EP2499727A2 - Leistungsschalteranordnung für einen wechselrichter - Google Patents

Leistungsschalteranordnung für einen wechselrichter

Info

Publication number
EP2499727A2
EP2499727A2 EP10775783A EP10775783A EP2499727A2 EP 2499727 A2 EP2499727 A2 EP 2499727A2 EP 10775783 A EP10775783 A EP 10775783A EP 10775783 A EP10775783 A EP 10775783A EP 2499727 A2 EP2499727 A2 EP 2499727A2
Authority
EP
European Patent Office
Prior art keywords
circuit
inverter
power semiconductor
semiconductor switch
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10775783A
Other languages
English (en)
French (fr)
Inventor
Robert Januschevski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Publication of EP2499727A2 publication Critical patent/EP2499727A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present invention relates to a circuit breaker arrangement for an inverter according to the preamble of claim 1.
  • inter alia converters are used, the machines being used e.g. powered by a DC power source but require one or more AC phases to operate.
  • Such machines particularly in the automotive driveline art, e.g. Three-phase motors, e.g. permanently or externally excited synchronous motors.
  • An inverter has e.g. a motor-side inverter or a drive inverter, the DC voltage from e.g. a DC link of the inverter, in particular a DC link with DC link capacitor, converts into an AC voltage of the desired frequency for controlling the direction of rotation and the rotational speed of the three-phase motor to be driven.
  • Such drive inverters are used in particular in motor vehicles, e.g. in electrically powered vehicles, the three-phase motor being e.g. is designed as a vehicle drive motor.
  • Such vehicle drive motors in particular permanently excited synchronous motors, usually show the design-related behavior that during operation an increasing with increasing speed counter voltage or internal voltage is induced (pole wheel), at very high speeds in the DC link, in particular by means of freewheeling diodes of (drive) Inverter, is fed or fed back and can cause damage in the inverter or the inverter, the battery, and other components.
  • drive freewheeling diodes of
  • a field weakening is made above the rated speed to avoid a harmful voltage feedback.
  • the bridge circuit By short-circuiting the bridge circuit can be prevented, for example, the DC link capacitor, a battery, the circuit breaker, etc., and thus the inverter are damaged by the induced voltage due to the rotor rotation.
  • a weak point of the known arrangements, however, is that the short circuit must be actively carried out by a control electronics of the inverter. When the drive electronics fail, there is no protection mechanism against damage caused by the voltage induced in the synchronous machine or motor.
  • DE 102 51 977 A1 discloses a synchronous motor of the present type with an active control device for short-circuiting the power semiconductor switches of the power electronics.
  • This protective device is disadvantageous in that a large number of components, in particular active components are used, whereby the cost and complexity of the arrangement are considerable.
  • DE 10 2005 009 341 A1 discloses a protective arrangement for a power output stage, which has a logic and a measuring unit. This arrangement is also complicated and expensive to implement using expensive active components.
  • DE 298 13 080 U1 shows another protective device against voltage feedback of an electric drive, wherein the protective device in turn requires a complicated electronics and a power supply by means of the electric drive.
  • DE 198 35 576 A1 discloses a drive system for a permanent-magnet electric motor which contains an operating state detection unit in order to generate a short circuit as needed. This arrangement, like the preceding ones, is likewise complicated, expensive and can not be realized without the use of active components.
  • the present invention seeks to solve the problems outlined above and to provide a circuit breaker assembly for an inverter, which has a corresponding Protection against voltage feedback of a three-phase motor easily and conveniently available and requires no additional active components.
  • the invention proposes a circuit breaker arrangement for an inverter, in particular a drive inverter, the circuit breaker arrangement comprising a power semiconductor switch and a protection circuit connected to the power semiconductor switch against voltage feedback of a three-phase motor connectable to the power semiconductor switch, wherein the power semiconductor switch has a control input and an input and an output, and wherein the protection circuit has a series connection of a Zener diode and a first ohmic resistance connected between the input and the control input, and a series circuit consisting of a second ohmic resistance and a diode connected between the control input and the output.
  • the zener diode is arranged in particular in the reverse direction between the input and the control input of the power semiconductor switch.
  • the diode is arranged in particular in the forward direction between the control input and output of the power semiconductor switch.
  • the protection circuit has exactly one zener diode and / or exactly one diode. It is further provided that the protection circuit has exactly one first and / or exactly one second ohmic resistance.
  • the power semiconductor switch is an insulated gate bipolar transistor (IGBT), wherein the input is designed as a collector electrode, the control input as a gate electrode and the output as an emitter electrode.
  • the power semiconductor switch is a field effect transistor (FET), in particular a metal-oxide-semiconductor field effect transistor (MOSFET), the input being a drain, the control input being a gate and the output being a source. Electrode is formed.
  • an inverter for supplying a three-phase motor with electrical energy, in particular a motor vehicle drive motor, wherein the inverter has a half-bridge for connection to a phase winding of the three-phase motor, the half-bridge having a circuit breaker arrangement according to the invention.
  • the inverter per half bridge each has a circuit breaker arrangement.
  • the half-bridge to an electrical connection for a strand of a three-phase motor, which is electrically connected to the input of a power semiconductor switch of the circuit breaker assembly.
  • a half bridge has two power switch arrangements.
  • a drive arrangement for a motor vehicle with a three-phase motor which is supplied by means of an inverter with electrical energy, wherein the inverter for supplying power to the three-phase motor comprises a bridge circuit, wherein the bridge circuit comprises a circuit breaker arrangement according to the invention.
  • the three-phase motor is a synchronous motor, in particular a vehicle drive motor.
  • the three-phase motor can be a permanent-magnet motor or a motor with external excitation.
  • the bridge circuit has a half-bridge with a circuit breaker arrangement.
  • FIG. 1 shows by way of example a bridge circuit of the motor-side inverter of an inverter using circuit breaker arrangements according to a possible embodiment of the invention
  • FIG. 2 shows an example of a circuit breaker arrangement according to a possible embodiment of the invention.
  • FIG. 1 shows a circuit breaker arrangement 1 according to the invention, in particular for protection against voltage feedback of a three-phase motor, with a power semiconductor switch 2 and a protective circuit 3 according to the invention in a bridge circuit 4, e.g. a motor-side inverter or drive inverter, in particular an inverter for a permanently or externally excited synchronous motor, which, e.g. is used as a motor vehicle drive motor 5.
  • the inverter is part of an inverter, for example.
  • a converter has, for example, in a known manner a rectifier unit (not shown), which feeds a DC link in which, for example, an intermediate circuit capacitor is arranged.
