesehen sein.
  • Durch die Verwendung eines erfindungsgemäßen Krafteinleitungskörpers 72 wird es möglich, mit den anschließend weiter unten noch erläuterten Anordnungen von Verformungsmesssensoren 1 bis 58 Messsignale direkt zu messen, welche direkt proportional zu den zu bestimmenden Kraftkomponenten F_X, F_Y und/oder F_Z und/oder direkt proportional zu den eingeleiteten Drehmomenten T_X oder T_Z sind. Ein weiterer Vorteil der erfindungsgemäßen Verbindung des Krafteinleitungskörpers 72 mit der ersten Plattform 63 über definierte vor und hinter der Pedalachse 67 liegende Krafteinleitungsbereiche 73, 74, 75 und 76 ist, dass das Messsignal den korrekten Wert der auf den Krafteinleitungskörper 72 eingeleiteten Kraftkomponente oder Drehmomentkomponente wiedergibt, unabhängig davon, an welcher Stelle genau die Bindungsplatte 81 bzw. der Krafteinleitungskörper 72 belastet wird. Es macht also keinen Unterschied wo auf der Bindungsplatte 81 genau die Kraftkomponente oder das Drehmoment eingeleitet wird. Solange der Betrag konstant ist, ist auch das generierte Messsignal konstant. Die Punkte 107, 108 und 109 veranschaulichen beispielhaft verschiedene Krafteinleitungspunkte auf die Bindungsplatte 81 bzw. den Krafteinleitungskörper 72.
  • Die Fig. 4 bis 10 zeigen verschiedene Ansichten auf das Fahrradpedal 61 des ersten Ausführungsbeispiels, wobei die hier als an sich bekannte Dehnmessstreifen ausgeführten Verformungsmesssensoren 1 bis 58, soweit in der jeweiligen Abbildung darstellbar, eingezeichnet sind. Vorausschickend wird hierzu ausgeführt, dass bei erfindungsgemäßen Sensoren natürlich nicht alle hier dargestellten Verformungsmesssensoren 1 bis 58 realisiert sein müssen. Welche Verformungsmesssensoren 1 bis 58 am Fahrradpedal 61 tatsächlich vorhanden sind, hängt davon ab, welche Kraft- und Drehmomentkomponenten gemessen werden sollen. Wie anschließend anhand von Beispielen gezeigt, können zur Messung einer einzelnen Kraftkomponente zwei, vier oder auch acht, an verschiedenen Stellen des Fahrradpedals 61 angebrachte Verformungsmesssensoren 1 bis 58 herangezogen werden. Es gibt auch, wie später noch erläutert, verschiedene Möglichkeiten eine ein und dieselbe Komponente zu messen. Weiters sei darauf hingewiesen, dass trotz der umfangreichen Darstellung hier nicht abschließend alle Möglichkeiten der Anordnung von Verformungsmesssensoren 1 bis 58 und deren Verschaltungen eingezeichnet sind. Weiters ist darauf hinzuweisen, dass einige der hier eingezeichneten Verformungsmesssensoren 1 bis 58, welche in mehreren Schaltungen bzw. Konfigurationen verwendet werden, mit mehreren Bezugszeichen bezeichnet sind. Es handelt sich aber auch im Falle von mehreren Bezugszeichen für einen Verformungsmesssensor immer nur um einen einzigen Verformungsmesssensor bzw. Dehnmessstreifen an der jeweiligen Stelle. Abschließend sei noch darauf hingewiesen, dass die in der jeweiligen Ansicht durchgezogen dargestellten Verformungsmesssensoren 1 bis 58 in dieser Ansicht so auch zu sehen sind, während die gestrichelt dargestellten Verformungsmesssensoren 1 bis 58 jeweils hinter einem Steg angeordnet und damit in der jeweiligen Ansicht eigentlich verborgen sind.
