JP3879626B2 - 絶縁ゲート型半導体装置 - Google Patents

絶縁ゲート型半導体装置 Download PDF

Info

Publication number
JP3879626B2
JP3879626B2 JP2002240626A JP2002240626A JP3879626B2 JP 3879626 B2 JP3879626 B2 JP 3879626B2 JP 2002240626 A JP2002240626 A JP 2002240626A JP 2002240626 A JP2002240626 A JP 2002240626A JP 3879626 B2 JP3879626 B2 JP 3879626B2
Authority
JP
Japan
Prior art keywords
gate
semiconductor device
emitter
insulated gate
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002240626A
Other languages
English (en)
Other versions
JP2004079892A (ja
Inventor
規仁 戸倉
晴夫 川北
裕 戸松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002240626A priority Critical patent/JP3879626B2/ja
Publication of JP2004079892A publication Critical patent/JP2004079892A/ja
Application granted granted Critical
Publication of JP3879626B2 publication Critical patent/JP3879626B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は絶縁ゲート型バイポーラトランジスタ(以下、IGBTと記す)やパワーMOS電界効果型トランジスタ(以下、パワーMOSFETと記す)を備える絶縁ゲート型の半導体装置に関する。
【0002】
【従来の技術】
近年、高耐圧大電流用スイッチング素子としてIGBTが多く使用されている。インダクタンス負荷を駆動する用途においては、ESDやフライバック等の過電圧サージがコレクタに印加されてブレークダウンし、IGBTに内在する寄生サイリスタが動作してラッチアップし、素子が制御不能になることがあった。
【0003】
これを解決する方法として、例えば、Z. J. Shen et al.,"High Voltage Clamped IGBT for Automotive Ignition Applications", Proceeding of International Symposium on Power Semiconductor and ICs, page 97(May 1998).の論文に記載されているように、コレクタ耐圧より低い耐圧のツェナーダイオードをコレクタ、ゲート間に接続する方法が提案されている。
【0004】
この方法を説明するために、図6に絶縁ゲート型半導体装置を含む点火装置の回路構成を示す。この点火装置2は、絶縁ゲート型半導体装置51、点火コイル31、点火プラグ32、ゲート入力抵抗33、制御信号端子34、電源端子30、接地端子35で構成されている。
【0005】
絶縁ゲート型半導体装置51は、nチャネル型のIGBT10、IGBT10のコレクタ11とゲート13との間に接続された双方向ツェナーダイオード14、IGBT10のゲート13とエミッタ12との間に接続され、IGBT10の静電破壊等を防止するためのゲート保護用双方向ツェナーダイオード52で構成されている。
【0006】
以上のように構成された点火装置において、点火コイル31の1次コイルにスイッチングにより発生するフライバックはμs〜msオーダーの低速サージである。双方向ツェナーダイオード14の耐圧を越えるサージがコレクタ11に印加されると、双方向ツェナーダイオード14がブレークダウンし、アバランシェ電流がゲート13に流れてゲート・エミッタ間容量17をチャージする。なお、このゲート・エミッタ間容量17とは、通常、ゲートとエミッタとの間に形成されるゲート絶縁膜容量である。
【0007】
これにより、ゲート電圧がしきい値電圧(例えば10V)以上に達してIGBT10がオン状態になる。この時のコレクタ電圧は、双方向ツェナーダイオード14のブレークダウン電圧(例えば500V)でクランプされるが、IGBT10のコレクタ耐圧はこの電圧よりも高く設定(例えば700V)されているから、IGBT10はブレークダウンしない。すなわち、IGBT10がオン状態になってコレクタ電流を流すことによって、サージを素子全面に分散して通電させ、コレクタ11に印加された過電圧がトリガとなって起こるラッチアップを回避できる。
【0008】
【発明が解決しようとする課題】
