CN102612865A - 高频腔以及具有这种高频腔的加速器 - Google Patents

高频腔以及具有这种高频腔的加速器 Download PDF

Info

Publication number
CN102612865A
CN102612865A CN2010800517643A CN201080051764A CN102612865A CN 102612865 A CN102612865 A CN 102612865A CN 2010800517643 A CN2010800517643 A CN 2010800517643A CN 201080051764 A CN201080051764 A CN 201080051764A CN 102612865 A CN102612865 A CN 102612865A
Authority
CN
China
Prior art keywords
frequency
frequency cavity
cavity
conductive walls
shielding device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800517643A
Other languages
English (en)
Other versions
CN102612865B (zh
Inventor
A.鲍里克特
O.海德
T.休斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN102612865A publication Critical patent/CN102612865A/zh
Application granted granted Critical
Publication of CN102612865B publication Critical patent/CN102612865B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/02Circuits or systems for supplying or feeding radio-frequency energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/22Details of linear accelerators, e.g. drift tubes

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明涉及一种高频腔,包括其中该高频腔包括:腔,包围该腔的传导壁(15),该传导壁具有内侧(19)和外侧(17),以及具有多个固体开关(29)的开关装置,所述多个固体开关沿着围绕所述腔的壁(15)的外周布置,其中固体开关(29)与传导壁(15)这样连接,使得在激活所述开关装置的情况下在传导壁(15)中感应出高频电流,由此高频功率被耦合到高频腔(11)的腔中,其中在导电壁(15)的外侧(17)沿着高频腔(11)的外周存在屏蔽设备(33,37,39,41,43),该屏蔽设备提高高频电流沿着壁(15)的外侧(17)的传播路径的阻抗,使得耦合到壁(15)中的高频电流在壁(15)的外侧(17)受到抑制。此外本发明还涉及一种具有主要的高频腔的加速器。

Description

高频腔以及具有这种高频腔的加速器
技术领域
本发明涉及一种高频腔,可以将用于在高频腔内部产生电磁场的高频功率耦合到该高频腔中。此外本发明涉及一种具有这种高频腔的加速器。这种加速器或这种高频腔通常被用于对带电粒子加速。
背景技术
已知可以被激励为高频谐振的高频腔,其方法是将高频功率耦合到所述高频腔中。但是高频功率自身远离高频腔地例如借助速调管产生,并且借助波导管传输到高频腔。替换的,可以借助天线或感应耦合器将高频功率输入耦合到所述腔中。
US5,497,050公开了另一种用于将高频功率耦合到高频腔中的结构。这通过多个固体功率晶体管来进行,这些固体功率晶体管集成在高频腔的传导壁中。
发明内容
本发明的任务是提供一种可以可靠地运行以及可以通过可靠的方式与其它设备一起使用的高频腔。此外本发明的任务是说明一种具有这种高频腔的加速器,该加速器允许灵活的控制。
本发明的任务通过独立权利要求的特征解决。本发明的有利扩展在从属权利要求的特征中找到。
本发明的高频腔包括
腔,
包围该腔的传导壁,该传导壁具有内侧和外侧,以及
具有多个固体开关的开关装置,所述多个固体开关沿着围绕所述腔的壁的外周布置,
其中固体开关与传导壁这样连接,使得在激活所述开关装置的情况下在传导壁中感应出高频电流,由此高频功率被耦合到高频腔的腔中,其中在导电壁的外侧沿着高频腔的外周存在屏蔽设备,该屏蔽设备提高高频电流沿着壁的外侧的传播路径的阻抗,使得耦合到壁中的高频电流在壁的外侧受到抑制。
本发明基于以下认识,即为了将高的高频功率耦合到高频腔中,如在US5,497,050中描绘的加速器结构是有利的。可用于耦合高频功率的面与具有仅仅在一个位置上耦合的结构相比更大,因为晶体管在整个外周上延伸。此外待耦合的高频功率的产生是在紧邻高频腔的地方进行的,由此避免了损耗。
但是另外还认识到,该结构可能是有问题的。尤其是被耦合到高频腔的壁中的高频功率在传导壁的外侧产生强的高频电流。所述高频电流在功率要求很高的情况下是运行期间的问题。
通过现在设置用于提高传导壁外侧上的阻抗的屏蔽设备,本来要沿着外侧上的传播路径传播的高频电流被明显减小,并且在最佳情况下甚至完全得到抑制。传导壁的外侧上的阻抗提高导致经由固体开关与传导壁的直接连接而被导入的高频电流主要或完全在传导壁的内侧上传播。
由此实现了一系列优点。由于在壁的外侧以及在可能于晶体管周围存在的保护笼上不传播高频电流,因此避免了电磁射线从壁向外的辐射,该辐射本来会减小功率的可用性并且例如由于高频带的中断而干扰运行。
传导壁的外侧现在可以被置于地电位,从而高频腔可以更简单地与其它设备连接或耦合并且与其它设备一起使用。将传导壁的外侧置于地电位提高了运行期间的安全性。
通常,传导壁包括第一片段和与第一片段隔离的第二片段。屏蔽设备包括第一部分和第二部分,其中第一部分被分配给传导壁的第一片段,而第二部分被分配给传导壁的第二部分。具有固体晶体管的开关装置通过传导壁的第一片段与第二片段之间的间隙提供高频功率。传导壁的第一片段与第二片段之间的隔离可以同时发挥真空密封的功能。
屏蔽设备可以通过不同的方式实现阻抗升高。从而屏蔽设备可以包括有翼的传导结构、铁氧体环和/或λ/4回线。
按照有利的方式,传导壁在外侧上具有凹陷,屏蔽设备至少部分地埋入该凹陷中。
尤其是可以通过传导壁中的凹陷形成λ/4回线。通过这种方式不需要附加的材料来达到阻抗升高。用电介质填充所述凹陷使得可以将所述回线与高频电流的频率匹配。回线可以按照节省空间的方式布置,即回线自身折叠,例如根据螺旋线的方式。
固体开关可以附加地被传导的保护笼包围,该保护笼与传导壁的外侧连接。由此实现了将固体开关与电磁射线屏蔽开。保护笼与传导壁连接所在的位置可以这样来选择,即屏蔽设备位于该位置以及以下地点之间,在该地点处由固体开关将高频电流耦合到传导壁中。通过这种方式,高频电流在外侧可以流向的传导壁的部分位于保护笼内部。
屏蔽设备不一定布置在传导壁的凹陷中。屏蔽设备还可以完全或部分地设置在传导壁的外侧上。
屏蔽设备还可以通过传导的保护笼形成,该保护笼包围固体开关并且与传导壁连接。保护笼既与传导壁的第一片段又与第二片段连接。如果在保护笼内侧没有用于提高阻抗的翼,则在没有诸如保护笼的另一个屏蔽设备的其它措施的情况下保护笼会在传导壁的第一片段和第二频道之间形成短路。但是通过翼实现高频区域内的阻抗升高,该阻抗升高阻止了这种短路。此外,通过传导的保护笼在壁的外侧实现了高频电流的抑制,因为高频电流在传导壁的外侧的传播通过保护笼与传导壁的接触位置来抑制。
高频腔可以是高频谐振腔,其尤其是可以构成为用于对粒子加速。尤其是可以将多个这种高频谐振器先后连接并且尤其是相互独立地控制这些高频谐振器。
通过在高频腔的外侧没有高频电流流动,多个这种高频腔可以先后连接为一个加速单元。然后这些高频腔尽管相互之间存在耦合但也在高频范围内被相互去耦。该耦合仅涉及直流分量(DC分量)。但是由此由于高频去耦,可以相互独立地控制各个高频腔,由此可以更灵活地运行加速器并且将该加速器更灵活地与各自待实现的期望加速相匹配。该匹配比在其中高频腔在高频范围内相互耦合的加速器的情况下更为灵活,从而对高频腔的控制同时会影响相邻高频腔中的高频场。
但是,本发明的用于耦合高频功率以及相对于外界的屏蔽的结构还可以在其它高频腔中使用,例如该高频腔可以构成为同轴的导电线,或者布置在重入式谐振结构中。
附图说明
借助下面的附图详细阐述本发明的具有根据从属权利要求的特征的有利扩展的实施方式,但是并不局限于此。
图1和图2示出关于圆柱形高频腔的示意性概貌,该高频腔具有沿着其外周布置的、用于耦合高频功率的耦合设备,
图3示出高频腔的纵截面,具有耦合设备的详细图示,该耦合设备包括构成为铁氧体环的屏蔽设备,
图4沿着线III-III示出通过图3所示高频腔的横截面,
图5示出通过高频腔的壁的纵截面的一部分的放大图,用于显示构成为λ/4回线的屏蔽设备,
图6和图7分别示出图5所示的λ/4回线的另一实施,
图8示出高频腔的纵截面,在该高频腔中围绕功率晶体管布置的、具有内翼的保护笼用作屏蔽设备,
图9示出构成为同轴导线的高频腔。
具体实施方式
图1示出高频腔11的侧视图。围绕高频腔11的外周布置耦合设备13,用于将高频功率耦合给高频腔11。图2示出图1所示的高频腔11的正视图。
借助图3中的通过图1和图2所示的高频腔11的纵截面和图4中的横截面更为详细地示出耦合设备13。
图3示出高频腔11的纵截面。仅示出高频腔在耦合设备13所位于的区域中的壁侧。可以看见具有第一片段21和第二片段23的传导壁15,第一片段和第二片段相互隔离。环形的隔离27同时形成真空密封。传导壁15具有指向高频腔11的空腔中的内侧19,以及指向外部的外侧17。在外侧17上存在用于高频功率的耦合设备13。该耦合设备包括多个与间隙法兰25直接接触的固体晶体管29,所述法兰由传导壁15的第一片段21和第二片段23形成。固体晶体管29经由引入导线31与在此未示出的直流电源连接。在激活的情况下,固体晶体管29在传导壁15中感应出沿着传导壁15传播的高频电流。期望沿着传导壁的内侧19传播。为了实现这一点,设置在这里示出的情况下进入传导壁15的凹陷的屏蔽设备。这些凹陷在这里所示的实施例中用铁氧体环33填充。屏蔽设备或铁氧体环33既位于传导壁15的第一片段21中又位于第二片段23中。铁氧体环33提高导电壁15的外侧17上的阻抗,由此抑制了高频电流沿着外侧17的传播并将高频率引导至内侧19。
此外,固体晶体管29和在法兰25上的耦合位置通过例如由铜制成的金属保护笼35保护免受外界的电磁射线。保护笼35在外侧17上的一个位置处接触导电壁15,所述位置已经通过屏蔽设备保护免受传播的高频电流。
图4示出根据图3中的线IV-IV的横截面。可以看见外部的保护笼35、若干固体晶体管29以及与传导壁15的形成法兰25的部分的接触位置。
在图3中屏蔽设备作为铁氧体环33示出,该铁氧体环沿着高频腔的外周延伸。借助随后的图5至图9示出其它实施方式。
图5示出在与图3中铁氧体环33所位于的位置相应的位置处传导壁15的纵向截面。在传导壁15中嵌入凹陷37,该凹陷被形成为使得该凹陷形成λ/4回线。λ/4回线这样与高频腔11的运行频率协调一致,即通过λ/4回线禁止高频电流沿着壁15的外侧17传播。凹陷可以根据图6被电介质39填充,或者还可以根据图7自身折叠(褶皱41)。通过这两种措施可以节省空间地放置λ/4回线。
图8示出屏蔽设备的另一种设计。在这里所示的情况下,屏蔽设备这样来实现,即与传导壁15接触并且包围固体晶体管29的保护笼35按照特殊的方式来构成。保护笼35在其内侧具有多个翼43。借助这些翼43增大了从传导壁15的外侧17沿着保护笼29的内侧引导的路径的阻抗,并且由此防止高频电流从注入位置沿着壁15的外侧17传播到保护笼29之外。
图9示出构成为同轴传导连接线47的高频腔。经由布置在外部导体上的耦合设备13可以将高频功率耦合到该同轴连接线中。通过屏蔽设备保护同轴连接线47的外部导体或其外侧免受传播的高频电流。
图10示出加速单元,多个例如在图1、图2中示出的高频腔11…11’”沿着该加速单元先后布置。由于高频电流仅在高频腔11…11’”的内侧传播,因此高频腔11…11’”在高频范围内相互去耦,因此可以由控制设备45单独控制,由此可以将高频腔11…11’”灵活地与期望的加速度协调一致。
附图标记列表
11高频腔
13耦合设备
15传导壁
17外侧
19内侧
21第一片段
23第二片段
25法兰
27隔离环
29固体开关
29固体晶体管
31引入导线
33铁氧体环
35保护笼
37凹陷
39电介质
41褶皱
43翼
45控制设备
47同轴连接线

Claims (16)

1.一种高频腔,包括
腔,
包围该腔的传导壁(15),该传导壁具有内侧(19)和外侧(17),以及
具有多个固体开关(29)的开关装置,所述多个固体开关沿着围绕所述腔的壁(15)的外周布置,
其中固体开关(29)与传导壁(15)这样连接,使得在激活所述开关装置的情况下在传导壁(15)中感应出高频电流,由此高频功率被耦合到高频腔(11)的腔中,
其特征在于
在导电壁(15)的外侧(17)沿着高频腔(11)的外周存在屏蔽设备(33,37,39,41,43),该屏蔽设备提高高频电流沿着壁(15)的外侧(17)的传播路径的阻抗,使得耦合到壁(15)中的高频电流在壁(15)的外侧(17)受到抑制。
2.根据权利要求1的高频腔,其中
传导壁(15)包括第一片段(21)和与第一片段(21)隔离的第二片段(23),并且屏蔽设备(33,37,39,41,43)包括第一部分和第二部分,其中第一部分布置在传导壁(15)的第一片段(21)上,而第二部分布置在传导壁(15)的第二部分(23)上。
3.根据权利要求2的高频腔,其中
传导壁(15)的第一片段(21)与第二片段(23)之间的隔离(27)是真空密封。
4.根据权利要求1至3之一的高频腔,其中
屏蔽设备包括有翼的传导结构(43)。
5.根据权利要求1至4之一的高频腔,其中
屏蔽设备包括铁氧体环。
6.根据权利要求1至5之一的高频腔,其中
屏蔽设备包括λ/4回线(37,39,41)。
7.根据权利要求1至5之一的高频腔,其中
屏蔽设备的至少一部分埋入在传导壁(15)的外侧(17)上的凹陷中。
8.根据权利要求7的高频腔,其中通过传导壁(15)中的凹陷形成λ/4回线(37,39,41)。
9.根据权利要求8的高频腔,其中用电介质(39)填充所述凹陷。
10.根据权利要求8或9的高频腔,其中λ/4回线折叠。
11.根据权利要求1至10之一的高频腔,其中固体开关(29)被保护笼(35)包围,该保护笼与传导壁(15)的外侧(17)在一个位置处连接,使得屏蔽设备(33,37,39,41,43)位于该位置以及以下地点之间,在该地点处由固体开关(29)将高频电流耦合到传导壁(15)中。
12.根据权利要求1至11之一的高频腔,其中屏蔽设备(33,37,39,41,43)的至少一部分设置在传导壁(15)的外侧(17)上。
13.根据权利要求1至12之一的高频腔,其中屏蔽设备由传导的保护笼(35)形成,该保护笼包围固体开关(29)并且该保护笼的内侧(43)有翼地构成。
14.根据权利要求1至13之一的高频腔,其中高频腔构成为同轴导电线(47)。
15.根据权利要求1至13之一的高频腔,其中高频腔构成为尤其是用于对粒子加速的高频谐振器(11)。
16.一种具有多个根据权利要求15的高频腔(11…11’”)的加速器,所述多个高频腔能被相互独立地控制。
CN201080051764.3A 2009-11-17 2010-10-18 高频腔以及具有这种高频腔的加速器 Expired - Fee Related CN102612865B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009053624A DE102009053624A1 (de) 2009-11-17 2009-11-17 HF-Kavität sowie Beschleuniger mit einer derartigen HF-Kavität
DE102009053624.8 2009-11-17
PCT/EP2010/065595 WO2011061026A1 (de) 2009-11-17 2010-10-18 Hf-kavität sowie beschleuniger mit einer derartigen hf-kavität

Publications (2)

Publication Number Publication Date
CN102612865A true CN102612865A (zh) 2012-07-25
CN102612865B CN102612865B (zh) 2015-06-24

Family

ID=43759711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080051764.3A Expired - Fee Related CN102612865B (zh) 2009-11-17 2010-10-18 高频腔以及具有这种高频腔的加速器

Country Status (7)

Country Link
US (1) US8779697B2 (zh)
EP (1) EP2502470B1 (zh)
JP (1) JP5567143B2 (zh)
CN (1) CN102612865B (zh)
DE (1) DE102009053624A1 (zh)
RU (1) RU2559031C2 (zh)
WO (1) WO2011061026A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107863597A (zh) * 2017-12-12 2018-03-30 合肥中科离子医学技术装备有限公司 一种用于将高频功率耦合输入到谐振腔中的装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010032216B4 (de) 2010-07-26 2012-05-03 Siemens Aktiengesellschaft Gepulste Spallations-Neutronenquelle
DE102010032214A1 (de) 2010-07-26 2012-01-26 Siemens Aktiengesellschaft Methode und Anordnung zur Kontrolle von Schall- und Stoßwellen in einem Target eines Teilchenbeschleunigers
DE102010041758B4 (de) * 2010-09-30 2015-04-23 Siemens Aktiengesellschaft HF-Kavität mit Sender
WO2012045520A1 (de) * 2010-10-06 2012-04-12 Siemens Aktiengesellschaft Koaxialer wellenleiter mit hf-sender
DE102010042055A1 (de) * 2010-10-06 2012-04-12 Siemens Aktiengesellschaft Ringbeschleuniger
DE102010042149B4 (de) * 2010-10-07 2016-04-07 Siemens Aktiengesellschaft HF-Vorrichtung und Beschleuniger mit einer solchen HF-Vorrichtung
DE102010043774A1 (de) 2010-11-11 2012-05-16 Siemens Aktiengesellschaft Teilchenbeschleuniger und Verfahren zum Betreiben eines Teilchenbeschleunigers
DE102010044113A1 (de) * 2010-11-18 2012-05-24 Siemens Aktiengesellschaft HF-Kavität und Teilchenbeschleuniger mit HF-Kavität
DE102011004401A1 (de) * 2011-02-18 2012-08-23 Siemens Aktiengesellschaft HF-Vorrichtung
DE102011075219A1 (de) * 2011-05-04 2012-11-08 Siemens Ag HF-Generator
DE102011082580A1 (de) * 2011-09-13 2013-03-14 Siemens Aktiengesellschaft HF-Resonator und Teilchenbeschleuniger mit HF-Resonator
DE102011083668A1 (de) * 2011-09-29 2013-04-04 Siemens Aktiengesellschaft HF-Resonator und Teilchenbeschleuniger mit HF-Resonator
US10448496B2 (en) 2015-09-28 2019-10-15 Fermi Research Alliance, Llc Superconducting cavity coupler
US10070509B2 (en) 2015-09-29 2018-09-04 Fermi Research Alliance, Llc Compact SRF based accelerator
CN106211538B (zh) * 2016-09-26 2018-02-09 合肥中科离子医学技术装备有限公司 一种回旋加速器谐振腔的自动调谐装置和方法
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10624199B2 (en) 2016-11-03 2020-04-14 Starfire Industries, Llc Compact system for coupling RF power directly into RF LINACS
CN106385758B (zh) * 2016-11-11 2018-02-09 合肥中科离子医学技术装备有限公司 超导回旋加速器谐振腔容性耦合匹配方法
DE102017123377A1 (de) * 2017-10-09 2019-04-11 Cryoelectra Gmbh Hochfrequenz-Verstärker-Einheit mit auf Außenleiter angeordneten Verstärkermodulen
US11224918B2 (en) 2018-01-19 2022-01-18 Fermi Research Alliance, Llc SRF e-beam accelerator for metal additive manufacturing
US11123921B2 (en) 2018-11-02 2021-09-21 Fermi Research Alliance, Llc Method and system for in situ cross-linking of materials to produce three-dimensional features via electron beams from mobile accelerators
US11639010B2 (en) 2019-07-08 2023-05-02 Fermi Research Alliance, Llc Electron beam treatment for invasive pests
US11465920B2 (en) * 2019-07-09 2022-10-11 Fermi Research Alliance, Llc Water purification system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3495125A (en) * 1968-03-05 1970-02-10 Atomic Energy Commission Quarter-wave transmission line radio frequency voltage step-up transformer
US5497050A (en) * 1993-01-11 1996-03-05 Polytechnic University Active RF cavity including a plurality of solid state transistors
US5661366A (en) * 1994-11-04 1997-08-26 Hitachi, Ltd. Ion beam accelerating device having separately excited magnetic cores
CN1582529A (zh) * 2000-12-13 2005-02-16 阿瑞微波系统公司 有源射频空腔放大器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL73693C (zh) * 1945-10-08
US2860313A (en) * 1953-09-04 1958-11-11 Emerson Radio And Phonograph C Inductive tuning device
DE1739053U (de) * 1956-06-28 1957-02-07 Siemens Ag Anordnung zur abschirmung hochfrequenter stoerfelder in einem sondenschlitz.
JPH04268799A (ja) * 1991-02-25 1992-09-24 Nec Corp 電磁遮へい室
JP2867933B2 (ja) * 1995-12-14 1999-03-10 株式会社日立製作所 高周波加速装置及び環状加速器
JP3439901B2 (ja) * 1996-02-07 2003-08-25 日本電信電話株式会社 超伝導薄膜の作製方法
JP4268799B2 (ja) 2002-12-26 2009-05-27 大和製罐株式会社 不良缶詰検出方法およびそれに用いられる示温インク印刷缶詰
JP4220316B2 (ja) 2003-06-24 2009-02-04 株式会社日立ハイテクノロジーズ プラズマ処理装置
US20090224700A1 (en) * 2004-01-15 2009-09-10 Yu-Jiuan Chen Beam Transport System and Method for Linear Accelerators
US7710051B2 (en) * 2004-01-15 2010-05-04 Lawrence Livermore National Security, Llc Compact accelerator for medical therapy
CA2633082C (en) * 2005-12-14 2015-02-03 Stryker Corporation Medical/surgical waste collection unit including waste containers of different storage volumes with inter-container transfer valve and independently controlled vacuum levels
US8325463B2 (en) * 2008-11-04 2012-12-04 William Mehrkam Peterson Dynamic capacitor energy system
US8232747B2 (en) * 2009-06-24 2012-07-31 Scandinova Systems Ab Particle accelerator and magnetic core arrangement for a particle accelerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3495125A (en) * 1968-03-05 1970-02-10 Atomic Energy Commission Quarter-wave transmission line radio frequency voltage step-up transformer
US5497050A (en) * 1993-01-11 1996-03-05 Polytechnic University Active RF cavity including a plurality of solid state transistors
US5661366A (en) * 1994-11-04 1997-08-26 Hitachi, Ltd. Ion beam accelerating device having separately excited magnetic cores
CN1582529A (zh) * 2000-12-13 2005-02-16 阿瑞微波系统公司 有源射频空腔放大器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107863597A (zh) * 2017-12-12 2018-03-30 合肥中科离子医学技术装备有限公司 一种用于将高频功率耦合输入到谐振腔中的装置

Also Published As

Publication number Publication date
EP2502470B1 (de) 2014-09-17
RU2559031C2 (ru) 2015-08-10
RU2012103491A (ru) 2013-12-27
EP2502470A1 (de) 2012-09-26
US20120229054A1 (en) 2012-09-13
US8779697B2 (en) 2014-07-15
DE102009053624A1 (de) 2011-05-19
JP5567143B2 (ja) 2014-08-06
JP2013511133A (ja) 2013-03-28
WO2011061026A1 (de) 2011-05-26
CN102612865B (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
CN102612865B (zh) 高频腔以及具有这种高频腔的加速器
JP5514612B2 (ja) 低ノイズケーブルおよびそれを使用した装置
CN101059558B (zh) 圆柱形磁共振天线
US9426933B2 (en) Resonance type non-contact power feeding system, power transmission side apparatus and in-vehicle charging apparatus of resonance type non-contact power feeding system
WO2012144637A1 (ja) 共鳴式非接触給電システム
JPH09321482A (ja) ライン放射防止素子
JP2008306550A (ja) 電力線搬送通信システムおよび容量性信号結合装置
US7233148B2 (en) Sheath wave barrier unit
US9478841B2 (en) RF generator
EP2347467A1 (en) Radio frequency coaxial to stripline / microstrip transition
WO2016164603A1 (en) Radio frequency directional coupler and filter
KR101708413B1 (ko) 통신용 커넥터
US9433135B2 (en) RF apparatus and accelerator having such an RF apparatus
WO2016108283A1 (ja) 点火システム、及び内燃機関
CN110493947A (zh) 一种用于加速器射频谐振腔高功率输入耦合器的偏压结构
CN107068457B (zh) 一种自带vfto抑制功能的开关
RU2579748C2 (ru) Коаксиальный волновод с вч передатчиком
KR20240008228A (ko) 전류 경로를 감싸는 자성체를 포함하는 전자레인지
US12015183B2 (en) Microwave mode coupling device for transferring EM energy between first and second structures through an intermediate waveguide having a pressure barrier therein
CN104662732B (zh) 用于将高频功率耦合输入到波导管中的装置
JP2642494B2 (ja) 直流成分阻止伝送路
US20190214190A1 (en) Coil Unit for Inductively Charging a Vehicle, and System
RU2598029C2 (ru) Вч устройство
KR20100124416A (ko) 피드스루를 구비하는 마이크로파 회로 기판
CN112086829A (zh) 无电极等离子体灯、传输线和射频系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150624

Termination date: 20191018