  • Um die Anordnung und Positionierung der verschiedenen Verformungsmesssensoren 1 bis 58 darstellen zu können, sind für das erste Ausführungsbeispiel in den Fig. 4 bis 10 insgesamt sieben Darstellungen gewählt worden. Fig. 4 zeigt einen Längsschnitt durch das Fahrradpedal 61 entlang einer ersten Schnittebene. Diese erste Schnittebene steht normal zur Symmetrieebene 77 und die Pedalachse 67 bildet eine Flächennormale auf diese Schnittebene. In Fig. 5 ist ebenfalls ein Längsschnitt dargestellt. Allerdings liegt hier die Schnittebene zwar normal zur Symmetrieebene 77, verläuft aber darüber hinaus entlang der Pedalachse 67. In Fig. 5 ist somit eine Draufsicht auf die zweite Plattform 64 gezeigt. Fig. 6 zeigt eine Ansicht von hinten auf das Fahrradpedal 61 und Fig. 7 eine Ansicht von unten auf die zweite Plattform 64. Fig. 8 zeigt eine Seitenansicht, Fig. 9 eine Draufsicht und Fig. 10 noch einmal eine Ansicht von hinten, also aus derselben Perspektive wie Fig. 6, auf das Fahrradpedal 61.
  • In Fig. 8 ist besonders gut zu sehen, dass zumindest einer der Krafteinleitungsbereiche 73 - 76 auf einer Seite der ersten Plattform 63 angeordnet ist und zumindest ein anderer der Krafteinleitungsbereiche 73 - 76 bezüglich der Pedalachse 67 auf einer dazu gegenüberliegenden Seite der ersten Plattform 63 angeordnet ist. Bevor nun auf die Lage und Verschaltung der Verformungsmesssensoren 1 bis 58 eingegangen wird, wird nochmals auf die in diesem Fahrradpedal 61 realisierten Symmetrien hingewiesen. Diese sind besonders gut in Fig. 4 und 8 zu erkennen. In Fig. 8 ist zunächst gut zu sehen, dass die beiden in dieser Perspektive sichtbaren Krafteinleitungsbereiche 74 und 75 von der Pedalachse gleich weit beabstandet sind. Sie sind im gezeigten Ausführungsbeispiel aber nicht nur gleich weit beabstandet, sondern liegen spiegelsymmetrisch bezüglich der gedachten Symmetrieebene 77, in welcher auch die Pedalachse 67 liegt. Sowohl in Fig. 4 als auch in Fig. 8 ist auch zu erkennen, dass sowohl die erste Plattform 63 als auch die zweite Plattform 64 bezüglich der bereits genannten Symmetrieachse 77 spiegelsymmetrisch sind. Auch die Zwischenstege 68 bis 71 sind bezüglich dieser Symmetrieebene 77 sowohl spiegelsymmetrisch angeordnet als auch ausgebildet. Bei diesen Spiegelsymmetrien steht vor allem im Vordergrund, dass durch eine entsprechende Krafteinleitung in dem Teil des Pedalkörpers 62 vor der Symmetrieebene 77 dieselben Verformungen auftreten, wie in dem Teil des Pedalkörpers 62, welcher hinter der Symmetrieebene 77 liegt. Der Begriff vorne bezeichnet dabei in dem gezeigten Ausführungsbeispiel den Teil des Pedalkörpers 62, auf dessen Seite bezüglich der Symmetrieebene 77 der Bindungsbacken 83 angeordnet ist. Der Bereich hinter der Symmetrieachse 77 ist daran zu erkennen, dass dort der Bindungsbacken 82 angeordnet ist.