一方、例えば自動車のようにサージ環境が厳しい用途においては、異常な経路を経由してサージがリークし、一般的なESDの電圧値、電流値を大幅に越え、ns〜μsオーダーの高電圧高速サージがIGBT10に印加される場合がある。例えば図7(a)に示すような高電圧高速サージがコレクタ11に加わる場合、時刻t1、t4付近においてサージ電圧が双方向ツェナーダイオード14のブレークダウン電圧(例えば500V)を越え、このダイオードを経由してゲート・エミッタ間容量17をチャージする。
しかしながら、ゲート・エミッタ間容量17がチャージされるのは、サージ電圧が500Vを越えたとき、つまり、図7(a)に示すように、時刻t1での第1ピークと、t4での第2ピークのときのみであることから、図7(b)に示すようにIGBT10のゲート電圧は、時刻t1、t4付近においてステップ状に増加するが、約4Vにしかならず、ゲート電圧をしきい値電圧以上にすることができない場合がある。すなわち、チャージ量が不足することから、IGBT10を十分にオン状態にすることができない。この結果、素子のラッチアップを回避することができず制御不能になってしまう。
【0009】
本発明は、上記点に鑑みて、高電圧高速サージに対してもラッチアップを抑制することができ、信頼性の高いIGBTを提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明の絶縁ゲート型半導体装置では、IGBT(10)のエミッタ(12)とゲート(13)との間にて、エミッタ(12)側に浮遊インダクタンス(18)を介して単方向ダイオード(19a、19b)のアノードを接続し、ゲート(13)側に単方向ダイオード(19a、19b)のカソードを接続していることを特徴としている。
【0011】
また、請求項2に記載の発明の絶縁ゲート型半導体装置では、パワーMOSFETのソースとゲート間にて、ソース側に浮遊インダクタンスを介して単方向ダイオードのアノードを接続し、ゲート側に単方向ダイオードのカソードを接続していることを特徴としている。
【0012】
さらに、請求項3に記載の発明では、高電圧高速サージが印加されても、単方向ダイオード(19a、19b)を介して、ゲート(13)をチャージできるように浮遊インダクタンス(18)が調整されていることを特徴としている。
【0013】
これらの発明は、IGBTのコレクタ、エミッタ間、又はパワーMOSFETのドレイン、ソース間にコレクタ耐圧を越える高電圧高速サージが加わった直後に発生するエミッタ電流又はソース電流の高周波振動を利用するものである。この高周波振動電流がエミッタ又は、ソースに接続された浮遊インダクタンスを流れることにより、浮遊インダクタンスに高周波電圧が発生する。そして、この高周波電圧を単方向ダイオードで整流することで、ゲートをチャージすることができる。
【0014】
このチャージ量は、浮遊インダクタンス、単方向ツェナーダイオードの動作抵抗、ゲート入力容量、サージの条件により最適設計が容易であり、特に、インダクタンス成分を調整することで、高電圧高速サージが印加されても、素子をオン状態とすることができるように、チャージ量を設定することができる。したがって、これらの発明によれば、従来のコレクタ又はドレインと、ゲートとの間に双方向ツェナーダイオードが接続されている絶縁ゲート型半導体装置と比較して、高電圧高速サージが印加されたとき、ゲートへのチャージ量を多くすることができる。この結果、このチャージによりサージ印加時にゲート電圧を十分高くして深くバイアスするため、サージ電流の集中を緩和してラッチアップを防止できる。
【0015】
請求項4に示すように、IGBTではコレクタ(11)とゲート(13)との間に、又、MOSFETではドレインとゲートとの間に、双方向ツェナーダイオード(14)を接続することもできる。このように、双方向ツェナーダイオードを用いたチャージ方法と浮遊インダクタンスを利用したチャージ方法とを併用することで、高電圧高速サージが印加されたとき、ゲートを十分にチャージし、素子をオン状態とすることもできる。
【0016】
請求項5に示すように、双方向ツェナーダイオード(14)と単方向ダイオード(19a、19b)とを半導体素子に集積化させることもできる。これにより、絶縁ゲート型半導体装置を小型化することができる。また、部品点数を減少させることができるので、コストを減少させることができる。
【0017】
請求項6に示すように、浮遊インダクタンス(18)として、例えば、半導体素子に集積化され、半導体素子と電気的に接続されている金属配線(18b)、若しくは半導体素子の外部に形成され、半導体素子と電気的に接続されている導線(18a)のインダクタンス成分を用いることができる。
【0018】
請求項7に示すように、単方向ダイオードとして、単方向ツェナーダイオード(19b)を用いることができる。これにより、半導体素子の静電破壊等を防止することができる。
【0019】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【0020】
【発明の実施の形態】
(第1実施形態)
図1に本発明を適用した第1実施形態における絶縁ゲート型半導体装置の平面図を示す。また、図2に図1の絶縁ゲート型半導体装置を含む点火装置の回路構成を示す。なお、図1、2中の構成要素において、図6と同一部分には同じ符号を与えた。