  • the intermediate circuit supplies, for example, an intermediate circuit voltage UZK, in particular as a DC voltage to the input 4 'of the inverter, for example, for the bridge circuit 4 of the drive inverter, for generating the intended for engine operation AC voltage.
  • the inverter generates, for example, an AC voltage as an output voltage with variable voltage and frequency, for example, to control the direction of rotation and speed of an associated three-phase motor 5.
  • the three-phase motor 5 is e.g. designed as a three-phase motor, the three winding strands 5a, 5b, 5c are each fed by a half-bridge 4a, 4b, 4c.
  • the respective strand 5a, 5b, 5c of the three-phase motor 5 is thereby supplied by the respective half-bridge 4a, 4b, 4c, a voltage or a potential of predetermined polarity for a certain period of time.
  • the power semiconductor switches 2 of the half-bridges 4a, 4b, 4c e.g. controlled by a control logic, in a known manner accordingly.
  • a half-bridge 4a, 4b, 4c has e.g. two power semiconductor switches 2, e.g. as an insulated gate bipolar transistor (IGBT) or as a field effect transistor (FET), e.g. are formed as a metal oxide semiconductor field effect transistor (MOSFET).
  • the power semiconductor switches 2 are e.g. in particular designed or correspondingly dimensioned for the voltages occurring in the converter or in the drive inverter. Other power semiconductor switch types are also conceivable.
  • the power semiconductor switches 2 each have a control input 2a, e.g. in the form of a gate electrode and an input 2b in e.g. Form of a collector electrode (IGBT) or drain electrode (MOSFET) and an output 2c in e.g. Shape of an emitter electrode (IGBT) or source electrode (MOSFET). Between input 2b and output 2c, for example, a freewheeling diode 6 is connected in parallel in a known manner.
  • the power semiconductor switches 2 are controlled via their respective control input 2a or control terminal in a known manner, for example by an electronic control unit (not shown), wherein between the input 2b and output 2c as a result of the control, a short circuit can be generated, ie the power semiconductor switch 2 turns on.
  • a power semiconductor switch 2 for example the bridge circuit 4
  • the power semiconductor switch 2 is connected to the protection circuit 3 or the protection circuit 3 is arranged thereon.
  • the protection circuit 3 consists essentially of a series circuit of a Zener diode 7, a first 8 and a second 9 ohmic resistor and a diode 10.
  • a first end of this series circuit i.e. a e.g. electrical terminal 7a of the Zener diode 7, is provided for electrically conductive connection to the input 2b of the power semiconductor switch 2, a second end, i.e. e.g.
  • An electrical connection 10a of the second diode 10 is provided for the electrically conductive connection to the output 2c of the power semiconductor switch 2.
  • first 8 and the second 9 ohmic resistor which form a voltage divider, is the connection to the control input 2a of the power semiconductor switch 2, e.g. by means of an electrical connection or a terminal provided. It is conceivable, instead of the first 8 and / or second 9 ohmic resistance, e.g. to use a parallel connection of ohmic resistors or a series circuit of ohmic resistors.
  • the Zener diode 7 which is permeable upon reaching or reaching their breakdown voltage, with the first ohmic resistor 8 in series between the input 2b and the control input 2a, in this first order described above (FIG. 2).
  • the zener diode 7 is initially electrically connected to the input 2b and subsequently the first ohmic resistor 8 is arranged in series with the control input 2a, that is, between the zener diode 7 and the control input 2a, and electrically connected thereto.
  • the Zener diode 7 is arranged in particular in the reverse direction.
  • reverse direction means that no current flow (technical current direction) in the direction from input 2b to control input 2a until reaching the breakdown voltage of the zener diode 7 is possible or
  • the series circuit of the second ohmic resistor 9 and the diode 10 is further switched according to the invention, in this second order described above (FIG. 2).
  • the second ohmic resistor 9 is initially electrically connected thereto and subsequently the diode 10 is arranged in series, ie between the second ohmic resistor 9 and the second
  • the diode 10 is arranged in particular in the forward direction.
  • the forward direction means that a current flow (technical current direction) in the direction from the control input 2a to the output 2c is possible, but not the opposite.
  • Input 2b and the output 2c of the power semiconductor switch 2 of the circuit breaker assembly 1 continue to provide the known arrangement of the freewheeling diode 6.
  • each half bridge 4a, 4b, 4c of the (drive) inverter eg a circuit breaker assembly 1 according to the invention can be arranged to all winding strands of the motor 5, for example, three winding strands 5a, 5b, 5c as shown three-phase motor 5, in particular in case of failure to be able to short circuit.
  • a circuit breaker arrangement 1 for example, each electrically connected via input 2b of the associated power semiconductor switch 2 with a winding strand 5a or 5b or 5c of the motor 5 and, for example, also with the output 2c of the further power semiconductor switch 2 of the respective half-bridge 4a and 4b and 4c, respectively.
  • the output 2c of the respective power semiconductor switch 2 of the circuit breaker assembly 1 is connected, for example, in a conventional manner with a terminal or a potential of the intermediate circuit, the control input 2a in a known manner, for example with the control electronics.
  • Further arrangements of circuit breaker arrangements 1 in an inverter are also conceivable, for example as a substitute for all power semiconductor switches 2.
  • the protective circuit 3 can be arranged, for example, subsequently to one or more already present in the inverter power semiconductor switches 2 for forming circuit breaker assemblies 1 according to the invention, for example as Add -one solution.
  • the protection circuit 3 may e.g. directly into a power semiconductor switch 2, e.g. an IGBT or MOSFET, which is e.g. are formed as an integrated circuit or as a component, are integrated (IC).
  • a power semiconductor switch 2 e.g. an IGBT or MOSFET, which is e.g. are formed as an integrated circuit or as a component, are integrated (IC).
  • the power semiconductor switch 2 thus sets a maximum voltage which is always below the blocking voltage of the zener diode 7.
  • the Zener diode 7 thus limits the voltage that is fed back from the three-phase motor 5 to a defined value, ie, depending on their own breakdown voltage.
  • Active components are not required for the production of the passive voltage regulation according to the invention realized in this way, active activation by means of, for example, control electronics and an additional supply voltage is not necessary.
  • the circuit breaker assembly 1 according to the invention is also also provides protection against short overvoltage pulses starting from the DC side of the converter (eg from the rectifier unit and / or the intermediate circuit), in particular starting from blocking capacitors or varistors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Leistungsschalteranordnung (1) für einen Wechselrichter, insbesondere einen Antriebswechselrichter, wobei die Leistungsschalteranordnung (1) einen Leistungshalbleiterschalter (2) sowie eine an dem Leistungshalbleiterschalter (2) angeordnete Schutzschaltung (3) gegen Spannungsrückwirkung eines mit dem Leistungshalbleiterschalter verbindbaren Drehstrommotors (5) aufweist, wobei der Leistungshalbleiterschalter (2) einen Steuereingang (2a) sowie einen Eingang (2b) und einen Ausgang (2c) aufweist, dadurch gekennzeichnet, dass die Schutzschaltung (3) eine zwischen den Eingang (2b) und den Steuereingang (2a) geschaltete Reihenschaltung aus einer Zenerdiode (7) und einem ersten ohmschen Widerstand (8) aufweist, sowie eine zwischen den Steuereingang (2a) und den Ausgang (2c) geschaltete Reihenschaltung aus einem zweiten ohmschen Widerstand (9) und einer Diode (10).

