EP0089084B1 - Flat microwave antenna structure - Google Patents

Flat microwave antenna structure Download PDF

Info

Publication number
EP0089084B1
EP0089084B1 EP83200333A EP83200333A EP0089084B1 EP 0089084 B1 EP0089084 B1 EP 0089084B1 EP 83200333 A EP83200333 A EP 83200333A EP 83200333 A EP83200333 A EP 83200333A EP 0089084 B1 EP0089084 B1 EP 0089084B1
Authority
EP
European Patent Office
Prior art keywords
mini
network
horns
lines
whilst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83200333A
Other languages
German (de)
French (fr)
Other versions
EP0089084A1 (en
Inventor
François de Ronde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Laboratoires dElectronique et de Physique Appliquee
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoires dElectronique et de Physique Appliquee, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Laboratoires dElectronique et de Physique Appliquee
Publication of EP0089084A1 publication Critical patent/EP0089084A1/en
Application granted granted Critical
Publication of EP0089084B1 publication Critical patent/EP0089084B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials

Definitions

  • the present invention relates to a flat microwave antenna for receiving or transmitting right and left circular polarization signals according to the principle of reciprocity of antennas, comprising on the one hand radiating elements juxtaposed, and comprising on the other hand at least one printed circuit board. by means of which radiating elements are supplied in phase from a common connection point because these lines are of equal length and arranged in a tree-like pattern.
  • This invention finds its application in the field of reception of 12 gigahertz television signals retransmitted by means of satellites.
  • This document describes a planar antenna consisting of a thick plate of dielectric material on which a printed network of supply lines is made, connected to dipoles.
  • Each dipole forms a radiating element (transmitter or receiver) of the antenna, and is formed of two planar plots in the form of fans placed head to tail.
  • Each of the faces of the thick dielectric plate is provided with one of the halves of each dipole.
  • the dipole supply lines are made using the so-called “triplate” technology.
  • a supply line is formed of a said first plate constituted by a first conductive tape produced on the first face of the thick dielectric plate, of a said second plate constituted by the thick dielectric plate itself same, and of a said third plate constituted by a second conductive tape placed opposite the first conductive tape on the second face of the dielectric plate.
  • Each half of the dipole is connected to that of the two ribbons forming the lines, which is produced on the same face of the dielectric plate.
  • the supply network is of the so-called "parallel" type, so that the dipoles are supplied in phase and that the supply path is the same length for each dipole.
  • This supply network is of the type previously named "arborized”.
  • the thick dielectric plate fitted with dipoles and supply networks is protected on each side by a foam plate.
  • One side of the antenna thus formed is finally protected by a dielectric plate, while the other side is provided with a reflective metal plane (or ground plane).
  • Such an antenna is not capable of receiving a circular polarization signal.
  • the “triple plate” technology used in this document is an expensive technology since the quality of the antenna depends essentially on the quality of the dielectric forming the dielectric plate, and that a good quality dielectric constitutes the most expensive part the antenna.
  • the object of the invention is to propose a more economical antenna.
  • the invention also relates to such an antenna characterized in that there is added to it a depolarizing structure, chosen for example from a 3 dB phase shifter or else a depolarizing device of the known type with meanders so that, on one of the terminals There is a left circular polarization signal at the output of the system thus formed, while at the same time on the other output terminal of the thus formed system is a right circular polarization signal.
  • a depolarizing structure chosen for example from a 3 dB phase shifter or else a depolarizing device of the known type with meanders so that, on one of the terminals There is a left circular polarization signal at the output of the system thus formed, while at the same time on the other output terminal of the thus formed system is a right circular polarization signal.
  • FIG. 1 in perspective, an example of planar microwave antenna comprising a whole array of receiving elements in accordance with the invention
  • Figure 2 a section showing the. arrangement of the supply networks
  • FIGS. 3a and 3b two diagrams showing the installation of the depolarization device for obtaining the signals with right and left circular polarizations.
  • Each of these two supply networks consists of a series of successive stages of combination of the signals received by each receiver element, according to a conventional geometric arrangement such as for example that shown in FIG. 1 of the United States patent. 'America No. 3,587,110 issued June 22, 1971 in the name of the transferee RCA Corporation. Recesses can be provided (see FIG. 2) in the layers adjacent to the plane of the supply networks so as to allow, in a balanced arrangement such as that of FIG. 4 of this same cited patent, the progression of the lines of these networks from each of the individual receiver elements of the antenna to the single output connection of each of the two networks, passing through the successive combination stages.
  • a 3 dB hybrid coupler is provided at the output of the two supply networks, the single output connection of one of these networks being connected to an input. of the coupler and the single output connection of the other network to the other input, and the two outputs of this coupler supplying said signals with right or left circular polarization (see the diagram in FIG. 3a).
  • obtaining signals with right or left circular polarization can be carried out not with a 3 dB hybrid coupler placed downstream of the antenna, at the output of the supply networks, but with a depolarizer device, of the known type. meandering for example, placed in front of the antenna as shown in the diagram in Figure 3b.

Description

La présente invention concerne une antenne plane hyperfréquences pour la réception ou l'émission de signaux de polarisation circulaire droite et gauche selon le principe de réciprocité des antennes, comportant d'une part des éléments rayonnants juxtaposés, et comportant d'autre part au moins un circuit de lignes imprimé. au moyen duquel des éléments rayonnants sont alimentés en phase à partir d'un point commun de connexion du fait que ces lignes sont de longueurs égales et disposées selon un motif arborisé.The present invention relates to a flat microwave antenna for receiving or transmitting right and left circular polarization signals according to the principle of reciprocity of antennas, comprising on the one hand radiating elements juxtaposed, and comprising on the other hand at least one printed circuit board. by means of which radiating elements are supplied in phase from a common connection point because these lines are of equal length and arranged in a tree-like pattern.

Cette invention trouve son application dans le domaine de la réception des signaux de télévision à 12 gigahertz retransmis par l'intermédiaire de satellites.This invention finds its application in the field of reception of 12 gigahertz television signals retransmitted by means of satellites.

Une telle structure d'antenne plane hyperfréquences est connue du brevet US 3 587 110.Such a planar microwave antenna structure is known from US Pat. No. 3,587,110.

Ce document décrit une antenne plane constituée d'une plaque épaisse de matériau diélectrique sur laquelle est réalisé un réseau imprimé de lignes d'alimentation raccordé à des dipôles.This document describes a planar antenna consisting of a thick plate of dielectric material on which a printed network of supply lines is made, connected to dipoles.

Chaque dipôle forme un élément rayonnant (émetteur ou récepteur) de l'antenne, et est formé de deux plots-plans présentant la forme d'éventails placés tête-bêche. Chacune des faces de la plaque diélectrique épaisse est munie d'une des moitiés de chaque dipôle.Each dipole forms a radiating element (transmitter or receiver) of the antenna, and is formed of two planar plots in the form of fans placed head to tail. Each of the faces of the thick dielectric plate is provided with one of the halves of each dipole.

Les lignes d'alimentation des dipôles sont réalisées dans la technologie dite « triplaque •. Ainsi, dans cette technologie, une ligne d'alimentation est formée d'une dite première plaque constituée par un premier ruban conducteur réalisé sur la première face de la plaque diélectrique épaisse, d'une dite seconde plaque constituée par la plaque diélectrique épaisse elle-même, et d'une dite troisième plaque constituée par un second ruban conducteur placé vis-à-vis du premier ruban conducteur sur la seconde face de la plaque diélectrique.The dipole supply lines are made using the so-called “triplate” technology. Thus, in this technology, a supply line is formed of a said first plate constituted by a first conductive tape produced on the first face of the thick dielectric plate, of a said second plate constituted by the thick dielectric plate itself same, and of a said third plate constituted by a second conductive tape placed opposite the first conductive tape on the second face of the dielectric plate.

Chaque moitié de dipôle est raccordée à celui des deux rubans formant les lignes, qui est réalisé sur la même face de la plaque diélectrique. Le réseau d'alimentation est du type dit « en parallèle •, de sorte que les dipôles sont alimentés en phase et que le trajet d'alimentation est de même longueur pour chaque dipôle. Ce réseau d'alimentation est du type nommé précédemment « arborisé •.Each half of the dipole is connected to that of the two ribbons forming the lines, which is produced on the same face of the dielectric plate. The supply network is of the so-called "parallel" type, so that the dipoles are supplied in phase and that the supply path is the same length for each dipole. This supply network is of the type previously named "arborized".

La plaque diélectrique épaisse munie des dipôles et des réseaux d'alimentation est protégée sur chaque face par une plaque de mousse. L'une des faces de l'antenne ainsi constituée est finalement protégée par une plaque diélectrique, alors que l'autre face est munie d'un plan métallique réflecteur (ou plan de masse).The thick dielectric plate fitted with dipoles and supply networks is protected on each side by a foam plate. One side of the antenna thus formed is finally protected by a dielectric plate, while the other side is provided with a reflective metal plane (or ground plane).

Une telle antenne n'est pas apte à recevoir un signal de polarisation circulaire.Such an antenna is not capable of receiving a circular polarization signal.

De plus la technologie « triplaque utilisée dans ce document est une technologie coûteuse du fait que la qualité de l'antenne dépend essentiellement de la qualité du diélectrique formant la plaque diélectrique, et qu'un diélectrique de bonne qualité constitue la partie la plus coûteuse de l'antenne.In addition, the “triple plate” technology used in this document is an expensive technology since the quality of the antenna depends essentially on the quality of the dielectric forming the dielectric plate, and that a good quality dielectric constitutes the most expensive part the antenna.

Le but de l'invention est de proposer une antenne plus économique.The object of the invention is to propose a more economical antenna.

Selon la présente invention, ce but est atteint. au moyen d'une antenne telle que décrite dans le préambule de la première revendication et caractérisée en ce qu'elle est constituée de la superposition de :

  • a) une première couche isolante (10) dans laquelle sont prévus des mini-cornets (11), juxtaposés de façon bidimensionnelle, et de section carrée dont la surface intérieure est métallisée ;
  • b) un premier réseau d'alimentation (20) du type à substrat suspendu, pour la réception (ou l'émission) de signaux à polarisation linéaire d'un premier type, ce premier réseau d'alimentation (20) étant formé d'un premier circuit de lignes microrubans réalisé sur l'une des faces d'une feuille diélectrique mince (19) et étant tel que les extrémités des lignes microrubans qui le forment sont couplées avec des premiers groupes de quatre mini-cornets et ce premier réseau d'alimentation (20) étant en outre formé d'un second circuit de lignes microrubans réalisé sur l'autre face de la feuille diélectrique mince (19) et étant tel que les extrémités des lignes microrubans qui le forment sont couplées avec des seconds groupes de quatre mini-cornets intercalés avec les mini-cornets des premiers groupes, les points communs de connexion de ces deux circuits étant réunis pour former le point unique de connexion du réseau d'alimentation 20, et les tronçons de lignes du premier et du second circuit étant parallèles et circulant dans des cannelures métallisées pratiquées dans la première couche 10 et dans :
  • c) une deuxième couche isolante (30) dans laquelle sont prévus des mini-guides d'onde (31) de même section carrée que les mini-cornets en regard du côté du premier réseau 20, et de section rectangulaire à l'autre extrémité, ces mini-guides d'onde présentant des surfaces intérieures métallisées ;
  • d) un second réseau d'alimentation (40) du type à substrat suspendu pour la réception (ou l'émission) de signaux dont la polarisation est linéaire et perpendiculaire à celle des signaux transportés par le premier réseau (20), ce réseau (40) étant identique au réseau (20), mais disposé par rapport à ce dernier de manière telle que les extrémités des lignes des deux circuits qui le forment sont placées perpendiculairement aux extrémités des lignes du réseau (20), les lignes de ce réseau 40 circulant dans des cannelures métallisées pratiquées dans la couche précédente (30) et dans :
  • e) une troisième couche isolante (50) dans laquelle sont prévus des mini-guides d'onde (51) de même section rectangulaire que les mini-cornets (31) en regard du côté du second réseau (40), ces mini-guides d'onde (51) présentant des surfaces intérieures métallisées et étant court-circuités de sorte que sa longueur est inférieure à l'épaisseur de cette troisième couche.
According to the present invention, this object is achieved. by means of an antenna as described in the preamble to the first claim and characterized in that it consists of the superposition of:
  • a) a first insulating layer (10) in which are provided mini-horns (11), juxtaposed in two dimensions, and of square section whose inner surface is metallized;
  • b) a first supply network (20) of the suspended substrate type, for receiving (or transmitting) linearly polarized signals of a first type, this first supply network (20) being formed from a first circuit of microstrip lines produced on one of the faces of a thin dielectric sheet (19) and being such that the ends of the microstrip lines which form it are coupled with first groups of four mini-horns and this first network of the power supply (20) being further formed of a second circuit of microstrip lines produced on the other face of the thin dielectric sheet (19) and being such that the ends of the microstrip lines which form it are coupled with second groups of four mini-horns interposed with the mini-horns of the first groups, the common points of connection of these two circuits being joined together to form the single point of connection of the supply network 20, and the line sections of the first and of the second circuit and ant parallel and circulating in metallized grooves made in the first layer 10 and in:
  • c) a second insulating layer (30) in which are provided mini waveguides (31) of the same square section as the mini-horns facing the side of the first network 20, and of rectangular section at the other end , these mini waveguides having metallized interior surfaces;
  • d) a second supply network (40) of the suspended substrate type for receiving (or transmitting) signals whose polarization is linear and perpendicular to that of the signals transported by the first network (20), this network ( 40) being identical to the network (20), but arranged relative to the latter in such a way that the ends of the lines of the two circuits which form it are placed perpendicular to the ends of the lines of the network (20), the lines of this network 40 circulating in metallized grooves made in the previous layer (30) and in:
  • e) a third insulating layer (50) in which are provided mini waveguides (51) of the same rectangular section as the mini-horns (31) facing the side of the second network (40), these mini waveguides (51) having metallized interior surfaces and being short-circuited so that its length is less than the thickness of this third layer.

L'invention concerne également une telle antenne caractérisée en ce qu'il lui est adjoint une structure dépolarisante, choisie par exemple parmi un déphaseur 3 dB ou bien un dispositif dépolariseur du type connu à méandres de telle manière que, sur l'une des bornes de sortie du système ainsi formé est disponible un signal de polarisation circulaire gauche, alors que sur l'autre borne de sortie du système ainsi formé est disponible simultanément un signal de polarisation circulaire droite.The invention also relates to such an antenna characterized in that there is added to it a depolarizing structure, chosen for example from a 3 dB phase shifter or else a depolarizing device of the known type with meanders so that, on one of the terminals There is a left circular polarization signal at the output of the system thus formed, while at the same time on the other output terminal of the thus formed system is a right circular polarization signal.

Les particularités de l'invention seront maintenant précisées dans la description qui suit et dans les dessins annexés qui montrent, sur la figure 1, en perspective, un exemple d'antenne plane hyperfréquence comprenant tout un réseau d'éléments récepteurs conformes à l'invention, sur la figure 2, une coupe mettant en évidence la . disposition des réseaux d'alimentation, et, sur les figures 3a et 3b, deux schémas montrant la mise en place du dispositif de dépolarisation pour l'obtention des signaux à polarisations circulaires droite et gauche.The features of the invention will now be specified in the description which follows and in the accompanying drawings which show, in FIG. 1, in perspective, an example of planar microwave antenna comprising a whole array of receiving elements in accordance with the invention , in Figure 2, a section showing the. arrangement of the supply networks, and, in FIGS. 3a and 3b, two diagrams showing the installation of the depolarization device for obtaining the signals with right and left circular polarizations.

L'exemple de réalisation de la figure 1 consiste en une antenne présentant la structure de couches successives suivantes :

  • - un réseau de mini-cornets 11a à iin, de section droite carrée a x a et à ouverture évasée et parois métallisées sont juxtaposés dans une première couche isolante 10, de façon à assurer le guidage des signaux hyperfréquences à polarisation circulaire gauche ou droite qui se présentent face à l'antenne du côté de la section la plus grande de ces mini-cornets. Ceux-ci doivent être disposés aussi près que possible, c'est-à-dire que les parois qui les séparent doivent être aussi minces que possible, pour les motifs suivants : obtenir le gain maximal grâce à une surface maximale, éviter le couplage mutuel entre deux mini-cornets voisins, améliorer l'adaptation en réduisant les surfaces passives génératrices de réflexions ;
  • - appliquée contre cette couche 10 du côté de la section la plus faible a x a des mini-cornets, une mince feuille diélectrique 19 porte les lignes de transmission conductrices d'un premier réseau d'alimentation 20 couplé aux guides d'onde que constituent ces mini-cornets pour prélever dans chacun d'entre eux les signaux hyperfréquences ayant une polarisation linéaire déterminée ;
  • - une deuxième couche isolante 30 comprend ensuite un deuxième réseau de mini-guides d'onde 31 a à 31 n à parois également métallisées. Sur la première moitié de leur longueur, c'est-à-dire sur une longueur de X 9/4 (À étant la longueur d'onde des signaux dans les guides d'ondes), ces mini-guides d'onde ont la même section droite carrée a x a que la plus faible des sections carrées des mini-cornets 11a à 11n, et. sur la deuxième moitié, une section réduite a x b de forme rectangulaire, selon la disposition décrite par exemple sur la figure 1, page 379, de la revue « IEEE Transactions on Microwave Theory and Techniques •, 13, N° 3, mai 1965, ou en page 162, colonne 2, lignes 43 à 48, de la revue « Electronics », de septembre 1954. Les mini-guides d'onde 31 a à 31 n, prévus en regard des mini-cornets 11 a à 11 n, sont destinés à assurer le guidage des signaux hyperfréquences reçus dont la polarisation est également linéaire mais perpendiculaire à celle des signaux prélevés par le premier réseau d'alimentation 20 ;
  • - appliquée contre cette couche 30, du côté de la section droite réduite rectangulaire des mini-guides d'onde 31a à 31n, une deuxième feuille diélectrique 39 porte les lignes conductrices d'un deuxième réseau d'alimentation 40, identique au premier mais tourné de 90° par rapport à celui-ci, et couplé aux mini-guides 31 a à 31 n pour prélever dans chacun d'eux les signaux hyperfréquences ayant une polarisation linéaire perpendiculaire à celle des signaux prélevés par le premier réseau 20 ;
  • - enfin, une troisième et dernière couche isolante 50 comprend un troisième réseau de mini-guides d'onde 51a à 51 n à parois et fond métallisés et à section droite égale à la section réduite rectangulaire a x b des mini-guides d'onde 31a à 31 n. Les parois de ces mini-guides d'onde 51a à 51n ont une profondeur de λg/4, et leurs fonds constituent autant de plans réflecteurs situés à une distance optimale des réseaux d'alimentation 40 et 20.
The embodiment of FIG. 1 consists of an antenna having the structure of the following successive layers:
  • - A network of mini-horns 11a to iin, of square cross section axa and with flared opening and metallized walls are juxtaposed in a first insulating layer 10, so as to guide the microwave signals with left or right circular polarization which occur facing the antenna on the side of the largest section of these mini-horns. These must be arranged as close as possible, that is to say that the walls which separate them must be as thin as possible, for the following reasons: to obtain the maximum gain thanks to a maximum surface, to avoid mutual coupling between two neighboring mini-horns, improve the adaptation by reducing the passive surfaces generating reflections;
  • - applied against this layer 10 on the side of the weakest section of the mini-horns, a thin dielectric sheet 19 carries the conductive transmission lines of a first supply network 20 coupled to the waveguides that these mini -cornets to sample from each of them the microwave signals having a determined linear polarization;
  • - A second insulating layer 30 then comprises a second network of mini waveguides 31 a to 31 n with walls also metallized. Over the first half of their length, that is to say over a length of X 9/4 (λ being the wavelength of the signals in the waveguides), these mini waveguides have the same square straight section axa as the weakest square section of the mini-horns 11a to 11n, and. on the second half, a reduced section axb of rectangular shape, according to the arrangement described for example in FIG. 1, page 379, of the review "IEEE Transactions on Microwave Theory and Techniques •, 13, N ° 3, May 1965, or on page 162, column 2, lines 43 to 48, of the review "Electronics", of September 1954. The mini waveguides 31 a to 31 n, provided opposite the mini-horns 11 a to 11 n, are intended to guide the received microwave signals whose polarization is also linear but perpendicular to that of the signals sampled by the first supply network 20;
  • - applied against this layer 30, on the side of the reduced rectangular cross section of the mini waveguides 31a to 31n, a second dielectric sheet 39 carries the conductive lines of a second supply network 40, identical to the first but turned 90 ° relative to the latter, and coupled to the mini-guides 31 a to 31 n in order to take from each of them the microwave signals having a linear polarization perpendicular to that of the signals picked up by the first network 20;
  • - Finally, a third and last insulating layer 50 comprises a third network of mini waveguides 51a to 51 n with metallized walls and bottom and a cross section equal to the reduced rectangular section axb of mini wave guides 31a to 31 n. The walls of these mini waveguides 51a to 51n have a depth of λ g / 4, and their bottoms constitute as many reflecting planes located at an optimal distance from the supply networks 40 and 20.

Chacun de ces deux réseaux d'alimentation est constitué d'une série d'étages de combinaison successifs des signaux reçus par chaque élément récepteur, selon une disposition géométrique classique telle que par exemple celle représentée sur la figure 1 du brevet des Etats-Unis d'Améri- que N° 3 587 110 délivré le 22 juin 1971 au nom de la Société cessionnaire RCA Corporation. Des évidements peuvent être prévus (voir la figure 2) dans les couches adjacentes au plan des réseaux d'alimentation de façon à permettre, selon une disposition équilibrée telle que celle de la figure 4 de ce même brevet cité, la progression des lignes de ces réseaux depuis chacun des éléments récepteurs individuels de l'antenne vers -la connexion unique de sortie de chacun des deux réseaux, en passant par les étages de combinaison successifs.Each of these two supply networks consists of a series of successive stages of combination of the signals received by each receiver element, according to a conventional geometric arrangement such as for example that shown in FIG. 1 of the United States patent. 'America No. 3,587,110 issued June 22, 1971 in the name of the transferee RCA Corporation. Recesses can be provided (see FIG. 2) in the layers adjacent to the plane of the supply networks so as to allow, in a balanced arrangement such as that of FIG. 4 of this same cited patent, the progression of the lines of these networks from each of the individual receiver elements of the antenna to the single output connection of each of the two networks, passing through the successive combination stages.

Pour permettre ensuite la reconstitution des signaux à polarisation circulaire droite et à polarisation circulaire gauche, un coupleur hybride 3 dB est prévu en sortie des deux réseaux d'alimentation, la connexion unique de sortie de l'un de ces réseaux étant reliée à une entrée du coupleur et la connexion unique de sortie de l'autre réseau à l'autre entrée, et les deux sorties de ce coupleur fournissant lesdits signaux à polarisation circu- lairé droite ou gauche (voir le schéma de la figure 3a).To then allow the reconstruction of right circular polarization and left circular polarization signals, a 3 dB hybrid coupler is provided at the output of the two supply networks, the single output connection of one of these networks being connected to an input. of the coupler and the single output connection of the other network to the other input, and the two outputs of this coupler supplying said signals with right or left circular polarization (see the diagram in FIG. 3a).

Bien entendu, la présente invention n'est pas limitée à l'exemple de réalisation décrit et représenté, à partir duquel des variantes peuvent être proposées sans pour cela sortir du cadre de l'invention. En particulier, l'obtention des signaux à polarisation circulaire droite ou gauche peut être réalisée non pas avec un coupleur hybride 3 dB placé en aval de l'antenne, en sortie des réseaux d'alimentation, mais avec un dispositif dépolariseur, du type connu à méandres par exemple, placé devant l'antenne comme le montre le schéma de la figure 3b.Of course, the present invention is not limited to the embodiment described and shown, from which variants can be proposed without thereby departing from the scope of the invention. In particular, obtaining signals with right or left circular polarization can be carried out not with a 3 dB hybrid coupler placed downstream of the antenna, at the output of the supply networks, but with a depolarizer device, of the known type. meandering for example, placed in front of the antenna as shown in the diagram in Figure 3b.

Claims (2)

1. A very high frequency planar antenna system for receiving or transmitting clockwise and counter-clockwise circularly polarized signals according to the reciprocating principle of the antenna systems, comprising juxtaposed radiating elements and also comprising at least printed line circuit, by means of which radiating elements are fed in-phase from a common connection point as the circuit lines are of equal length and are arranged in a fan-like pattern, characterized in that it is constituted by superposing :
a) a first insulating layer (10) in which mini-horns (11) are provided, placed side by side two- dimensionally and having a square section and whose surface is metal-plated ;
b) a first feeding network (20) of the suspended substrate type, for receiving (or transmitting) linearly polarized signals of a first type, whilst this first feeding network (20) is constituted by a first micro-strip line circuit deposited on one of the surfaces of a thin dielectric film (19) and is such that the ends of the micro-strip lines constituting same are coupled to first groups of four mini-horns and this first feeding network (20) is further constituted by a second micro-strip line circuit deposited on the other surface of the thin dielectric film (19) such that the ends of the micro-strip lines constituting same are coupled to the second groups of four mini-horns inserted between the mini-horns of the first groups, whilst the common junction points of these two circuits are re-united for constituting the only connecting point of the feeding network (20), and- the line sections of the first and second circuit are arranged in parallel and flow through metal-plated groves provided in the first layer (10) and in :
c) a second insulating layer (30) in which are provided mini-waveguides (31) having the same square cross-section as the mini-horns seen from the first network (20), and of a rectangular section at the other end, which mini-waveguides have metal-plated inside surfaces ;
d) a second feeding network (40) of the suspended substrate type for receiving (or transmitting) signals whose polarization is linear and perpendicular to that of the signals conveyed by the first network (20), whilst this network (40) is identical with the network (20), but arranged with respect to the latter such that the ends of the lines of the two circuits constituting same are placed perpendicular to the ends of the lines of network (20), whilst the lines of this network (40) run in metal-plated grooves provided in the preceding layer (30) and in :
e) a third insulating layer (50) in which are provided mini-waveguides (51) having the same rectangular cross-section as the mini-horns (31) seen from the second network (40), whilst these mini-waveguides (51) have metal-plated inside surfaces and are short-circuited so that its length is exceeded by the thickness of this said third layer.
2. An antenna system as claimed in Claim 1, characterized in that a depolarizing structure is added thereto, chosen for example between a 3 dB phase shifter or also a depolarizer of the known meander type, so that on one of the output terminals of the system formed thus a counterclockwise circularly polarized signal is available, whilst at the same time on the other output terminal of the system formed thus, a clockwise circularly polarized signal is available.
EP83200333A 1982-03-12 1983-03-10 Flat microwave antenna structure Expired EP0089084B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8204252 1982-03-12
FR8204252A FR2523376A1 (en) 1982-03-12 1982-03-12 RADIATION ELEMENT OR HYPERFREQUENCY SIGNAL RECEIVER WITH LEFT AND RIGHT CIRCULAR POLARIZATIONS AND FLAT ANTENNA COMPRISING A NETWORK OF SUCH JUXTAPOSED ELEMENTS

Publications (2)

Publication Number Publication Date
EP0089084A1 EP0089084A1 (en) 1983-09-21
EP0089084B1 true EP0089084B1 (en) 1988-03-02

Family

ID=9271958

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83200333A Expired EP0089084B1 (en) 1982-03-12 1983-03-10 Flat microwave antenna structure

Country Status (7)

Country Link
US (1) US4527165A (en)
EP (1) EP0089084B1 (en)
JP (1) JPS58168304A (en)
AU (1) AU556994B2 (en)
CA (1) CA1194219A (en)
DE (1) DE3375867D1 (en)
FR (1) FR2523376A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2569907A1 (en) * 1984-08-31 1986-03-07 Loire Electronique DEVICE FOR RECEIVING DOUBLE POLARIZED HYPERFREQUENCY SIGNALS
EP0200819A2 (en) * 1985-04-25 1986-11-12 Robert Bosch Gmbh Antenna array
EP0215240A2 (en) * 1985-07-23 1987-03-25 Sony Corporation Planar-array antenna for circularly polarized microwaves
FR2592232A1 (en) * 1985-12-20 1987-06-26 Radiotechnique Compelec MICROWAVE PLANE ANTENNA WITH SUSPENDED SUBSTRATE LINES ARRAY AND METHOD FOR MANUFACTURING THE SAME.
FR2592233A1 (en) * 1985-12-20 1987-06-26 Radiotechnique Compelec PLANE ANTENNA HYPERFREQUENCES RECEIVING SIMULTANEOUSLY TWO POLARIZATIONS.
EP0239069A1 (en) * 1986-03-26 1987-09-30 Alcatel Transmission Par Faisceaux Hertziens A.T.F.H. Printed-circuit antenna array
FR2599899A1 (en) * 1986-06-05 1987-12-11 Emmanuel Rammos Plane array antenna with printed supply conductors having low loss and incorporated pairs of wide-band overlying radiating slots
EP0252779A1 (en) * 1986-06-05 1988-01-13 Emmanuel Rammos Aerial element with a suspended stripeline between two self-supporting ground planes provided with superimposed radiating slots, and processes for its manufacture
FR2609577A2 (en) * 1987-01-09 1988-07-15 Rammos Emmanuel Plane array antenna with low-loss printed supply conductors and incorporated pairs of superimposed wide-band radiating slots
FR2623336A2 (en) * 1986-06-05 1989-05-19 Rammos Emmanuel Suspended microstrip plane antenna and self-supporting earth planes with thick radiating slots, without positioning studs
EP0317414A1 (en) * 1987-11-13 1989-05-24 Emmanuel Rammos Suspended stripline plate antenna without positioning rods comprising self-supporting ground planes provided with thick radiating slots
EP0325034A2 (en) * 1987-11-23 1989-07-26 Her Majesty In Right Of Canada, As Represented By The Minister Of Communications Antenna Array
WO1989009501A1 (en) * 1988-03-30 1989-10-05 British Satellite Broadcasting Limited Flat plate array antenna
DE3917138A1 (en) * 1988-05-26 1989-12-07 Matsushita Electric Works Ltd FLAT AERIAL
WO1991020108A1 (en) * 1990-06-19 1991-12-26 Nauchno-Issledovatelsky Institut Po Izmeritelnoi Tekhnike Flat antenna
GB2247990A (en) * 1990-08-09 1992-03-18 British Satellite Broadcasting Antennas and method of manufacturing thereof
WO1992016982A1 (en) * 1990-11-29 1992-10-01 Ryazanskoe Proizvodstvennoe Obiedinenie 'krasnoe Znamya' Flat slot array
US5426441A (en) * 1990-11-29 1995-06-20 Aktsionernoe Obschestvo Otkrytogo Tipa Zavod "Krasnoe Znamy" Planar slot antenna grid
GB2301486A (en) * 1994-02-26 1996-12-04 Fortel Technology Ltd Microwave antennas
GB2323970A (en) * 1997-03-31 1998-10-07 Samsung Electronics Co Ltd A cavity-backed microstrip dipole antenna array
US7663566B2 (en) 2005-10-16 2010-02-16 Starling Advanced Communications Ltd. Dual polarization planar array antenna and cell elements therefor
US7768469B2 (en) 2003-02-18 2010-08-03 Starling Advanced Communications Ltd. Low profile antenna for satellite communication
US8964891B2 (en) 2012-12-18 2015-02-24 Panasonic Avionics Corporation Antenna system calibration
US9583829B2 (en) 2013-02-12 2017-02-28 Panasonic Avionics Corporation Optimization of low profile antenna(s) for equatorial operation

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8501440D0 (en) * 1985-01-21 1985-02-20 Era Patents Ltd Circularly polorizing antenna feed
FR2582865B1 (en) * 1985-06-04 1987-07-31 Labo Electronique Physique MICROWAVE UNIT MODULES AND MICROWAVE ANTENNA COMPRISING SUCH MODULES
JPH0611616Y2 (en) * 1986-01-13 1994-03-23 三菱電機株式会社 Planar antenna
US5086304A (en) * 1986-08-13 1992-02-04 Integrated Visual, Inc. Flat phased array antenna
GB8619680D0 (en) * 1986-08-13 1986-09-24 Collins J L F C Flat plate array
US4829309A (en) * 1986-08-14 1989-05-09 Matsushita Electric Works, Ltd. Planar antenna
JPS6365703A (en) * 1986-09-05 1988-03-24 Matsushita Electric Works Ltd Planar antenna
US4757324A (en) * 1987-04-23 1988-07-12 Rca Corporation Antenna array with hexagonal horns
JPH01103006A (en) * 1987-10-15 1989-04-20 Matsushita Electric Works Ltd Plane antenna
US4888597A (en) * 1987-12-14 1989-12-19 California Institute Of Technology Millimeter and submillimeter wave antenna structure
US4929959A (en) * 1988-03-08 1990-05-29 Communications Satellite Corporation Dual-polarized printed circuit antenna having its elements capacitively coupled to feedlines
US5218374A (en) * 1988-09-01 1993-06-08 Apti, Inc. Power beaming system with printer circuit radiating elements having resonating cavities
US5023624A (en) * 1988-10-26 1991-06-11 Harris Corporation Microwave chip carrier package having cover-mounted antenna element
GB8904303D0 (en) * 1989-02-24 1989-04-12 Marconi Co Ltd Dual slot antenna
US5126751A (en) * 1989-06-09 1992-06-30 Raytheon Company Flush mount antenna
US5237334A (en) * 1989-06-29 1993-08-17 Waters William M Focal plane antenna array for millimeter waves
GB2238914B (en) * 1989-11-27 1994-05-04 Matsushita Electric Works Ltd Waveguide feeding array antenna
US5099254A (en) * 1990-03-22 1992-03-24 Raytheon Company Modular transmitter and antenna array system
FR2668305B1 (en) * 1990-10-18 1992-12-04 Alcatel Espace DEVICE FOR SUPPLYING A RADIANT ELEMENT OPERATING IN DOUBLE POLARIZATION.
FR2672438B1 (en) * 1991-02-01 1993-09-17 Alcatel Espace NETWORK ANTENNA IN PARTICULAR FOR SPATIAL APPLICATION.
GB2256530B (en) * 1991-04-24 1995-08-09 Matsushita Electric Works Ltd Planar antenna
US5426442A (en) * 1993-03-01 1995-06-20 Aerojet-General Corporation Corrugated feed horn array structure
ES2160698T3 (en) * 1994-02-26 2001-11-16 Fortel Technology Ltd A PROCEDURE FOR MANUFACTURING AN ANTENNA.
GB9408006D0 (en) * 1994-04-22 1994-06-15 Continental Microwave Technolo Microwave planar antenna
GB2299213A (en) * 1995-03-20 1996-09-25 Era Patents Ltd Antenna array
GB2308012B (en) * 1995-12-05 1999-11-17 Northern Telecom Ltd A radiation shielding device
JPH10224141A (en) * 1997-02-10 1998-08-21 Toshiba Corp Monolithic antenna
WO1998043314A1 (en) * 1997-03-25 1998-10-01 The University Of Virginia Patent Foundation Integration of hollow waveguides, channels and horns by lithographic and etching techniques
FR2764738B1 (en) * 1997-06-13 1999-08-27 Thomson Csf INTEGRATED TRANSMISSION OR RECEPTION DEVICE
US6101705A (en) * 1997-11-18 2000-08-15 Raytheon Company Methods of fabricating true-time-delay continuous transverse stub array antennas
US6034647A (en) * 1998-01-13 2000-03-07 Raytheon Company Boxhorn array architecture using folded junctions
US6201508B1 (en) * 1999-12-13 2001-03-13 Space Systems/Loral, Inc. Injection-molded phased array antenna system
EP1148583A1 (en) * 2000-04-18 2001-10-24 Era Patents Limited Planar array antenna
US6624787B2 (en) 2001-10-01 2003-09-23 Raytheon Company Slot coupled, polarized, egg-crate radiator
DE10322803A1 (en) * 2003-05-19 2004-12-23 Otto-Von-Guericke-Universität Magdeburg Microstrip- or patch antenna for modern high capacity communication systems, comprises radiator with resonant cavity at rear and miniature horn surrounding it
DE10346847B4 (en) * 2003-10-09 2014-04-10 Robert Bosch Gmbh microwave antenna
IL171450A (en) * 2005-10-16 2011-03-31 Starling Advanced Comm Ltd Antenna panel
US8279131B2 (en) * 2006-09-21 2012-10-02 Raytheon Company Panel array
US7671696B1 (en) * 2006-09-21 2010-03-02 Raytheon Company Radio frequency interconnect circuits and techniques
US9172145B2 (en) 2006-09-21 2015-10-27 Raytheon Company Transmit/receive daughter card with integral circulator
US9019166B2 (en) 2009-06-15 2015-04-28 Raytheon Company Active electronically scanned array (AESA) card
US9103902B2 (en) * 2007-05-09 2015-08-11 Infineon Technologies Ag Packaged antenna and method for producing same
US7817097B2 (en) * 2008-04-07 2010-10-19 Toyota Motor Engineering & Manufacturing North America, Inc. Microwave antenna and method for making same
US7859835B2 (en) * 2009-03-24 2010-12-28 Allegro Microsystems, Inc. Method and apparatus for thermal management of a radio frequency system
US8537552B2 (en) * 2009-09-25 2013-09-17 Raytheon Company Heat sink interface having three-dimensional tolerance compensation
US8508943B2 (en) 2009-10-16 2013-08-13 Raytheon Company Cooling active circuits
US8427371B2 (en) 2010-04-09 2013-04-23 Raytheon Company RF feed network for modular active aperture electronically steered arrays
US8363413B2 (en) 2010-09-13 2013-01-29 Raytheon Company Assembly to provide thermal cooling
US8810448B1 (en) 2010-11-18 2014-08-19 Raytheon Company Modular architecture for scalable phased array radars
US8355255B2 (en) 2010-12-22 2013-01-15 Raytheon Company Cooling of coplanar active circuits
US9124361B2 (en) 2011-10-06 2015-09-01 Raytheon Company Scalable, analog monopulse network
US8866687B2 (en) 2011-11-16 2014-10-21 Andrew Llc Modular feed network
US8558746B2 (en) 2011-11-16 2013-10-15 Andrew Llc Flat panel array antenna
US9160049B2 (en) 2011-11-16 2015-10-13 Commscope Technologies Llc Antenna adapter
CN102723605B (en) * 2012-06-15 2014-10-22 山东国威卫星通信有限公司 Ku/ka dual-band double-slit panel antenna and application of same to portable real-time satellite communication system
CN102709689B (en) * 2012-06-15 2014-10-22 山东国威卫星通信有限公司 Ku/ka dual-frequency flat antenna and application thereof in portable instant satellite communication system
US9130278B2 (en) 2012-11-26 2015-09-08 Raytheon Company Dual linear and circularly polarized patch radiator
US10297924B2 (en) * 2015-08-27 2019-05-21 Nidec Corporation Radar antenna unit and radar device
WO2017167916A1 (en) * 2016-03-31 2017-10-05 Huber+Suhner Ag Adapter plate and antenna assembly
CN106025574B (en) * 2016-06-28 2018-07-13 中国电子科技集团公司第三十九研究所 A kind of Sidelobe horizontal polarization flat plate array antenna
DE102016014385A1 (en) 2016-12-02 2018-06-07 Kathrein-Werke Kg Dual polarized horn

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2364371A (en) * 1940-08-31 1944-12-05 Rca Corp Double polarization feed for horn antennas
US3587110A (en) * 1969-07-01 1971-06-22 Rca Corp Corporate-network printed antenna system
US4115782A (en) * 1976-06-21 1978-09-19 Ford Motor Company Microwave antenna system
US4263598A (en) * 1978-11-22 1981-04-21 Motorola, Inc. Dual polarized image antenna
US4263588A (en) * 1979-07-25 1981-04-21 Oldham France S.A. Helmet-carried apparatus for detecting and signalling the presence of a dangerous gas in an atmosphere
FR2505097A1 (en) * 1981-05-04 1982-11-05 Labo Electronique Physique RADIATION ELEMENT OR CIRCULAR POLARIZATION HYPERFREQUENCY SIGNAL RECEIVER AND MICROWAVE PLANE ANTENNA COMPRISING A NETWORK OF SUCH ELEMENTS

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695844A (en) * 1984-08-31 1987-09-22 Societe D'electronique De La Region Pays De Loire Device for receiving dual polarized microwave signals
EP0174250A1 (en) * 1984-08-31 1986-03-12 Societe Electronique De La Region Pays De Loire Device for receiving dual polarized microwave signals
FR2569907A1 (en) * 1984-08-31 1986-03-07 Loire Electronique DEVICE FOR RECEIVING DOUBLE POLARIZED HYPERFREQUENCY SIGNALS
EP0200819A2 (en) * 1985-04-25 1986-11-12 Robert Bosch Gmbh Antenna array
EP0200819A3 (en) * 1985-04-25 1987-12-09 Robert Bosch Gmbh Antenna array
EP0215240A2 (en) * 1985-07-23 1987-03-25 Sony Corporation Planar-array antenna for circularly polarized microwaves
EP0215240A3 (en) * 1985-07-23 1989-01-18 Sony Corporation Planar-array antenna for circularly polarized microwaves
FR2592232A1 (en) * 1985-12-20 1987-06-26 Radiotechnique Compelec MICROWAVE PLANE ANTENNA WITH SUSPENDED SUBSTRATE LINES ARRAY AND METHOD FOR MANUFACTURING THE SAME.
EP0228742A1 (en) * 1985-12-20 1987-07-15 Philips Composants Plane microwave antenna with suspended strip lines, and method for its production
EP0228743A1 (en) * 1985-12-20 1987-07-15 Philips Composants Plane microwave antenna for the simultaneous reception of two polarizations
FR2592233A1 (en) * 1985-12-20 1987-06-26 Radiotechnique Compelec PLANE ANTENNA HYPERFREQUENCES RECEIVING SIMULTANEOUSLY TWO POLARIZATIONS.
EP0239069A1 (en) * 1986-03-26 1987-09-30 Alcatel Transmission Par Faisceaux Hertziens A.T.F.H. Printed-circuit antenna array
FR2596585A1 (en) * 1986-03-26 1987-10-02 Alcatel Thomson Faisceaux NETWORK ANTENNA ON PRINTED CIRCUIT
US4819004A (en) * 1986-03-26 1989-04-04 Alcatel Thomason Faisceaux Hertziens Printed circuit array antenna
FR2599899A1 (en) * 1986-06-05 1987-12-11 Emmanuel Rammos Plane array antenna with printed supply conductors having low loss and incorporated pairs of wide-band overlying radiating slots
EP0252779A1 (en) * 1986-06-05 1988-01-13 Emmanuel Rammos Aerial element with a suspended stripeline between two self-supporting ground planes provided with superimposed radiating slots, and processes for its manufacture
FR2623336A2 (en) * 1986-06-05 1989-05-19 Rammos Emmanuel Suspended microstrip plane antenna and self-supporting earth planes with thick radiating slots, without positioning studs
FR2609577A2 (en) * 1987-01-09 1988-07-15 Rammos Emmanuel Plane array antenna with low-loss printed supply conductors and incorporated pairs of superimposed wide-band radiating slots
EP0317414A1 (en) * 1987-11-13 1989-05-24 Emmanuel Rammos Suspended stripline plate antenna without positioning rods comprising self-supporting ground planes provided with thick radiating slots
EP0325034A2 (en) * 1987-11-23 1989-07-26 Her Majesty In Right Of Canada, As Represented By The Minister Of Communications Antenna Array
EP0325034A3 (en) * 1987-11-23 1989-08-09 Her Majesty In Right Of Canada, As Represented By The Minister Of Communications Antenna array
WO1989009501A1 (en) * 1988-03-30 1989-10-05 British Satellite Broadcasting Limited Flat plate array antenna
DE3917138A1 (en) * 1988-05-26 1989-12-07 Matsushita Electric Works Ltd FLAT AERIAL
FR2632781A1 (en) * 1988-05-26 1989-12-15 Matsushita Electric Works Ltd FLAT ANTENNA
WO1991020108A1 (en) * 1990-06-19 1991-12-26 Nauchno-Issledovatelsky Institut Po Izmeritelnoi Tekhnike Flat antenna
GB2247990A (en) * 1990-08-09 1992-03-18 British Satellite Broadcasting Antennas and method of manufacturing thereof
US5426441A (en) * 1990-11-29 1995-06-20 Aktsionernoe Obschestvo Otkrytogo Tipa Zavod "Krasnoe Znamy" Planar slot antenna grid
WO1992016982A1 (en) * 1990-11-29 1992-10-01 Ryazanskoe Proizvodstvennoe Obiedinenie 'krasnoe Znamya' Flat slot array
GB2301486A (en) * 1994-02-26 1996-12-04 Fortel Technology Ltd Microwave antennas
GB2301486B (en) * 1994-02-26 1998-07-08 Fortel Technology Ltd A method of manufacturing an antenna
GB2323970A (en) * 1997-03-31 1998-10-07 Samsung Electronics Co Ltd A cavity-backed microstrip dipole antenna array
GB2323970B (en) * 1997-03-31 2001-12-05 Samsung Electronics Co Ltd A cavity-backed microstrip dipole antenna array
US7768469B2 (en) 2003-02-18 2010-08-03 Starling Advanced Communications Ltd. Low profile antenna for satellite communication
US7999750B2 (en) 2003-02-18 2011-08-16 Starling Advanced Communications Ltd. Low profile antenna for satellite communication
US7663566B2 (en) 2005-10-16 2010-02-16 Starling Advanced Communications Ltd. Dual polarization planar array antenna and cell elements therefor
US7994998B2 (en) 2005-10-16 2011-08-09 Starling Advanced Communications Ltd. Dual polarization planar array antenna and cell elements therefor
US8964891B2 (en) 2012-12-18 2015-02-24 Panasonic Avionics Corporation Antenna system calibration
US9583829B2 (en) 2013-02-12 2017-02-28 Panasonic Avionics Corporation Optimization of low profile antenna(s) for equatorial operation

Also Published As

Publication number Publication date
EP0089084A1 (en) 1983-09-21
FR2523376A1 (en) 1983-09-16
JPH0342722B2 (en) 1991-06-28
DE3375867D1 (en) 1988-04-07
AU1237383A (en) 1983-09-15
JPS58168304A (en) 1983-10-04
US4527165A (en) 1985-07-02
CA1194219A (en) 1985-09-24
AU556994B2 (en) 1986-11-27
FR2523376B1 (en) 1984-04-20

Similar Documents

Publication Publication Date Title
EP0089084B1 (en) Flat microwave antenna structure
EP0123350B1 (en) Plane microwave antenna with a totally suspended microstrip array
EP0064313B1 (en) Circularly polarised microwave radiating element and flat microwave antenna using an array of such elements
EP0108463B1 (en) Radiating element for cross-polarized microwave signals and planar antenna consisting of an array of such elements
EP2510574B1 (en) Microwave transition device between a microstrip line and a rectangular waveguide
EP0134611B1 (en) A flat microwave emitting or receiving antenna array, and microwave signal emitting or receiving system comprising a such flat antenna
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
WO2001035491A1 (en) Dual-frequency band printed antenna
EP0098192B1 (en) Multiplexing device for combining two frequency bands
EP1466384B1 (en) Device for receiving and/or emitting electromagnetic waves with radiation diversity
FR2636780A1 (en) CIRCULAR POLARIZATION DIPLEXING COMPOSITE ANTENNA
EP2637254B1 (en) Planar antenna for terminal operating with dual circular polarisation, airborne terminal and satellite telecommunication system comprising at least one such antenna
EP2432072B1 (en) Wideband balun on a multilayer circuit for a network antenna
EP3900113B1 (en) Elementary microstrip antenna and array antenna
EP2316149B1 (en) Low-loss compact radiating element
FR2736212A1 (en) Microwave frequency coupler device esp. for dipole antenna
EP0557176B1 (en) Feeding device for a plate antenna with two crossed polarizations and array equipped with such a device
EP2190061A1 (en) Radiating element network and antenna comprising such a network
FR2705167A1 (en) Small-sized, wide-band patch antenna, and corresponding transmitting/receiving device
EP0831550B1 (en) Versatile array antenna
FR2599899A1 (en) Plane array antenna with printed supply conductors having low loss and incorporated pairs of wide-band overlying radiating slots
EP4304012A1 (en) Improved elementary antenna of the slot fed radiating plane type and active antenna array
FR3123162A1 (en) ANTENNA WITH GAP DISTRIBUTION NETWORK
FR2677493A1 (en) NETWORK OF RADIANT ELEMENTS WITH AUTOCOMPLEMENTARY TOPOLOGY, AND ANTENNA USING SUCH A NETWORK.
FR2943464A1 (en) Radiating element for use on electronically-scanned active antenna of e.g. radar, has slot line and notch formed by absence of metallization surfaces, where element and another element are formed on single multilayer radiofrequency circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19831012

17Q First examination report despatched

Effective date: 19860728

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19880331

Ref country code: CH

Effective date: 19880331

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3375867

Country of ref document: DE

Date of ref document: 19880407

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890311

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890331

BERE Be: lapsed

Owner name: PHILIPS' GLOEILAMPENFABRIEKEN N.V.

Effective date: 19890331

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

ITTA It: last paid annual fee
EUG Se: european patent has lapsed

Ref document number: 83200333.9

Effective date: 19900124

ITPR It: changes in ownership of a european patent

Owner name: CAMBIO RAGIONE SOCIALE;PHILIPS ELECTRONICS N.V.

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960327

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960523

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970228

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19971202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980310

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980310