【0021】
図1、2中の絶縁ゲート型半導体装置1は図6中の絶縁ゲート型半導体装置51に対応している。本実施形態における絶縁ゲート型半導体装置1が図6中の絶縁ゲート型半導体装置51に対して異なる部分は、エミッタ12とエミッタ端子16の間の導線の浮遊インダクタンス18を定義したこと、図6においてゲート13とエミッタ12との間に接続されていた保護用ツェナーダイオード52を、単方向ダイオードとしてのショットキーダイオード19aに変更したことである。
【0022】
具体的な構造は、図1に示すように、基板4上において、半導体素子としてのIGBT10等の部品が固定され、それぞれの部品が電気的に接続されている。nチャネル型のIGBT10の表面上のエミッタ12とゲート13は、金属ワイヤ18aを介して、それぞれエミッタ端子16、ゲート端子29と接続されている。本実施形態では、この金属ワイヤ18aのインダクタンス成分を浮遊インダクタンス18として用いている。
【0023】
ショットキーダイオード19aは、IGBT10とは別に形成されており、IGBT10の外部にてエミッタ端子16とゲート端子29との間に接続されている。なお、ショットキーダイオード19aのカソードが、ゲート側に接続されている。また、ゲート端子29には、ゲート入力抵抗33、信号端子34、制御用IC5が順に接続されている。
【0024】
本実施形態では、金属ワイヤ18aは、後に説明するが、高電圧高速サージが印加されたとき、ショットキーダイオード19aを介して、ゲート、エミッタ間容量17をチャージし、IGBT10をオン状態とすることができるように、所望の線幅と長さとなっている。
【0025】
次に、このように構成された絶縁ゲート型半導体装置1に高電圧高速サージが印加されたときの動作を説明する。
【0026】
点火コイル31等の負荷の動作異常によりコレクタ11に高電圧高速サージが印加されたとき、絶縁ゲート型半導体装置1、点火コイル31等の負荷、および電源30からなる回路に高周波振動が発生する。このため、エミッタ12には高周波振動電流が流れる。この高周波振動電流(エミッタ電流Ie)が浮遊インダクタンス18を流れることで、浮遊インダクタンス18に高周波電圧(浮遊インダクタンス18の誘起電圧VL)が発生する。
【0027】
図3(a)、(b)、(c)、(d)に、それぞれ高電圧高速サージが印加されたときのコレクタ電圧Vc、エミッタ電流Ie、浮遊インダクタンス18の誘起電圧VL、ゲート・エミッタ間電圧Vgの波形を模式的に示す。
【0028】
図3(a)に示すコレクタ電圧は、時刻t1、t4付近においてサージにより高電圧に達し、図7(a)、(b)に示す従来例と同様に、双方向ツェナーダイオード14のブレークダウン電圧(例えば500V)を越えたサージがゲート、エミッタ間容量17をチャージする。このチャージ量Vg1は、例えば約4Vである。
【0029】
一方、図3(a)に示すコレクタ電圧Vcのサージ波形に対応して、エミッタ12に流れるエミッタ電流Ie、浮遊インダクタンス18に発生する誘起電圧VL(極性はエミッタ端子16側を正)は、図3(b)、(c)に示すように減衰振動波形を呈する。誘起電圧VLは、浮遊インダクタンスLとエミッタ電流Ieを用いて下記の数1で与えられる。
【0030】
【数1】
VL=−L・dIe/dt
図3(c)に示す誘起電圧VLはショットキーダイオード19aにより整流(図2のAで示す方向に電流が流れ、Bで示す方向に電流が流れないこと)される。ショットキーダイオード19aの順方向降下電圧Vf2(例えば約3V)を越えた誘起電圧VLにより、図2のAで示した方向に電流が流れ、ゲート、エミッタ間容量17をチャージする。このチャージ動作は、誘起電圧VLの減衰振動波形の1回目ピーク(時刻t3)、2回目ピーク(時刻t5)以降も継続し、例えば5回続く。
ここで、この動作によるゲート、エミッタ間容量17のチャージ量Vg2を以下にて詳細に説明する。
ショットキーダイオード19aの整流動作によるチャージ電流ig2は、ショットキーダイオード19aの動作抵抗をRz2、順方向降下電圧をVf2とすると、数2で与えられる。
【0031】
【数2】
ig2=(VL−Vf2)/Rz2
誘起電圧VLのn回目ピークでゲート、エミッタ間容量17にチャージされる電荷Qg(n)は、n回目ピークのチャージ電流ig2の時間積分で与えられるから、数3で与えられる。
【0032】
【数3】
Qg(n)=∫ig2・dt=∫(VL−Vf2)/Rz2・dt
誘起電圧VLのVf2(3V)以上のピークによりゲート、エミッタ間容量17のチャージ量Vg2は、ゲート・エミッタ間容量をCgとすると、数4で与えられる。
【0033】
【数4】
Vg2=ΣQ(n)/Cg=Σ{∫(VL−Vf2)/Rz2・dt}/Cg数4にて示されるように、ゲート、エミッタ間容量17のチャージ量Vg2は、浮遊インダクタンス18に発生する誘起電圧VL、順方向降下電圧をVf2、ショットキーダイオード19aの動作抵抗Rz2、ゲート・エミッタ間容量Cgとによって決まる。また、数1にて示されるように、VLは浮遊インダクタンスLとサージに対応したエミッタ電流Ieにより決まる。
