EP2502470A1 - Cavité hf et accélérateur pourvu d'une telle cavité - Google Patents

Cavité hf et accélérateur pourvu d'une telle cavité

Info

Publication number
EP2502470A1
EP2502470A1 EP10784723A EP10784723A EP2502470A1 EP 2502470 A1 EP2502470 A1 EP 2502470A1 EP 10784723 A EP10784723 A EP 10784723A EP 10784723 A EP10784723 A EP 10784723A EP 2502470 A1 EP2502470 A1 EP 2502470A1
Authority
EP
European Patent Office
Prior art keywords
cavity
wall
conductive wall
cavity according
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10784723A
Other languages
German (de)
English (en)
Other versions
EP2502470B1 (fr
Inventor
Arnd Baurichter
Oliver Heid
Timothy Hughes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2502470A1 publication Critical patent/EP2502470A1/fr
Application granted granted Critical
Publication of EP2502470B1 publication Critical patent/EP2502470B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/02Circuits or systems for supplying or feeding radio-frequency energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/22Details of linear accelerators, e.g. drift tubes

Definitions

  • the invention relates to an RF cavity, in which RF power for generating an electromagnetic field in the interior of the RF cavity can be coupled. Furthermore, the invention relates to an accelerator with such an RF cavity. Such accelerators or such HF
  • Cavities are commonly used to accelerate charged particles.
  • RF cavities are known that can be excited to RF resonance by coupling RF power into the RF cavity.
  • the RF power in turn, is generated remotely from the RF cavity, for example, using a klystron, and transported to the RF cavity by means of a waveguide.
  • US 5,497,050 discloses another structure for coupling RF power into an RF cavity. This is done via a plurality of solid-state power transistors, which are integrated in a conductive wall of the RF cavity.
  • the RF cavity according to the invention comprises
  • a suffering wall surrounding the chamber which has an inner side and an outer side
  • a switching arrangement having a plurality of solid-state switches arranged along a circumference of the wall around the chamber
  • solid state switches are in communication with the conductive wall such that upon activation of the switching device
  • RF currents are induced in the conductive wall, whereby RF power is coupled into the chamber of the RF cavity, wherein on the outside of the conductive wall along a circumference of the RF cavity, a shielding device is provided, which has the impedance of a propagation path increased from RF currents along the outside of the wall, so that the coupled-in into the wall RF currents are suppresses on the outer side of the wall un ⁇ .
  • the invention is based on the realization that a is advantageous Be ⁇ locher inconvenience, as is described in US 5,497,050, in order to couple high RF services in a RF cavity.
  • the area over which the RF power can be injected is larger in comparison to structures with a coupling only in one place, since the transistors extend over the entire circumference.
  • the generation of the RF power to be injected takes place in the immediate vicinity of the RF cavity, whereby losses are avoided.
  • this structure can be also ⁇ table.
  • the RF power coupled into the wall of the RF cavity generates strong RF currents on the outside of the conductive wall. These high-frequency currents represent a problem during operation when the power requirement is high.
  • a shielding device is provided, with which the impedance is increased at the outer side of the conductive wall, reduce the RF currents that would otherwise ent ⁇ long spread of a propagation path to the outer wall, visible and at best, even completely suppressed .
  • the impedance increase on the outside of the conductive wall causes the RF currents, which are introduced via the direct connection of the solid-state switch with the conductive wall, to spread predominantly or entirely to the inside of the conductive wall.
  • the outside of the conductive wall can now be set at ground potential so that the RF cavity can be more easily connected or coupled with other devices and used together.
  • An outside of the conductive wall at ground potential increases safety during operation.
  • the shielding comprises a first part and a second part, the first part being associated with the first Ab ⁇ section of the conductive wall and the second part the second part of the conductive wall.
  • the solid state transistor switching circuitry provides the RF power through a slot between the first portion and the second portion of the conductive wall.
