EP2510574B1 - Microwave transition device between a microstrip line and a rectangular waveguide - Google Patents

Microwave transition device between a microstrip line and a rectangular waveguide Download PDF

Info

Publication number
EP2510574B1
EP2510574B1 EP20100787756 EP10787756A EP2510574B1 EP 2510574 B1 EP2510574 B1 EP 2510574B1 EP 20100787756 EP20100787756 EP 20100787756 EP 10787756 A EP10787756 A EP 10787756A EP 2510574 B1 EP2510574 B1 EP 2510574B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
strip
line
metallic
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20100787756
Other languages
German (de)
French (fr)
Other versions
EP2510574A1 (en
Inventor
Michel Robin
Guillaume Tolleron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus DS SAS
Original Assignee
Airbus DS SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus DS SAS filed Critical Airbus DS SAS
Publication of EP2510574A1 publication Critical patent/EP2510574A1/en
Application granted granted Critical
Publication of EP2510574B1 publication Critical patent/EP2510574B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.

Definitions

  • the present invention relates to passive components for the propagation of microwave waves. More particularly, it relates to a planar transition device between a microstrip conductor line and a component in rectangular waveguide technology.
  • Conductive micro-ribbon technology offers the possibility of integrating relatively easily microwave functions at frequencies of a few gigahertz, especially up to band C. This technology becomes more complex to use at higher frequencies, a few tens of gigahertz (Ku, K and Ka bands). Indeed, the radiating nature of a micro-ribbon line requires the confinement of the conductors in a conductive mechanical structure providing electrical shielding. The dimensions of this mechanical structure must be smaller as the frequency is high.
  • Air waveguides are in essence non-radiating structures, but do not lend themselves well to the integration of complex functions. Waveguides are therefore used for devices with low losses or for high microwave powers. By replacing the air with a relative permittivity dielectric greater than 1, the dimensions of the waveguide are sufficiently small to allow integration of a dielectric substrate waveguide ("Substrate Integrated Waveguide") to a micro-ribbon line.
  • a dielectric substrate waveguide (“Substrate Integrated Waveguide")
  • the article Integrated Microstrip and Rectangular Waveguide in Planar Form "by Dominic Deslanders and Ke Wu, IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, Vol.11, No. 2, February 2001 , proposes a solution to the lossless transformation of the quasi-TEM propagation mode in the microstrip line to the transverse electric fundamental mode TE 10 of the waveguide.
  • the transition device according to this article comprises a single thin dielectric substrate in which are integrated a micro-ribbon line, a rectangular waveguide and a planar mode transformer between the line and the waveguide.
  • the mode transformer ensures, in addition to the transformation of the quasi-TEM mode into TE 10 mode, the electrical continuity between the line and the waveguide.
  • the mode transformer includes a conducting section in isosceles trapezium whose small base is merged with one end of the ribbon and the large base is merged with a central portion of the transverse song of a first large side of the guide. wave.
  • the other side of the dielectric substrate is entirely covered with a conductive layer serving as a ground plane at the line and a second long side at the waveguide.
  • the short longitudinal sides of the waveguide are made by two rows of metallized holes or by two metallized grooves formed in the dielectric substrate.
  • the structure of the transition device of the aforementioned article is used in the patent EP 1 376 746 B1 to integrate a rectangular waveguide microwave filter and a micro-ribbon line on the same thin dielectric substrate.
  • a transition between line and waveguide is known from the prior art WO210081060047 .
  • the objective of the invention is to associate, by means of a microwave transition device, a first technology of a micro-ribbon line with a second waveguide technology different from the first, while retaining the benefits of these two technologies.
  • a transition device comprising a mode transformer between a conductive ribbon line integrated in a printed circuit board, and a rectangular waveguide
  • the card comprises a housing containing the guide of a wave of which a large side is coplanar and coaxial with the ribbon of the line and the other large side is fixed on a metal layer of the card at the bottom of the housing, and the device has a gap spanned by a metal connecting element and located between the mode transformer and one of the elements including the line and the waveguide.
  • the mode transformer is integrated with the dielectric substrate of the card according to the first technology or the waveguide according to the second technology. If the mode transformer is integrated with the dielectric substrate of the board, the gap and the metal bonding element are located between the mode transformer and one end of the waveguide. If the mode transformer is integrated with the dielectric substrate of the waveguide, the gap and the metal connecting element are located between one end of the line to ribbon and fashion transformer. The gap results from a mechanical tolerance to introduce the structure of the waveguide in the housing of the card.
  • the metal bonding element which may comprise one or more foil tapes, or one or more metal wires, provides electrical continuity between the ribbon of the line and a long side of the waveguide via the mode transformer which adapts the impedances of the latter taking into account the mismatch created by the interstice spanned by the link element.
  • the impedances are adapted in the mode transformer by ribbon line sections whose ribbon widths and thicknesses, i.e. the distances between the micro-ribbon line and the ground plane, increase in steps. from the ribbon line to the waveguide and whose lengths are approximately equal to a quarter of a wavelength.
  • the technology of the micro-ribbon line like that of a multilayer printed circuit board, and waveguide manufacturing technology, such as SIW technology ("Substrate Integrated Waveguide "in English) on ceramic substrate, are preserved which gives more flexibility in the choice of characteristics of the line and the waveguide, such as in particular dielectric relative permittivities of the card and different waveguide .
  • the waveguide may be integrated in a microwave component having as substrate a ceramic; the short sides of the waveguide may each consist of staggered rows of metallized holes to reduce radiation losses.
  • the invention makes it possible to produce low-radiation, low-loss and low-mass microwave structures by eliminating a large part of the metal structure and is thus particularly attractive for airborne equipment. It allows the association of a micro-ribbon line to various rectangular waveguide structures, such as highly selective filters and high directivity couplers.
  • the invention is suitable for producing transmission or reception heads, or network or electronic scanning antennas, operating at high frequencies up to a few tens of gigahertz.
  • a transition device is a passive microwave circuit between a micro-ribbon line 1 integrated in a thin PCB 2 of the multilayer PCB type ("Printed Circuit Board" in English) and a microwave component 3 with a guide structure d rectangular wave between which a planar mode transformer 4 is provided.
  • two symmetrical transition devices with respect to the transverse plane of the microwave component 3 are arranged at the longitudinal ends of the component on the same card 2.
  • the component 3 is to be reported on the card 2 to best adapt to the dimensional characteristics and propagation of the micro-ribbon line 1.
  • the card 2 incorporating the micro-ribbon line 1 thus serves as a support for the component 3.
  • the printed circuit board 2 is a microwave circuit and has a thin cross section E compared to its width L.
  • the card comprises layers of dielectric substrate 20 between which are embedded internal metal layers superimposed under a first face from the menu.
  • the inner metal layers are a ground layer 12 for the line 1 and ground layers 21 to 23 under the layer 12 for the mode transformers 4, as will be explained below.
  • the metal layers 12, 21 and 22 extend over the entire width L of the card and in a depth b of the card equal to the height of the component 3.
  • the layer 23 located at the depth b and another metal layer mass 24 deposited on a second face of the card 2 are separated by a layer of the substrate 20 of thickness E - b and extend over the entire length and the entire width of the card.
  • the layers 23 and 24 constitute ground planes common to all the components supported by the card.
  • the various layers 12 and 21 to 24 are interconnected by numerous small metallized holes 25 perpendicular to the faces of the board.
  • the line 1 comprises a layer 10 of the substrate 20, a rectilinear metal strip 11 on the layer 10 at the first face of the card and along the longitudinal axis XX of the card, and a ground plane formed by the inner metal layer 12 underlying the portion of the first face of the card supporting the ribbon 11.
  • the substrate 20 is a dielectric of relatively low permittivity ⁇ r2 .
  • the width w of the ribbon 11 and the thickness e of the line are small, in particular with respect to the width L of the card and of the ground plane 12, so that the microphone line -Ruban 1 can propagate a guided wave in quasi-TEM mode in the centimeter wave range, especially for high frequencies of a few gigahertz to forty gigahertz to cover for example all or part of the frequency bands Ku, K and Ka.
  • Much of the energy propagates in the dielectric and a small portion propagates in the air near the strip conductor 11.
  • the characteristic impedance Z1 c of the micro-strip line typically 50 ⁇ , depends mainly the width w of the ribbon and the thickness e and the permittivity ⁇ r2 of the dielectric substrate used 20.
  • the line 1 is shielded by two metal layers 13 extending symmetrically with respect to the axis XX, coplanar with the strip 11 on the first face of the card 2 and running parallel to the ribbon 11 at a predetermined distance of a few widths w of the ribbon 11 to confine the electric field lines to the ribbon.
  • the shielding layers 13 are connected to the ground layers 12 and 21 to 24 by metallized holes 25.
  • the passive microwave component 3 is manufactured according to a waveguide 31-32 integrated waveguide (SIW) technology integrated in a dielectric substrate 33 with a rectangular section.
  • the rectangular section of the waveguide comprises long sides formed by two longitudinal metal layers 31s and 31i on the large faces of the substrate 33 and short sides formed by two pairs of peripheral longitudinal rows of metallized holes 321 and 322 arranged in staggered rows. and passing through the substrate 33.
  • the pairs of rows of holes 321 and 322 are symmetrical with respect to the longitudinal axial plane of the component 3.
  • the distance between two adjacent holes 321, 322 in each row is substantially equal to the diameter of the holes and substantially less than the operating wavelength of the waveguide to minimize radiation loss.
  • the width a of the waveguide is defined by the distance between the pairs of rows of metallized holes 321-322 in dependence on the dimensions of the holes and the pitch between the holes.
  • the height b of the waveguide in the direction of the thickness E of the card 2 is defined by the distance between the metal layers 31s and 31i.
  • the waveguide 31-32 is replaced by a conventional rectangular section waveguide 31-32 having solid metal walls and filled with the dielectric substrate 34.
  • the component 3 SIW manufacturing technology uses in the embodiment presented a low temperature ceramic ceramic (LTCC) process according to which the dielectric substrate 33 is a ceramic having a relative permittivity ⁇ r3 higher than that ⁇ r2 of the dielectric substrate 20 of the card 2 and therefore of that of the substrate layer 10 of the microstrip line 1.
  • LTCC low temperature ceramic ceramic
  • the dielectrics of the substrate 20 of the card 2 and the line 1 and the substrate 33 of the waveguide 31-32 may be of the same nature and have relative permittivities ⁇ r2 and ⁇ r3 identical.
  • the height b thereof is selected equal to the thickness 2.
  • a parallelepiped housing 26 for interposing with a transverse clearance the waveguide component 3 31-32 between ends of mode transformers 4.
  • the height of the housing 26 is equal to the height b of the waveguide and to the thickness between the metal strip 11 of the microstrip line 1 and the inner metal layer 23.
  • the outer face of the long side of the waveguide formed by the metal layer 31s is coplanar with the ribbon 11 of the line 1, and the outer face of the other large side of the waveguide formed by the metal layer 31i is in mechanical and electrical contact with the portion of the metal layer 23 at the housing background.
  • the portion of the card underlying the housing 26 of thickness E-b between the metal layers 23 and 24 is preserved to possibly include one or more microwave devices.
  • the length of the housing 26 is substantially greater than the length of the waveguide 31-32 and component 3 to facilitate its installation with a mechanical tolerance clearance.
  • the width of the housing 26 may be equal to the width L of the card to easily machine the card.
  • the width of the component 3 greater than the width a of the waveguide 31-32 is generally at most equal to that L of the card 2 and is determined as a function of the cutoff frequency of the TE mode 10 in the guide of FIG. wave which is a function of 2a.
  • the ratio a / b is about 10 to 15 and the waveguide is thus flat.
  • the component 3 with the waveguide 31-32 is centered in the housing 26 and fixed by brazing the metal layer 31 i on the portion of the metal layer 23 at the bottom of the housing 26, taking care to align the axial plane longitudinal waveguide symmetry with the longitudinal axis of symmetry XX of the ribbon 11 of the line 1.
  • the passive microwave component 3 with a rectangular waveguide planar structure 31-32 is a microwave bandpass filter comprising six pairs of metallized holes 34 crossing the dielectric substrate 33 and connected to the metal layers 31s and 31i. .
  • the pairs of metallized holes 34 are arranged symmetrically with respect to the longitudinal and transverse axial planes of the component.
  • the arrangement of the holes 34 constitutes inductive pillars depending on the frequency response of the filter.
  • the microwave component 3 is designed as a directional coupler.
  • the propagation mode transformer 4 in a transition device connects ends facing the ribbon 11 of the micro-ribbon line 1 and the long side 31s of the waveguide 31-32 coplanar with the ribbon 11, and connects the diaper internal ground plane 12 of the micro-ribbon line at the long side 31i of the waveguide 31-32 attached to the metal layer 23 at the bottom of the housing 26.
  • the mode transformer 4 progressively transforms by minimizing the losses the mode quasi-TEM of the micro-ribbon line 1 in a guided mode TE 10 of the waveguide 31-32 and adapts their impedances.
  • the planar structure of the mode transformer is designed to constitute a quasi-perfect quadrupole whose transmission parameters S 12 and S 21 at the terminals of the quadripole are approximately equal to 1 and whose reflection parameters S 11 and S 22 at the terminals of the quadrupole are approximately equal to 0, taking into account in practice, losses caused by conductors and imperfect dielectrics.
  • the mode transformer 4 can be integrated in the waveguide 31-32, or be integrated in the card 2, as described below and shown to the Figures 1 to 4 .
  • the characteristic impedance of a decreasing micro-ribbon line when the w / e ratio increases the mode transformer 4 comprises N microstrip line sections 21-41 to 2N-4N symmetrical with respect to the longitudinal plane of the line 1 having axis XX.
  • the number N is generally at least 1 and depends on the layered manufacturing technology of the board 2 and that of the microwave component 3.
  • the lengths of the sections of the mode transformer 4 are approximately equal to a quarter of the length of the wave of the central operating frequency and allow progressive impedance transformation by minimizing parasitic reflections at the junctions between the sections.
  • the bottom of the gap 5 is a small portion of the metal ground layer 23 providing electrical continuity between the ground planes 12, 21, 22 and 23 of the line 1 and line sections 21-41, 22-42 and 23-43, through the metallized holes 25, and the metal layer 31i of the component 3 attached to the underlying portion of the metal ground layer 23.
  • the lengths of the line sections are somewhat different from each other and can be each somewhat lower, equal to or somewhat greater than a quarter of the operating wavelength to compensate for interfering effects including wave reflection at various transitions, particularly at the gap 5, and to bring back by the transformer 4 an impedance equal ale to the characteristic impedance Z1 c of line 1, at the junction between this line and the first line section 21-41.
  • the line sections 21-41, 22-42 and 23-43 are shielded by symmetrical pairs of metal layers 47, 48 and 49 extending the shielding layers 13.
  • the shielding layers 47, 48 and 49 are coplanar with the ribbons 41, 42 and 43 on the first face of the card and parallel along these ribbons at the predetermined distance of a few widths w of the ribbon 11.
  • the shielding layers 47, 48 and 49 are respectively connected to the underlying layers of mass 12 and 21 to 24 through metallized holes 25.
  • the housing 26 formed in the card is much longer.
  • the arrangement of the line sections 21-41, 22-42 and 23-43 with the shielding layers 47, 48 and 49 and the width a of the waveguide remain.
  • the ribbons 41, 42 and 43 are derived from the same metal layer as the long side 31s of the guide and in electrical continuity therewith on the same face of the substrate 33 of the waveguide structure.
  • the dimensions of the line sections whose metal layers of mass are superimposed and integrated into the substrate 33 of the waveguide structure, which is then of the multilayer type, are modified according to in particular relative permittivity ⁇ r3 .
  • the air gap 5 is thus eliminated between the line section 23-43 and the waveguide 31-32 and replaced by an air gap due to the clearance necessary for the introduction of the monolithic component assembly. with both mode transformers in the card slot.
  • the air gap is located between the end of the ribbon line 1 and the line section 21-41 having the smallest ribbon and is spanned by a thin metal connecting element similar to the element 6, but width w, and brazed to the ribbons 11 and 41.
  • the method of manufacturing the transition device comprises the following steps.
  • the mode transformer 4 is integrated in the card, or in the second embodiment of the invention, the mode transformer is integrated into the structure as a guide. waveform of the component.
  • the parallelepipedal housing 26 is formed in the card 2 at a depth equal to the height b of the rectangular waveguide 31-32, for example by means of a matrix having the dimensions of the housing during the compression of the layers of the dielectric substrate 20 superimposed and coated with the various metal layers during the manufacture of the card, so that a portion of the inner mass layer 23 constitutes the bottom of the housing.
  • the rectangular waveguide 31-32 or in particular the component 3 having a rectangular waveguide structure, is introduced with longitudinal clearance and centered in the housing 26 so that the long side 31s of the waveguide is coplanar and coaxial with the ribbon 11 of the line 1 and the other large side 31i of the waveguide is fixed by brazing on the portion of the metal layer 23 of the card at the bottom of the housing.
  • the longitudinal clearance results from a mechanical tolerance for inserting the rectangular waveguide 31-32, or in particular the component 3, into the housing 26.

Landscapes

  • Waveguides (AREA)
  • Waveguide Connection Structure (AREA)
  • Structure Of Printed Boards (AREA)
  • Non-Reversible Transmitting Devices (AREA)

Description

La présente invention concerne des composants passifs pour la propagation d'ondes hyperfréquences. Plus particulièrement, elle concerne un dispositif de transition planaire entre une ligne à micro-ruban conducteur ("microstrip" en anglais) et un composant en technologie guide d'onde rectangulaire.The present invention relates to passive components for the propagation of microwave waves. More particularly, it relates to a planar transition device between a microstrip conductor line and a component in rectangular waveguide technology.

La technologie à micro-ruban conducteur offre la possibilité d'intégrer relativement facilement des fonctions hyperfréquence à des fréquences de quelques gigahertz, notamment jusqu'en bande C. Cette technologie devient plus complexe à utiliser à des fréquences plus élevées, de quelques dizaines de gigahertz (bandes Ku, K et Ka). En effet, la nature rayonnante d'une ligne à micro-ruban nécessite le confinement des conducteurs dans une structure mécanique conductrice assurant un blindage électrique. Les dimensions de cette structure mécanique doivent être d'autant plus faibles que la fréquence est élevée.Conductive micro-ribbon technology offers the possibility of integrating relatively easily microwave functions at frequencies of a few gigahertz, especially up to band C. This technology becomes more complex to use at higher frequencies, a few tens of gigahertz (Ku, K and Ka bands). Indeed, the radiating nature of a micro-ribbon line requires the confinement of the conductors in a conductive mechanical structure providing electrical shielding. The dimensions of this mechanical structure must be smaller as the frequency is high.

Les guides d'onde à air sont par essence des structures non rayonnantes, mais se prêtent mal à l'intégration de fonctions complexes. Les guides d'onde sont de ce fait utilisés pour des dispositifs à faibles pertes ou pour des puissances hyperfréquence élevées. En remplaçant l'air par un diélectrique de permittivité relative supérieure à 1, les dimensions du guide d'onde se trouvent suffisamment réduites pour permettre une intégration d'un guide d'onde à substrat diélectrique ("Substrat Integrated Waveguide" en anglais) à une ligne à micro-ruban.Air waveguides are in essence non-radiating structures, but do not lend themselves well to the integration of complex functions. Waveguides are therefore used for devices with low losses or for high microwave powers. By replacing the air with a relative permittivity dielectric greater than 1, the dimensions of the waveguide are sufficiently small to allow integration of a dielectric substrate waveguide ("Substrate Integrated Waveguide") to a micro-ribbon line.

L'article " Integrated Microstrip and Rectangular Waveguide in Planar Form" de Dominic Deslandes et Ke Wu, IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, Vol.11, No. 2, février 2001 , propose une solution à la transformation sans perte du mode de propagation quasi-TEM dans la ligne à micro-ruban au mode fondamental transverse électrique TE10 du guide d'onde. Le dispositif de transition selon cet article comporte un substrat diélectrique mince unique dans lequel sont intégrés une ligne à micro-ruban, un guide d'onde rectangulaire et un transformateur de mode planaire entre la ligne et le guide d'onde. Le transformateur de mode assure, outre la transformation du mode quasi-TEM en mode TE10, la continuité électrique entre la ligne et le guide d'onde. Sur la face du substrat diélectrique supportant le ruban de la ligne, le transformateur de mode comprend un tronçon conducteur en trapèze isocèle dont la petite base est confondue avec une extrémité du ruban et la grande base est confondue avec une portion centrale du chant transversal d'un premier grand côté du guide d'onde. L'autre face du substrat diélectrique est entièrement recouverte d'une couche conductrice servant de plan de masse à la ligne et de second grand côté au guide d'onde. Les petits côtés longitudinaux du guide d'onde sont réalisés par deux rangées de trous métallisés ou par deux rainures métallisées pratiquées dans le substrat diélectrique. Ainsi la hauteur (ou l'épaisseur) du guide d'onde peut être réduite avec peu d'influence sur la propagation du mode TE10 ce qui permet l'intégration du guide d'onde au substrat diélectrique mince de la ligne à micro-ruban tout en réduisant les pertes par rayonnement.The article Integrated Microstrip and Rectangular Waveguide in Planar Form "by Dominic Deslandes and Ke Wu, IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, Vol.11, No. 2, February 2001 , proposes a solution to the lossless transformation of the quasi-TEM propagation mode in the microstrip line to the transverse electric fundamental mode TE 10 of the waveguide. The transition device according to this article comprises a single thin dielectric substrate in which are integrated a micro-ribbon line, a rectangular waveguide and a planar mode transformer between the line and the waveguide. The mode transformer ensures, in addition to the transformation of the quasi-TEM mode into TE 10 mode, the electrical continuity between the line and the waveguide. On the face of the dielectric substrate supporting the Ribbon of the line, the mode transformer includes a conducting section in isosceles trapezium whose small base is merged with one end of the ribbon and the large base is merged with a central portion of the transverse song of a first large side of the guide. wave. The other side of the dielectric substrate is entirely covered with a conductive layer serving as a ground plane at the line and a second long side at the waveguide. The short longitudinal sides of the waveguide are made by two rows of metallized holes or by two metallized grooves formed in the dielectric substrate. Thus, the height (or thickness) of the waveguide can be reduced with little influence on the propagation of the TE mode 10 , which allows integration of the waveguide with the thin dielectric substrate of the microwave line. ribbon while reducing radiation losses.

La structure du dispositif de transition de l'article précité est utilisée dans le brevet EP 1 376 746 B1 pour intégrer un filtre hyperfréquence à guide d'onde rectangulaire et une ligne à micro-ruban sur le même substrat diélectrique mince.The structure of the transition device of the aforementioned article is used in the patent EP 1 376 746 B1 to integrate a rectangular waveguide microwave filter and a micro-ribbon line on the same thin dielectric substrate.

Une transition entre ligne et guide d'onde est connue de l'art antérieur WO210081060047 .A transition between line and waveguide is known from the prior art WO210081060047 .

L'objectif de l'invention est d'associer, au moyen d'un dispositif de transition hyperfréquence, une première technologie d'une ligne à micro-ruban à une deuxième technologie de guide d'onde différente de la première, tout en conservant les avantages de ces deux technologies.The objective of the invention is to associate, by means of a microwave transition device, a first technology of a micro-ribbon line with a second waveguide technology different from the first, while retaining the benefits of these two technologies.

A cette fin, un dispositif de transition comprenant un transformateur de mode entre une ligne à ruban conducteur intégrée dans une carte de circuit imprimé, et un guide d'onde rectangulaire, est caractérisé en ce que la carte comprend un logement contenant le guide d'onde dont un grand côté est coplanaire et coaxial au ruban de la ligne et l'autre grand côté est fixé sur une couche métallique de la carte au fond du logement, et le dispositif comporte un interstice enjambé par un élément métallique de liaison et situé entre le transformateur de mode et l'un des éléments comprenant la ligne et le guide d'onde.To this end, a transition device comprising a mode transformer between a conductive ribbon line integrated in a printed circuit board, and a rectangular waveguide, is characterized in that the card comprises a housing containing the guide of a wave of which a large side is coplanar and coaxial with the ribbon of the line and the other large side is fixed on a metal layer of the card at the bottom of the housing, and the device has a gap spanned by a metal connecting element and located between the mode transformer and one of the elements including the line and the waveguide.

Le transformateur de mode est intégré au substrat diélectrique de la carte selon la première technologie ou du guide d'onde selon la deuxième technologie. Si le transformateur de mode est intégré au substrat diélectrique de la carte, l'interstice et l'élément métallique de liaison sont situés entre le transformateur de mode et une extrémité du guide d'onde. Si le transformateur de mode est intégré au substrat diélectrique du guide d'onde, l'interstice et l'élément métallique de liaison sont situés entre une extrémité de la ligne à ruban et le transformateur de mode. L'interstice résulte d'une tolérance mécanique pour introduire la structure du guide d'onde dans le logement de la carte. L'élément métallique de liaison qui peut comprendre un ou plusieurs rubans de feuille métallique, ou un ou plusieurs fils métalliques, assure la continuité électrique entre le ruban de la ligne et un grand côté du guide d'onde via le transformateur de mode qui adapte les impédances de ces derniers en tenant compte de la désadaptation créée par l'interstice enjambé par l'élément de liaison. Les impédances sont adaptées dans le transformateur de mode par des tronçons de ligne à ruban dont les largeurs de ruban et les épaisseurs, c'est-à-dire les distances entre la ligne à micro-ruban et le plan de masse, croissent par paliers de la ligne à ruban vers le guide d'onde et dont les longueurs sont approximativement égales à un quart de longueur d'onde.The mode transformer is integrated with the dielectric substrate of the card according to the first technology or the waveguide according to the second technology. If the mode transformer is integrated with the dielectric substrate of the board, the gap and the metal bonding element are located between the mode transformer and one end of the waveguide. If the mode transformer is integrated with the dielectric substrate of the waveguide, the gap and the metal connecting element are located between one end of the line to ribbon and fashion transformer. The gap results from a mechanical tolerance to introduce the structure of the waveguide in the housing of the card. The metal bonding element which may comprise one or more foil tapes, or one or more metal wires, provides electrical continuity between the ribbon of the line and a long side of the waveguide via the mode transformer which adapts the impedances of the latter taking into account the mismatch created by the interstice spanned by the link element. The impedances are adapted in the mode transformer by ribbon line sections whose ribbon widths and thicknesses, i.e. the distances between the micro-ribbon line and the ground plane, increase in steps. from the ribbon line to the waveguide and whose lengths are approximately equal to a quarter of a wavelength.

Quelle que soit la réalisation du dispositif de transition, la technologie de la ligne à micro-ruban, comme celle d'une carte de circuit imprimé multicouche, et la technologie de fabrication du guide d'onde, comme la technologie SIW ("Substrate Integrated Waveguide" en anglais) sur substrat en céramique, sont conservées ce qui confère plus de flexibilité dans le choix des caractéristiques de la ligne et du guide d'onde, comme notamment des permittivités relatives de diélectrique de la carte et du guide d'onde différentes. En particulier, le guide d'onde peut être intégré dans un composant hyperfréquence ayant comme substrat une céramique ; les petits côtés du guide d'onde peuvent être constitués chacun par des rangées de trous métallisés en quinconce pour diminuer les pertes par rayonnement.Whatever the realization of the transition device, the technology of the micro-ribbon line, like that of a multilayer printed circuit board, and waveguide manufacturing technology, such as SIW technology ("Substrate Integrated Waveguide "in English) on ceramic substrate, are preserved which gives more flexibility in the choice of characteristics of the line and the waveguide, such as in particular dielectric relative permittivities of the card and different waveguide . In particular, the waveguide may be integrated in a microwave component having as substrate a ceramic; the short sides of the waveguide may each consist of staggered rows of metallized holes to reduce radiation losses.

L'invention permet de réaliser des structures hyperfréquence à faible rayonnement, faible perte et de faible masse, en supprimant une grande partie de structure métallique et est ainsi particulièrement attrayante pour des équipements aéroportés. Elle permet l'association d'une ligne à micro-ruban à diverses structures à guide d'onde rectangulaire, telles que des filtres très sélectifs et des coupleurs à directivité élevée. En particulier, l'invention est appropriée pour la réalisation de têtes d'émission ou de réception, ou d'antennes réseau ou à balayage électronique, fonctionnant à des fréquences élevées jusqu'à quelques dizaines de gigahertz.The invention makes it possible to produce low-radiation, low-loss and low-mass microwave structures by eliminating a large part of the metal structure and is thus particularly attractive for airborne equipment. It allows the association of a micro-ribbon line to various rectangular waveguide structures, such as highly selective filters and high directivity couplers. In particular, the invention is suitable for producing transmission or reception heads, or network or electronic scanning antennas, operating at high frequencies up to a few tens of gigahertz.

L'invention concerne également un procédé de fabrication d'un dispositif de transition comprenant un transformateur de mode entre une ligne à ruban intégrée dans une carte de circuit imprimé, et un guide d'onde rectangulaire. Le procédé est caractérisé par les étapes suivantes :

  • ménager dans la carte un logement dont le fond est constitué par une portion d'une couche métallique interne à la carte.
  • introduire le guide d'onde dans le logement afin qu'un grand côté du guide d'onde soit coplanaire et coaxial au ruban de ligne et l'autre grand côté du guide d'onde soit fixé sur la portion de la couche métallique, et
  • former et fixer un mince élément métallique de liaison enjambant un interstice entre le transformateur de mode et l'un des éléments comprenant la ligne et le guide d'onde.
The invention also relates to a method of manufacturing a transition device comprising a mode transformer between a ribbon line integrated in a printed circuit board, and a rectangular waveguide. The process is characterized by the following steps:
  • arrange in the map a housing whose bottom is constituted by a portion of a metal layer internal map.
  • introducing the waveguide into the housing so that a large side of the waveguide is coplanar and coaxial with the line ribbon and the other large side of the waveguide is attached to the portion of the metal layer, and
  • forming and securing a thin metal connecting member spanning a gap between the mode transformer and one of the elements including the line and the waveguide.

D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante de plusieurs réalisations de l'invention données à titre d'exemples non limitatifs, en référence aux dessins annexés correspondants dans lesquels :

  • la figure 1 est une vue en perspective de dessus de deux dispositifs de transition selon l'invention ;
  • la figure 2 est une vue en perspective et en coupe longitudinale axiale prise le long de la ligne II-II de la figure 1 ;
  • la figure 3 est une vue en coupe longitudinale du dispositif de transition au niveau d'un transformateur de mode d'un dispositif de transition ;
  • la figure 4 est une vue en perspective et en coupe longitudinale analogue à la figure 2 et à plus grande échelle, au niveau d'un interstice entre le transformateur de mode et un composant hyperfréquence passif du dispositif de transition ;
  • la figure 5 est une vue en coupe transversale d'une ligne à micro-ruban du dispositif de transition ; et
  • la figure 6 est une vue en coupe transversale de la structure en guide d'onde rectangulaire du composant hyperfréquence.
Other characteristics and advantages of the present invention will emerge more clearly on reading the following description of several embodiments of the invention given by way of non-limiting examples, with reference to the corresponding appended drawings in which:
  • the figure 1 is a perspective view from above of two transition devices according to the invention;
  • the figure 2 is a perspective view in axial longitudinal section taken along line II-II of the figure 1 ;
  • the figure 3 is a longitudinal sectional view of the transition device at a mode transformer of a transition device;
  • the figure 4 is a perspective view and in longitudinal section similar to the figure 2 and on a larger scale, at a gap between the mode transformer and a passive microwave component of the transition device;
  • the figure 5 is a cross-sectional view of a microstrip line of the transition device; and
  • the figure 6 is a cross-sectional view of the rectangular waveguide structure of the microwave component.

Selon une réalisation de l'invention montrée aux figures 1 à 4, un dispositif de transition est un circuit hyperfréquence passif entre une ligne à micro-ruban 1 intégrée dans une carte de circuit imprimé mince 2 du type multicouche PCB ("Printed Circuit Board" en anglais) et un composant hyperfréquence 3 à structure de guide d'onde rectangulaire entre lesquels un transformateur de mode planaire 4 est prévu. Dans les figures, deux dispositifs de transition symétriques par rapport au plan transversal du composant hyperfréquence 3 sont agencés aux extrémités longitudinales du composant sur la même carte 2. Le composant 3 est à rapporter sur la carte 2 pour s'adapter au mieux aux caractéristiques dimensionnelles et de propagation de la ligne à micro-ruban 1. La carte 2 intégrant la ligne à micro-ruban 1 sert ainsi de support du composant 3.According to an embodiment of the invention shown Figures 1 to 4 , a transition device is a passive microwave circuit between a micro-ribbon line 1 integrated in a thin PCB 2 of the multilayer PCB type ("Printed Circuit Board" in English) and a microwave component 3 with a guide structure d rectangular wave between which a planar mode transformer 4 is provided. In the figures, two symmetrical transition devices with respect to the transverse plane of the microwave component 3 are arranged at the longitudinal ends of the component on the same card 2. The component 3 is to be reported on the card 2 to best adapt to the dimensional characteristics and propagation of the micro-ribbon line 1. The card 2 incorporating the micro-ribbon line 1 thus serves as a support for the component 3.

La carte de circuit imprimé 2 est un circuit à micro-onde et présente une section transversale de faible épaisseur E comparativement à sa largeur L. La carte comprend des couches de substrat diélectrique 20 entre lesquelles sont noyées des couches métalliques internes superposées sous une première face de la carte. Les couches métalliques internes sont une couche de masse 12 pour la ligne 1 et des couches de masse 21 à 23 sous la couche 12 pour les transformateurs de mode 4, comme cela sera précisé plus loin. Les couches métalliques 12, 21 et 22 s'étendent sur toute la largeur L de la carte et dans une profondeur b de la carte égale à la hauteur du composant 3. La couche 23 située à la profondeur b et une autre couche métallique de masse 24 déposée sur une seconde face de la carte 2 sont séparées par une couche du substrat 20 d'épaisseur E - b et s'étendent sur toute la longueur et toute la largeur de la carte. Les couches 23 et 24 constituent des plans de masse communs à tous les composants supportés par la carte. Les diverses couches 12 et 21 à 24 sont reliées entre elles par de nombreux petits trous métallisés 25 perpendiculaires aux faces de la carte.The printed circuit board 2 is a microwave circuit and has a thin cross section E compared to its width L. The card comprises layers of dielectric substrate 20 between which are embedded internal metal layers superimposed under a first face from the menu. The inner metal layers are a ground layer 12 for the line 1 and ground layers 21 to 23 under the layer 12 for the mode transformers 4, as will be explained below. The metal layers 12, 21 and 22 extend over the entire width L of the card and in a depth b of the card equal to the height of the component 3. The layer 23 located at the depth b and another metal layer mass 24 deposited on a second face of the card 2 are separated by a layer of the substrate 20 of thickness E - b and extend over the entire length and the entire width of the card. The layers 23 and 24 constitute ground planes common to all the components supported by the card. The various layers 12 and 21 to 24 are interconnected by numerous small metallized holes 25 perpendicular to the faces of the board.

Comme montré aux figures 1, 2, 3 et 5, la ligne 1 comprend une couche 10 du substrat 20, un ruban métallique rectiligne 11 sur la couche 10 au niveau de la première face de la carte et le long de l'axe longitudinal XX de la carte, et un plan de masse formé par la couche métallique interne 12 sous-jacente à la portion de la première face de la carte supportant le ruban 11.As shown in figures 1 , 2 , 3 and 5 the line 1 comprises a layer 10 of the substrate 20, a rectilinear metal strip 11 on the layer 10 at the first face of the card and along the longitudinal axis XX of the card, and a ground plane formed by the inner metal layer 12 underlying the portion of the first face of the card supporting the ribbon 11.

Entre les couches métalliques 23 et 24 de la carte peuvent être prévus d'autres dispositifs hyperfréquence (non représentés).Between the metal layers 23 and 24 of the card may be provided other microwave devices (not shown).

Le substrat 20 est un diélectrique de permittivité relative faible εr2. La largeur w du ruban 11 et l'épaisseur e de la ligne, par exemple d'environ E/12, sont petites, notamment par rapport à la largeur L de la carte et du plan de masse 12, afin que la ligne à micro-ruban 1 puisse propager une onde guidée en mode quasi-TEM dans la gamme des ondes centimétriques, notamment pour des fréquences élevées de quelques gigahertz à une quarantaine de gigahertz pour couvrir par exemple tout ou partie des bandes de fréquence Ku, K et Ka. Une grande partie de l'énergie se propage dans le diélectrique et une petite partie se propage dans l'air à proximité du ruban conducteur 11. L'impédance caractéristique Z1c de la ligne à micro-ruban, typiquement de 50 Ω, est fonction principalement de la largeur w du ruban et de l'épaisseur e et de la permittivité εr2 du substrat diélectrique utilisé 20.The substrate 20 is a dielectric of relatively low permittivity ε r2 . The width w of the ribbon 11 and the thickness e of the line, for example approximately E / 12, are small, in particular with respect to the width L of the card and of the ground plane 12, so that the microphone line -Ruban 1 can propagate a guided wave in quasi-TEM mode in the centimeter wave range, especially for high frequencies of a few gigahertz to forty gigahertz to cover for example all or part of the frequency bands Ku, K and Ka. Much of the energy propagates in the dielectric and a small portion propagates in the air near the strip conductor 11. The characteristic impedance Z1 c of the micro-strip line, typically 50 Ω, depends mainly the width w of the ribbon and the thickness e and the permittivity ε r2 of the dielectric substrate used 20.

Comme montré aux figures 1, 2 et 5, de part et d'autre du ruban conducteur 11, la ligne 1 est blindée par deux couches métalliques 13 s'étendant symétriquement par rapport à l'axe XX, coplanaires au ruban 11 sur la première face de la carte 2 et longeant parallèlement le ruban 11 à une distance prédéterminée de quelques largeurs w du ruban 11 pour confiner les lignes de champ électrique vers le ruban. Les couches de blindage 13 sont reliées aux couches de masse 12 et 21 à 24 par des trous métallisés 25.As shown in figures 1 , 2 and 5 , on either side of the conductive strip 11, the line 1 is shielded by two metal layers 13 extending symmetrically with respect to the axis XX, coplanar with the strip 11 on the first face of the card 2 and running parallel to the ribbon 11 at a predetermined distance of a few widths w of the ribbon 11 to confine the electric field lines to the ribbon. The shielding layers 13 are connected to the ground layers 12 and 21 to 24 by metallized holes 25.

Le composant hyperfréquence passif 3 est fabriqué selon une technologie SIW ("Substrate Integrated Waveguide" en anglais) à guide d'onde 31-32 intégré dans un substrat diélectrique 33 à section rectangulaire. Comme montré aux figures 1, 2, 3, 4 et 6, la section rectangulaire du guide d'onde comporte des grands côtés formés par deux couches métalliques longitudinales 31s et 31i sur les grandes faces du substrat 33 et des petits côtés formés par deux paires de rangées longitudinales périphériques de trous métallisés 321 et 322 disposés en quinconce et traversant le substrat 33. Les paires de rangées de trous 321 et 322 sont symétriques par rapport au plan axial longitudinal du composant 3. La distance entre deux trous voisins 321, 322 dans chaque rangée est sensiblement égale au diamètre des trous et nettement inférieure à la longueur d'onde de fonctionnement du guide d'onde pour minimiser toute perte par rayonnement. La largeur a du guide d'onde est définie par la distance entre les paires de rangées de trous métallisés 321-322 en dépendance des dimensions des trous et du pas entre les trous. La hauteur b du guide d'onde dans le sens de l'épaisseur E de la carte 2 est définie par la distance entre les couches métalliques 31s et 31i. En variante, le guide d'onde 31-32 est remplacé par un guide d'onde 31-32 à section rectangulaire classique ayant des parois métalliques pleines et rempli du substrat diélectrique 34. La technologie de fabrication SIW du composant 3 utilise dans la réalisation présentée un procédé céramique à basse température LTCC ("Low Temperature Cofired Ceramic" en anglais) selon lequel le substrat diélectrique 33 est une céramique ayant une permittivité relative εr3 plus élevée que celle εr2 du substrat diélectrique 20 de la carte 2 et donc de celle de la couche de substrat 10 de la ligne à micro-ruban 1.The passive microwave component 3 is manufactured according to a waveguide 31-32 integrated waveguide (SIW) technology integrated in a dielectric substrate 33 with a rectangular section. As shown in figures 1 , 2 , 3 , 4 and 6 , the rectangular section of the waveguide comprises long sides formed by two longitudinal metal layers 31s and 31i on the large faces of the substrate 33 and short sides formed by two pairs of peripheral longitudinal rows of metallized holes 321 and 322 arranged in staggered rows. and passing through the substrate 33. The pairs of rows of holes 321 and 322 are symmetrical with respect to the longitudinal axial plane of the component 3. The distance between two adjacent holes 321, 322 in each row is substantially equal to the diameter of the holes and substantially less than the operating wavelength of the waveguide to minimize radiation loss. The width a of the waveguide is defined by the distance between the pairs of rows of metallized holes 321-322 in dependence on the dimensions of the holes and the pitch between the holes. The height b of the waveguide in the direction of the thickness E of the card 2 is defined by the distance between the metal layers 31s and 31i. Alternatively, the waveguide 31-32 is replaced by a conventional rectangular section waveguide 31-32 having solid metal walls and filled with the dielectric substrate 34. The component 3 SIW manufacturing technology uses in the embodiment presented a low temperature ceramic ceramic (LTCC) process according to which the dielectric substrate 33 is a ceramic having a relative permittivity ε r3 higher than that ε r2 of the dielectric substrate 20 of the card 2 and therefore of that of the substrate layer 10 of the microstrip line 1.

Dans d'autres variantes du dispositif de transition, les diélectriques du substrat 20 de la carte 2 et de la ligne 1 et du substrat 33 du guide d'onde 31-32 peuvent être de même nature et avoir des permittivités relatives εr2 et εr3 identiques.In other variants of the transition device, the dielectrics of the substrate 20 of the card 2 and the line 1 and the substrate 33 of the waveguide 31-32 may be of the same nature and have relative permittivities ε r2 and ε r3 identical.

Afin d'éviter les discontinuités de propagation et de faciliter le changement du mode quasi-TEM de la ligne à micro-ruban vers le mode TE10 du guide d'onde, la hauteur b de celui-ci est choisie égale à l'épaisseur disponible dans la carte 2. A cette fin, dans la carte 2 est ménagé un logement parallélépipédique 26 pour intercaler avec un jeu transversal le composant 3 à guide d'onde 31-32 entre des extrémités des transformateurs de mode 4. La hauteur du logement 26 est égale à la hauteur b du guide d'onde et à l'épaisseur entre le ruban métallique 11 de la ligne à micro-ruban 1 et la couche métallique interne 23. La face externe du grand côté du guide d'onde formé par la couche métallique 31s est coplanaire au ruban 11 de la ligne 1, et la face externe de l'autre grand côté du guide d'onde formé par la couche métallique 31i est en contact mécanique et électrique avec la portion de la couche métallique 23 au fond du logement. La portion de la carte sous-jacente au logement 26 d'épaisseur E - b entre les couches métalliques 23 et 24 est préservée pour éventuellement y intégrer un ou plusieurs dispositifs hyperfréquence. La longueur du logement 26 est sensiblement supérieure à la longueur du guide d'onde 31-32 et du composant 3 pour faciliter sa pose avec un jeu de tolérance mécanique. La largeur du logement 26 peut être égale à la largeur L de la carte pour usiner aisément la carte. La largeur du composant 3 supérieure à la largeur a du guide d'onde 31-32 est en général au plus égale à celle L de la carte 2 et est déterminée en fonction de la fréquence de coupure du mode TE10 dans le guide d'onde qui est fonction de 2a. Par exemple le rapport a/b est d'environ 10 à 15 et le guide d'onde est ainsi plat. Le composant 3 avec le guide d'onde 31-32 est centré dans le logement 26 et fixé par brasage de la couche métallique 31 i sur la portion de la couche métallique 23 au fond du logement 26 en prenant soin d'aligner le plan axial longitudinal de symétrie du guide d'onde avec l'axe de symétrie longitudinal XX du ruban 11 de la ligne 1.In order to avoid propagation of discontinuities and to facilitate the change of the quasi-TEM mode of the microstrip line to the TE 10 mode of the waveguide, the height b thereof is selected equal to the thickness 2. To this end, in the card 2 is provided a parallelepiped housing 26 for interposing with a transverse clearance the waveguide component 3 31-32 between ends of mode transformers 4. The height of the housing 26 is equal to the height b of the waveguide and to the thickness between the metal strip 11 of the microstrip line 1 and the inner metal layer 23. The outer face of the long side of the waveguide formed by the metal layer 31s is coplanar with the ribbon 11 of the line 1, and the outer face of the other large side of the waveguide formed by the metal layer 31i is in mechanical and electrical contact with the portion of the metal layer 23 at the housing background. The portion of the card underlying the housing 26 of thickness E-b between the metal layers 23 and 24 is preserved to possibly include one or more microwave devices. The length of the housing 26 is substantially greater than the length of the waveguide 31-32 and component 3 to facilitate its installation with a mechanical tolerance clearance. The width of the housing 26 may be equal to the width L of the card to easily machine the card. The width of the component 3 greater than the width a of the waveguide 31-32 is generally at most equal to that L of the card 2 and is determined as a function of the cutoff frequency of the TE mode 10 in the guide of FIG. wave which is a function of 2a. For example the ratio a / b is about 10 to 15 and the waveguide is thus flat. The component 3 with the waveguide 31-32 is centered in the housing 26 and fixed by brazing the metal layer 31 i on the portion of the metal layer 23 at the bottom of the housing 26, taking care to align the axial plane longitudinal waveguide symmetry with the longitudinal axis of symmetry XX of the ribbon 11 of the line 1.

Selon la réalisation illustrée, le composant hyperfréquence passif 3 à structure planaire en guide d'onde rectangulaire 31-32 est un filtre hyperfréquence passe-bande comprenant six paires de trous métallisés 34 traversant le substrat diélectrique 33 et reliés aux couches métalliques 31s et 31 i. Les paires de trous métallisés 34 sont disposées symétriquement par rapport aux plans axiaux longitudinal et transversal du composant. L'agencement des trous 34 constitue des piliers inductifs dépendant de la réponse en fréquence du filtre. Selon un autre exemple, le composant hyperfréquence 3 est conçu en un coupleur directif.According to the embodiment illustrated, the passive microwave component 3 with a rectangular waveguide planar structure 31-32 is a microwave bandpass filter comprising six pairs of metallized holes 34 crossing the dielectric substrate 33 and connected to the metal layers 31s and 31i. . The pairs of metallized holes 34 are arranged symmetrically with respect to the longitudinal and transverse axial planes of the component. The arrangement of the holes 34 constitutes inductive pillars depending on the frequency response of the filter. In another example, the microwave component 3 is designed as a directional coupler.

Le transformateur de mode de propagation 4 dans un dispositif de transition relie des extrémités en regard du ruban 11 de la ligne à micro-ruban 1 et du grand côté 31s du guide d'onde 31-32 coplanaire au ruban 11, et relie la couche interne de plan de masse 12 de la ligne à micro-ruban au grand côté 31i du guide d'onde 31-32 fixé à la couche métallique 23 au fond du logement 26. Le transformateur de mode 4 transforme progressivement en minimisant les pertes le mode quasi-TEM de la ligne à micro-ruban 1 en un mode guidé TE10 du guide d'onde 31-32 et adapte leurs impédances. La structure planaire du transformateur de mode est conçue pour constituer un quadripôle quasi-parfait dont les paramètres de transmission S12 et S21 aux bornes du quadripôle sont approximativement égaux à 1 et dont les paramètres de réflexion S11 et S22 aux bornes du quadripôle sont approximativement égaux à 0, compte-tenu en pratique, des pertes induites par les conducteurs et les diélectriques imparfaits.The propagation mode transformer 4 in a transition device connects ends facing the ribbon 11 of the micro-ribbon line 1 and the long side 31s of the waveguide 31-32 coplanar with the ribbon 11, and connects the diaper internal ground plane 12 of the micro-ribbon line at the long side 31i of the waveguide 31-32 attached to the metal layer 23 at the bottom of the housing 26. The mode transformer 4 progressively transforms by minimizing the losses the mode quasi-TEM of the micro-ribbon line 1 in a guided mode TE 10 of the waveguide 31-32 and adapts their impedances. The planar structure of the mode transformer is designed to constitute a quasi-perfect quadrupole whose transmission parameters S 12 and S 21 at the terminals of the quadripole are approximately equal to 1 and whose reflection parameters S 11 and S 22 at the terminals of the quadrupole are approximately equal to 0, taking into account in practice, losses caused by conductors and imperfect dielectrics.

Le transformateur de mode 4 peut être intégré au guide d'onde 31-32, ou bien être intégré à la carte 2, comme décrit ci-après et montré aux figures 1 à 4. L'impédance caractéristique d'une ligne à micro-ruban décroissant lorsque le rapport w/e croît, le transformateur de mode 4 comporte N tronçons de ligne à micro-ruban 21-41 à 2N-4N symétriques par rapport au plan longitudinal de la ligne 1 ayant pour axe XX. Le nombre N est en général au moins égal à 1 et dépend de la technologie de fabrication en couches de la carte 2 et de celle du composant hyperfréquence 3. Les longueurs des tronçons du transformateur de mode 4 sont approximativement égales au quart de la longueur d'onde de la fréquence centrale de fonctionnement et permettent une transformation d'impédance progressive en minimisant des réflexions parasites aux jonctions entre les tronçons. Le transformateur de mode 4 selon la réalisation illustrée comprend N = 3 tronçons de ligne 21-41, 22-42 et 2N-4N = 23-43. Le ruban 4N = 43 le plus proche du composant 3 a des bords longitudinaux sensiblement colinéaires aux arêtes internes longitudinales du guide d'onde 31-32 délimitées par la grande paroi 31s et les rangées de trous métallisés 321. Comme montré en détail à la figure 4, la pose avec jeu transversal du composant 3 dans le logement 26 de la carte 2 crée deux interstices d'air 5 de plusieurs dixièmes de millimètre entre les extrémités longitudinales du composant 3, et donc du guide d'onde 31-32, et les extrémités longitudinales des tronçons de ligne 2N-4N = 23-43 des transformateurs de mode 4. Pour chaque transformateur de mode 4, un mince élément métallique de liaison 6 de longueur a enjambe l'interstice respectif 5 et est interposé au niveau des chants transversaux en regard du ruban 4N = 43 et de la couche métallique 31s du guide d'onde pour assurer une continuité électrique entre ces chants. L'élément de liaison 6 peut être réalisé par un mince ruban métallique ou plusieurs minces rubans métalliques juxtaposés, par exemple découpés dans une feuille d'or, ou de minces fils métalliques juxtaposés, s'étendant parallèlement à l'axe XX et ayant des extrémités brasées sur le ruban 4N = 43 et la couche 31s pour couvrir l'interstice sur la largeur a. Le fond de l'interstice 5 est une petite portion de la couche métallique de masse 23 assurant la continuité électrique entre les plans de masse 12, 21, 22 et 23 de la ligne 1 et des tronçons de ligne 21-41, 22-42 et 23-43, via les trous métallisés 25, et la couche métallique 31i du composant 3 fixée sur la portion sous-jacente de la couche métallique de masse 23. A cause de la transition entre tronçon de ligne à micro-ruban et diélectrique et ligne à micro-ruban et air et de la transition entre ligne à micro-ruban et air et guide d'onde au niveau de l'interstice d'air 5, les longueurs des tronçons de ligne sont quelque peu différentes entre elles et peuvent être chacune quelque peu inférieure, égale ou quelque peu supérieure au quart de la longueur d'onde de fonctionnement afin de compenser des effets parasites notamment de réflexion d'onde aux diverses transitions, en particulier au niveau de l'interstice 5, et de ramener par le transformateur 4 une impédance égale à l'impédance caractéristique Z1c de la ligne 1, à la jonction entre celle-ci et le premier tronçon de ligne 21-41.The mode transformer 4 can be integrated in the waveguide 31-32, or be integrated in the card 2, as described below and shown to the Figures 1 to 4 . The characteristic impedance of a decreasing micro-ribbon line when the w / e ratio increases, the mode transformer 4 comprises N microstrip line sections 21-41 to 2N-4N symmetrical with respect to the longitudinal plane of the line 1 having axis XX. The number N is generally at least 1 and depends on the layered manufacturing technology of the board 2 and that of the microwave component 3. The lengths of the sections of the mode transformer 4 are approximately equal to a quarter of the length of the wave of the central operating frequency and allow progressive impedance transformation by minimizing parasitic reflections at the junctions between the sections. The mode transformer 4 according to the illustrated embodiment comprises N = 3 line sections 21-41, 22-42 and 2N-4N = 23-43. The ribbon 4N = 43 closest to the component 3 has longitudinal edges substantially co-linear with the longitudinal internal edges of the waveguide 31-32 delimited by the large wall 31s and the rows of metallized holes 321. As shown in detail in FIG. figure 4 the laying with transverse clearance of the component 3 in the housing 26 of the card 2 creates two air gaps 5 of several tenths of a millimeter between the longitudinal ends of the component 3, and therefore of the waveguide 31-32, and the longitudinal ends of the line sections 2N-4N = 23-43 of the mode transformers 4. For each mode transformer 4, a thin metal connecting element 6 of length has spanned the respective gap 5 and is interposed at the level of the transverse edges facing the ribbon 4N = 43 and the metal layer 31s of the waveguide to ensure electrical continuity between these songs. The connecting element 6 can be made by a thin metal ribbon or several thin metal strips juxtaposed, for example cut in a gold leaf, or thin juxtaposed metal son, extending parallel to the axis XX and having brazed ends on the ribbon 4N = 43 and the layer 31s to cover the gap on the width a. The bottom of the gap 5 is a small portion of the metal ground layer 23 providing electrical continuity between the ground planes 12, 21, 22 and 23 of the line 1 and line sections 21-41, 22-42 and 23-43, through the metallized holes 25, and the metal layer 31i of the component 3 attached to the underlying portion of the metal ground layer 23. Due to the transition between micro-ribbon line section and dielectric and micro-ribbon line and air and the transition between micro-ribbon line and air and waveguide at the air gap 5, the lengths of the line sections are somewhat different from each other and can be each somewhat lower, equal to or somewhat greater than a quarter of the operating wavelength to compensate for interfering effects including wave reflection at various transitions, particularly at the gap 5, and to bring back by the transformer 4 an impedance equal ale to the characteristic impedance Z1 c of line 1, at the junction between this line and the first line section 21-41.

Comme montré aux figures 1 et 2, les tronçons de ligne 21-41, 22-42 et 23-43 sont blindés par des paires symétriques de couches métalliques 47, 48 et 49 prolongeant les couches de blindage 13. Les couches de blindage 47, 48 et 49 sont coplanaires aux rubans 41, 42 et 43 sur la première face de la carte et longent parallèlement ces rubans à la distance prédéterminée de quelques largeurs w du ruban 11. Les couches de blindage 47, 48 et 49 sont reliées respectivement aux couches de masse sous-jacentes 12 et 21 à 24 par des trous métallisés 25.As shown in figures 1 and 2 , the line sections 21-41, 22-42 and 23-43 are shielded by symmetrical pairs of metal layers 47, 48 and 49 extending the shielding layers 13. The shielding layers 47, 48 and 49 are coplanar with the ribbons 41, 42 and 43 on the first face of the card and parallel along these ribbons at the predetermined distance of a few widths w of the ribbon 11. The shielding layers 47, 48 and 49 are respectively connected to the underlying layers of mass 12 and 21 to 24 through metallized holes 25.

Dans une deuxième réalisation où le transformateur de mode est intégré au guide d'onde 31-32 et donc au composant 3, le logement 26 ménagé dans la carte est beaucoup plus long. L'agencement des tronçons de ligne 21-41, 22-42 et 23-43 avec les couches de blindage 47, 48 et 49 et la largeur a du guide d'onde demeurent. Les rubans 41, 42 et 43 sont issus de la même couche métallique que le grand côté 31s du guide et en continuité électrique avec celui-ci sur la même face du substrat 33 de la structure du guide d'onde. Les dimensions des tronçons de ligne dont les couches métalliques de masse sont superposées et intégrées dans le substrat 33 de la structure du guide d'onde, qui est alors du type multicouche, sont modifiées en fonction notamment de la permittivité relative εr3. Le ruban 4N = 43 le plus proche du composant 3 a encore la largeur a du guide d'onde 31-32 et est lié directement à l'extrémité transversale du grand côté 31 s du guide d'onde. L'interstice d'air 5 est ainsi supprimé entre le tronçon de ligne 23-43 et le guide d'onde 31-32 et remplacé par un interstice d'air dû au jeu nécessaire à l'introduction de l'ensemble monolithique du composant avec les deux transformateurs de mode dans le logement de la carte. L'interstice d'air est situé entre l'extrémité de la ligne à ruban 1 et le tronçon de ligne 21-41 ayant le ruban le moins large et est enjambé par un mince élément métallique de liaison similaire à l'élément 6, mais de largeur w, et brasé aux rubans 11 et 41.In a second embodiment where the mode transformer is integrated in the waveguide 31-32 and therefore component 3, the housing 26 formed in the card is much longer. The arrangement of the line sections 21-41, 22-42 and 23-43 with the shielding layers 47, 48 and 49 and the width a of the waveguide remain. The ribbons 41, 42 and 43 are derived from the same metal layer as the long side 31s of the guide and in electrical continuity therewith on the same face of the substrate 33 of the waveguide structure. The dimensions of the line sections whose metal layers of mass are superimposed and integrated into the substrate 33 of the waveguide structure, which is then of the multilayer type, are modified according to in particular relative permittivity ε r3 . The ribbon 4N = 43 closest to the component 3 still has the width a of the waveguide 31-32 and is bonded directly to the transverse end of the long side 31s of the waveguide. The air gap 5 is thus eliminated between the line section 23-43 and the waveguide 31-32 and replaced by an air gap due to the clearance necessary for the introduction of the monolithic component assembly. with both mode transformers in the card slot. The air gap is located between the end of the ribbon line 1 and the line section 21-41 having the smallest ribbon and is spanned by a thin metal connecting element similar to the element 6, but width w, and brazed to the ribbons 11 and 41.

Le procédé de fabrication du dispositif de transition comprend les étapes suivantes. Lors de la fabrication de la carte de circuit imprimé multicouche selon la réalisation illustrée, le transformateur de mode 4 est intégré à la carte, ou bien dans la deuxième de réalisation de l'invention, le transformateur de mode est intégré à la structure en guide d'onde du composant.The method of manufacturing the transition device comprises the following steps. During the manufacture of the multilayer printed circuit board according to the illustrated embodiment, the mode transformer 4 is integrated in the card, or in the second embodiment of the invention, the mode transformer is integrated into the structure as a guide. waveform of the component.

Puis le logement parallélépipédique 26 est ménagé dans la carte 2 à une profondeur égale à la hauteur b du guide d'onde rectangulaire 31-32, par exemple au moyen d'une matrice ayant les dimensions du logement lors la compression des couches du substrat diélectrique 20 superposées et revêtues des diverses couches métalliques au cours de la fabrication de la carte, afin qu'une portion de la couche de masse interne 23 constitue le fond du logement.Then the parallelepipedal housing 26 is formed in the card 2 at a depth equal to the height b of the rectangular waveguide 31-32, for example by means of a matrix having the dimensions of the housing during the compression of the layers of the dielectric substrate 20 superimposed and coated with the various metal layers during the manufacture of the card, so that a portion of the inner mass layer 23 constitutes the bottom of the housing.

Le guide d'onde rectangulaire 31-32, ou en particulier le composant 3 à structure en guide d'onde rectangulaire, est introduit avec jeu longitudinal et centré dans le logement 26 afin que le grand côté 31s du guide d'onde soit coplanaire et coaxial au ruban 11 de la ligne 1 et l'autre grand côté 31i du guide d'onde soit fixé par brasure sur la portion de la couche métallique 23 de la carte au fond du logement. Le jeu longitudinal résulte d'une tolérance mécanique pour insérer le guide d'onde rectangulaire 31-32, ou en particulier le composant 3, dans le logement 26.The rectangular waveguide 31-32, or in particular the component 3 having a rectangular waveguide structure, is introduced with longitudinal clearance and centered in the housing 26 so that the long side 31s of the waveguide is coplanar and coaxial with the ribbon 11 of the line 1 and the other large side 31i of the waveguide is fixed by brazing on the portion of the metal layer 23 of the card at the bottom of the housing. The longitudinal clearance results from a mechanical tolerance for inserting the rectangular waveguide 31-32, or in particular the component 3, into the housing 26.

Puis un ruban ou une nappe de plusieurs rubans juxtaposés, découpé dans une feuille métallique, ou une nappe de plusieurs fils métalliques juxtaposés, ayant une largeur supérieure à la largeur de l'interstice 5 et une épaisseur similaire à celle des couches métalliques est présenté sur l'interstice 5 pour former le mince élément métallique de liaison 6. Les extrémités longitudinales de l'élément métallique de liaison sont fixées sur les bords de l'interstice 5. Pour la réalisation illustrée dans les figures, l'élément métallique de liaison 6 enjambe l'interstice 5 entre le transformateur de mode 4 intégré à la carte 2 et le guide d'onde 31-32, a une longueur égale à la largeur a du guide d'onde, et a des extrémités longitudinales brasées au bord transversal du plus large ruban 43 des tronçons de ligne 21-41, 22-42 et 2N-4N = 23-43 du transformateur de mode et au bord transversal du grand côté 31s du guide d'onde. Pour la deuxième réalisation, l'élément métallique de liaison 6 enjambe l'interstice entre la ligne à micro-ruban 1 et le transformateur de mode 4 intégré à la structure en guide d'onde 31-32, a une longueur égale à la largeur w du ruban conducteur 11, et a des extrémités longitudinales brasées au bord transversal du ruban 11 et au bord transversal du moins large ruban 41 des tronçons de ligne 21-41, 22-42 et 2N-4N = 23-43 du transformateur de mode.Then a ribbon or sheet of several strips juxtaposed, cut in a metal sheet, or a sheet of several juxtaposed metal son having a width greater than the width of the gap 5 and a thickness similar to that of the metal layers is presented on the gap 5 to form the thin metal connecting element 6. The longitudinal ends of the metal connecting element are fixed on the edges of the gap 5. For the embodiment illustrated in the figures, the metal element link 6 spans the gap 5 between the mode transformer 4 integrated in the card 2 and the waveguide 31-32, has a length equal to the width a of the waveguide, and has longitudinal ends brazed to transverse edge of the wider ribbon 43 of the line sections 21-41, 22-42 and 2N-4N = 23-43 of the mode transformer and the transverse edge of the long side 31s of the waveguide. For the second embodiment, the metal connecting element 6 spans the gap between the micro-ribbon line 1 and the mode transformer 4 integrated in the waveguide structure 31-32, has a length equal to the width w of the conductive strip 11, and has longitudinal ends brazed to the transverse edge of the strip 11 and the transverse edge of the less wide strip 41 of the line sections 21-41, 22-42 and 2N-4N = 23-43 of the mode transformer .

Claims (10)

  1. A transition device comprising a mode transformer (4) between a conductive strip line (1) integrated into a printed circuit board (2), and a rectangular waveguide (31-32), characterized in that the board comprises a housing (26) containing the waveguide having a large sidewall (31 s) coplanar and coaxial to the strip (11) of the line and another large sidewall (31 i) fixed onto a portion of a metallic layer (23) of the board at the bottom of the housing, and the device comprises a gap (5) bridged by a linking metallic element (6) and located between the mode transformer (4) and the said large sidewall (31s) of the waveguide coplanar and coaxial to the strip (11) of the line.
  2. The device according to claim 1, wherein the linking metallic element (6) comprises one or more side by side strips of metallic sheet, or several side by side metallic wires.
  3. The device according to claim 1 or 2, wherein the mode transformer (4) comprises strip line segments (21-41, 22-42, 23-43) having strip widths and thicknesses increasing from the strip line (1) to the waveguide (31-32) and having lengths approximately equal to one quarter of wavelength.
  4. The device according to claim 3, comprising shielding metallic layers (47, 48, 49) extending along the strips (41, 42, 43) of the strip line segments and coplanar to those strips and linked to the metallic shielding layers (13) extending along and coplanar to the strip (11) of the line.
  5. The device according to one of claims 1 to 4, wherein the dielectric relative permittivities (10-20; 33) of the board and the waveguide (31-32) are different.
  6. The device according to one of claims 1 to 5, wherein the waveguide (31-32) is integrated into a microwave component (3) having a ceramic as a substrate (33).
  7. The device according to one of claims 1 to 6, wherein the waveguide includes small sidewalls each comprising rows of staggered metallized holes (321- 322).
  8. A method for manufacturing a transition device comprising a mode transformer (4) between a strip line (1) integrated into a printed circuit board (2), and a rectangular waveguide (31-32), characterized by the following steps:
    arranging in the board (2) a housing (26) having a bottom consisting in a portion of metallic layer (23) internal to the board,
    introducing the waveguide into the housing (26) so that a large sidewall (31 s) of the waveguide be coplanar and coaxial to the line strip (11) and another large sidewall (31 i) of the waveguide be fixed onto the portion of the metallic layer, and
    forming and fixing a thin linking metallic element (6) bridging a gap (5) between the mode transformer (4) and the said large sidewall (31 s) of the waveguide coplanar and coaxial to the strip (11) of the line.
  9. The method according to claim 8, comprising integrating strip line segments (21-41, 22-42 and 23-43) to the board so as to form the mode transformer, the strip line segments respectively including ground metallic layers superimposed in the board and metallic strips on a face of the board and having strip widths and thicknesses increasing from the strip line (1) to the waveguide (31-32) and lengths approximately equal to one quarter of wavelength, and fixing the linking metallic element (6) to the widest strip (43) of the line segments and to a large sidewall (31 s) of the waveguide.
  10. The method according to claim 8, comprising integrating strip line segments (21-41, 22-42 and 23-43) to the waveguide structure (31-32) so as to form the mode transformer, the strip line segments respectively including ground metallic layers superimposed in the structure of the waveguide and metallic strips on a face of the structure of the waveguide and having strip widths and thicknesses increasing from the strip line (1) to the waveguide (31-32) and lengths approximately equal to one quarter of wavelength, and fixing the linking metallic element (6) to the strip (11) of the line and at least large strip (41) of the line segments.
EP20100787756 2009-12-07 2010-12-06 Microwave transition device between a microstrip line and a rectangular waveguide Not-in-force EP2510574B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0958684A FR2953651B1 (en) 2009-12-07 2009-12-07 MICROFREQUENCY TRANSITION DEVICE BETWEEN A MICRO-TAPE LINE AND A RECTANGULAR WAVEGUIDE
PCT/EP2010/069007 WO2011069980A1 (en) 2009-12-07 2010-12-06 Microwave transition device between a microstrip line and a rectangular waveguide

Publications (2)

Publication Number Publication Date
EP2510574A1 EP2510574A1 (en) 2012-10-17
EP2510574B1 true EP2510574B1 (en) 2015-04-22

Family

ID=42331670

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20100787756 Not-in-force EP2510574B1 (en) 2009-12-07 2010-12-06 Microwave transition device between a microstrip line and a rectangular waveguide

Country Status (11)

Country Link
US (1) US9088060B2 (en)
EP (1) EP2510574B1 (en)
JP (1) JP2013513274A (en)
KR (1) KR101750813B1 (en)
CN (1) CN102696145B (en)
AU (1) AU2010329983B2 (en)
CA (1) CA2781971C (en)
FR (1) FR2953651B1 (en)
IN (1) IN2012DN05034A (en)
TW (1) TWI509886B (en)
WO (1) WO2011069980A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016086852A1 (en) * 2014-12-01 2016-06-09 Huawei Technologies Co., Ltd. Millimeter wave dual-mode diplexer and method

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5947917B2 (en) 2012-12-27 2016-07-06 株式会社フジクラ Mode converter
EP2797163A1 (en) * 2013-04-26 2014-10-29 BlackBerry Limited Substrate integrated waveguide horn antenna
CN104426829B (en) 2013-08-30 2018-03-16 华为技术有限公司 A kind of base station retransmission method, relevant device and base station return system
US9059490B2 (en) 2013-10-08 2015-06-16 Blackberry Limited 60 GHz integrated circuit to printed circuit board transitions
US10051725B2 (en) * 2013-10-30 2018-08-14 Kyocera Corporation Circuit board, electronic component housing package, and electronic device
KR102226020B1 (en) * 2015-03-03 2021-03-12 한국전자통신연구원 Transmission line including conductive line and conductive plate
US9537199B2 (en) 2015-03-19 2017-01-03 International Business Machines Corporation Package structure having an integrated waveguide configured to communicate between first and second integrated circuit chips
US9867294B2 (en) * 2015-05-22 2018-01-09 Ciena Corporation Multi-width waveguides
CN105742765B (en) * 2016-01-25 2019-05-31 杭州电子科技大学 A kind of centre frequency and bandwidth adjustable HMSIW filter entirely
CN106785288A (en) * 2016-12-21 2017-05-31 中国航空工业集团公司雷华电子技术研究所 A kind of three layers of multi-channel microwave power synthesis system based on substrate integration wave-guide
US10468736B2 (en) 2017-02-08 2019-11-05 Aptiv Technologies Limited Radar assembly with ultra wide band waveguide to substrate integrated waveguide transition
CN109429423A (en) * 2017-08-30 2019-03-05 中兴通讯股份有限公司 Transmitting device and its method for terminal device WiFi11ad circuit
CA3084063A1 (en) 2017-12-11 2019-06-20 Micatu Inc. An electric field detection device and methods of use thereof
US10818997B2 (en) * 2017-12-29 2020-10-27 Vubiq Networks, Inc. Waveguide interface and printed circuit board launch transducer assembly and methods of use thereof
US10879618B2 (en) * 2018-02-21 2020-12-29 Mohammad Hossein Mazaheri Kalahrudi Wideband substrate integrated waveguide slot antenna
CN109037873B (en) * 2018-06-24 2023-07-25 电子科技大学 Mode composite transmission line with transition structure
CN110544822B (en) * 2018-11-16 2020-08-25 西安电子科技大学 Ka-band miniaturized filtering antenna based on SIW structure
KR20200085985A (en) 2019-01-07 2020-07-16 삼성전자주식회사 Multi-mode transmission line and storage device comprising the same
CN110350273B (en) * 2019-04-19 2020-11-17 江南大学 Dual-passband millimeter wave substrate integrated waveguide filter
US11527808B2 (en) 2019-04-29 2022-12-13 Aptiv Technologies Limited Waveguide launcher
US11362436B2 (en) 2020-10-02 2022-06-14 Aptiv Technologies Limited Plastic air-waveguide antenna with conductive particles
US11757166B2 (en) 2020-11-10 2023-09-12 Aptiv Technologies Limited Surface-mount waveguide for vertical transitions of a printed circuit board
US11626668B2 (en) 2020-12-18 2023-04-11 Aptiv Technologies Limited Waveguide end array antenna to reduce grating lobes and cross-polarization
US11681015B2 (en) 2020-12-18 2023-06-20 Aptiv Technologies Limited Waveguide with squint alteration
US11749883B2 (en) 2020-12-18 2023-09-05 Aptiv Technologies Limited Waveguide with radiation slots and parasitic elements for asymmetrical coverage
US11901601B2 (en) 2020-12-18 2024-02-13 Aptiv Technologies Limited Waveguide with a zigzag for suppressing grating lobes
US11502420B2 (en) 2020-12-18 2022-11-15 Aptiv Technologies Limited Twin line fed dipole array antenna
US11444364B2 (en) 2020-12-22 2022-09-13 Aptiv Technologies Limited Folded waveguide for antenna
US11668787B2 (en) 2021-01-29 2023-06-06 Aptiv Technologies Limited Waveguide with lobe suppression
US12058804B2 (en) 2021-02-09 2024-08-06 Aptiv Technologies AG Formed waveguide antennas of a radar assembly
US11721905B2 (en) 2021-03-16 2023-08-08 Aptiv Technologies Limited Waveguide with a beam-forming feature with radiation slots
US11616306B2 (en) 2021-03-22 2023-03-28 Aptiv Technologies Limited Apparatus, method and system comprising an air waveguide antenna having a single layer material with air channels therein which is interfaced with a circuit board
EP4084222A1 (en) 2021-04-30 2022-11-02 Aptiv Technologies Limited Dielectric loaded waveguide for low loss signal distributions and small form factor antennas
US11973268B2 (en) 2021-05-03 2024-04-30 Aptiv Technologies AG Multi-layered air waveguide antenna with layer-to-layer connections
US11962085B2 (en) 2021-05-13 2024-04-16 Aptiv Technologies AG Two-part folded waveguide having a sinusoidal shape channel including horn shape radiating slots formed therein which are spaced apart by one-half wavelength
US11616282B2 (en) 2021-08-03 2023-03-28 Aptiv Technologies Limited Transition between a single-ended port and differential ports having stubs that match with input impedances of the single-ended and differential ports
CN116315553B (en) * 2023-04-10 2024-04-12 电子科技大学 Transition structure suitable for substrate integrated waveguide-microstrip
CN118659105A (en) * 2024-08-20 2024-09-17 荣耀终端有限公司 Transmission line structure, preparation method of transmission line structure and terminal equipment

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636753A (en) * 1984-05-15 1987-01-13 Communications Satellite Corporation General technique for the integration of MIC/MMIC'S with waveguides
JPH0640601B2 (en) * 1984-12-17 1994-05-25 日本電信電話株式会社 Waveguide converter
US5262739A (en) * 1989-05-16 1993-11-16 Cornell Research Foundation, Inc. Waveguide adaptors
US5184095A (en) * 1991-07-31 1993-02-02 Hughes Aircraft Company Constant impedance transition between transmission structures of different dimensions
JPH06204701A (en) * 1992-11-10 1994-07-22 Sony Corp Polarizer and waveguide-microstrip line converter
JPH07162208A (en) * 1993-12-09 1995-06-23 Murata Mfg Co Ltd Dielectric resonator device
DE19902240A1 (en) * 1999-01-21 2000-07-27 Bosch Gmbh Robert Strip conductor to hollow waveguide connecting arrangement for SHF, has flexible spring contact element manufactured with precise, reproducible properties
FI106414B (en) 1999-02-02 2001-01-31 Nokia Networks Oy Broadband impedance adapter
JP3672241B2 (en) * 2001-01-11 2005-07-20 三菱電機株式会社 Waveguide / microstrip line converter and high frequency package using the same
JP2003060116A (en) * 2001-08-20 2003-02-28 Tdk Corp High-frequency circuit board
ITMI20021415A1 (en) 2002-06-27 2003-12-29 Siemens Inf & Comm Networks FILTER NOT TUNABLE IN RECTANGULAR DIELECTRIC WAVE GUIDE
JP2004088752A (en) * 2002-07-05 2004-03-18 Matsushita Electric Ind Co Ltd Coupler
JP4003579B2 (en) * 2002-08-09 2007-11-07 住友電気工業株式会社 Coplanar transmission line structure, transmission module package and transmission module
CN100478718C (en) * 2006-03-06 2009-04-15 中国科学院半导体研究所 Oxide ridged waveguide structure between multilayer metals and method for making same
CN1851975A (en) * 2006-03-30 2006-10-25 东南大学 Direct-coupling substrate integrated wave-guide circular cavity wave-filter
WO2008060047A1 (en) * 2006-11-17 2008-05-22 Electronics And Telecommunications Research Institute Apparatus for transitioning millimeter wave between dielectric waveguide and transmission line
JP2008271295A (en) * 2007-04-23 2008-11-06 Kyocera Corp Body structure connecting microstrip line and layered waveguide line and wiring board with the same
CN201196972Y (en) * 2008-01-25 2009-02-18 南京理工大学 Hatch resonance loop band-pass filter based on underlay integration waveguide
CA2629035A1 (en) 2008-03-27 2009-09-27 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry, Through The Communications Research Centre Canada Waveguide filter with broad stopband based on sugstrate integrated waveguide scheme
US8022784B2 (en) * 2008-07-07 2011-09-20 Korea Advanced Institute Of Science And Technology (Kaist) Planar transmission line-to-waveguide transition apparatus having an embedded bent stub

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016086852A1 (en) * 2014-12-01 2016-06-09 Huawei Technologies Co., Ltd. Millimeter wave dual-mode diplexer and method
US9660316B2 (en) 2014-12-01 2017-05-23 Huawei Technologies Co., Ltd. Millimeter wave dual-mode diplexer and method

Also Published As

Publication number Publication date
IN2012DN05034A (en) 2015-10-09
CA2781971A1 (en) 2011-06-16
FR2953651B1 (en) 2012-01-20
CN102696145A (en) 2012-09-26
US9088060B2 (en) 2015-07-21
AU2010329983A1 (en) 2012-06-14
TWI509886B (en) 2015-11-21
JP2013513274A (en) 2013-04-18
AU2010329983B2 (en) 2015-07-30
TW201140937A (en) 2011-11-16
CA2781971C (en) 2017-08-01
KR101750813B1 (en) 2017-06-26
CN102696145B (en) 2015-05-13
US20120242421A1 (en) 2012-09-27
KR20120117761A (en) 2012-10-24
EP2510574A1 (en) 2012-10-17
FR2953651A1 (en) 2011-06-10
WO2011069980A1 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
EP2510574B1 (en) Microwave transition device between a microstrip line and a rectangular waveguide
EP0089084B1 (en) Flat microwave antenna structure
EP0044779B1 (en) Folded dipoles in tri-plate technology for very high frequencies, and arrays comprising the same
EP0800210B1 (en) Compact microwave module
FR2811479A1 (en) CONDUCTIVE LAYER ANTENNA AND DUAL BAND TRANSMISSION DEVICE INCLUDING THIS ANTENNA
EP3726642B1 (en) Polarising screen with wideband polarising radiofrequency cell(s)
EP1042845B1 (en) Antenna
EP0082751B1 (en) Microwave radiator and its use in an electronically scanned antenna
EP3843202A1 (en) Horn for ka dual-band satellite antenna with circular polarisation
EP3529852B1 (en) Multilayer waveguide comprising at least one device for transition between the layers of this multilayer waveguide
EP3136499A1 (en) Divider/combiner system for a hyperfrequency wave
EP0834954A1 (en) Transition between a ridge wave guide and a planar circuit
EP2432072B1 (en) Wideband balun on a multilayer circuit for a network antenna
EP3047535B1 (en) Junction device between a printed transmission line and a dielectric waveguide
EP1376758B1 (en) Compact patch antenna with a matching circuit
EP3721501B1 (en) Microwave component and associated manufacturing process
FR3073085B1 (en) WAVE GUIDE ASSEMBLY AND ASSOCIATED ASSEMBLY METHOD
FR2906937A1 (en) DECOUPLING NETWORKS OF RADIANT ELEMENTS OF AN ANTENNA
FR2665578A1 (en) UHF electromagnetic wave transmission line structure of the suspended three-plate type, and multicoupling device, particularly with several filters
FR2535531A1 (en) Electromagnetic wave radiator and its use in an antenna with electronic scanning.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120702

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130416

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DS SAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 723738

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010024181

Country of ref document: DE

Effective date: 20150603

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150422

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 723738

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150422

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150824

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150822

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150723

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010024181

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150422

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

26N No opposition filed

Effective date: 20160125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151206

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151206

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602010024181

Country of ref document: DE

Owner name: AIRBUS DS ELECTRONICS AND BORDER SECURITY SAS, FR

Free format text: FORMER OWNER: AIRBUS DS SAS, ELANCOURT, FR

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20171012 AND 20171018

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: AIRBUS DS ELECTRONICS AND BORDER SECURITY SAS, FR

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191119

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191120

Year of fee payment: 10

Ref country code: IT

Payment date: 20191121

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191122

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010024181

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201206