【0034】
本実施形態では、図3(a)に示すサージに対して、チャージ量Vg2が約6Vとなるように、金属ワイヤ18aの線幅や長さを調整することで、インダクタンス成分が調整されている。
【0035】
このことから、コレクタ11に高電圧高速サージが印加されたとき、本実施形態では、ゲート、エミッタ間容量17へのチャージは、コレクタ電圧Vcの第1ピーク、第2ピークにおけるt1、t4時に加え、誘起電圧VLの第1ピーク、第2ピーク等におけるt3、t5時等に行われる。
【0036】
したがって、ゲート・エミッタ間電圧Vgは、図3(d)に示すように、t1、t4のとき増加し、さらにt3、t5などのときにおいても増加する。この結果、従来例に相当する双方向ツェナーダイオード14によるチャージ量Vg1(約4V)に対して、ショットキーダイオード19aによるチャージ量Vg2(約6V)が加算されるため、ゲート・エミッタ間電圧Vgをゲートしきい値電圧である約10Vに増加させることができる。
【0037】
これにより、IGBT10が深くゲートバイアスされ、コレクタ11に印加されたサージを素子全面で導通させることができ、局部的な集中を無くしてラッチアップを回避できる。また、サージ印加初期に集中が生じても、その後の深いゲートバイアス状態の持続により、集中を解消することができ、ラッチアップさせずにターンオフすることができる。
【0038】
なお、サージによりチャージされたゲート・エミッタ間電圧Vg(例えば10V)は、サージが無くなった後、ゲート入力抵抗33と入力端子34を介して所定の時間をかけて外部回路に放電され、IGBT10は正常にオフする。
【0039】
以上説明したように、本実施形態では、浮遊インダクタンスを積極的に利用するために、保護用ツェナーダイオード52に代えて、ショットキーダイオード19aをエミッタ端子16、ゲート端子29間に接続し、高電圧高速サージが印加されても、素子をオン状態とすることができるように、エミッタ12、エミッタ端子16間の浮遊インダクタンスを調整している。
【0040】
これにより、IGBT10のコレクタ11・エミッタ12間にコレクタ耐圧を越える高電圧高速サージが加わった場合でも、従来のコレクタ、ゲート間に接続された双方向ツェナーダイオード14のブレークダウンによるゲート、エミッタ間容量のチャージに加え、浮遊インダクタンス18を利用し、単方向ツェナーダイオードを介してゲート、エミッタ間容量17をチャージすることができる。
【0041】
このことから、ゲート電圧を十分高くして深くバイアスできるため、サージ電流の集中を緩和してラッチアップの発生を抑制することができる。また、浮遊インダクタンス18(金属ワイヤのインダクタンス成分)は、例えば数nHと極めて小さいので、通常動作時のIGBT10のオン特性やスイッチング特性を犠牲にすることがない。したがって、通常動作時においてもIGBTのオン特性やスイッチング特性を犠牲にすることなく、信頼性の高い絶縁ゲート型半導体装置を提供することができる。
【0042】
なお、本実施形態では、コレクタ、ゲート間に接続された双方向ツェナーダイオード14を用いる方法と、浮遊インダクタンス18を利用する方法とを併用する場合を例として説明したが、浮遊インダクタンス18を利用する方法のみを使用しても、高電圧高速サージが印加されたとき、ラッチアップの発生を抑制することができる。
【0043】
サージが印加されたとき、ラッチアップを回避するために、ゲート、エミッタ間容量への必要なチャージ量Vgは、オン状態とするためのしきい値電圧(10V)以上である。また、浮遊インダクタンスを利用する方法では、上記したように、サージに応じて、浮遊インダクタンス18(インダクタンス成分)等の条件を調整することで、ゲート、エミッタ間のチャージ量を調整することができる。
【0044】
したがって、浮遊インダクタンス18を利用して、ゲート、エミッタ間容量17をチャージする場合では、チャージ量Vgが10V以上となるように、浮遊インダクタンス18を調整する。このようにしても、本実施形態と同様の効果を有する。なお、当然のことであるが、浮遊インダクタンス18を調整することでチャージ量を多くする場合では、ゲートが破壊されない程度とする。
【0045】
なお、従来のコレクタ、ゲート間に接続された双方向ツェナーダイオード14を用いる方法だけで、高電圧高速サージが印加されたとき、素子がオン状態となるように、ゲート、エミッタ間容量17をチャージするためには、双方向ツェナーダイオード14の動作抵抗を小さくしなければならない。その方法としては、双方向ツェナーダイオード14のサイズを大きくする方法が考えられるが、絶縁ゲート型半導体装置が大きくなってしまう。このため、コストアップとなってしまう。
【0046】
これに対して、本実施形態によれば、双方向ツェナーダイオード14のサイズを大きくすることなく、ショットキーダイオード19aを用い、浮遊インダクタンス18を調整することで、チャージ量を多くすることができる。これにより、絶縁ゲート型半導体装置が大きくなるのを抑制することができる。
【0047】
(第2実施形態)