  • the insulation between the first portion and the second portion of the conductive wall can simultaneously perform the function of a vacuum seal.
  • the shielding device can realize the impedance increase in various ways.
  • the shielding device may comprise a ribbed conductive structure, a ferrite ring and / or ⁇ / 4 stub.
  • the conductive wall on the outside has a recess into which the shielding device is at least partially recessed.
  • a ⁇ / 4 stub can be formed by the recess in the conductive wall. In this way, no additional material is necessary to achieve the impedance increase. Filling the recess with a dielectric makes it possible to adapt the stub line to the frequency of the HF currents.
  • the stub can be arranged in a space-saving manner, when the stub is folded in, for example in the manner of a spiral.
  • the solid state switches may additionally be surrounded by a conductive protective cage which communicates with the outside of the conductive wall. This makes it possible to shield the solid ⁇ body switch of electromagnetic radiation.
  • the location where the guard cage communicates with the conductive wall may be selected such that the shielding device is between that location and the location where the RF currents are coupled from the solid state switches to the conductive wall. In this way, the part of the conductive wall at which RF currents can flow on the outside is inside the protective cage.
  • the shielding device should not be placed in an off ⁇ saving the conductive wall inevitably. It can also be wholly or partially applied to the outside of the conductive wall.
  • the shielding device can also be formed by the conductive protective cage surrounding the solid state switches and which communicates with the conductive wall.
  • the protective cage communicates with both the first and second portions of the conductive wall. Without ribs for impedance increase on the inside of the protective cage, the protective cage would constitute a short circuit between the first section and the second section of the conductive wall without further measures, such as a further shielding device from the protective cage.
  • the ribs however, an impedance increase in the RF range is achieved, which prevents this.
  • suppression of the RF currents is achieved on the outside of the wall through the conductive protective cage, as an off ⁇ spread the RF currents is suppressed at the outside of the conductive wall through the contact points of the protective cage with the conductive wall.
  • the RF cavity can be an RF resonator, which can be used in particular to accelerate particles.
  • a plurality of such RF resonators can be connected in series and, in particular, controlled independently of one another.
  • HF cavities Because no HF currents flow on the outside of the HF cavity, several of these HF cavities can be connected one after the other to form an accelerator unit.
  • the RF cavities are then decoupled from each other in the high frequency range despite coupling.
  • the coupling refers only to a direct current component (DC component).
  • DC component direct current component
  • the adaptation is more flexible than with an accelerator, in which the RF cavities are coupled together in the RF range, so that the control of one RF cavity simultaneously influences the RF fields in the adjacent RF cavity.
  • the structure according to the invention for coupling RF power and shielding with respect to the outside world can also be used with other RF cavities, for example, the RF cavity can be designed as a coaxial electrical line or arranged in a re-entrant resonator structure.
  • FIG. 2 shows a schematic overview of a cylindrical RF cavity with a coupling device arranged along its circumference for coupling RF power
  • FIG. 3 shows a longitudinal section through an RF cavity with detail ⁇ lierterer representation of the coupling device, which comprises a designed as a ferrite shielding device,
  • FIG. 4 shows a cross section through the RF cavity shown in FIG. 3 along the line III-III, FIG.
  • FIG. 5 shows an enlargement of a part of a longitudinal section through a wall of an HF cavity to illustrate a shielding device designed as a ⁇ / 4 stub
  • FIG. 6 and FIG. 7 each show another embodiment of the ⁇ / 4 stub shown in FIG. 5,
  • FIG. 8 shows a longitudinal section through an HF cavity, in which the protective cage with inner ribs arranged around the power transistors serves as the shielding device
  • FIG. 9 shows an HF cavity designed as a coaxial line.
  • FIG. 1 shows a Seitansicht an RF cavity 11.
  • a coupling device 13 arranged for coupling RF power, the RF cavity 11.