Description

Leistunqsschalteranordnunq für einen Wechselrichter
Die vorliegende Erfindung betrifft eine Leistungsschalteranordnung für einen Wechselrichter gemäß dem Oberbegriff von Anspruch 1 .
Zum Ansteuern elektrischer Maschinen werden unter anderem Umrichter eingesetzt, wobei die Maschinen z.B. mittels einer Gleichstromquelle gespeist werden, zum Betrieb jedoch eine oder mehrere Wechselstromphasen benötigen. Derartige Maschinen sind, insbesondere im Bereich der Kraftfahrzeugantriebstechnik, z.B. Drehstrommotoren, z.B. permanent- oder fremderregten Synchronmotoren.
Ein Umrichter weist z.B. einen motorseitigen Wechselrichter bzw. einen Antriebswechselrichter auf, der Gleichspannung aus z.B. einem Zwischenkreis des Umrichters, insbesondere einem Zwischenkreis mit Zwischenkreiskonden- sator, in eine Wechselspannung der gewünschten Frequenz zur Steuerung der Drehrichtung und der Drehzahl des anzutreibenden Drehstrommotors umsetzt. Solche Antriebswechselrichter werden insbesondere im Kraftfahrzeug eingesetzt, z.B. in elektrisch angetriebenen Kraftfahrzeugen, wobei der Drehstrommotor z.B. als Fahrzeugantriebsmotor ausgebildet ist.
Derartige Fahrzeugantriebsmotoren, insbesondere permanenterregte Synchronmotoren, zeigen üblicherweise das bauartbedingte Verhalten, dass bei Betrieb eine mit zunehmender Drehzahl steigende Gegenspannung bzw. innere Spannung induziert wird (Polradspannung), die bei sehr hohen Drehzahlen in den Zwischenkreis, insbesondere mittels der Freilaufdioden des (Antriebs-) Wechselrichters, eingespeist bzw. rückgespeist wird und im Umrichter bzw. dem Wechselrichter, der Batterie, sowie weiteren Komponenten zu Schädigungen führen kann. Um dies zu vermeiden, den Motor aber dennoch bei hohen Drehzahlen betreiben zu können, wird im Stand der Technik daher oberhalb der Nenndrehzahl eine Feldschwächung vorgenommen, um eine schädliche Spannungsrückwirkung zu vermeiden. Dennoch sind Schädigungen am Umrichter oder weiteren Komponenten auch bei Anwendung der Feldschwächung möglich, insbesondere wenn ein Motor oberhalb der Nenndrehzahl betrieben wird (Feldschwächbetrieb), und z.B. ein Feldschwächstrom nicht länger aufrecht erhalten werden kann. Ursächlich kann dabei z.B. ein Ausfall der Steuerelektronik sein. Um den Umrichter vor schädlicher Spannungsrückwirkung im Falle eines unbeabsichtigten wechselstromseitigen (also vom Motor ausgehenden) Spannungsanstieges zu schützen, werden im Stand der Technik verschiedene Schutzschaltungen vorgeschlagen. Üblicherweise werden dabei Leistungshalbleiterschalter des Umrichters bzw. seines motorseitigen Wechselrichters und somit die damit verbundenen jeweiligen Motorklemmen im Störfall kurzgeschlossen. Durch das Kurzschließen über die Brückenschaltung kann verhindert werden, dass z.B. der Zwischenkreiskondensator, eine Batterie, die Leistungsschalter etc. und somit der Umrichter durch die induzierte Spannung infolge der Rotordrehung beschädigt werden. Eine Schwachstelle der bekannten Anordnungen liegt jedoch darin, dass der Kurzschluss aktiv durch eine Ansteuerelektronik des Wechselrichters durchgeführt werden muss. Beim Ausfall der Ansteuerelektronik ist kein Schutzmechanismus gegen Schäden, die durch die in der Synchronmaschine bzw. dem Motor induzierte Spannung entstehen, gegeben.
Die DE 102 51 977 A1 offenbart einen Synchronmotor der vorliegenden Art mit einer aktiven Steuervorrichtung zum Kurzschließen der Leistungshalbleiterschalter der Leistungselektronik. Diese Schutzvorrichtung ist insofern nachteilig, als eine große Zahl von Bauelementen, insbesondere aktive Bauelemente verwendet werden, wodurch die Kosten und die Komplexität der Anordnung erheblich sind. Die DE 10 2005 009 341 A1 offenbart eine Schutzanordnung für eine Leistungsendstufe, welche eine Logik und eine Messeinheit aufweist. Diese Anordnung ist ebenfalls kompliziert und aufwändig unter Verwendung teurer aktiver Bauelemente zu realisieren. Die DE 298 13 080 U1 zeigt eine weitere Schutzeinrichtung gegen Spannungsrückwirkung eines elektrischen Antriebs, wobei die Schutzeinrichtung wiederum eine komplizierte Elektronik erfordert sowie eine Energieversorgung mittels des elektrischen Antriebs. In der DE 198 35 576 A1 ist ein Ansteuersystem für einen permanenterregten Elektromotor offenbart, welches eine Betriebszustands-Erfassungs- einheit enthält, um bedarfsgerecht einen Kurzschluss zu erzeugen. Diese Anordnung ist wie die vorangehenden ebenfalls kompliziert, kostenintensiv und ohne den Einsatz aktiver Bauelemente nicht zu realisieren.
Ausgehend hiervon liegt der vorliegenden Erfindung die Aufgabe zugrunde, vorstehend geschilderte Probleme zu lösen und eine Leistungsschalteranordnung für einen Wechselrichter zu schaffen, welche einen entsprechenden Schutz gegen Spannungsrückwirkung eines Drehstrommotors einfach und günstig zur Verfügung stellt und keine zusätzlichen aktiven Bauelemente erfordert.
Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.
Vorgeschlagen wird erfindungsgemäß eine Leistungsschalteranordnung für einen Wechselrichter, insbesondere einen Antriebswechselrichter, wobei die Leistungsschalteranordnung einen Leistungshalbleiterschalter sowie eine an dem Leistungshalbleiterschalter angeordnete Schutzschaltung gegen Spannungsrückwirkung eines mit dem Leistungshalbleiterschalter verbindbaren Drehstrommotors aufweist, wobei der Leistungshalbleiterschalter einen Steuereingang sowie einen Eingang und einen Ausgang aufweist, und wobei die Schutzschaltung eine zwischen den Eingang und den Steuereingang geschaltete Reihenschaltung aus einer Zenerdiode und einem ersten ohmschen Widerstand aufweist, sowie eine zwischen den Steuereingang und den Ausgang geschaltete Reihenschaltung aus einem zweiten ohmschen Widerstand und einer Diode. Die Zenerdiode ist insbesondere in Sperrrichtung zwischen Eingang und Steuereingang des Leistungshalbleiterschalters angeordnet. Die Diode ist insbesondere in Durchlassrichtung zwischen Steuereingang und Ausgang des Leistungshalbleiterschalters angeordnet.
Bei einer erfindungsgemäßen Ausführungsform der Leistungsschalteranordnung weist die Schutzschaltung genau eine Zenerdiode und/oder genau eine Diode auf. Ferner ist vorgesehen, dass die Schutzschaltung genau einen ersten und/oder genau einen zweiten ohmschen Widerstand aufweist.
Bei einer weiteren erfindungsgemäßen Ausführungsform der Leistungsschalteranordnung ist der Leistungshalbleiterschalter ein Bipolartransistor mit isolierter Gate-Elektrode (IGBT), wobei der Eingang als Kollektor-Elektrode, der Steuereingang als Gate-Elektrode und der Ausgang als Emitter-Elektrode ausgebildet ist. Bei noch einer weiteren erfindungsgemäßen Ausführungsform der Leistungsschalteranordnung ist der Leistungshalbleiterschalter ein Feldeffekttransistor (FET), insbesondere ein Metall-Oxid-Halbleiter-Feldeffekttransistor (MOSFET), wobei der Eingang als Drain-Elektrode, der Steuereingang als Gate-Elektrode und der Ausgang als Source-Elektrode ausgebildet ist.
Vorgeschlagen wird weiterhin ein Wechselrichter zur Versorgung eines Drehstrommotors mit elektrischer Energie, insbesondere eines Kraftfahrzeugantriebsmotors, wobei der Wechselrichter eine Halbbrücke aufweist zur Verbindung mit einem Wicklungsstrang des Drehstrommotors, wobei die Halbbrücke eine erfindungsgemäße Leistungsschalteranordnung aufweist.
Gemäß einer Ausführungsform der Erfindung weist der Wechselrichter je Halbbrücke je eine Leistungsschalteranordnung auf.
Des Weiteren weist bei einer Ausführungsform des Wechselrichters die Halbbrücke einen elektrischen Anschluss für einen Strang eines Drehstrommotors auf, welcher mit dem Eingang eines Leistungshalbleiterschalters der Leistungsschalteranordnung elektrisch verbunden ist.
Gemäß einer weiteren Ausführungsform eines Wechselrichters weist eine Halbbrücke zwei Leistungsschalteranordnungen auf.
Ferner wird eine Antriebsanordnung für ein Kraftfahrzeug mit einem Drehstrommotor vorgeschlagen, welcher mittels eines Wechselrichters mit elektrischer Energie versorgt wird, wobei der Wechselrichter zur Energieversorgung des Drehstrommotors eine Brückenschaltung aufweist, wobei die Brückenschaltung eine erfindungsgemäße Leistungsschalteranordnung aufweist.
Bei einer Ausführungsform der erfindungsgemäßen Antriebsanordnung ist der Drehstrommotor ein Synchronmotor, insbesondere ein Fahrzeugantriebsmotor. Dabei kann der Drehstrommotor ein permanenterregter Motor oder ein fremderregter Motor sein. Gemäß noch einer weiteren Ausführungsform der Antriebsanordnung weist die Brückenschaltung eine Halbbrücke mit einer Leistungsschalteranordnung auf.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, anhand der Figuren der Zeichnungen, die erfindungswesentliche Einzelheiten zeigen, und aus den Ansprüchen. Die einzelnen Merkmale können je einzeln für sich oder zu mehreren in beliebiger Kombination bei einer Variante der Erfindung verwirklicht sein.
Bevorzugte Ausführungsformen der Erfindung werden nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Es zeigen:
Fig. 1 exemplarisch eine Brückenschaltung des motorseitigen Wechselrichters eines Umrichters unter Verwendung von Leistungsschalteranordnungen gemäß einer möglichen Ausführungsform der Erfindung; und
Fig. 2 exemplarisch eine Leistungsschalteranordnung gemäß einer möglichen Ausführungsform der Erfindung.
In der nachfolgenden Beschreibung und den Zeichnungen entsprechen gleichen Bezugszeichen Elemente gleicher oder vergleichbarer Funktion.
Fig. 1 zeigt eine erfindungsgemäße Leistungsschalteranordnung 1 , insbesondere zum Schutz vor Spannungsrückwirkung eines Drehstrommotors, mit einem Leistungshalbleiterschalter 2 sowie einer erfindungsgemäßen Schutzschaltung 3 in einer Brückenschaltung 4 z.B. eines motorseitigen Wechselrichters bzw. Antriebswechselrichters, insbesondere eines Wechselrichters für einen permanent- oder fremderregten Synchronmotor, welcher z.B. als Kraftfahrzeugantriebsmotor 5 verwendet wird. Der Wechselrichter ist dabei zum Beispiel Teil eines Umrichters.
Ein Umrichter weist zum Beispiel auf bekannte Weise eine Gleichrichtereinheit auf (nicht dargestellt), welche einen Zwischenkreis speist, in welchem z.B. ein Zwischenkreiskondensator angeordnet ist. Der Zwischenkreis liefert z.B. eine Zwischenkreisspannung UZK, insbesondere als Gleichspannung an den Eingang 4' des Wechselrichters, z.B. für die Brückenschaltung 4 des Antriebswechselrichters, zur Erzeugung der für den Motorbetrieb vorgesehenen Wechselspannung. Der Wechselrichter erzeugt zum Beispiel eine Wechselspannung als Ausgangsspannung mit variabler Spannung und Frequenz, um z.B. Drehrichtung und Drehzahl eines damit verbundenen Drehstrommotors 5 zu steuern.
Die Brückenschaltung 4, an deren Eingangsklemmen 4' z.B. die Zwi- schenkreisspannung UZK anliegt, weist zum Beispiel je eine Halbbrücke 4a, 4b, 4c auf, welche mit je einem Wicklungsstrang 5a, 5b, 5c des Drehstrommotors 5 elektrisch, z.B. über einen Mittelabgriff, auf bekannte Weise verbunden ist. Vorliegend ist der Drehstrommotor 5 z.B. als dreiphasiger Motor ausgebildet, dessen drei Wicklungsstränge 5a, 5b, 5c je von einer Halbbrücke 4a, 4b, 4c gespeist werden. Dem jeweiligen Strang 5a, 5b, 5c des Drehstrommotors 5 wird dabei durch die jeweilige Halbbrücke 4a, 4b, 4c eine Spannung bzw. ein Potential vorbestimmter Polarität für eine bestimmte Zeitdauer geliefert. Dazu werden die Leistungshalbleiterschalter 2 der Halbbrücken 4a, 4b, 4c jeweils, z.B. mittels einer Steuerlogik, auf bekannte Weise entsprechend angesteuert.
Eine Halbbrücke 4a, 4b, 4c weist z.B. zwei Leistungshalbleiterschalter 2 auf, die z.B. als Bipolartransistor mit isolierter Gate- Elektrode (Insulated Gate Bipolar Transistor, IGBT) oder als Feldeffektransistor (FET), z.B. als Metall- Oxid-Halbleiter-Feldeffekttransistor (MOSFET) ausgebildet sind. Die Leistungshalbleiterschalter 2 sind dabei z.B. insbesondere für die im Umrichter bzw. im Antriebswechselrichter auftretenden Spannungen ausgelegt bzw. entsprechend dimensioniert. Weitere Leistungshalbleiterschaltertypen sind daneben denkbar.
Die Leistungshalbleiterschalter 2 (Fig. 2) weisen jeweils einen Steuereingang 2a, z.B. in Form einer Gate-Elektrode auf, sowie einen Eingang 2b in z.B. Form einer Kollektor-Elektrode (IGBT) bzw. Drain-Elektrode (MOSFET) und einen Ausgang 2c in z.B. Form einer Emitter-Elektrode (IGBT) bzw. Source- Elektrode (MOSFET). Zwischen Eingang 2b und Ausgang 2c ist in bekannter Weise zum Beispiel eine Freilaufdiode 6 parallel geschaltet.
Die Leistungshalbleiterschalter 2 werden über ihren jeweiligen Steuereingang 2a bzw. Steueranschluss auf bekannte Weise gesteuert, z.B. von einer Steuerelektronik (nicht dargestellt), wobei zwischen Eingang 2b und Ausgang 2c infolge der Steuerung ein Kurzschluss erzeugt werden kann, i.e. der Leistungshalbleiterschalter 2 schaltet durch. Erfindungsgemäß weist ein Leistungshalbleiterschalter 2, z.B. der Brückenschaltung 4, eine daran angeordnete bzw. diesem zugeordnete erfindungsgemäße Schutzschaltung 3 zur Bildung einer erfindungsgemäßen Leistungsschalteranordnung 1 auf, welche den Wechselrichter und/oder den Umrichter vor Schädigung im Falle einer vom Drehstrommotor 5 rückgespeisten, z.B. überhöhten Spannung bzw. einer Spannungsrückwirkung, insbesondere in Verbindung mit einer oder mehreren weiteren Leistungsschalteranordnungen 1 der Brückenschaltung 4, schützt.
Zur Bildung der erfindungsgemäßen Leistungsschalteranordnung 1 wird der Leistungshalbleiterschalter 2 mit der Schutzschaltung 3 beschaltet bzw. die Schutzschaltung 3 daran angeordnet. Die Schutzschaltung 3 besteht im Wesentlichen aus einer Reihenschaltung einer Zenerdiode 7, einem ersten 8 und einem zweiten 9 ohmschen Widerstand sowie einer Diode 10. Ein erstes Ende dieser Reihenschaltung, i.e. ein z.B. elektrischer Anschluss 7a der Zenerdiode 7, ist dabei zur elektrisch leitfähigen Verbindung mit dem Eingang 2b des Leistungshalbleiterschalters 2 vorgesehen, ein zweites Ende, i.e. z.B. ein elektrischer Anschluss 10a der zweiten Diode 10, ist dabei zur elektrisch leitfähigen Verbindung mit dem Ausgang 2c des Leistungshalbleiterschalters 2 vorgesehen. Zwischen erstem 8 und zweitem 9 ohmschen Widerstand, welche einen Spannungsteiler bilden, ist die Verbindung mit dem Steuereingang 2a des Leistungshalbleiterschalters 2, z.B. mittels eines elektrischen Anschlusses bzw. einer Anschlussklemme, vorgesehen. Es ist denkbar, anstelle des ersten 8 und/oder zweiten 9 ohmschen Widerstands z.B. eine Parallelschaltung von ohmschen Widerständen oder eine Reihenschaltung von ohmschen Widerständen zu verwenden.
Zur Anordnung der Schutzschaltung 3 an einem Leistungshalbleiterschalter 2 bzw. zur Beschaltung eines solchen zur Bildung einer erfindungsgemäßen Leistungsschalteranordnung 1 wird die Zenerdiode 7, welche bei Erreichen bzw. ab Erreichen ihrer Durchbruchspannung durchlässig wird, mit dem ersten ohmschen Widerstand 8 in Reihe zwischen den Eingang 2b und den Steuereingang 2a geschaltet, und zwar in dieser, vorstehend beschriebenen, ersten Reihenfolge (Fig. 2). Ausgehend von dem Eingang 2b (des mit der Schutzschaltung 3 beschalteten Leistungshalbleiterschalters 2) wird insofern zunächst die Zenerdiode 7 mit dem Eingang 2b elektrisch verbunden und nachfolgend der erste ohmsche Widerstand 8 hin zum Steuereingang 2a in Reihe angeordnet, also zwischen der Zenerdiode 7 und dem Steuereingang 2a, und mit diesen jeweils elektrisch verbunden. Die Zenerdiode 7 ist dabei insbesondere in Sperrrichtung angeordnet. Sperrrichtung bedeutet vorliegend, dass kein Stromfluss (technische Stromrichtung) in Richtung von Eingang 2b zu Steuereingang 2a bis zum Erreichen der Durchbruchspannung der Zenerdiode 7 möglich bzw.
vorgesehen ist.
Zwischen den Steuereingang 2a des Leistungshalbleiterschalters 2 und dessen Ausgang 2c wird weiterhin erfindungsgemäß die Reihenschaltung aus dem zweiten ohmschen Widerstand 9 und der Diode 10 geschaltet, und zwar in dieser, vorstehend beschriebenen, zweiten Reihenfolge (Fig. 2). Ausgehend von dem Steuereingang 2a (des mit der Schutzschaltung 3 beschalteten Leistungshalbleiterschalters 2) ist insofern zunächst der zweite ohmsche Widerstand 9 mit diesem elektrisch verbunden und nachfolgend die Diode 10 in Reihe angeordnet, also zwischen dem zweitem ohmschen Widerstand 9 und dem
Ausgang 2c, und mit diesen jeweils elektrisch verbunden. Die Diode 10 ist dabei insbesondere in Durchlassrichtung angeordnet. Durchlassrichtung bedeutet vorliegend mit Bezug auf die Diode, dass ein Stromfluss (technische Stromrichtung) in Richtung vom Steuereingang 2a zum Ausgang 2c möglich bzw. vorgesehen ist, entgegengesetzt jedoch nicht.
An der so gebildeten Leistungsschalteranordnung 1 ist parallel zu dem
Eingang 2b und dem Ausgang 2c des Leistungshalbleiterschalters 2 der Leistungsschalteranordnung 1 weiterhin die bekannte Anordnung der Freilaufdiode 6 vorgesehen.
Zur Realisierung eines erfindungsgemäßen, gegen schädliche Spannungsrückwirkung geschützten Wechselrichters kann, wie in Fig. 1 dargestellt, je Halbbrücke 4a, 4b, 4c des (Antriebs-)Wechselrichters z.B. eine erfindungsgemäße Leistungsschalteranordnung 1 angeordnet werden, um sämtliche Wicklungsstränge des Motors 5, z.B. drei Wicklungsstränge 5a, 5b, 5c bei wie dargestellt dreiphasig betriebenem Motor 5, insbesondere im Falle einer Störung, kurzschließen zu können. Dabei ist eine erfindungsgemäße Leistungsschalteranordnung 1 z.B. jeweils via Eingang 2b des zugehörigen Leistungshalbleiterschalters 2 mit einem Wicklungsstrang 5a bzw. 5b bzw. 5c des Motors 5 elektrisch verbunden und z.B. ebenfalls mit dem Ausgang 2c des weiteren Leistungshalbleiterschalters 2 der jeweiligen Halbbrücke 4a bzw. 4b bzw. 4c. Der Ausgang 2c des jeweiligen Leistungshalbleiterschalters 2 der Leistungsschalteranordnung 1 ist dabei beispielsweise auf herkömmliche Weise mit einer Klemme bzw. einem Potential des Zwischenkreises verbunden, der Steuereingang 2a in bekannter Weise z.B. mit der Steuerelektronik. Weitere Anordnungen von Leistungsschalteranordnungen 1 in einem Wechselrichter sind daneben denkbar, z.B. als Ersatz für sämtliche Leistungshalbleiterschalter 2. Die Schutzschaltung 3 kann dabei z.B. auch nachträglich an einem oder mehreren bereits im Wechselrichter vorhandenen Leistungshalbleiterschaltern 2 zur Bildung von erfindungsgemäßen Leistungsschalteranordnungen 1 angeordnet werden, z.B. als Add-On-Lösung.
Denkbar ist, nur eine Reihe der Brückenschaltung 4, z.B. die (s. Fig. 1 ) untere oder nur die obere Reihe von Leistungshalbleiterschaltern 2 durch Leistungsschalteranordnungen 1 zu ersetzen bzw. Schutzschaltungen 3 an den Leistungshalbleiterscha- lern 2 anzuordnen. Die Schutzschaltung 3 kann z.B. direkt in einen Leistungshalbleiterschalter 2, z.B. einen IGBT- oder MOSFET, welche z.B. als integrierter Schaltkreis bzw. als Baustein ausgebildet sind, integriert werden (IC).
Sobald im Falle einer potentiell schädlichen Spannungsrückwirkung die durch den Antriebsmotor, z.B. den Synchronmotor, induzierte Spannung die Sperrspannung der Zenerdiode 7 übersteigt, fließt erfindungsgemäß durch alle Elemente der Schutzschaltung 3 der Leistungsschalteranordnung 1 ein Strom, i.e. durch Zenerdiode 7, ersten 8 und zweiten 9 ohmschen Widerstand sowie Diode 10. Der erste 8 und zweite 9 ohmsche Widerstand bilden dabei eine Spannungsteilerschaltung bzw. einen Spannungsteiler, welcher für die Ansteuerung des Leistungshalbleiterschalters 2 mittels seines Steuereingangs 2a sorgt. Der Leistungshalbleiterschalter 2 wird kurzgeschlossen und somit fällt die Spannung unterhalb der Sperrspannung der Zenerdiode 7. Am Leistungshalbleiterschalter 2 stellt sich somit eine maximale Spannung ein, die immer unterhalb der Sperrspannung der Zenerdiode 7 liegt. Die Zenerdiode 7 begrenzt somit die Spannung, die vom Drehstrommotor 5 rückgespeist wird, auf einen definierten Wert, i.e. abhängig von der ihr eigenen Durchbruchspannung. Aktive Bauelemente sind zur Herstellung der so realisierten erfindungsgemäßen passiven Spannungsregelung dabei nicht erforderlich, eine aktive Ansteuerung mittels einer z.B. Ansteuerelektronik sowie eine zusätzliche Versorgungsspannung ist nicht notwendig. Durch die erfindungsgemäße Leistungsschalteranordnung 1 wird zudem auch ein Schutz gegen kurze Überspannungsimpulse ausgehend von der Gleichstromseite des Umrichters (z.B. von der Gleichrichtereinheit und/oder dem Zwischenkreis), insbesondere ausgehend von Blockkondensatoren oder Varistoren, geschaffen.
Bezuqszeichen
Leistungsschalteranordnung
Leistungshalbleiterschalter
a Steuereingang
b Eingang
c Ausgang
Schutzschaltung
Brückenschaltung
' Eingangsklemmen
a, 4b, 4c Halbbrücke
Drehstrommotor
a, 5b, 5c Wicklungsstrang
Freilaufdiode
Zenerdiode
a elektrischer Anschluss Zenerdiode (erstes Ende Schutzschaltung) erster ohmscher Widerstand
zweiter ohmscher Widerstand
0 Diode
0a elektrischer Anschluss Diode (zweites Ende Schutzschaltung)

Claims

Patentansprüche
1 . Leistungsschalteranordnung (1 ) für einen Wechselrichter, insbesondere einen Antriebswechselrichter, wobei die Leistungsschalteranordnung (1 ) einen Leistungshalbleiterschalter (2) sowie eine an dem Leistungshalbleiterschalter (2) angeordnete Schutzschaltung (3) gegen Spannungsrückwirkung eines mit dem Leistungshalbleiterschalter verbindbaren Drehstrommotors (5) aufweist, wobei der Leistungshalbleiterschalter (2) einen Steuereingang (2a) sowie einen Eingang (2b) und einen Ausgang (2c) aufweist, dadurch gekennzeichnet, dass die Schutzschaltung (3) eine zwischen den Eingang (2b) und den Steuereingang (2a) geschaltete Reihenschaltung aus einer Zenerdiode (7) und einem ersten ohmschen Widerstand (8) aufweist, sowie eine zwischen den Steuereingang (2a) und den Ausgang (2c) geschaltete Reihenschaltung aus einem zweiten ohmschen Widerstand (9) und einer Diode (10).
2. Leistungsschalteranordnung (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass die Zenerdiode (7) in Sperrrichtung zwischen Eingang (2b) und Steuereingang (2a) des Leistungshalbleiterschalters (2) angeordnet ist.
3. Leistungsschalteranordnung (1 ) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Diode (10) in Durchlassrichtung zwischen Steuereingang (2a) und Ausgang (2c) des Leistungshalbleiterschalters (2) angeordnet ist.
4. Leistungsschalteranordnung (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schutzschaltung (3) genau eine Zenerdiode (7) und/oder genau eine Diode (10) aufweist.
5. Leistungsschalteranordnung (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schutzschaltung (3) genau einen ersten (8) und/oder genau einen zweiten (9) ohmschen Widerstand aufweist.
6. Leistungsschalteranordnung (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Leistungshalbleiterschalter (2) ein Bipolartransistor mit isolierter Gate- Elektrode (IGBT) ist, wobei der Eingang (2b) als Kollektor-Elektrode, der Steuereingang (2a) als Gate-Elektrode und der Ausgang (2c) als Emitter-Elektrode ausgebildet ist.
7. Leistungsschalteranordnung (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Leistungshalbleiterschalter (2) ein Feldeffekttransistor (FET), insbesondere ein Metall-Oxid-Halbleiter-Feldeffekttransistor
(MOSFET), ist, wobei der Eingang (2b) als Drain-Elektrode, der Steuereingang (2a) als Gate- Elektrode und der Ausgang (2c) als Source-Elektrode ausgebildet ist.
8. Wechselrichter zur Versorgung eines Drehstrommotors (5) mit elektrischer Energie, insbesondere eines Kraftfahrzeugantriebsmotors, wobei der Wechselrichter eine Halbbrücke (4a, 4b, 4c) aufweist zur Verbindung mit einem Wicklungsstrang (5a, 5b, 5c) des Drehstrommotors (5), dadurch gekennzeichnet, dass die Halbbrücke (4a, 4b, 4c) eine Leistungsschalteranordnung (1 ) nach einem der Ansprüche 1 bis 7 aufweist.
9. Wechselrichter nach Anspruch 8, dadurch gekennzeichnet, dass der Wechselrichter je Halbbrücke (4a, 4b, 4c) je eine Leistungsschalteranordnung (1 ) aufweist.
10. Wechselrichter nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass die Halbbrücke (4a, 4b, 4c) einen elektrischen Anschluss für einen Strang (5a, 5b, 5c) eines Drehstrommotors (5) aufweist, welcher mit dem Eingang (2b) eines Leistungshalbleiterschalters (2) der Leistungsschalteranordnung (1 ) elektrisch verbunden ist.
1 1 . Wechselrichter nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass eine Halbbrücke (4a, 4b, 4c) zwei Leistungsschalteranordnungen (1 ) aufweist.
12. Antriebsanordnung für ein Kraftfahrzeug, enthaltend einen Drehstrommotor (5), welcher mittels eines Wechselrichters mit elektrischer Energie versorgt wird, wobei der Wechselrichter zur Energieversorgung des Drehstrommotors (5) eine Brückenschaltung (4) aufweist, dadurch gekennzeichnet, dass die Brückenschaltung (4) eine Leistungsschalteranordnung (1 ) nach einem der Ansprüche 1 bis 7 aufweist.
13. Antriebsanordnung nach Anspruch 12, dadurch gekennzeichnet, dass der Drehstrommotor (5) ein Synchronmotor, insbesondere ein Fahrzeugantriebsmotor, ist.
14. Antriebsanordnung nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass der Drehstrommotor (5) ein permanenterregter Motor oder ein fremderregter Motor ist.
15. Antriebsanordnung nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass die Brückenschaltung (4) eine Halbbrücke (4a, 4b, 4c) mit einer Leistungsschalteranordnung (1 ) aufweist.
EP10775783A 2009-11-11 2010-10-29 Leistungsschalteranordnung für einen wechselrichter Withdrawn EP2499727A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009046615A DE102009046615A1 (de) 2009-11-11 2009-11-11 Leistungsschalteranordnung für einen Wechselrichter
PCT/EP2010/066426 WO2011057902A2 (de) 2009-11-11 2010-10-29 Leistungsschalteranordnung für einen wechselrichter

Publications (1)

Publication Number Publication Date
EP2499727A2 true EP2499727A2 (de) 2012-09-19

Family

ID=43639794

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10775783A Withdrawn EP2499727A2 (de) 2009-11-11 2010-10-29 Leistungsschalteranordnung für einen wechselrichter

Country Status (6)

Country Link
US (1) US20120223664A1 (de)
EP (1) EP2499727A2 (de)
JP (1) JP2013511249A (de)
CN (1) CN102687379A (de)
DE (1) DE102009046615A1 (de)
WO (1) WO2011057902A2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012211577A1 (de) * 2012-07-04 2014-01-09 Robert Bosch Gmbh Leistungsendstufe, Verfahren zum Betreiben
US9762146B2 (en) * 2015-10-30 2017-09-12 Faraday&Future Inc. Methods and systems for interconnecting parallel IGBT modules
DE102016207195A1 (de) * 2016-04-27 2017-11-02 Zf Friedrichshafen Ag System zum aktiven Kurzschließen von Phasen eines Wechselrichters und Kraftfahrzeugantrieb
WO2018149824A1 (en) 2017-02-20 2018-08-23 Philips Lighting Holding B.V. Led arrangement with over-current protection
DE102018203134A1 (de) * 2018-03-02 2019-09-05 Zf Friedrichshafen Ag Antriebsvorrichtung mit Transformationsfunktion, Antriebssystem und Verfahren zum Betreiben einer Antriebsvorrichtung
DE102022200378A1 (de) * 2022-01-14 2023-07-20 Siemens Mobility GmbH Verfahren zum Steuern eines Antriebssystems eines Schienenfahrzeugs

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1002A (en) * 1838-11-09 Joseph evens
US10020A (en) * 1853-09-13 Hanging mill-saws
GB2228639B (en) * 1989-02-17 1992-07-15 Motorola Semiconducteurs Protected darlington transistor arrangement
JP3111576B2 (ja) * 1992-01-06 2000-11-27 富士電機株式会社 半導体装置
US5276582A (en) * 1992-08-12 1994-01-04 National Semiconductor Corporation ESD protection using npn bipolar transistor
SE9500761D0 (sv) * 1995-03-02 1995-03-02 Abb Research Ltd Skyddskrets för seriekopplade krafthalvledare
US6169672B1 (en) * 1996-07-03 2001-01-02 Hitachi, Ltd. Power converter with clamping circuit
US5774318A (en) * 1996-11-27 1998-06-30 Raytheon Company I.C. power supply terminal protection clamp
US6078204A (en) * 1996-12-19 2000-06-20 Texas Instruments Incorporated High current drain-to-gate clamp/gate-to-source clamp for external power MOS transistors
JPH10248264A (ja) * 1997-03-05 1998-09-14 Toshiba Corp 中性点クランプ式電力変換装置
DE19835576A1 (de) 1998-05-12 1999-11-18 Mannesmann Sachs Ag Ansteuersystem für einen permanenterregten Elektromotor mit wenigstens einem Strang
JP3255147B2 (ja) * 1998-06-19 2002-02-12 株式会社デンソー 絶縁ゲート型トランジスタのサージ保護回路
CN1242604A (zh) * 1998-06-26 2000-01-26 株式会社东芝 半导体保护器件和功率转换器件
DE29813080U1 (de) 1998-07-22 1998-10-15 Siemens AG, 80333 München Schutzeinrichtung gegen Spannungsrückwirkung permanenterregter elektrischer Antriebe
DE10005449B4 (de) * 2000-02-08 2008-06-12 Siemens Ag Überspannungsschutzvorrichtung für einen Matrixumrichter
JP3598933B2 (ja) * 2000-02-28 2004-12-08 株式会社日立製作所 電力変換装置
US6560081B1 (en) * 2000-10-17 2003-05-06 National Semiconductor Corporation Electrostatic discharge (ESD) protection circuit
TW517422B (en) * 2001-05-18 2003-01-11 Palmax Technology Co Ltd Input protection circuit of hand-held electrical apparatus
JP3879626B2 (ja) * 2002-08-21 2007-02-14 株式会社デンソー 絶縁ゲート型半導体装置
DE10251977A1 (de) 2002-11-08 2004-06-03 Arnold Müller GmbH & Co. KG Synchronmotor
US6888710B2 (en) * 2003-01-03 2005-05-03 Micrel, Incorporated Insulated gate bipolar transistor and electrostatic discharge cell protection utilizing insulated gate bipolar transistors
JP2005045905A (ja) * 2003-07-28 2005-02-17 Toyota Motor Corp 回転電機用駆動回路および車両用電装ユニット
US20050044025A1 (en) * 2003-08-19 2005-02-24 Tutty Enterprises, Inc. Method for customizing and producing products and services
DE102004007208B3 (de) * 2004-02-13 2005-05-25 Infineon Technologies Ag Schaltungsanordnung mit einem Lasttransistor und einer Spannungsbegrenzungsschaltung und Verfahren zur Ansteuerung eines Lasttransistors
US7737647B2 (en) * 2004-07-05 2010-06-15 Moteurs Leroy-Somer Rectifier and system for controlling the speed of an electric motor
FR2874767B1 (fr) * 2004-08-27 2006-10-20 Schneider Toshiba Inverter Dispositif de commande d'un transistor de puissance
DE102005009341A1 (de) 2004-11-04 2006-05-18 Diehl Ako Stiftung & Co. Kg Schaltungsananordnung und Verfahren zur Steuerung eines Elektromotors, insbesondere einer Waschmaschine
US7554276B2 (en) * 2005-09-21 2009-06-30 International Rectifier Corporation Protection circuit for permanent magnet synchronous motor in field weakening operation
DE102006021847B4 (de) * 2006-05-10 2015-07-02 Austriamicrosystems Ag Schaltungsanordnung zum Schutz vor elektrostatischen Entladungen
DE102007002377B4 (de) * 2006-05-22 2011-12-01 Texas Instruments Deutschland Gmbh Integrierte Schaltungsvorrichtung
US7911748B1 (en) * 2006-09-07 2011-03-22 National Semiconductor Corporation Diffusion capacitor for actively triggered ESD clamp
DE102007041674B4 (de) * 2006-09-21 2017-12-28 Secop Gmbh Elektrischer Schaltkreis mit integriertem Schutz vor Ausgleichsvorgängen
US7511357B2 (en) * 2007-04-20 2009-03-31 Force-Mos Technology Corporation Trenched MOSFETs with improved gate-drain (GD) clamp diodes
US7652858B2 (en) * 2007-06-06 2010-01-26 Gm Global Technology Operations, Inc. Protection for permanent magnet motor control circuits
US7940503B2 (en) * 2008-05-27 2011-05-10 Infineon Technologies Ag Power semiconductor arrangement including conditional active clamping
US7902604B2 (en) * 2009-02-09 2011-03-08 Alpha & Omega Semiconductor, Inc. Configuration of gate to drain (GD) clamp and ESD protection circuit for power device breakdown protection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011057902A2 *

Also Published As

Publication number Publication date
WO2011057902A2 (de) 2011-05-19
JP2013511249A (ja) 2013-03-28
WO2011057902A3 (de) 2012-05-03
DE102009046615A1 (de) 2011-05-19
CN102687379A (zh) 2012-09-19
US20120223664A1 (en) 2012-09-06

Similar Documents

Publication Publication Date Title
DE112014003605B4 (de) Antriebssteuerungsvorrichtung für einen elektrischen Motor
EP3083318A1 (de) Sicherheitsschaltungsanordnung für eine elektrische antriebseinheit
WO2011057902A2 (de) Leistungsschalteranordnung für einen wechselrichter
EP3512737B1 (de) Verfahren zum betreiben eines stromrichters sowie danach arbeitender stromrichter
DE112018006822T5 (de) Leistungsumwandlungsvorrichtung, motormodul und elektrische servolenkvorrichtung
WO2011057900A2 (de) Wechselrichter
EP3391492B1 (de) Leistungselektronikeinheit
EP0935336B2 (de) Verfahren und Vorrichtung zur Steuerung eines Synchronmotors
DE102015013875B4 (de) Wechselrichter für eine elektrische Maschine, elektrische Antriebseinrichtung für ein Kraftfahrzeug sowie Verfahren zum Betreiben eines Wechselrichters
EP1929604B1 (de) Ansteuersystem und verfahren zur ansteuerung für einen permanent erregten elektromotor
DE102016123678A1 (de) Anordnung und Verfahren zur Erzeugung einer negativen Spannung für einen High-Side-Schalter in einem Wechselrichter
WO2011057901A2 (de) Wechselrichter
DE102013213045A1 (de) Vermeidung von Bremsmomenten bei permanenterregten Synchronmaschinen
DE102013218799A1 (de) Modularer Stromrichter
EP2530826B1 (de) Verfahren zur Reduzierung des Anlaufstromes bei einer mit Blockkommutierung betriebenen mehrphasigen Maschine
DE202021106043U1 (de) Zusatzbeschaltung für Generatorregler und Generatorregler
EP3386097B1 (de) Schaltung zum selektiven versorgen von motoren mit energie
DE102007019990B4 (de) Kfz-Generator mit externem Regler
EP3061186B1 (de) Halbbrücke für einen aktiven gleichrichter
EP0806827B1 (de) Verpolschutz-Schaltungsanordnung
DE102005046962A1 (de) Ansteuersystem und Verfahren zur Ansteuerung für einen permanent erregten Elektromotor
DE102021209723A1 (de) Verfahren zum Betrieb einer elektrischen Maschine
DE10353741A1 (de) Bremseinrichtung für einen Elektromotor
WO2024033073A1 (de) Wechselrichter mit transistor zum trennen von überströmen zwischen batterie und zwischenkreiskondensator
DE102014221714A1 (de) Überspannungsschutz für Kraftfahrzeugbordnetz bei Lastabwurf

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120502

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140501