図4に本発明の第2実施形態における絶縁ゲート型半導体装置の平面図を示す。また、図5に図4の絶縁ゲート型半導体装置を含む点火装置の回路構成を示す。図4、5中の構成要素において、図1、2と同一部分には同じ符号を与えることで、同一部分の説明を省略する。図1に示されるように、第1実施形態における絶縁ゲート型半導体装置1では、ショットキーダイオード19aをIGBT10と別部品にて形成し、浮遊インダクタンス18をエミッタ12とエミッタ端子16間を接続する金属ワイヤ18aとしたが、これらの部品をIGBT10に集積化することもできる。
【0048】
図4、5に示される絶縁ゲート型半導体装置41は、図1中の絶縁ゲート型半導体装置1に対応している。本実施形態では、単方向ダイオードとして、ショットキーダイオード19aの代わりに、単方向ツェナーダイオード19bを用いている。単方向ツェナーダイオード19bはIGBT10の半導体基板の主表面に酸化膜を介して形成されたPoly−Siダイオード2より構成されている。また、浮遊インダクタンス18は、IGBT10の半導体基板の主表面に形成したエミッタの金属配線18bのインダクタンス成分を利用している。この金属配線18bは、例えばIGBT10が構成されている半導体基板上に形成されたAl配線であり、第1実施形態と同様に、適切なインダクタンスとなるように、従来のAl配線パターンを変更したものである。
【0049】
このように、単方向ツェナーダイオード19bと、浮遊インダクタンス18とをIGBT10に集積化しても、第1実施形態と同様の効果を有し、さらに、第1実施形態における絶縁ゲート型半導体装置1よりも絶縁ゲート型半導体装置41を小型化することができる。これにより、使用する部品点数を減少させることができるので、第1実施形態と比較して、コストダウンさせることができる。
【0050】
また、本実施形態における単方向ツェナーダイオード19bは、順方向降下電圧が例えば3Vであり、逆方向電圧が印加されたときの降伏電圧が例えば30〜40Vとなっている。これにより、従来のゲート保護用ツェナーダイオード52と同様に、IGBT10の静電破壊を防止することができる。
(他の実施形態)
第2実施形態では、単方向ツェナーダイオード19bがIGBT10に集積化された場合を説明していたが、IGBT10と別部品として形成することもできる。すなわち、第1実施形態において、単にショットキーダイオード19aを単方向ツェナーダイオード19bに置き換える構成とすることもできる。これにより、第1実施形態の効果に加え、さらに、IGBT10の静電破壊を防止する効果を有する。
【0051】
なお、絶縁ゲート型半導体装置の構造は、図2に示す回路構成を逸脱しない範囲で種々の変形が可能であり、本発明に含まれる。
【0052】
また、上記した各実施形態では、nチャネル型のIGBT10を用いた場合を説明したが、pチャネル型のIGBT10を用いた場合においても本発明を適用することができ、この場合においても同様の効果が得られる。
【0053】
また、上記した各実施形態では、半導体素子としてIGBT10を使用した絶縁ゲート型半導体装置について述べたが、本発明はIGBT10のみならずパワーMOSFET等を備えた絶縁ゲート型の半導体装置に対して適用できる。具体的には、IGBT10に対して、IGBT10のコレクタ11をドレインに、エミッタ12をソースとしたパワーMOSFETに置き換える。ソースとソース端子との間にて浮遊インダクタンス(インダクタンス成分を有するもの)を接続し、ソース端子とゲート端子との間に単方向ダイオードを接続する。そして、浮遊インダクタンスを高電圧高速サージが印加されたとき、単方向ダイオードを介して、素子をオン状態にすることができるように適切に調整する。
【図面の簡単な説明】
【図1】本発明の第1実施形態における絶縁ゲート型半導体装置の平面図を示す図である。
【図2】本発明の第1実施形態における絶縁ゲート型半導体装置を含む点火装置の回路構成例を示す図である。
【図3】第1実施形態における絶縁ゲート型半導体装置を含む点火装置において、高電圧高速サージが印加されたときの各部の電圧・電流波形例を示す図である。
【図4】本発明の第2実施形態における絶縁ゲート型半導体装置の平面図を示す図である。
【図5】本発明の第2実施形態における絶縁ゲート型半導体装置を含む点火装置の回路構成例を示す図である。
【図6】従来の絶縁ゲート型半導体装置を含む点火装置の回路構成例を示す図である。
【図7】従来の絶縁ゲート型半導体装置を含む点火装置において、高電圧高速サージが印加されたときの各部の電圧・電流波形例を示す図である。
【符号の説明】
1、41、51…絶縁ゲート型半導体装置、2…点火装置、4…基板、
5…制御用IC、10…IGBT、11…コレクタ、12…エミッタ、
13…ゲート、14…双方向ツェナーダイオード、16…エミッタ端子、
17…ゲート・エミッタ間容量、18…浮遊インダクタンス、
18a…金属ワイヤ、18b…金属配線、
19a…ショットキーダイオード、19b…単方向ツェナーダイオード、
29…ゲート端子、30…電源端子、31…点火コイル、32…点火プラグ、
33…ゲート入力抵抗、34…制御信号端子、35…接地端子、
52…保護用ツェナーダイオード。