  • FIG. 2 shows a front view of the HF cavity 11 shown in FIG. 1. The coupling device 13 will be described with reference to the longitudinal section in FIG. 3 and the cross section in FIG. 4 through the RF cavity 11 shown in FIG. 1 and FIG shown in more detail.
  • Fig. 3 shows a longitudinal section 11.
  • ⁇ provided Dar by the RF cavity is merely a wall side of the RF cavity 11 in the region in which the coupling device 13 is located.
  • Shown is a conductive wall 15 having a first portion 21 and a second portion 23 which are isolated from each other.
  • the annular insulation 27 simultaneously forms a vacuum seal.
  • the conductive wall 15 has an inner surface 19 which is directed into the cavity of the RF cavity 11, and an outwardly Au ⁇ chseite 17.
  • On the outer side 17 is the on ⁇ coupling device 13 for RF power.
  • This comprises a plurality of solid-state transistors 29, which are in direct contact with a slot-like flange 25, which is formed by the first portion 21 and the second portion 23 of the lei ⁇ border wall 15.
  • the solid-state transistors 29 are connected via leads 31 to a DC power source, not shown here.
  • the solid-state transistors 29 in the conductive wall 15 induce RF currents propagating along the conductive wall 15.
  • Wanted is a propagation along the inside 19 of the conductive wall.
  • a shielding device is provided which, in the case shown here, is incorporated in a recess of the conductive wall 15.
  • the recesses are filled in the embodiment shown here with a ferrite ring 33.
  • the shielding device or the ferrite ring 33 is located both in the first portion 21 of the conductive wall 15 and in the second portion 23.
  • the ferrite ring 33 increases the impedance on the outer side 17 of the electrically conductive wall 15, whereby a spread of HF currents along the outside 17 is prevented and is directed to the inside 19.
  • the solid-state transistors 29 and the coupling point on the flange 25 are protected by a metallic protective cage 35, for example made of copper, from external electromagnetic radiation.
  • the protective cage 35 contacts the electrically conductive wall 15 at a location on the outside 17, which is already protected by the shielding device from propagating RF currents.
  • Fig. 4 shows a cross section along the line IV - IV in Fig. 3. To see the outer protective cage 35, some solid-state transistors 29 and the contact point with the flange 25 forming part of the conductive wall 15th
  • the shielding device is shown as a ferrite ring 33 extending along the periphery of the RF cavity. Further embodiments are shown with reference to the following FIGS. 5 to 9.
  • Fig. 5 shows a longitudinal section of the conductive wall 15, at a position which corresponds in Fig. 3 to the point at which the ferrite ring 33 is located.
  • a recess 37 is incorporated, which is shaped so that it forms a ⁇ / 4 -Stichtechnisch.
  • the ⁇ / 4 stub is tuned to the operating frequency of the RF cavity 11 such that propagation of RF currents along the outside 17 of the wall 15 is prevented by the ⁇ / 4 stub.
  • the recess can be filled with a dielectric 39 according to FIG. 6, or else folded inwardly as shown in FIG. 7 (convolution 41).
  • Fig. 8 shows a further embodiment of the shielding device.
  • the shielding device is realized in that the protective cage 35, the conductive Contacted wall 15 and the solid state transistors 29 surrounds, is formed in a special way.
  • Guard cage 35 has on its inside a plurality of ribs 43. On the basis of these ribs 43, the impedance of the path, which leads from the outside 17 of the conductive wall 15 along the inside of the protective cage 29, and thereby prevents HF currents along the outside 17 of the wall 15 from the injection site on the protective cage 29th would spread out.
  • FIG. 9 shows an RF cavity, which is designed as a coaxial conductive connection 47.
  • RF power can be fed into the coaxial connection via the coupling device 13 arranged on the outer conductor.
  • FIG. 10 shows an accelerator unit, along which a plurality of RF cavities 11... II 1 ' 1 , as shown, for example, in FIG. 1 in FIG. 2, are arranged one behind the other. Since HF currents propagate only on the inside of the HF cavities 11... II 1 ' 1 , the HF cavities 11... 11''' are decoupled from one another in the high-frequency range and can therefore be individually controlled by a control device 45 can be controlled, whereby a flexible tuning of the RF cavities 11 ... 11 1 1 1 can be achieved to a desired acceleration.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