  • Wie bereits ausgeführt, können, um die einzelnen Kraftkomponenten F_X, F_Y und/oder F_Z bzw. die Drehmomente T_X und/oder T_Z zu bestimmen, verschiedene, an verschiedenen Positionen angeordnete Verformungsmesssensoren 1 bis 58 verwendet werden. In den Fig. 4 bis 10 sind für das erste Ausführungsbeispiel die Verformungsmesssensoren 1 bis 38 eingezeichnet. Die Fig. 21, 22 und 23 zeigen Möglichkeiten, wie diese einzelnen Verformungsmesssensoren miteinander verschaltet werden können, um das jeweilige Messsignal, welches dann proportional zur jeweiligen Kraft- oder Drehmomentkomponente ist, zu bestimmen. Fig. 21 zeigt dabei eine Wheatstone'sche Vollbrücke. Fig. 22 zeigt eine Wheatstone'sche Halbbrücke. Fig. 23 zeigt eine Wheatstone'sche Doppelbrücke. Die Positionen der Verformungsmesssensoren in der jeweiligen Wheatstone'schen Brücke 84, 85 und 86 sind durch die Buchstagen A, B, C, D, E und F gekennzeichnet. Die Zuordnung ergibt sich für das erste Ausführungsbeispiel gemäß der Fig. 2 bis 10 aus der Tabelle in Fig. 24. Hier sind jeweils verschiedene Alternativen zur Bestimmung der einzelnen Kraftkomponenten und Drehmomentkomponenten beispielhaft angeführt. So kann z. B., wenn ein zur Kraftkomponente F_Z proportionales Messsignal gemessen werden soll, auf die Verformungsmesssensoren 1, 2, 3 und 4 zurückgegriffen werden. Diese können hierzu in der in Fig. 21 gezeigten Wheatstone'schen Vollbrücke miteinander verschaltet sein, indem man in dieser Schaltung den Verformungsmesssensor 1 auf die Position A, den Verformungsmesssensor 2 auf die Position B, den Verformungsmesssensor 3 auf die Position C und den Verformungsmesssensor 4 auf die Position D der Wheatstone'schen Vollbrücke setzt, wie dies aus Fig. 24 hervorgeht. Alternativ kann ein zur Kraftkomponente F_Z proportionales Messsignal aber auch durch die Verwendung von nur zwei Verformungsmesssensoren 9 und 10 erzeugt werden. So kann man z. B. den Verformungsmesssensor 9 auf die Position E der Wheatstone'schen Halbbrücke 84 aus Fig. 22 und den Verformungsmesssensor 10 auf die Position F dieser Wheatstone'schen Halbbrücke 84 setzen. Es ist aber auch genauso gut möglich, acht Verformungsmesssensoren 11 bis 18 zur Messung eines zur Kraftkomponente F_Z proportionalen Signals heranzuziehen. So können die Verformungsmesssensoren 11 bis 14 auf die Position A bis D der ersten Vollbrücke und die Verformungsmesssensoren 15 bis 18 auf die Positionen A bis D der zweiten Vollbrücke der in Fig. 23 dargestellten Wheatstone'schen Doppelbrücke gesetzt werden. Generell gesprochen, wird eine umso höhere Signalqualität erreicht, je mehr Verformungsmesssensoren 1 bis 58 zur Bestimmung des Messsignals herangezogen werden.
  • Im Sinne einer gerafften Darstellung wird darauf verzichtet, auf jede einzelne Schaltung explizit einzugehen. Die beispielhaft dargestellten Möglichkeiten, die Komponenten F_X, F_Y und F_Z zu bestimmen, ergeben sich für das erste Ausführungsbeispiel aus der Zusammenschau der Wheatstone'schen Messbrücken gemäß der Fig. 21 bis 23, der Fig. 4 bis 10 und der Zuordnungstabelle gemäß Fig. 24. Bei den Wheatstone'schen Messbrücken 84, 84 und 86 gemäß der Fig. 21 bis 23 sei noch darauf hingewiesen, dass mit dem Bezugszeichen 103 die jeweiligen Spannungseinspeisungspunkte und mit dem Bezugszeichen 104 die Signalabgriffpunkte bezeichnet sind, an welchen das Messsignal abgegriffen wird. Wheatstone'sche Messbrücken 84, 85 und 86 der genannten Art sind an sich bekannt und müssen nicht weiter erläutert werden.
  • Generell gesprochen, ist es bezüglich der Anordnung der Verformungsmesssensoren günstig, wenn zumindest zwei der in einer jeweiligen Wheatstone'schen Halb-, Voll- oder Doppelbrücke 84 bis 86 miteinander verschalteten Verformungsmesssensoren auf einander gegenüberliegenden Seiten der Symmetrieebene 77 bzw. Pedalachse 67 angeordnet sind. Vorzugsweise ist sogar vorgesehen, dass zumindest zwei dieser Verformungsmesssensoren, welche in einer Halb-, Voll- oder Doppelbrücke miteinander verschaltet sind, jeweils diagonal gegenüberliegend bzw. punktsymmetrisch bezüglich eines in der Symmetrieebene 77 liegenden Symmetriepunktes angeordnet sind. Die genannten, entsprechend hintereinander verschalteten Verformungsmesssensoren 1 bis 58 sind günstigerweise paarweise auch gleich weit von der Symmetrieebene 77 beabstandet.
  • Wie die verschiedenen, beispielhaft angeführten Verschaltungen zeigen, sind die für die Kraftkomponente F_Z zur Messsignalbestimmung vorgesehenen Verformungsmesssensoren 1 bis 18 bevorzugt an der zweiten Plattform 64 bzw. an deren Längsstegen 97 bis 100 angeordnet. Die zur Bestimmung der Kraftkomponente F_X verwendeten Messsignale werden günstigerweise von Verformungsmesssensoren 23 bis 32 generiert, welche an den Zwischenstegen 68 bis 71 befestigt sind und deren Verformung messen. Zur Bestimmung der Kraftkomponente F_Y in Richtung der Pedalachse 67 können die Verformungsmesssensoren 33 bis 36 in den Übergangsbereichen zwischen den Zwischenstegen 68 und 71 und den ersten und zweiten Plattformen 63 und 64 bzw. deren Querstegen 95, 96, 101 und 102 angeordnet werden, wie dies besonders gut aus den Fig. 8 bis 10 hervorgeht. Die zur Messung der Drehmomentkomponente T_Z verwendeten Verformungsmesssensoren 19 bis 22 sind besonders gut in Fig. 5 zu sehen. Sie sind günstigerweise, wie hier dargestellt, in den Kreuzungspunkten zwischen den Längsstegen 97 bis 100 der zweiten Plattform 64 und dem Pedalachsaufnahmekörper 65 angeordnet.
  • Das zweite Ausführungsbeispiel eines erfindungsgemäßen Fahrradpedals 61 ist in den Fig. 11 bis 20 gezeigt. Die bezüglich des ersten Ausführungsbeispiels bereits erläuterten Symmetrien sind auch hier realisiert. Die Symmetrieebene 77 ist in Fig. 12 beispielhaft eingezeichnet. Fig. 11 zeigt eine perspektivische Ansicht von oben auf das Fahrradpedal 61. Die Fig. 12 und 13 zeigen Seitenansichten von den einander gegenüberliegenden Seiten. Fig. 14 zeigt eine Draufsicht, Fig. 15 eine Ansicht von unten. Fig. 16 zeigt die Ansicht von vorne, Fig. 17 die Ansicht von hinten. Fig. 18 eine weitere Ansicht von unten. Fig. 19 eine weitere Ansicht von vorne und Fig. 20 eine weitere Ansicht von hinten auf dieses Fahrradpedal 61 des zweiten Ausführungsbeispiels. Für die Anordnung und Verschaltung der hier ebenfalls günstigerweise als Dehnmessstreifen ausgeführten Verformungsmesssensoren 39 bis 58 gilt das zum ersten Ausführungsbeispiel Gesagte, allerdings ist die Zuordnungstabelle der hier verwendeten Verformungsmesssensoren 39 bis 58 zu den Positionen A bis F in den verschiedenen Wheatstone'schen Brücken 84 bis 86 in Fig. 25 wiedergegeben.
  • Der Aufbau der ersten Plattform 63 sowie die Befestigung des Krafteinleitungskörpers 72 über die Krafteinleitungsbereiche 73 bis 76 entspricht beim zweiten Ausführungsbeispiel dem Aufbau des ersten Ausführungsbeispiels. Der wesentliche Unterschied zum ersten Ausführungsbeispiel liegt im Aufbau der zweiten Plattform 64. Anstelle der insgesamt vier Längsstege 97 bis 100 des ersten Ausführungsbeispiels weist die zweite Plattform 64 des zweiten Ausführungsbeispiels lediglich zwei mittig angeordnete Längsstege 98 und 99 auf. Entsprechend sind die beiden Plattformen 63 und 64 dieses zweiten Ausführungsbeispiels auch nur über zwei Zwischenstege 68 und 70 kraftübertragend miteinander verbunden. Zur Freistellung 90 zwischen der ersten Plattform 63 und dem Pedalachsaufnahmekörper 65 gilt das einleitend zum ersten Ausführungsbeispiel Gesagte.
  • Fig. 26 zeigt noch eine grafische Darstellung der Proportionalität zwischen dem zwischen den Signalabgriffen 104 abgegriffenen Messsignal und der tatsächlich eingeleiteten zu bestimmenden Kraftkomponente. Beispielhaft ist hier die vertikale Kraftkomponente F_Z und das zugeordnete Messsignal Fzm dargestellt. Entsprechende Darstellungen ergeben sich aber auch für die anderen Kraftkomponenten sowie auch für die Drehmomentkomponenten. Besonders wichtig ist dabei noch darauf hinzuweisen, dass bei einer reinen Einleitung in Richtung einer der Kraftkomponenten die anderen Komponenten keine Messsignale bzw. das Messsignal Null zeigen. Bei einer Krafteinleitung ausschließlich in Richtung F_Z treten somit keine Messsignale bzw. das Messsignal Null für F_X, F_Y und auch kein Messsignal bzw. das Messsignal Null für die Drehmomentkomponenten T_X und T_Z auf.
  • Legende zu den Hinweisziffern:
  • 1 - 58
    Verformungsmesssensor
    61
    Fahrradpedal
    62
    Pedalkörper
    63
    erste Plattform
    64
    zweite Plattform
    65
    Pedalachsaufnahmekörper
    66
    Pedalachsbolzen
    67
    Pedalachse
    68 - 71
    Zwischensteg
    72
    Krafteinleitungskörper
    73 - 76
    Krafteinleitungsbereich
    77
    Symmetrieebene
    78
    Aufnahmeöffnung
    79
    Krafteinleitungsbolzen
    80
    Bindungseinrichtung
    81
    Bindungsplatte
    82
    Bindungsbacken
    83
    Bindungsbacken
    84
    Wheatstone'sche Halbbrücke
    85
    Wheatstone'sche Vollbrücke
    86
    Wheatstone'sche Doppelbrücke
    87
    Kurbelachsbolzen
    88
    Tretkurbel
    89
    Kurbelachse
    90
    Freistellung
    91 - 94
    Längssteg
    95 - 96
    Quersteg
    97 - 100
    Längssteg
    101 - 102
    Quersteg
    103
    Speisung
    104
    Signalabgriff
    105
    Tretlager
    106
    Mittelsteg
    107 - 109
    Krafteinleitungspunkte

Claims (10)

  1. Fahrradpedal (61) mit einem Pedalkörper (62), wobei der Pedalkörper (62) eine erste Plattform (63) und zumindest eine zweite Plattform (64) und einen zwischen den Plattformen (63, 64) angeordneten Pedalachsaufnahmekörper (65) aufweist, wobei im Pedalachsaufnahmekörper (65) ein Pedalachsbolzen (66) des Fahrradpedals (61) um eine Pedalachse (67) drehbar angeordnet oder anordenbar ist und die Plattformen (63, 64) ausschließlich mittels Zwischenstegen kraftübertragend miteinander verbunden sind und die erste Plattform (63) ausschließlich über die Zwischenstege (68 -71) und über die zweite Plattform (64) mit dem Pedalachsaufnahmekörper (65) in kraftübertragender Verbindung steht, wobei Verformungsmesssensoren (1 - 58), insbesondere Dehnmessstreifen, zur Messung einer belastungsbedingten Verformung des Pedalkörpers (62) an der ersten Plattform (63) und/oder den Zwischenstegen (68 - 71) und/oder der zweiten Plattform (64) angeordnet sind, dadurch gekennzeichnet, dass das Fahrradpedal (61) zusätzlich zum Pedalkörper (62) einen Krafteinleitungskörper (72) aufweist, welcher ausschließlich über zumindest zwei, vorzugsweise vier, Krafteinleitungsbereiche (73 - 76) mit der ersten Plattform (63) in kraftübertragender Verbindung steht, wobei zumindest einer der Krafteinleitungsbereiche (73 - 76) auf einer Seite der ersten Plattform (63) angeordnet ist und zumindest ein anderer der Krafteinleitungsbereiche (73 - 76) bezüglich der Pedalachse (67) auf einer dazu gegenüberliegenden Seite der ersten Plattform (63) angeordnet ist.
  2. Fahrradpedal (61) nach Anspruch 1, dadurch gekennzeichnet, dass die zumindest zwei Krafteinleitungsbereiche (73 - 76), welche bezüglich der Pedalachse (67) auf einander gegenüberliegenden Seiten der ersten Plattform (63, 64) angeordnet sind, von der Pedalachse (67) gleich weit beabstandet sind.
  3. Fahrradpedal (61) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die zumindest zwei Krafteinleitungsbereiche (73-76), welche bezüglich der Pedalachse (67) auf einander gegenüberliegenden Seiten der ersten Plattform (63) angeordnet sind, zueinander spiegelsymmetrisch bezüglich einer gedachten Symmetrieebene (77) sind, wobei die Pedalachse (67) in der Symmetrieebene (77) liegt.
  4. Fahrradpedal (61) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die erste Plattform (63) und die zweite Plattform (64) jeweils in sich spiegelsymmetrisch bezüglich einer gedachten Symmetrieebene (77) sind, wobei die Pedalachse (67) in der Symmetrieebene (77) liegt.
  5. Fahrradpedal (61) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass jeweils zwei der Zwischenstege (68) zueinander spiegelsymmetrisch bezüglich einer gedachten Symmetrieebene (77) ausgebildet und angeordnet sind, wobei die Pedalachse (67) in der Symmetrieebene (77) liegt.
  6. Fahrradpedal (61) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass jeder der Krafteinleitungsbereiche (73 - 76) als eine Aufnahmeöffnung (78), vorzugsweise in der ersten Plattform (63), mit durch die Aufnahmeöffnung hindurchgeführtem Krafteinleitungsbolzen (79), vorzugsweise des Krafteinleitungskörpers (72), ausgebildet ist.
  7. Fahrradpedal (61) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Krafteinleitungskörper (72) eine Bindungseinrichtung (80) zur Befestigung eines Schuhs am Krafteinleitungskörpers (72) aufweist.
  8. Fahrradpedal (61) nach Anspruch 7, dadurch gekennzeichnet, dass die Bindungseinrichtung (80) eine Bindungsplatte (81) und zumindest einen, vorzugsweise federnd, bewegbaren, vorzugsweise schwenkbaren, Bindungsbacken (82) zur Befestigung eines Bindungsgegenstücks des Schuhs auf der Bindungsplatte (81) aufweist.
  9. Fahrradpedal (61) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass zwei, vier oder acht Verformungsmesssensoren (1 - 58) an jeweils unterschiedlichen Stellen der ersten Plattform (63) und/oder der zweiten Plattform (64) und/oder der Zwischenstege (68 - 71) angeordnet sind und in einer Wheatstone'schen Halbbrücke (84) oder Vollbrücke (85) oder Doppelbrücke (86) miteinander verschaltet sind.
  10. Fahrradpedal (61) nach Anspruch 9, dadurch gekennzeichnet, dass zumindest zwei der, in einer Wheatstone'schen Halbbrücke (84) oder Vollbrücke (85) oder Doppelbrücke (86) miteinander verschalteten Verformungsmesssensoren (1 - 58) bezogen auf die Pedalachse (67) auf einander gegenüberliegenden Seiten des Pedalkörpers (67) angeordnet sind, und vorzugsweise von der Pedalachse (67) gleich weit beabstandet sind.
EP12001832.0A 2011-04-21 2012-03-17 Fahrradpedal Active EP2514663B8 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA571/2011A AT510563B1 (de) 2011-04-21 2011-04-21 Fahrradpedal

Publications (3)

Publication Number Publication Date
EP2514663A1 true EP2514663A1 (de) 2012-10-24
EP2514663B1 EP2514663B1 (de) 2015-02-18
EP2514663B8 EP2514663B8 (de) 2015-07-15

Family

ID=45894012

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12001832.0A Active EP2514663B8 (de) 2011-04-21 2012-03-17 Fahrradpedal

Country Status (2)

Country Link
EP (1) EP2514663B8 (de)
AT (1) AT510563B1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3014407A1 (fr) * 2013-12-10 2015-06-12 Commissariat Energie Atomique Pedale de cycle dynamometrique
EP3733493A1 (de) * 2019-05-03 2020-11-04 Katholieke Universiteit Leuven Pedale

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD294673A5 (de) * 1990-05-21 1991-10-10 �����������@�������������@����������@��@������k�� Pedal zur messtechnischen erfassung der tretkraft-verlaeufe waehrend der zyklischen tretbewegung im radsport
EP1661606A1 (de) * 2004-11-24 2006-05-31 Look Cycle International Pedal mit Messvorrichtung
DE102005027181A1 (de) * 2005-06-07 2006-12-14 Plötz, Matthias John, Dr. Leistungsmesseinrichtung
DE202009001463U1 (de) * 2009-02-06 2009-04-30 Momes Llp Vorrichtung zur Messung und Ermittlung der Kraft, der Momente und der Leistung an einer (Tret-)Kurbel
WO2009083787A1 (en) * 2007-12-28 2009-07-09 Universita' Degli Studi Roma Tre System for evaluating the pedalling efficiency of a cyclist
WO2010109397A1 (de) * 2009-03-23 2010-09-30 Rmd Group Ag Vorrichtung und verfahren zur messung einer auf ein fahrradpedal in richtung der pedalachse wirkenden kraft

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD294673A5 (de) * 1990-05-21 1991-10-10 �����������@�������������@����������@��@������k�� Pedal zur messtechnischen erfassung der tretkraft-verlaeufe waehrend der zyklischen tretbewegung im radsport
EP1661606A1 (de) * 2004-11-24 2006-05-31 Look Cycle International Pedal mit Messvorrichtung
DE102005027181A1 (de) * 2005-06-07 2006-12-14 Plötz, Matthias John, Dr. Leistungsmesseinrichtung
WO2009083787A1 (en) * 2007-12-28 2009-07-09 Universita' Degli Studi Roma Tre System for evaluating the pedalling efficiency of a cyclist
DE202009001463U1 (de) * 2009-02-06 2009-04-30 Momes Llp Vorrichtung zur Messung und Ermittlung der Kraft, der Momente und der Leistung an einer (Tret-)Kurbel
WO2010109397A1 (de) * 2009-03-23 2010-09-30 Rmd Group Ag Vorrichtung und verfahren zur messung einer auf ein fahrradpedal in richtung der pedalachse wirkenden kraft

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Development of a triaxial force plateform for the measurement of force at a bicycle pedal", ISBS 2002, CÄCERES -EXTREMADURA - SPAIN, 2002, pages 290 FF
EDUARDO NABINGER ET AL: "DEVELOPMENT OF A TRIAXIAL FORCE PLATFORM FOR THE MEASUREMENT OF FORCE AT A BICYCLE PEDAL", XXTH INTERNATIONAL SYMPOSIUM ON BIOMECHANICS IN SPORTS, ISBS 2002,, 1 July 2002 (2002-07-01), pages 290 - 293, XP007920764 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3014407A1 (fr) * 2013-12-10 2015-06-12 Commissariat Energie Atomique Pedale de cycle dynamometrique
EP2883784A1 (de) * 2013-12-10 2015-06-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dynamometrisches Fahrradpedal
US9481428B2 (en) 2013-12-10 2016-11-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dynamometric cycle pedal
EP3733493A1 (de) * 2019-05-03 2020-11-04 Katholieke Universiteit Leuven Pedale

Also Published As

Publication number Publication date
EP2514663B8 (de) 2015-07-15
AT510563A4 (de) 2012-05-15
AT510563B1 (de) 2012-05-15
EP2514663B1 (de) 2015-02-18

Similar Documents

Publication Publication Date Title
DE102013014098B4 (de) Pedalkraftmessvorrichtung
AT394444B (de) Vorrichtung zur feststellung von verformungen einer kraftfahrzeugkarosserie
DE102014014247A1 (de) Fahrradkurbelarm- und Kettenradträgerbaugruppe
DE2520673C3 (de) Meßeinrichtung zum Messen von an einem Achszapfen angreifenden Kraft- und Drehmomentkomponenten
EP1294452B1 (de) Ergometer
EP2514663B1 (de) Fahrradpedal
EP0104557A2 (de) Waage
DE4232592C2 (de) Rahmen, insbesondere für ein zerlegbares Fahrrad
DE102009004397B4 (de) Ergometer
EP2839772A1 (de) Vorrichtung zur Analyse einer Sehne und zum Widerstandstraining einer Muskel-Sehnen-Einheit
DE10158600B4 (de) Vorrichtung zur Kraft- und Leistungsmessung an einer Fahrradtretkurbel
DE112005002519T5 (de) Gerät zur Messung und Analyse der von den Beinen ausgeübten Kraftanstrengungen
EP3860730A1 (de) Balance-untersatz für ruderergometer
DE102005033527B4 (de) Vorrichtung zur Erfassung von Kräften und/oder Momenten
EP0783427B1 (de) Fahrgerät mit rädern und pedalelementen
EP3328509B1 (de) Krafttrainingsgerät
DE19603237C2 (de) Trainingsgerät mit Körpergewichtsanzeige
DE10253060B4 (de) Doppelachse
DE19832983B4 (de) Antrieb für ein Fahrrad oder einen Heimtrainer
DE202007014810U1 (de) Trainingsgerät
DE102022123126A1 (de) Haltegriffanordnung für eine Laufbandanordnung sowie Laufbandanordnung
DE102022101730A1 (de) Pedalbetätigbare Vorrichtung
DE10224865C1 (de) Hydrostatische Lenkung
AT502100B1 (de) Trainingsgerät
DE9218543U1 (de) Vorrichtung, insbesondere zum Muskel- und Bewegungstraining

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130423

17Q First examination report despatched

Effective date: 20140429

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140903

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 710535

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012002266

Country of ref document: DE

Effective date: 20150402

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG INHABER

Ref country code: CH

Ref legal event code: PUEA

Owner name: HERBERT, JENNY, AT

Free format text: FORMER OWNER: HERBERT, JENNY, CH

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH PARTNER AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20150604

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150604 AND 20150610

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150518

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012002266

Country of ref document: DE

Representative=s name: ZENZ PATENTANWAELTE PARTNERSCHAFT MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012002266

Country of ref document: DE

Owner name: JENNY, HERBERT, AT

Free format text: FORMER OWNERS: AUGUSTIN, HEINZ, 9300 WITTENBACH, CH; HERBERT, JENNY, GOETZIS, AT

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 710535

Country of ref document: AT

Kind code of ref document: T

Owner name: JENNY HERBERT, AT

Effective date: 20150703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150618

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150519

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: HERBERT JENNY, AT

Effective date: 20150908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012002266

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20151119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160317

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160317

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20170710

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: BELLERIVESTRASSE 203 POSTFACH, 8034 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150317

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220322

Year of fee payment: 11

Ref country code: DE

Payment date: 20220329

Year of fee payment: 11

Ref country code: CH

Payment date: 20220324

Year of fee payment: 11

Ref country code: AT

Payment date: 20220315

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220325

Year of fee payment: 11

Ref country code: IT

Payment date: 20220323

Year of fee payment: 11

Ref country code: FR

Payment date: 20220325

Year of fee payment: 11

Ref country code: BE

Payment date: 20220325

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012002266

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230401

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 710535

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230317

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230317

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230317

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331