Claims (7)

  1. コレクタ(11)、ゲート(13)、エミッタ(12)を備え、半導体素子としての絶縁ゲート型バイポーラトランジスタ(10)と、前記エミッタ(12)とエミッタ端子(16)との間に接続されている浮遊インダクタンス(18)と、前記エミッタ端子(16)とゲート(13)との間に接続され、前記ゲート(13)側にカソードを接続した単方向ダイオード(19a、19b)とを有することを特徴とする絶縁ゲート型半導体装置。
  2. ドレイン、ゲート、ソースを備え、半導体素子としてのMOS電界効果型トランジスタと、前記ソースとソース端子間に接続されている浮遊インダクタンスと、前記ソース端子とゲート間に接続され、前記ゲート側にカソードを接続した単方向ダイオードとを有することを特徴とする絶縁ゲート型半導体装置。
  3. 高電圧高速サージが印加されても、前記単方向ダイオード(19a、19b)を介して、ゲート(13)をチャージできるように前記浮遊インダクタンス(18)が調整されていることを特徴とする請求項1又は2に記載の絶縁ゲート型半導体装置。
  4. 前記コレクタ(11)若しくは前記ドレインと、前記ゲート(13)との間に接続されている双方向ツェナーダイオード(14)を有することを特徴とする請求項1乃至3のいずれか1つに記載の絶縁ゲート型半導体装置。
  5. 前記双方向ツェナーダイオード(14)と前記単方向ダイオード(19a、19b)とが前記半導体素子に集積化されていることを特徴とする請求項1乃至4のいずれか1つに記載の絶縁ゲート型半導体装置。
  6. 前記浮遊インダクタンス(18)は、前記半導体素子に集積化され、前記半導体素子と電気的に接続されている金属配線(18b)、若しくは前記半導体素子の外部に形成され、前記半導体素子と電気的に接続されている導線(18a)であることを特徴とする請求項1乃至5のいずれか1つに記載の絶縁ゲート型半導体装置。
  7. 前記単方向ダイオードとして、単方向ツェナーダイオード(19b)を用いることを特徴とする請求項1乃至6のいずれか1つに記載の絶縁ゲート型半導体装置。
JP2002240626A 2002-08-21 2002-08-21 絶縁ゲート型半導体装置 Expired - Fee Related JP3879626B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002240626A JP3879626B2 (ja) 2002-08-21 2002-08-21 絶縁ゲート型半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002240626A JP3879626B2 (ja) 2002-08-21 2002-08-21 絶縁ゲート型半導体装置