Cavité HF qui comporte une chambre, une paroi conductrice (15) entourant la chambre et présentant une face interne (19) et une face externe (17), et un ensemble circuit comportant une pluralité de commutateurs à semi-conducteur (29) disposés sur une périphérie de la paroi autour de la chambre. Les commutateurs à semi-conducteur (29) sont connectés à la paroi conductrice (15) de manière telle qu'en cas d'activation de l'ensemble circuit, des courants HF sont induits dans la paroi conductrice (15), une puissance HF étant ainsi injectée dans la chambre de la cavité HF (11). Sur la face externe (17) de la paroi conductrice (15), sur une périphérie de la cavité HF (11), se trouve un dispositif de blindage (33, 37, 39, 41, 43) qui augmente l'impédance d'un chemin de propagation de courants HF le long de la face externe (17) de la paroi (15), si bien que les courants HF injectés dans la paroi (15) sont affaiblis sur la face externe (17) de la paroi (15). La présente invention concerne en outre un accélérateur pourvu d'un cavité HF de ce type.
EP10784723.8A 2009-11-17 2010-10-18 Cavité hf et accélérateur pourvu d'une telle cavité Not-in-force EP2502470B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009053624A DE102009053624A1 (de) 2009-11-17 2009-11-17 HF-Kavität sowie Beschleuniger mit einer derartigen HF-Kavität
PCT/EP2010/065595 WO2011061026A1 (fr) 2009-11-17 2010-10-18 Cavité hf et accélérateur pourvu d'une telle cavité

Publications (2)

Publication Number Publication Date
EP2502470A1 true EP2502470A1 (fr) 2012-09-26
EP2502470B1 EP2502470B1 (fr) 2014-09-17

Family

ID=43759711

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10784723.8A Not-in-force EP2502470B1 (fr) 2009-11-17 2010-10-18 Cavité hf et accélérateur pourvu d'une telle cavité

Country Status (7)

Country Link
US (1) US8779697B2 (fr)
EP (1) EP2502470B1 (fr)
JP (1) JP5567143B2 (fr)
CN (1) CN102612865B (fr)
DE (1) DE102009053624A1 (fr)
RU (1) RU2559031C2 (fr)
WO (1) WO2011061026A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2684249B1 (fr) * 2011-05-04 2018-11-28 Siemens Aktiengesellschaft Générateur haute fréquence

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010032214A1 (de) 2010-07-26 2012-01-26 Siemens Aktiengesellschaft Methode und Anordnung zur Kontrolle von Schall- und Stoßwellen in einem Target eines Teilchenbeschleunigers
DE102010032216B4 (de) 2010-07-26 2012-05-03 Siemens Aktiengesellschaft Gepulste Spallations-Neutronenquelle
DE102010041758B4 (de) * 2010-09-30 2015-04-23 Siemens Aktiengesellschaft HF-Kavität mit Sender
DE102010042055A1 (de) * 2010-10-06 2012-04-12 Siemens Aktiengesellschaft Ringbeschleuniger
RU2579748C2 (ru) * 2010-10-06 2016-04-10 Сименс Акциенгезелльшафт Коаксиальный волновод с вч передатчиком
DE102010042149B4 (de) * 2010-10-07 2016-04-07 Siemens Aktiengesellschaft HF-Vorrichtung und Beschleuniger mit einer solchen HF-Vorrichtung
DE102010043774A1 (de) 2010-11-11 2012-05-16 Siemens Aktiengesellschaft Teilchenbeschleuniger und Verfahren zum Betreiben eines Teilchenbeschleunigers
DE102010044113A1 (de) * 2010-11-18 2012-05-24 Siemens Aktiengesellschaft HF-Kavität und Teilchenbeschleuniger mit HF-Kavität
DE102011004401A1 (de) * 2011-02-18 2012-08-23 Siemens Aktiengesellschaft HF-Vorrichtung
DE102011082580A1 (de) * 2011-09-13 2013-03-14 Siemens Aktiengesellschaft HF-Resonator und Teilchenbeschleuniger mit HF-Resonator
DE102011083668A1 (de) * 2011-09-29 2013-04-04 Siemens Aktiengesellschaft HF-Resonator und Teilchenbeschleuniger mit HF-Resonator
US10448496B2 (en) 2015-09-28 2019-10-15 Fermi Research Alliance, Llc Superconducting cavity coupler
US10070509B2 (en) 2015-09-29 2018-09-04 Fermi Research Alliance, Llc Compact SRF based accelerator
CN106211538B (zh) * 2016-09-26 2018-02-09 合肥中科离子医学技术装备有限公司 一种回旋加速器谐振腔的自动调谐装置和方法
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
EP3536132B1 (fr) * 2016-11-03 2022-03-16 Starfire Industries LLC Système compact de couplage direct de puissance radioélectrique dans un accélérateur
CN106385758B (zh) * 2016-11-11 2018-02-09 合肥中科离子医学技术装备有限公司 超导回旋加速器谐振腔容性耦合匹配方法
DE102017123377A1 (de) 2017-10-09 2019-04-11 Cryoelectra Gmbh Hochfrequenz-Verstärker-Einheit mit auf Außenleiter angeordneten Verstärkermodulen
CN107863597A (zh) * 2017-12-12 2018-03-30 合肥中科离子医学技术装备有限公司 一种用于将高频功率耦合输入到谐振腔中的装置
US11224918B2 (en) 2018-01-19 2022-01-18 Fermi Research Alliance, Llc SRF e-beam accelerator for metal additive manufacturing
US11123921B2 (en) 2018-11-02 2021-09-21 Fermi Research Alliance, Llc Method and system for in situ cross-linking of materials to produce three-dimensional features via electron beams from mobile accelerators
US11639010B2 (en) 2019-07-08 2023-05-02 Fermi Research Alliance, Llc Electron beam treatment for invasive pests
US11465920B2 (en) * 2019-07-09 2022-10-11 Fermi Research Alliance, Llc Water purification system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2563585A (en) * 1945-10-08 1951-08-07 Dallenbach
US2860313A (en) * 1953-09-04 1958-11-11 Emerson Radio And Phonograph C Inductive tuning device
DE1739053U (de) * 1956-06-28 1957-02-07 Siemens Ag Anordnung zur abschirmung hochfrequenter stoerfelder in einem sondenschlitz.
US3495125A (en) * 1968-03-05 1970-02-10 Atomic Energy Commission Quarter-wave transmission line radio frequency voltage step-up transformer
JPH04268799A (ja) * 1991-02-25 1992-09-24 Nec Corp 電磁遮へい室
US5497050A (en) * 1993-01-11 1996-03-05 Polytechnic University Active RF cavity including a plurality of solid state transistors
US5661366A (en) * 1994-11-04 1997-08-26 Hitachi, Ltd. Ion beam accelerating device having separately excited magnetic cores
JP2867933B2 (ja) * 1995-12-14 1999-03-10 株式会社日立製作所 高周波加速装置及び環状加速器
JP3439901B2 (ja) * 1996-02-07 2003-08-25 日本電信電話株式会社 超伝導薄膜の作製方法
US6724261B2 (en) 2000-12-13 2004-04-20 Aria Microwave Systems, Inc. Active radio frequency cavity amplifier
JP4268799B2 (ja) 2002-12-26 2009-05-27 大和製罐株式会社 不良缶詰検出方法およびそれに用いられる示温インク印刷缶詰
JP4220316B2 (ja) * 2003-06-24 2009-02-04 株式会社日立ハイテクノロジーズ プラズマ処理装置
US20090224700A1 (en) * 2004-01-15 2009-09-10 Yu-Jiuan Chen Beam Transport System and Method for Linear Accelerators
US7710051B2 (en) * 2004-01-15 2010-05-04 Lawrence Livermore National Security, Llc Compact accelerator for medical therapy
EP4005610A1 (fr) * 2005-12-14 2022-06-01 Stryker Corporation Système de collecte et d'élimination de déchets
US8325463B2 (en) * 2008-11-04 2012-12-04 William Mehrkam Peterson Dynamic capacitor energy system
US8232747B2 (en) * 2009-06-24 2012-07-31 Scandinova Systems Ab Particle accelerator and magnetic core arrangement for a particle accelerator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011061026A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2684249B1 (fr) * 2011-05-04 2018-11-28 Siemens Aktiengesellschaft Générateur haute fréquence

Also Published As

Publication number Publication date
EP2502470B1 (fr) 2014-09-17
WO2011061026A1 (fr) 2011-05-26
JP2013511133A (ja) 2013-03-28
RU2559031C2 (ru) 2015-08-10
DE102009053624A1 (de) 2011-05-19
JP5567143B2 (ja) 2014-08-06
CN102612865B (zh) 2015-06-24
US8779697B2 (en) 2014-07-15
CN102612865A (zh) 2012-07-25
RU2012103491A (ru) 2013-12-27
US20120229054A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
EP2502470B1 (fr) Cavité hf et accélérateur pourvu d'une telle cavité
EP3100070B1 (fr) Système de radar permettant de détecter l'environnement d'un véhicule
WO2004004064A1 (fr) Dispositif parafoudre et filtre antiparasite
EP1686684B1 (fr) Générateur de micro-ondes
DE102006008500A1 (de) Sendeschaltung, Antenneduplexer und Hochfrequenzumschalter
EP1864377B1 (fr) Generateur de micro-ondes
EP2489095B1 (fr) Coupleur d'antenne
DE69813623T2 (de) Antennen-abschirmung für mobil-telephone mit einziehbarer antenne
DE112004001614B4 (de) 90° Hybrid
DE2741385C2 (de) Magnetron-Einrichtung
EP2625933B1 (fr) Dispositif hf et accélérateur doté d'un tel dispositif hf
EP0590343B1 (fr) Laser excité en haute fréquence à haute puissance en particulier laser à ruban à CO2
EP1495513A1 (fr) Reseau d'adaptation electrique pourvu d'une ligne de transformation
EP1602144B1 (fr) Connexion haute frequence ou reseau de distribution haute frequence
DE102010041758B4 (de) HF-Kavität mit Sender
EP4104241A1 (fr) Dispositif de transmission pour véhicule automobile pour transmission de signal radio, système de touche sans fil et véhicule automobile
WO2012136281A1 (fr) Générateur hf
DE102011004401A1 (de) HF-Vorrichtung
DE60033222T2 (de) Leistungsbegrenzende Vorrichtung
WO2012045520A1 (fr) Guide d'ondes coaxial doté d'un émetteur hf
EP2885837A1 (fr) Dispositif d'injection de puissance hf dans un guide d'ondes
DE102010062039A1 (de) HF-Kavität, Teilchenbeschleuniger mit HF-Kavität und Verfahren zum Betreiben einer HF-Kavität
DE102008013386A1 (de) Hochfrequenz-Kurzschluss-Schalter sowie Schaltungseinheit
DE7715920U1 (de) Hoechstfrequenzinduktivitaet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120416

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140606

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 688185

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010007926

Country of ref document: DE

Effective date: 20141030

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141218

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20140917

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140917

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150119

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010007926

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

26N No opposition filed

Effective date: 20150618

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141018

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101018

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 688185

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151018

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20180924

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181217

Year of fee payment: 9

Ref country code: NO

Payment date: 20181025

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181018

Year of fee payment: 9

Ref country code: GB

Payment date: 20181005

Year of fee payment: 9

Ref country code: IT

Payment date: 20181029

Year of fee payment: 9

Ref country code: BE

Payment date: 20181019

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190116

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010007926

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191019

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191018

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191018