EP1376758B1 - Compact patch antenna with a matching circuit - Google Patents

Compact patch antenna with a matching circuit Download PDF

Info

Publication number
EP1376758B1
EP1376758B1 EP20030291382 EP03291382A EP1376758B1 EP 1376758 B1 EP1376758 B1 EP 1376758B1 EP 20030291382 EP20030291382 EP 20030291382 EP 03291382 A EP03291382 A EP 03291382A EP 1376758 B1 EP1376758 B1 EP 1376758B1
Authority
EP
European Patent Office
Prior art keywords
substrate
recess
radiating element
conductor
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20030291382
Other languages
German (de)
French (fr)
Other versions
EP1376758A1 (en
Inventor
Jean-Philippe Coupez
Christian Person
Yann Toutain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP1376758A1 publication Critical patent/EP1376758A1/en
Application granted granted Critical
Publication of EP1376758B1 publication Critical patent/EP1376758B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Definitions

  • the present invention relates to an antenna in the form of "pastille" in plated technology, linear or circular polarization, to work in a wide frequency range extending at least up to a few gigahertz.
  • the antenna is intended to be installed in cellular network basis for radiocommunications with terminals mobile radiotelephones to cover bands frequency of several networks.
  • the antenna must cover a very wide band of frequency of operation in order to satisfy a increasing demand for bandwidth radio networks with terminals mobile.
  • the antenna must also be technically simple, reliable and economical to allow a significant and viable development of interfaces radiocommunication in cellular networks.
  • Planar "pellet” antennas constitute one of the most used solutions in the integration of current radio systems.
  • the choice of the material of the dielectric substrate on which the radiating element of the antenna is integrated is essential.
  • the substrate must, in particular, have a high thickness, a very low relative permittivity and a level of dielectric losses as small as possible.
  • the dielectric substrate is machined in a foam block and an adaptation means is attached to a small square dielectric support embedded in a central cavity of one side of the substrate.
  • the adaptation means may have distributed elements such as ⁇ / 4 transformers, stubs, or coupled-line structures as in a hybrid coupler at 3 dB-90 ° or a filter for example.
  • the elements of the adaptation means are integrated on the small dielectric support so that it has a small thickness and a permittivity relatively higher than that of the substrate of the antenna.
  • European Patent Application EP 1 130 676 proposes according to a first realization of the document, a radiating element antenna of the pastille type comprising an impedance transformer taken sandwich between two layers of substrate whose outer faces support the element respectively radiating and a ground plate.
  • the transformer impedance according to a second embodiment of the aforementioned application is sandwiched between two layers of the three-layer substrate.
  • the impedance transformer includes two elements of pattern drivers that are on the underside of a substrate layer 108 and the upper face of the underlying substrate layer and which are in electrical contact by superposition.
  • the impedance transformer drowned between two Substrate layers according to EP 1 130 676 present the following disadvantages and limitations.
  • the use of several substrates leads to problems of realization of the multi-layer structure final stage, such as alignment and maintenance of substrate layers and contact therebetween.
  • the inhomogeneous nature of the dielectric medium thus obtained does not correspond to conditions optimal for the integration of a planar antenna.
  • Conducting pattern elements on several separate substrates causes discontinuities electric and electrical contact quality between these different elements.
  • the present invention aims to provide a printed antenna type "lozenge” that remedies disadvantages of the combination of the means of adaptation and the radiating element in the aforementioned antennas according to the prior art, and particularly the disadvantages of interconnection between the means of adaptation and the radiating element and between different conductive elements means while reducing the cost of manufacture of the antenna.
  • a printed antenna includes a dielectric substrate having first and second faces and a recess in the first face, a conductive plate of mass arranged against the first substrate face and covering the recess, a radiating element of the pastille type on the second substrate face, and matching means for connecting the radiating element to an inner conductor of a excitation means having an external conductor fixed against the ground plate.
  • the antenna is characterized, according to the invention, in that the means adaptation is at least partially supported by a wall of the recess of the substrate.
  • the adaptation means is pre-integrated, like the radiating element of the antenna, on the dielectric substrate.
  • the substrate with the recess is shaped by molding or machining in a single block of foam dielectric, thus forming a single layer of machined three-dimensional substrate that supports everything the means of adaptation.
  • the characteristics of the antenna according to the invention make it possible to satisfy criteria such as high bandwidth, which result in an increase substantial transmission capacity offered by the single radiating element while proposing a simple technological solution for a realization collective antenna complete on one and the same dielectric foam support.
  • the characteristics of the substrate dielectric are adaptable both at the level of the antenna with regard to the thick of the latter only at the level of the average adaptation with regard to a weak thickness between the adaptation means and the plate of mass thanks to the arrangement of the recess whose height is chosen directly by machining or molding of the foam substrate. Geometry and position of the means of adaptation are thus perfectly controlled thanks to the form of the recess made within the single block of dielectric foam.
  • the means of adaptation is no longer reported on the dielectric substrate supporting the radiating element but is obtained by simple machining or molding to three dimensions in the dielectric substrate and by local metal deposits to achieve the pattern constituting the adaptation element. This achievement of the adaptation means and the radiating element on a common foam dielectric block leads to a manufacturing process simple to implement and economic.
  • the means adapter comprises a conductive strip on the bottom of the recess substantially parallel to the ground plate and having a first end connected to the internal conductor of the excitation means and a second end connected to the radiating element by a conductive interconnection link in the substrate.
  • the medium adapter comprises a conductive strip which is substantially perpendicular to a first portion of the radiating element and supported by a wall of the recess and which is connected to the internal conductor of the excitation means, and a conductive pad which is substantially parallel to a second portion of the radiating element and supported by a wall of the recess and which is connected to the conductive strip.
  • the conductive pad thus performs a coupling capacitive to excite the radiating element.
  • Half-wave printed antenna linearly polarized 1 according to the first embodiment of the invention, as shown in the figures 1 and 2, comprises a dielectric substrate 2 in form pavement, an electrically conductive plate 3 disposed against a first face of the substrate and constituting a ground plane, and a layer electrically conductive rectangular 4 extending in the center of the second face of the substrate and constituting a printed radiating element of the type pellet.
  • the radiating element 4 has an outline Rectangular sides L and W, but can have a square outline, circular or elliptical for example.
  • the antenna 1 thus has a symmetrical structure ratio to two planes of symmetry symmetry XX and YY perpendicular to each other and perpendicular to faces of the substrate 2.
  • the recess is a cavity whose depth p is small compared to the thickness e of the substrate 2.
  • the cavity is substantially rectangular and is symmetrical with respect to XX and YY planes.
  • the form of the substrate and the recess in it can be obtained by machining in a single block of foam, or directly by foam molding.
  • the adaptation means comprises a band conductive 6 printed on the bottom 51 of the recess 5 following the plane of symmetry XX, the bottom 51 of the recess being substantially parallel to the plate 3.
  • a first end 61 of the strip adaptive conductor 6 is connected to the conductor internal circuit 71 of a coaxial excitation probe of the antenna that passes through without contact a hole in the ground plate 3.
  • the outer conductor 72 of the probe is fixed against one side of the ground plate 3 opposite to the substrate 2.
  • a second end 62 of the conductive matching strip 6 is connected to the radiating element 4 by an interconnection link conductor in the form of a metallized crossing 63 extending into the substrate between the bottom 51 of the recess 5 and the radiating element 4 on the second face of the substrate. Electrical continuity is thus ensured between the internal driver 71 of the excitation probe and the radiating element 4 to through the adapter element 6 and the passage 63, and the antenna thus works in polarization linear.
  • the performance of the antenna 1 of the invention are optimized thanks to the choice of a thickness of the dielectric foam substrate 2 and than the electrical characteristics of the band of adaptation 6 whose distance from the plane of mass 3 is easily selectable according to the depth p of the internal recess 5 during the manufacture of the antenna.
  • the dielectric substrate 3 is made from a single "layer" of foam and machined or preformed in three dimensions in it ; it thus supports the radiating element 4 in pastille and the means of adaptation in the form of the conductive strip 6 is printed directly on the substrate by photoengraving or metallized paint example.
  • the realization of the antenna is found thus greatly simplified while allowing the control of spacings and positioning between the different conductive elements of the antenna.
  • the antenna 1 according to the first embodiment illustrated in FIGS. 1 and 2 is an antenna "pastille" flat, very wide bandwidth.
  • the pre-integrated passive elements 6 and 63 have both a role of compensation of the electrical effect due to the connection through the metallized crossing 63 and a role broadband impedance matching at the level of the conductive strip 6.
  • elements series such as microstrip line sections distributed in series, or parallel elements such that stubs 64, complete the passive circuit of the means of adaptation in order to adapt the antenna to the characteristic impedance of the excitation probe.
  • the means of adaptation may also include a microwave filter, or a hybrid coupler having vertices connected to two metallized vias 63 for an operation of the antenna with a polarization circular.
  • the faces of the substrate 2 are substantially rectangular and the second face of the substrate is completely covered by the rectangular radiating element 4.
  • the thickness e, the width W, and the length L of the substrate 2 are respectively 20 mm, 48 mm and 50 mm. mm.
  • the adaptation means is composed of a conductive strip 6 having a length of 35 mm and a width of 2 mm and a conductive stub 64 perpendicular to the conductive strip and having a length of 10 mm and a width of 2 mm, the strip and the stub being etched on the bottom 51 of the recess 5.
  • the characteristic impedance of the microstrip lines thus formed in the recess 5, bathed in an almost homogeneous equivalent air / foam medium is 125 ⁇ .
  • This relatively high characteristic impedance value is particularly suitable for impedance levels that are presented at the connection point 65 between the metallized bushing 63 and the radiator 4 and which are high relative to the characteristic prior characteristic impedance.
  • 50 ⁇ at the excitation probe 71-72 indeed, the antenna 1 being of the "pellet" type on a substrate 2 of high thickness and very low relative permittivity, this embodiment favors the high impedance character of the antenna.
  • the structure of the antenna according to the invention confers a freedom parameter, the depth p of the recess 5 in the foam substrate 2, which makes it possible to choose the electrical characteristics of the antenna adaptation means and thus to control the spacing between the metal matching patterns 6, 64 and the ground plate 3.
  • the connection with the radiating element 2 of the antenna produced by the metallized bushing 63 is also high impedance.
  • This bandwidth is representative of a very wide-scale operation bandaged.
  • the transmission response T also shown in Figure 3 is reflected in the diagram of radiation of the antenna by effective radiation in this frequency band at least in the main radiation direction of the antenna corresponding to the line of intersection of the plans perpendiculars XX and YY.
  • the first variant shown in Figure 4 differs from the embodiment shown in Figure 2 by a metallized vias 63a in the substrate dielectric 2, as an interconnection link between the inner conductor 71 of the probe of coaxial excitation and the radiating element 4, which extends in the extension of the inner driver 71 of the excitation probe.
  • the metallic crossing 63a can be replaced by the inner conductor 71 of the probe which is much longer than the one shown in Figure 2, an additional length substantially equal to e - p.
  • the internal conductor also passes through a drilled hole in the substrate between the recess bottom 51 and the radiating element 4 and has a free end welded to the radiating element 4 and an intermediate section at the bottom 51 of the recess 5 welded to the conductive adapter tape 6.
  • the welds are made by a conductive adhesive for example.
  • the inner conducting element of probe 71 is thus common to the radiating element "pellet" 4 and to the adapter tape 6.
  • the excitation probe 71-72 is fixed under the center of the ground plate 3.
  • the adaptation band conductor 6b extends firstly on the bottom 51 of the recess 5 from the first end 61b substantially central recess bottom 51 and welded to the end of the inner conductor 71 of the probe, substantially in the plane of symmetry XX of the radiating element 4, to the second end 62b constituted by a metallized crossing in the substrate 2 between the recess bottom 51 and a field lateral 21 of the substrate.
  • the interconnection link comprises a conductive strip 63b printed on the substrate field 21 and extending perpendicular to the radiating element between the metallic crossing 62b and one side of the element radiating 4.
  • the third variant shown in FIG. 6 relates to a printed antenna whose substrate 2c has at least one projection 8 extending longitudinally to the plane of symmetry YY and covered by the radiating element 4c, in accordance with the printed antenna structure described in FIG. French patent application cited above FR 2818811, filed December 26, 2000.
  • the metallized layer constituting the radiating element 4c covers the top and the longitudinal sides 81 of the projection 8 and has a U-shaped section with potent ends, with flanges 41 extending on the second face of the substrate 2 and having a width L1 different from the width L2 of the projection 8.
  • the height h of the projection 8 may be equal to or greater than the thickness e of the substrate 2 in general.
  • the length of the radiating element 4b is significantly reduced. This reduction in length brings the radiating slots closer to the end of the symmetrical wings 41 of the element radiating, which opens the radiation pattern of the antenna in the electric field plane perpendicular to the projection 8.
  • the thickening important at the center of the substrate 2c formed by the projection 8 covered with the elongated radiating element electrically the resonant dimension of the antenna and so increases the characteristic impedance at center of the antenna which is equivalent to a pseudo short circuit.
  • the jump is reduced so significant the size of the antenna for a given operating frequency. More impedance the center of the antenna is high, the higher the L2 width of the projection must be reduced for a given frequency under the condition of resonance.
  • the adaptation means shown in FIG. 6 has a printed conductive strip 6 on the bottom 51 of the recess 5 and a metallic passage 63c in a manner similar to the first embodiment shown in Figure 2.
  • Recess 5 is underlying at jump 8 and has a depth p smaller than the thickness e of the substrate taken away from the projection.
  • the adaptation means for any antenna 8 can be structured according to FIG. 5, or according to FIG. 8 or 10, as will be seen below.
  • the pellet jumping antenna shown in FIGS. 7 and 8 includes a means of adaptation to inductive elements and capacitive supported by two walls of the recess 5d.
  • the recess 5d has a much greater depth pd large than the peripheral thickness e of the substrate to away from the jump and is partly located in the thickness h of the projection 8d, and in half of the L2 width of the projection.
  • the means of adaptation includes two elements 61d and 62d.
  • the first element 61d is a conductive strip extending the driver internal 71 of the excitation probe substantially perpendicular to a central portion of the element radiating and supported by a wall of the recess 5d located substantially in the plane of symmetry YY.
  • Band 61d is an adaptation element inductive.
  • the second element 62d is a beach conductive rectangular connected to one end of the conductive strip 61d and supported by a part of the bottom 51d of the recess 5d, substantially parallel at the upper face of the radiating element 4d on the jump.
  • the 62d range is an element capacitive adaptation.
  • the variant of the second embodiment shown in Figures 9 and 10 also relates to a means of adaptation both inductive and capacitive relative to the radiating element.
  • the way adaptation comprises three 61e conductive elements, 62nd and 63rd.
  • the first element 61e is a band conductor which extends the inner conductor 71 of the excitation probe substantially perpendicularly on the upper face of the jump.
  • the band 61e is supported by a wall of the recess perpendicular to the ground plate 3, as the band 61d.
  • the second element 62nd is a band conductive which extends over the entire bottom of recess 51e, parallel to the radiating element 4th and in the plane of symmetry XX and constitutes, partially with the band 61e, an inductive adaptation element.
  • the third 63rd element is a rectangular beach conductor connected to one end of the band 62e at bottom of the recess and extending against another wall of the recess 5e substantially parallel to a side of the jump and perpendicular to the plate mass 3.
  • the 63rd range has a height significantly less than the height h of the jump, and constitutes a capacitive coupling element with the element radiating 4th.

Description

La présente invention concerne une antenne imprimée du type "pastille" en technologie plaquée, à polarisation linéaire ou circulaire, pour fonctionner dans une large gamme de fréquence s'étendant au moins jusqu'à quelques gigahertz. En particulier, l'antenne est destinée à être installée dans des stations de base de réseaux cellulaires pour des radiocommunications avec des terminaux radiotéléphoniques mobiles afin de couvrir des bandes de fréquence de plusieurs réseaux.The present invention relates to an antenna in the form of "pastille" in plated technology, linear or circular polarization, to work in a wide frequency range extending at least up to a few gigahertz. In particular, the antenna is intended to be installed in cellular network basis for radiocommunications with terminals mobile radiotelephones to cover bands frequency of several networks.

L'antenne doit couvrir une très large bande de fréquence de fonctionnement afin de satisfaire une demande de plus en plus croissante en bande passante des réseaux de radiocommunication avec les terminaux mobiles. L'antenne doit être également techniquement simple, fiable et économique afin de permettre un développement significatif et viable des interfaces de radiocommunication dans les réseaux cellulaires.The antenna must cover a very wide band of frequency of operation in order to satisfy a increasing demand for bandwidth radio networks with terminals mobile. The antenna must also be technically simple, reliable and economical to allow a significant and viable development of interfaces radiocommunication in cellular networks.

Les antennes planaires de type "pastille" constituent l'une des solutions les plus utilisées dans l'intégration des systèmes radioélectriques actuels. Pour optimiser les performances radioélectriques de ce type d'antennes, le choix du matériau du substrat diélectrique sur lequel est intégré l'élément rayonnant de l'antenne est primordial. Le substrat doit, en particulier, présenter une épaisseur élevée, une très faible permittivité relative ainsi qu'un niveau de pertes diélectriques le plus petit possible.
Selon la demande de brevet français FR 2818811 déposée le 26 décembre 2000 par le demandeur et publiée le 28 juin 2002, le substrat diélectrique est usiné dans un bloc de mousse et un moyen d'adaptation est rapporté sur un petit support diélectrique carré encastré dans une cavité centrale d'une face du substrat. Le moyen d'adaptation peut présenter des éléments distribués tels que des transformateurs λ/4, des stubs, ou des structures à ligne couplée comme dans un coupleur hybride à 3 dB-90° ou un filtre par exemple. Les éléments du moyen d'adaptation sont intégrés sur le petit support diélectrique afin que celui-ci présente une faible épaisseur et une permittivité relativement plus élevée que celle du substrat de l'antenne.
Planar "pellet" antennas constitute one of the most used solutions in the integration of current radio systems. To optimize the radio performance of this type of antenna, the choice of the material of the dielectric substrate on which the radiating element of the antenna is integrated is essential. The substrate must, in particular, have a high thickness, a very low relative permittivity and a level of dielectric losses as small as possible.
According to the French patent application FR 2818811 filed on December 26, 2000 by the applicant and published on June 28, 2002, the dielectric substrate is machined in a foam block and an adaptation means is attached to a small square dielectric support embedded in a central cavity of one side of the substrate. The adaptation means may have distributed elements such as λ / 4 transformers, stubs, or coupled-line structures as in a hybrid coupler at 3 dB-90 ° or a filter for example. The elements of the adaptation means are integrated on the small dielectric support so that it has a small thickness and a permittivity relatively higher than that of the substrate of the antenna.

Toutefois, l'interconnexion entre les éléments du moyen d'adaptation et l'élément rayonnant engendre des effets électriques parasites qui altèrent les performances finales de l'antenne aussi bien au niveau des pertes que du rayonnement. En outre, l'association de substrats de natures différentes conduit inévitablement à de sérieux problèmes technologiques liés à la réalisation d'une structure multi-matériaux avec toutes les contraintes dues aux interconnexions entre les différents substrats et éléments.However, the interconnection between the elements of the adaptation means and the radiating element generates parasitic electrical effects that alter the final performances of the antenna as well level of losses as radiation. In addition, the association of substrates of different natures inevitably leads to serious problems technological aspects of building a structure multi-material with all the constraints due to interconnections between different substrates and elements.

La demande de brevet européen EP 1 130 676 propose selon une première réalisation du document, une antenne à élément rayonnant de type pastille comprenant un transformateur d'impédance pris en sandwich entre deux couches de substrat dont les faces externes supportent respectivement l'élément rayonnant et une plaque de masse. Le transformateur d'impédance selon une deuxième réalisation de la demande précitée est pris en sandwich entre deux couches du substrat à trois couches. Le transformateur d'impédance inclut deux éléments de motif conducteurs qui sont sur la face inférieure d'une couche de substrat 108 et la face supérieure de la couche de substrat sous-jacente et qui sont en contact électrique par superposition.European Patent Application EP 1 130 676 proposes according to a first realization of the document, a radiating element antenna of the pastille type comprising an impedance transformer taken sandwich between two layers of substrate whose outer faces support the element respectively radiating and a ground plate. The transformer impedance according to a second embodiment of the aforementioned application is sandwiched between two layers of the three-layer substrate. The impedance transformer includes two elements of pattern drivers that are on the underside of a substrate layer 108 and the upper face of the underlying substrate layer and which are in electrical contact by superposition.

Le transformateur d'impédance noyé entre deux couches de substrat selon la EP 1 130 676 présente les inconvénients et limitations suivantes.The impedance transformer drowned between two Substrate layers according to EP 1 130 676 present the following disadvantages and limitations.

L'utilisation de plusieurs substrats entraíne des problèmes de réalisation de la structure multi-couches finale, tels qu'alignement et maintien des couches de substrat et contact entre celles-ci. En outre, le caractère inhomogène du milieu diélectrique ainsi obtenu ne correspond pas à des conditions optimales pour l'intégration d'une antenne planaire.The use of several substrates leads to problems of realization of the multi-layer structure final stage, such as alignment and maintenance of substrate layers and contact therebetween. In in addition, the inhomogeneous nature of the dielectric medium thus obtained does not correspond to conditions optimal for the integration of a planar antenna.

Les éléments de motif conducteurs sur plusieurs substrats séparés engendre des discontinuités électriques et de qualité de contact électrique entre ces différents éléments.Conducting pattern elements on several separate substrates causes discontinuities electric and electrical contact quality between these different elements.

Le montage de plusieurs couches de substrats plans limite la réalisation des motifs du transformateur d'adaptation à des solutions de type deux dimensions pour ces motifs.The assembly of several layers of substrates plans limits the achievement of the motives of the transformer adapting to type solutions two dimensions for these reasons.

La présente invention a pour but de fournir une antenne imprimée de type "pastille" qui remédie aux inconvénients de la combinaison du moyen d'adaptation et de l'élément rayonnant dans les antennes précitées selon la technique antérieure, et particulièrement aux inconvénients d'interconnexion entre le moyen d'adaptation et l'élément rayonnant et entre différents éléments conducteurs des moyens d'adaptation, tout en réduisant le coût de fabrication de l'antenne. The present invention aims to provide a printed antenna type "lozenge" that remedies disadvantages of the combination of the means of adaptation and the radiating element in the aforementioned antennas according to the prior art, and particularly the disadvantages of interconnection between the means of adaptation and the radiating element and between different conductive elements means while reducing the cost of manufacture of the antenna.

A cette fin, une antenne imprimée comprend un substrat diélectrique ayant des première et deuxième faces et un évidement ménagé dans la première face, une plaque conductrice de masse disposée contre la première face de substrat et recouvrant l'évidement, un élément rayonnant de type pastille sur la deuxième face de substrat, et un moyen d'adaptation reliant l'élément rayonnant à un conducteur interne d'un moyen d'excitation ayant un conducteur externe fixé contre la plaque de masse. L'antenne est caractérisée, selon l'invention, en ce que le moyen d'adaptation est supporté au moins partiellement par une paroi de l'évidement du substrat.For this purpose, a printed antenna includes a dielectric substrate having first and second faces and a recess in the first face, a conductive plate of mass arranged against the first substrate face and covering the recess, a radiating element of the pastille type on the second substrate face, and matching means for connecting the radiating element to an inner conductor of a excitation means having an external conductor fixed against the ground plate. The antenna is characterized, according to the invention, in that the means adaptation is at least partially supported by a wall of the recess of the substrate.

Ainsi selon l'invention, le moyen d'adaptation est pré-intégré, comme l'élément rayonnant de l'antenne, sur le substrat diélectrique. Par exemple, le substrat avec l'évidement est conformé par moulage ou usinage dans un unique bloc de mousse diélectrique, formant ainsi une unique couche de substrat usinée en trois dimensions qui supporte tout le moyen d'adaptation.Thus according to the invention, the adaptation means is pre-integrated, like the radiating element of the antenna, on the dielectric substrate. For example, the substrate with the recess is shaped by molding or machining in a single block of foam dielectric, thus forming a single layer of machined three-dimensional substrate that supports everything the means of adaptation.

Les caractéristiques de l'antenne selon l'invention permettent de satisfaire des critères électriques tels qu'une large bande passante, ce qui entraíne en conséquence une augmentation substantielle des capacités de transmission offertes par le seul élément rayonnant tout en proposant une solution technologique simple pour une réalisation collective de l'antenne complète sur un seul et même support diélectrique en mousse.The characteristics of the antenna according to the invention make it possible to satisfy criteria such as high bandwidth, which result in an increase substantial transmission capacity offered by the single radiating element while proposing a simple technological solution for a realization collective antenna complete on one and the same dielectric foam support.

En particulier, les caractéristiques du substrat diélectrique sont adaptables aussi bien au niveau de l'antenne pour ce qui concerne la forte épaisseur préconisée de celle-ci qu'au niveau du moyen d'adaptation pour ce qui concerne une faible épaisseur entre le moyen d'adaptation et la plaque de masse grâce à l'aménagement de l'évidement dont la hauteur est choisie directement par usinage ou moulage du substrat en mousse. La géométrie et la position du moyen d'adaptation sont ainsi parfaitement contrôlées grâce à la forme de l'évidement réalisé au sein de l'unique bloc de mousse diélectrique.In particular, the characteristics of the substrate dielectric are adaptable both at the level of the antenna with regard to the thick of the latter only at the level of the average adaptation with regard to a weak thickness between the adaptation means and the plate of mass thanks to the arrangement of the recess whose height is chosen directly by machining or molding of the foam substrate. Geometry and position of the means of adaptation are thus perfectly controlled thanks to the form of the recess made within the single block of dielectric foam.

Le moyen d'adaptation n'est plus rapporté sur le substrat diélectrique supportant l'élément rayonnant mais est obtenu par un simple usinage ou moulage à trois dimensions dans le substrat diélectrique et par des dépôts métalliques locaux pour réaliser le motif constituant l'élément d'adaptation. Cette réalisation du moyen d'adaptation et de l'élément rayonnant sur un bloc diélectrique en mousse commun conduit à un procédé de fabrication simple à mettre en oeuvre et économique.The means of adaptation is no longer reported on the dielectric substrate supporting the radiating element but is obtained by simple machining or molding to three dimensions in the dielectric substrate and by local metal deposits to achieve the pattern constituting the adaptation element. This achievement of the adaptation means and the radiating element on a common foam dielectric block leads to a manufacturing process simple to implement and economic.

En outre, grâce à la disposition du moyen d'adaptation pré-intégré et enterré sous l'élément rayonnant, le problème électrique du rayonnement parasite potentiel du moyen d'adaptation est très fortement atténué. Tous les éléments de l'antenne étant intégrés sur un seul et même substrat, les interconnexions entre les éléments conducteurs, principalement dépendant de critères de positionnement et d'espacement entre les éléments conducteurs sont beaucoup moins contraignantes.In addition, thanks to the provision of the means pre-integrated adaptation and buried under the element radiating, the electrical problem of radiation parasite potential of the means of adaptation is very strongly attenuated. All elements of the antenna being integrated on one and the same substrate, the interconnections between the conductive elements, mainly dependent on criteria of positioning and spacing between elements drivers are much less restrictive.

Selon une première réalisation du moyen d'adaptation par continuité électrique, le moyen d'adaptation comprend une bande conductrice sur le fond de l'évidement sensiblement parallèle à la plaque de masse et ayant une première extrémité reliée au conducteur interne du moyen d'excitation et une deuxième extrémité reliée à l'élément rayonnant par un lien d'interconnexion conducteur dans le substrat.According to a first realization of the means of adaptation by electrical continuity, the means adapter comprises a conductive strip on the bottom of the recess substantially parallel to the ground plate and having a first end connected to the internal conductor of the excitation means and a second end connected to the radiating element by a conductive interconnection link in the substrate.

Selon une deuxième réalisation du moyen d'adaptation par couplage capacitif, le moyen d'adaptation comporte une bande conductrice qui est sensiblement perpendiculaire à une première portion de l'élément rayonnant et supportée par une paroi de l'évidement et qui est reliée au conducteur interne du moyen d'excitation, et une plage conductrice qui est sensiblement parallèle à une deuxième portion de l'élément rayonnant et supportée par une paroi de l'évidement et qui est reliée à la bande conductrice. La plage conductrice réalise ainsi un couplage capacitif pour exciter l'élément rayonnant.According to a second embodiment of the means capacitive coupling, the medium adapter comprises a conductive strip which is substantially perpendicular to a first portion of the radiating element and supported by a wall of the recess and which is connected to the internal conductor of the excitation means, and a conductive pad which is substantially parallel to a second portion of the radiating element and supported by a wall of the recess and which is connected to the conductive strip. The conductive pad thus performs a coupling capacitive to excite the radiating element.

D'autres caractéristiques et avantages de la présente invention apparaítront plus clairement à la lecture de la description suivante de plusieurs réalisations préférées de l'invention en référence aux dessins annexés correspondants dans lesquels :

  • la figure 1 est une vue en perspective d'une antenne "pastille" avec un évidement selon une première réalisation de l'invention ;
  • la figure 2 est une vue en coupe prise suivant le plan de symétrie XX dans la figure 1 ;
  • la figure 3 est un diagramme de variations d'adaptation et de transmission en fonction de la fréquence pour l'antenne selon la première réalisation ;
  • les figures 4 et 5 sont des vues en coupe analogues à la figure 2, montrant respectivement des première et deuxième variantes du moyen d'adaptation ;
  • la figure 6 est une vue en coupe analogue à la figure 2 montrant une troisième variante de la première réalisation mais pour une antenne à ressaut ;
  • les figures 7 et 8 sont respectivement une vue en perspective et une vue en coupe transversale d'une antenne à ressaut avec un moyen d'adaptation capacitif et inductif selon une deuxième réalisation de l'invention ; et
  • les figures 9 et 10 sont respectivement une vue en perspective et une vue en coupe transversale d'une antenne à ressaut selon une variante de la deuxième réalisation.
Other features and advantages of the present invention will appear more clearly on reading the following description of several preferred embodiments of the invention with reference to the corresponding appended drawings in which:
  • Figure 1 is a perspective view of a "pellet" antenna with a recess according to a first embodiment of the invention;
  • Figure 2 is a sectional view taken along the plane of symmetry XX in Figure 1;
  • FIG. 3 is a diagram of adaptation and transmission variations as a function of frequency for the antenna according to the first embodiment;
  • Figures 4 and 5 are sectional views similar to Figure 2, showing respectively first and second variants of the adaptation means;
  • Figure 6 is a sectional view similar to Figure 2 showing a third variant of the first embodiment but for a jump antenna;
  • Figures 7 and 8 are respectively a perspective view and a cross-sectional view of a jump antenna with a capacitive and inductive matching means according to a second embodiment of the invention; and
  • Figures 9 and 10 are respectively a perspective view and a cross-sectional view of a jump antenna according to a variant of the second embodiment.

Une antenne imprimée de type "pastille" demi-onde à polarisation linéaire 1 selon la première réalisation de l'invention, comme montré aux figures 1 et 2, comprend un substrat diélectrique 2 en forme de pavé, une plaque conductrice électriquement 3 disposée contre une première face du substrat et constituant un plan de masse, et une couche rectangulaire conductrice électriquement 4 s'étendant au centre de la deuxième face du substrat et constituant un élément rayonnant imprimé du type pastille. L'élément rayonnant 4 a un contour rectangulaire de côtés L et W, mais peut avoir un contour carré, circulaire ou elliptique par exemple. L'antenne 1 a ainsi une structure symétrique par rapport à deux plans de symétrie XX et YY perpendiculaires entre eux et perpendiculaires aux faces du substrat 2.Half-wave printed antenna linearly polarized 1 according to the first embodiment of the invention, as shown in the figures 1 and 2, comprises a dielectric substrate 2 in form pavement, an electrically conductive plate 3 disposed against a first face of the substrate and constituting a ground plane, and a layer electrically conductive rectangular 4 extending in the center of the second face of the substrate and constituting a printed radiating element of the type pellet. The radiating element 4 has an outline Rectangular sides L and W, but can have a square outline, circular or elliptical for example. The antenna 1 thus has a symmetrical structure ratio to two planes of symmetry XX and YY perpendicular to each other and perpendicular to faces of the substrate 2.

Dans la première face du substrat qui est collée ou rapportée sur la plaque de masse 3, est ménagé un évidement mince parallélépipédique 5 dans lequel est intégré au moins partiellement un moyen d'adaptation. Dans la réalisation illustrée aux figures 1 et 2, l'évidement est une cavité dont la profondeur p est petite par rapport à l'épaisseur e du substrat 2. La cavité est sensiblement rectangulaire et est symétrique par rapport aux plans XX et YY. La forme du substrat et de l'évidement dans celui-ci peut être obtenue par usinage dans un unique bloc de mousse, ou directement par moulage de mousse.In the first face of the substrate that is glued or reported on the ground plate 3, is arranged a thin parallelepiped recess 5 in which is integrated at least partially an adaptation means. In the embodiment illustrated in FIGS. 1 and 2, the recess is a cavity whose depth p is small compared to the thickness e of the substrate 2. The cavity is substantially rectangular and is symmetrical with respect to XX and YY planes. The form of the substrate and the recess in it can be obtained by machining in a single block of foam, or directly by foam molding.

Le moyen d'adaptation comprend une bande conductrice 6 imprimée sur le fond 51 de l'évidement 5 suivant le plan de symétrie XX, le fond 51 de l'évidement étant sensiblement parallèle à la plaque de masse 3. Une première extrémité 61 de la bande conductrice d'adaptation 6 est reliée au conducteur interne 71 d'une sonde coaxiale d'excitation de l'antenne qui traverse sans contact un trou dans la plaque de masse 3. Le conducteur externe 72 de la sonde est fixé contre une face de la plaque de masse 3 opposée au substrat 2. Une deuxième extrémité 62 de la bande conductrice d'adaptation 6 est reliée à l'élément rayonnant 4 par un lien d'interconnexion conducteur sous la forme d'une traversée métallisée 63 s'étendant dans le substrat entre le fond 51 de l'évidement 5 et l'élément rayonnant 4 sur la deuxième face du substrat. Une continuité électrique est ainsi assurée entre le conducteur interne 71 de la sonde d'excitation et l'élément rayonnant 4 à travers l'élément d'adaptation 6 et la traversée 63, et l'antenne fonctionne ainsi en polarisation linéaire.The adaptation means comprises a band conductive 6 printed on the bottom 51 of the recess 5 following the plane of symmetry XX, the bottom 51 of the recess being substantially parallel to the plate 3. A first end 61 of the strip adaptive conductor 6 is connected to the conductor internal circuit 71 of a coaxial excitation probe of the antenna that passes through without contact a hole in the ground plate 3. The outer conductor 72 of the probe is fixed against one side of the ground plate 3 opposite to the substrate 2. A second end 62 of the conductive matching strip 6 is connected to the radiating element 4 by an interconnection link conductor in the form of a metallized crossing 63 extending into the substrate between the bottom 51 of the recess 5 and the radiating element 4 on the second face of the substrate. Electrical continuity is thus ensured between the internal driver 71 of the excitation probe and the radiating element 4 to through the adapter element 6 and the passage 63, and the antenna thus works in polarization linear.

Les performances de l'antenne 1 de l'invention sont optimisées grâce au choix d'une épaisseur importante du substrat 2 en mousse diélectrique ainsi qu'aux caractéristiques électriques de la bande d'adaptation 6 dont la distance par rapport au plan de masse 3 est aisément sélectionnable en fonction de la profondeur p de l'évidement interne 5 lors de la fabrication de l'antenne. Le substrat diélectrique 3 est fabriqué à partir d'une unique "couche" de mousse et usiné ou préformé en trois dimensions dans celle-ci ; il supporte ainsi l'élément rayonnant 4 en pastille et le moyen d'adaptation sous la forme de la bande conductrice 6 est imprimée directement sur le substrat par photogravure ou peinture métallisée par exemple. La réalisation de l'antenne s'en trouve ainsi considérablement simplifiée tout en permettant la maítrise des espacements et positionnements relatifs entre les différents éléments conducteurs de l'antenne.The performance of the antenna 1 of the invention are optimized thanks to the choice of a thickness of the dielectric foam substrate 2 and than the electrical characteristics of the band of adaptation 6 whose distance from the plane of mass 3 is easily selectable according to the depth p of the internal recess 5 during the manufacture of the antenna. The dielectric substrate 3 is made from a single "layer" of foam and machined or preformed in three dimensions in it ; it thus supports the radiating element 4 in pastille and the means of adaptation in the form of the conductive strip 6 is printed directly on the substrate by photoengraving or metallized paint example. The realization of the antenna is found thus greatly simplified while allowing the control of spacings and positioning between the different conductive elements of the antenna.

L'antenne 1 selon la première réalisation illustrée aux figures 1 et 2 est une antenne "pastille" plane, à très large bande passante. Les éléments passifs pré-intégrés 6 et 63 ont à la fois un rôle de compensation de l'effet électrique dû à la connexion par la traversée métallisée 63 et un rôle d'adaptation d'impédance à large bande au niveau de la bande conductrice 6. En variante, des éléments série, tels que des tronçons de ligne à microruban distribués en série, ou des éléments parallèles tels que des stubs 64, complètent le circuit passif du moyen d'adaptation afin d'adapter l'antenne à l'impédance caractéristique de la sonde d'excitation. Le moyen d'adaptation peut comporter également un filtre micro-onde, ou un coupleur hybride ayant des sommets reliés à deux traversées métallisées 63 pour un fonctionnement de l'antenne avec une polarisation circulaire.The antenna 1 according to the first embodiment illustrated in FIGS. 1 and 2 is an antenna "pastille" flat, very wide bandwidth. The pre-integrated passive elements 6 and 63 have both a role of compensation of the electrical effect due to the connection through the metallized crossing 63 and a role broadband impedance matching at the level of the conductive strip 6. In a variant, elements series, such as microstrip line sections distributed in series, or parallel elements such that stubs 64, complete the passive circuit of the means of adaptation in order to adapt the antenna to the characteristic impedance of the excitation probe. The means of adaptation may also include a microwave filter, or a hybrid coupler having vertices connected to two metallized vias 63 for an operation of the antenna with a polarization circular.

Par exemple, pour réaliser une antenne imprimée compacte "pastille" présentant une bande de fréquence centrée sur une fréquence de résonance de l'ordre de 2 GHz, le substrat diélectrique 2 est réalisé dans un bloc de mousse d'imide polyméthacrylate ayant une permittivité relative faible εr =1,07 et des pertes diélectriques très faibles tgδ = 2.10-4 pour des fréquences voisines de 2 GHz. Les faces du substrat 2 sont sensiblement rectangulaires et la deuxième face du substrat est recouverte complètement par l'élément rayonnant rectangulaire 4. L'épaisseur e, la largeur W, et la longueur L du substrat 2 sont respectivement 20 mm, 48 mm et 50 mm. La plaque de masse 3 est un carré métallique de 100 x 100 mm2 sur laquelle est centré le substrat 2 dont l'évidement 5 avec une profondeur p = 2 mm est recouvert par la plaque 3. Le moyen d'adaptation est composé d'une bande conductrice 6 ayant une longueur de 35 mm et une largeur de 2 mm et d'un stub conducteur 64 perpendiculaire à la bande conductrice et ayant une longueur de 10 mm et une largeur de 2 mm, la bande et le stub étant gravés sur le fond 51 de l'évidement 5. L'impédance caractéristique des lignes à microruban ainsi formées dans l'évidement 5, baignant dans un milieu équivalent quasiment homogène air/mousse est de 125 Ω. Cette valeur d'impédance caractéristique relativement élevée est particulièrement appropriée pour des niveaux d'impédance qui sont présentés au point de connexion 65 entre la traversée métallisée 63 et l'élément rayonnant 4 et qui sont élevés par rapport à l'impédance caractéristique a priori de 50 Ω au niveau de la sonde d'excitation 71-72 : en effet, l'antenne 1 étant de type "pastille" sur un substrat 2 d'épaisseur élevée et de permittivité relative très faible, cette réalisation privilégie le caractère à forte impédance de l'antenne. Cependant, la structure de l'antenne selon l'invention confère un paramètre de liberté, la profondeur p de l'évidement 5 dans le substrat en mousse 2, qui permet de choisir les caractéristiques électriques du moyen d'adaptation de l'antenne et ainsi de contrôler l'espacement entre les motifs métalliques d'adaptation 6, 64 et la plaque de masse 3. La liaison avec l'élément rayonnant 2 de l'antenne réalisée par la traversée métallisée 63 est également à forte impédance.For example, to produce a compact "pad" printed antenna having a frequency band centered on a resonance frequency of the order of 2 GHz, the dielectric substrate 2 is made of a block of polymethacrylate imide foam having a relative permittivity low ε r = 1.07 and very low dielectric losses tgδ = 2.10 -4 for frequencies close to 2 GHz. The faces of the substrate 2 are substantially rectangular and the second face of the substrate is completely covered by the rectangular radiating element 4. The thickness e, the width W, and the length L of the substrate 2 are respectively 20 mm, 48 mm and 50 mm. mm. The ground plate 3 is a metal square of 100 x 100 mm 2 on which is centered the substrate 2, the recess 5 with a depth p = 2 mm is covered by the plate 3. The adaptation means is composed of a conductive strip 6 having a length of 35 mm and a width of 2 mm and a conductive stub 64 perpendicular to the conductive strip and having a length of 10 mm and a width of 2 mm, the strip and the stub being etched on the bottom 51 of the recess 5. The characteristic impedance of the microstrip lines thus formed in the recess 5, bathed in an almost homogeneous equivalent air / foam medium is 125 Ω. This relatively high characteristic impedance value is particularly suitable for impedance levels that are presented at the connection point 65 between the metallized bushing 63 and the radiator 4 and which are high relative to the characteristic prior characteristic impedance. 50 Ω at the excitation probe 71-72: indeed, the antenna 1 being of the "pellet" type on a substrate 2 of high thickness and very low relative permittivity, this embodiment favors the high impedance character of the antenna. However, the structure of the antenna according to the invention confers a freedom parameter, the depth p of the recess 5 in the foam substrate 2, which makes it possible to choose the electrical characteristics of the antenna adaptation means and thus to control the spacing between the metal matching patterns 6, 64 and the ground plate 3. The connection with the radiating element 2 of the antenna produced by the metallized bushing 63 is also high impedance.

L'antenne 1, telle que dimensionnée ci-dessus, présente, comme montré à la figure 3, une adaptation A à - 10 dB dans une gamme de fréquences de 1,86 GHz à 2,38 GHz qui correspond à une bande passante relative de 25 % autour de la fréquence de résonance de 2,12 GHz. Cette largeur de bande passante est représentative d'un fonctionnement à très large bande. La réponse en transmission T également montrée à la figure 3 se traduit au niveau du diagramme de rayonnement de l'antenne par un rayonnement effectif dans cette bande de fréquence au moins dans la direction de rayonnement principal de l'antenne correspondant à la droite d'intersection des plans perpendiculaires XX et YY.The antenna 1, as dimensioned above, present, as shown in Figure 3, an adaptation A to - 10 dB in a frequency range of 1.86 GHz at 2.38 GHz which corresponds to a bandwidth 25% relative to the resonance frequency 2.12 GHz. This bandwidth is representative of a very wide-scale operation bandaged. The transmission response T also shown in Figure 3 is reflected in the diagram of radiation of the antenna by effective radiation in this frequency band at least in the main radiation direction of the antenna corresponding to the line of intersection of the plans perpendiculars XX and YY.

D'autres variantes de la première réalisation relatives au lien d'interconnexion conducteur entre la bande d'adaptation et l'élément rayonnant sont montrées aux figures 4 à 6.Other variants of the first embodiment relating to the conductive interconnection link between the adapter strip and the radiating element are shown in Figures 4 to 6.

La première variante montrée à la figure 4 diffère de la réalisation montrée à la figure 2 par une traversée métallisée 63a dans le substrat diélectrique 2, en tant que lien d'interconnexion entre le conducteur interne 71 de la sonde d'excitation coaxiale et l'élément rayonnant 4, qui s'étend dans le prolongement du conducteur interne 71 de la sonde d'excitation. La traversée métallisée 63a peut être remplacée par le conducteur interne 71 de la sonde qui est beaucoup plus long que celui montré à la figure 2, d'une longueur supplémentaire sensiblement égale à e - p. Dans ce cas, le conducteur interne traverse également un trou percé dans le substrat entre le fond d'évidement 51 et l'élément rayonnant 4 et a une extrémité libre soudée à l'élément rayonnant 4 et une section intermédiaire au niveau du fond 51 de l'évidement 5 soudée à la bande d'adaptation conductrice 6. Les soudures sont réalisées par une colle conductrice par exemple. L'élément conducteur interne de sonde 71 est ainsi commun à l'élément rayonnant "pastille" 4 et à la bande d'adaptation 6.The first variant shown in Figure 4 differs from the embodiment shown in Figure 2 by a metallized vias 63a in the substrate dielectric 2, as an interconnection link between the inner conductor 71 of the probe of coaxial excitation and the radiating element 4, which extends in the extension of the inner driver 71 of the excitation probe. The metallic crossing 63a can be replaced by the inner conductor 71 of the probe which is much longer than the one shown in Figure 2, an additional length substantially equal to e - p. In this case, the internal conductor also passes through a drilled hole in the substrate between the recess bottom 51 and the radiating element 4 and has a free end welded to the radiating element 4 and an intermediate section at the bottom 51 of the recess 5 welded to the conductive adapter tape 6. The welds are made by a conductive adhesive for example. The inner conducting element of probe 71 is thus common to the radiating element "pellet" 4 and to the adapter tape 6.

Dans la deuxième variante montrée à la figure 5, la sonde d'excitation 71-72 est fixée sous le centre de la plaque de masse 3. La bande d'adaptation conductrice 6b s'étend d'abord sur le fond 51 de l'évidement 5 depuis la première extrémité 61b sensiblement centrale au fond d'évidement 51 et soudée à l'extrémité du conducteur interne 71 de la sonde, sensiblement dans le plan de symétrie XX de l'élément rayonnant 4, jusqu'à la deuxième extrémité 62b constituée par une traversée métallisée dans le substrat 2 entre le fond d'évidement 51 et un champ latéral 21 du substrat. Le lien d'interconnexion comprend une bande conductrice 63b imprimée sur le champ de substrat 21 et s'étendant perpendiculairement à l'élément rayonnant entre la traversée métallisée 62b et un côté de l'élément rayonnant 4.In the second variant shown in FIG. 5, the excitation probe 71-72 is fixed under the center of the ground plate 3. The adaptation band conductor 6b extends firstly on the bottom 51 of the recess 5 from the first end 61b substantially central recess bottom 51 and welded to the end of the inner conductor 71 of the probe, substantially in the plane of symmetry XX of the radiating element 4, to the second end 62b constituted by a metallized crossing in the substrate 2 between the recess bottom 51 and a field lateral 21 of the substrate. The interconnection link comprises a conductive strip 63b printed on the substrate field 21 and extending perpendicular to the radiating element between the metallic crossing 62b and one side of the element radiating 4.

La troisième variante montrée à la figure 6 concerne une antenne imprimée dont le substrat 2c a au moins un ressaut 8 s'étendant longitudinalement au plan de symétrie YY et recouvert par l'élément rayonnant 4c, conformément à la structure d'antenne imprimée décrite dans la demande de brevet français déjà citée FR 2818811, déposée le 26 décembre 2000. La couche métallisée constituant l'élément rayonnant 4c recouvre le dessus et les côtés longitudinaux 81 du ressaut 8 et présente une section en U à extrémités potencées, avec des ailes 41 s'étendant sur la deuxième face du substrat 2 et ayant une largeur L1 différente de la largeur L2 du ressaut 8. La hauteur h du ressaut 8 peut être égale ou supérieure à l'épaisseur e du substrat 2 en général. Comparativement à l'élément rayonnant plat 4 montré aux figures 1 et 2, qui a une largeur W et une longueur L sensiblement égale à W, la longueur Lc de l'élément rayonnant 4c est réduite à : Lc = 2L1 + L2 = L-2h. The third variant shown in FIG. 6 relates to a printed antenna whose substrate 2c has at least one projection 8 extending longitudinally to the plane of symmetry YY and covered by the radiating element 4c, in accordance with the printed antenna structure described in FIG. French patent application cited above FR 2818811, filed December 26, 2000. The metallized layer constituting the radiating element 4c covers the top and the longitudinal sides 81 of the projection 8 and has a U-shaped section with potent ends, with flanges 41 extending on the second face of the substrate 2 and having a width L1 different from the width L2 of the projection 8. The height h of the projection 8 may be equal to or greater than the thickness e of the substrate 2 in general. Compared to the flat radiating element 4 shown in FIGS. 1 and 2, which has a width W and a length L substantially equal to W, the length Lc of the radiating element 4c is reduced to: Lc = 2L1 + L2 = L-2h.

Grâce au ressaut 8 le long de toute la largeur W de l'antenne, la longueur de l'élément rayonnant 4b est réduite de manière significative. Cette réduction de longueur rapproche les fentes rayonnantes à l'extrémité des ailes symétriques 41 de l'élément rayonnant, ce qui ouvre le diagramme de rayonnement de l'antenne dans le plan de champ électrique perpendiculaire au ressaut 8. L'épaississement important au centre du substrat 2c formé par le ressaut 8 recouvert de l'élément rayonnant allonge électriquement la dimension résonnante de l'antenne et ainsi augmente l'impédance caractéristique au centre de l'antenne qui est équivalent à un pseudo court-circuit. Le ressaut réduit de manière significative la taille de l'antenne pour une fréquence de fonctionnement donnée. Plus l'impédance de ressaut au centre de l'antenne est élevée, plus la largeur L2 du ressaut doit être diminuée pour une fréquence donnée sous la condition de résonance. With the jump 8 along the entire width W of the antenna, the length of the radiating element 4b is significantly reduced. This reduction in length brings the radiating slots closer to the end of the symmetrical wings 41 of the element radiating, which opens the radiation pattern of the antenna in the electric field plane perpendicular to the projection 8. The thickening important at the center of the substrate 2c formed by the projection 8 covered with the elongated radiating element electrically the resonant dimension of the antenna and so increases the characteristic impedance at center of the antenna which is equivalent to a pseudo short circuit. The jump is reduced so significant the size of the antenna for a given operating frequency. More impedance the center of the antenna is high, the higher the L2 width of the projection must be reduced for a given frequency under the condition of resonance.

Le moyen d'adaptation montré à la figure 6 comporte une bande conductrice imprimée 6 sur le fond 51 de l'évidement 5 et une traversée métallisée 63c d'une manière analogue à la première réalisation montrée à la figure 2. L'évidement 5 est sous-jacent au ressaut 8 et a une profondeur p plus petite que l'épaisseur e du substrat prise à l'écart du ressaut. En variante, le moyen d'adaptation pour toute antenne à ressaut 8 peut être structuré selon la figure 4 ou 5, ou selon la figure 8 ou 10, comme on le verra ci-après.The adaptation means shown in FIG. 6 has a printed conductive strip 6 on the bottom 51 of the recess 5 and a metallic passage 63c in a manner similar to the first embodiment shown in Figure 2. Recess 5 is underlying at jump 8 and has a depth p smaller than the thickness e of the substrate taken away from the projection. In a variant, the adaptation means for any antenna 8 can be structured according to FIG. 5, or according to FIG. 8 or 10, as will be seen below.

L'antenne pastille à ressaut montrée aux figures 7 et 8 selon la deuxième réalisation de l'invention comprend un moyen d'adaptation à éléments inductif et capacitif supporté par deux parois de l'évidement 5d. L'évidement 5d a une profondeur pd nettement plus grande que l'épaisseur périphérique e du substrat à l'écart du ressaut et est en partie situé dans l'épaisseur h du ressaut 8d, et dans la moitié de la largeur L2 du ressaut. Le moyen d'adaptation comprend deux éléments 61d et 62d. Le premier élément 61d est une bande conductrice prolongeant le conducteur interne 71 de la sonde d'excitation sensiblement perpendiculaire à une portion centrale de l'élément rayonnant et supportée par une paroi de l'évidement 5d située sensiblement dans le plan de symétrie YY. La bande 61d constitue un élément d'adaptation inductif. Le deuxième élément 62d est une plage rectangulaire conductrice reliée à une extrémité de la bande conductrice 61d et supportée par une partie du fond 51d de l'évidement 5d, sensiblement parallèle à la face supérieure de l'élément rayonnant 4d sur le ressaut. La plage 62d constitue un élément d'adaptation capacitif. The pellet jumping antenna shown in FIGS. 7 and 8 according to the second embodiment of the invention includes a means of adaptation to inductive elements and capacitive supported by two walls of the recess 5d. The recess 5d has a much greater depth pd large than the peripheral thickness e of the substrate to away from the jump and is partly located in the thickness h of the projection 8d, and in half of the L2 width of the projection. The means of adaptation includes two elements 61d and 62d. The first element 61d is a conductive strip extending the driver internal 71 of the excitation probe substantially perpendicular to a central portion of the element radiating and supported by a wall of the recess 5d located substantially in the plane of symmetry YY. Band 61d is an adaptation element inductive. The second element 62d is a beach conductive rectangular connected to one end of the conductive strip 61d and supported by a part of the bottom 51d of the recess 5d, substantially parallel at the upper face of the radiating element 4d on the jump. The 62d range is an element capacitive adaptation.

La variante de la deuxième réalisation montrée aux figures 9 et 10 concerne également un moyen d'adaptation à la fois inductif et capacitif relativement à l'élément rayonnant. Le moyen d'adaptation comprend trois éléments conducteurs 61e, 62e et 63e. Le premier élément 61e est une bande conductrice qui prolonge le conducteur interne 71 de la sonde d'excitation sensiblement perpendiculairement à la face supérieure du ressaut. La bande 61e est supportée par une paroi de l'évidement perpendiculaire à la plaque de masse 3, comme la bande 61d. Le deuxième élément 62e est une bande conductrice qui s'étend sur tout le fond d'évidement 51e, parallèlement à l'élément rayonnant 4e et dans le plan de symétrie XX et constitue, partiellement avec la bande 61e, un élément d'adaptation inductif. Le troisième élément 63e est une plage rectangulaire conductrice reliée à une extrémité de la bande 62e au fond de l'évidement et s'étendant contre une autre paroi de l'évidement 5e sensiblement parallèle à un côté du ressaut et perpendiculaire à la plaque de masse 3. La plage 63e a une hauteur sensiblement inférieure à la hauteur h du ressaut, et constitue un élément de couplage capacitif avec l'élément rayonnant 4e.The variant of the second embodiment shown in Figures 9 and 10 also relates to a means of adaptation both inductive and capacitive relative to the radiating element. The way adaptation comprises three 61e conductive elements, 62nd and 63rd. The first element 61e is a band conductor which extends the inner conductor 71 of the excitation probe substantially perpendicularly on the upper face of the jump. The band 61e is supported by a wall of the recess perpendicular to the ground plate 3, as the band 61d. The second element 62nd is a band conductive which extends over the entire bottom of recess 51e, parallel to the radiating element 4th and in the plane of symmetry XX and constitutes, partially with the band 61e, an inductive adaptation element. The third 63rd element is a rectangular beach conductor connected to one end of the band 62e at bottom of the recess and extending against another wall of the recess 5e substantially parallel to a side of the jump and perpendicular to the plate mass 3. The 63rd range has a height significantly less than the height h of the jump, and constitutes a capacitive coupling element with the element radiating 4th.

Claims (11)

  1. Antenna (1) comprising a dielectric substrate (2) having first and second sides and a recess (5) provided in the first side, an earth conductor plate (3) disposed against the first substrate side and covering the recess, a radiating element (4) of the patch type on the second substrate side, and adapter means connecting the radiating element to an internal conductor (71) of excitation means having an external conductor (72) fixed to the earth plate, characterised in that the adapter means (6) are at least partially supported by a wall (51) of the recess (5) of the substrate (2).
  2. Antenna according to claim 1, wherein a single dielectric block supports the entire adapter means and is formed by moulding the substrate (2) comprising the recess (5).
  3. Antenna according to claim 1 or 2, wherein the adapter means comprise a conductor strip (6) on the base (51) of the recess (5) substantially parallel to the earth plate (3) and having a first end (61) connected to the internal conductor (71) of the excitation means and a second end (62) connected to the radiating element (4) by a conductive interconnecting link (63) in the substrate (2).
  4. Antenna according to claim 3, wherein the interconnecting link is a metallised feedthrough (63) extending within the substrate (2) between the base (51) of the recess (5) and the radiating element (4).
  5. Antenna according to claim 4, wherein the metallised feedthrough (63) runs on an extension of the internal conductor (71) of the excitation means.
  6. Antenna according to claim 3, wherein the interconnecting link consists of the internal conductor (71, 63a) of the excitation means passing through the substrate (2) between the base (51) of the recess and the radiating element (4).
  7. Antenna according to claim 3, wherein the second end (62b) of the conductor strip (6b) is made up of a metallised feedthrough in the substrate (2) between the base (51) of the recess (5) and a field (21) of the substrate (2), and the interconnecting link comprises a conductor strip (63b) extending over the substrate field (21) and connected to the metallised feedthrough (62b) and to one side of the radiating element (4).
  8. Antenna according to any one of claims 1 to 7, wherein the second side of the substrate comprises a projection (8) extending longitudinally and covered by the radiating element (4c), and the recess (5) lies beneath the projection and has a depth (p) which is less than the thickness (e) of the substrate (2b) measured away from the projection.
  9. Antenna according to claim 1 or 2, wherein the adapter means comprise a conductor strip (61d, 61e) which is substantially perpendicular to a first portion of the radiating element (4d, 4e) and supported by a wall of the recess (5d, 5e) and which is connected to the internal conductor (71) of the excitation means, and a conductor zone (62d, 63e) which is substantially parallel to a second portion of the radiating element and supported by a wall of the recess and which is connected to the conductor strip.
  10. Antenna according to claim 9, wherein the conductor strip (61d) prolongs the internal conductor (71) of the excitation means substantially perpendicularly to the first and second portions of the radiating element which coincide in a central portion of the radiating element.
  11. Antenna according to claim 9, wherein the second side of the substrate comprises a projection (8e) extending longitudinally and covered by the radiating element (4e), and the recess (5e) lies beneath the projection and has a depth (pd) which is greater than the thickness (e) of the substrate (2e) measured at a distance from the projection, and wherein the conductor strip (61e) prolongs the internal conductor (71) of the excitation means substantially perpendicularly and centrally to an upper side of the projection (8e), and the conductor zone (63e) is substantially parallel to one side of the projection and is connected to the conductor strip (61e) by another conductor strip (62e) on the base (51e) of the recess (5e).
EP20030291382 2002-06-17 2003-06-11 Compact patch antenna with a matching circuit Expired - Fee Related EP1376758B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0207676A FR2841046B1 (en) 2002-06-17 2002-06-17 PASTILLE ANTENNA COMPACT WITH ADAPTATION MEANS
FR0207676 2002-06-17

Publications (2)

Publication Number Publication Date
EP1376758A1 EP1376758A1 (en) 2004-01-02
EP1376758B1 true EP1376758B1 (en) 2005-09-28

Family

ID=29595380

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030291382 Expired - Fee Related EP1376758B1 (en) 2002-06-17 2003-06-11 Compact patch antenna with a matching circuit

Country Status (3)

Country Link
EP (1) EP1376758B1 (en)
DE (1) DE60301699T2 (en)
FR (1) FR2841046B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011117690B3 (en) * 2011-11-04 2012-12-20 Kathrein-Werke Kg Circularly polarized patch antenna for use in body sheet of motor car, has supply structure comprising phase shifter-arrangement that is connected with emitter surface at two connection points under effect of phase shift

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006027694B3 (en) * 2006-06-14 2007-09-27 Kathrein-Werke Kg Stacked-patch antenna for motor vehicle, has patch unit provided on supporting device opposite to radiation surface, where thickness or height of device is smaller than thickness or height of patch unit
US7741999B2 (en) 2006-06-15 2010-06-22 Kathrein-Werke Kg Multilayer antenna of planar construction
RU2587105C2 (en) 2011-11-04 2016-06-10 Катрайн-Верке Кг Patch radiator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2137266C1 (en) * 1994-03-08 1999-09-10 Хагенук Телеком ГмбХ Pocket-type transmitting and/or receiving device
JP2000216630A (en) * 1999-01-20 2000-08-04 Alps Electric Co Ltd Transmitter-receiver with antenna
US6346913B1 (en) * 2000-02-29 2002-02-12 Lucent Technologies Inc. Patch antenna with embedded impedance transformer and methods for making same
JP2001298320A (en) * 2000-04-13 2001-10-26 Murata Mfg Co Ltd Circularly polarized wave antenna system and radio communications equipment using the same
KR100349422B1 (en) * 2000-04-17 2002-08-22 (주) 코산아이엔티 A microstrip antenna
US6407707B2 (en) * 2000-06-27 2002-06-18 Toko, Inc. Plane antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011117690B3 (en) * 2011-11-04 2012-12-20 Kathrein-Werke Kg Circularly polarized patch antenna for use in body sheet of motor car, has supply structure comprising phase shifter-arrangement that is connected with emitter surface at two connection points under effect of phase shift

Also Published As

Publication number Publication date
FR2841046A1 (en) 2003-12-19
DE60301699D1 (en) 2005-11-03
EP1376758A1 (en) 2004-01-02
DE60301699T2 (en) 2006-06-22
FR2841046B1 (en) 2006-06-16

Similar Documents

Publication Publication Date Title
EP2510574B1 (en) Microwave transition device between a microstrip line and a rectangular waveguide
EP1172885B1 (en) Short-circuit microstrip antenna and dual-band transmission device including that antenna
EP1407512B1 (en) Antenna
EP1075043A1 (en) Antenna with stacked resonating structures and multiband radiocommunication device using the same
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
FR2778272A1 (en) RADIOCOMMUNICATION DEVICE AND BIFREQUENCY ANTENNA MADE ACCORDING TO MICRO-TAPE TECHNIQUE
EP1042845B1 (en) Antenna
EP1346442B1 (en) Printed patch antenna
FR2989842A1 (en) SLOW-WAVE RADIOFREQUENCY PROPAGATION LINE
EP1225655A1 (en) Dual-band planar antenna and apparatus including such an antenna device
EP1376758B1 (en) Compact patch antenna with a matching circuit
EP1949496B1 (en) Flat antenna system with a direct waveguide access
EP2432072B1 (en) Wideband balun on a multilayer circuit for a network antenna
EP3721501B1 (en) Microwave component and associated manufacturing process
FR2943465A1 (en) ANTENNA WITH DOUBLE FINS
WO2002103845A1 (en) Wide band printed antenna with several radiating elements
WO2022218935A1 (en) Electromagnetic wave absorption system and device using same
FR2689327A1 (en) Microstrip-coaxial connector for high frequency circuits - has flexible microstrip section connected to connector and flexed to connect to rigid microstrip line
WO2002058146A1 (en) Semiconductor device with an improved transmission line
EP1873864A1 (en) Symmetric antenna using microwave-strip technology.
FR2729011A1 (en) Dual polarisation antenna network
EP1231673A1 (en) Microwave reflector panel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040105

17Q First examination report despatched

Effective date: 20040706

AKX Designation fees paid

Designated state(s): DE GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60301699

Country of ref document: DE

Date of ref document: 20051103

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140527

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140523

Year of fee payment: 12

Ref country code: IT

Payment date: 20140529

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60301699

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150611

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150611

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160101