Publications (2)

Publication Number Publication Date
JP2004079892A JP2004079892A (ja) 2004-03-11
JP3879626B2 true JP3879626B2 (ja) 2007-02-14

Family

ID=32023357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002240626A Expired - Fee Related JP3879626B2 (ja) 2002-08-21 2002-08-21 絶縁ゲート型半導体装置

Country Status (1)

Country Link
JP (1) JP3879626B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009253699A (ja) * 2008-04-07 2009-10-29 Toyota Motor Corp 半導体素子の駆動回路
DE102009046615A1 (de) * 2009-11-11 2011-05-19 Zf Friedrichshafen Ag Leistungsschalteranordnung für einen Wechselrichter
JP4893819B2 (ja) 2009-12-28 2012-03-07 サンケン電気株式会社 双方向スイッチ
CN115714138B (zh) * 2022-11-10 2023-08-15 上海功成半导体科技有限公司 Igbt器件及其制备方法

Also Published As

Publication number Publication date
JP2004079892A (ja) 2004-03-11

Similar Documents

Publication Publication Date Title
US6125021A (en) Semiconductor ESD protection circuit
US20030076636A1 (en) On-chip ESD protection circuit with a substrate-triggered SCR device
US6614633B1 (en) Semiconductor device including a surge protecting circuit
US5907462A (en) Gate coupled SCR for ESD protection circuits
US7072157B2 (en) Electrostatic discharge protection circuit device
US7859806B2 (en) System and method of electrostatic discharge protection for signals at various voltages
US20080285199A1 (en) Circuit Arrangement and Method For Protecting an Integrated Semiconductor Circuit
JP5540801B2 (ja) Esd保護回路及び半導体装置
US8803190B2 (en) Semiconductor device
EP2066032A2 (en) Power supply control circuit including overvoltage protection circuit
US10296033B2 (en) Substrate voltage control circuit
US6784721B2 (en) Driver circuit for soft turning on a power element connected to an inductive load
JP2015177328A (ja) 半導体装置
US20050111150A1 (en) Electrostatic discharge protection circuit
US4897757A (en) Protection structure for an integrated circuit
US6256184B1 (en) Method and apparatus for providing electrostatic discharge protection
KR100323243B1 (ko) -vs실패모드를피하는고전압드라이버
JP2009543324A (ja) 静電気放電保護装置及びそのための方法
JP3879626B2 (ja) 絶縁ゲート型半導体装置
JP2003264233A (ja) 半導体集積回路装置
JP4590888B2 (ja) 半導体出力回路
US11283439B2 (en) Semiconductor device
JP4701886B2 (ja) 半導体装置
KR101239102B1 (ko) Esd보호 회로
US5731729A (en) Voltage transient suppression circuit for preventing overvoltages in power transistor systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees