EP2497877A1 - Earthquake-resistant seal - Google Patents

Earthquake-resistant seal Download PDF

Info

Publication number
EP2497877A1
EP2497877A1 EP12158105A EP12158105A EP2497877A1 EP 2497877 A1 EP2497877 A1 EP 2497877A1 EP 12158105 A EP12158105 A EP 12158105A EP 12158105 A EP12158105 A EP 12158105A EP 2497877 A1 EP2497877 A1 EP 2497877A1
Authority
EP
European Patent Office
Prior art keywords
elements
seal
joint
seismic
inclined portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12158105A
Other languages
German (de)
French (fr)
Inventor
Michel Gergonne
Stéphane Riondet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Bricolage and Batiment SAS
Original Assignee
DINAC SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DINAC SAS filed Critical DINAC SAS
Publication of EP2497877A1 publication Critical patent/EP2497877A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • E04B1/68Sealings of joints, e.g. expansion joints
    • E04B1/6803Joint covers
    • E04B1/6804Joint covers specially adapted for floor parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • E04B1/68Sealings of joints, e.g. expansion joints
    • E04B1/681Sealings of joints, e.g. expansion joints for free moving parts

Definitions

  • the present invention generally relates to building constructions and, more particularly, a seismic seal for slabs or load-bearing walls.
  • seismic standards set the amplitude of the possible deformations that a building must support.
  • joints are generally used which have the property of absorbing a deformation imposed on a bearing slab without causing rupture of a covering screed. These expansion joints are distributed in the construction, at regular intervals or not, generally every few meters. With respect to thermal expansion joints, seismic joints must absorb much larger deformation amplitudes (usually several centimeters) in all directions.
  • these seismic joints are not intended to prevent any floor covering or ceiling are damaged, but are used so that the concrete screed reported on the carrier slab, or the carrier slab itself is not damaged.
  • the gap between the two parts of the screed, therefore the underlying slab, must be closed, that is to say, it must not be obstructed, whether during the manufacture of a floor or during pouring of the screed covering the bearing slab.
  • the document DE-U-20 2009 006808 describes a seismic seal in which two profiled elements slide relative to one another in the width, each section is mounted to pivot vertically by one of its longitudinal edges on a support fixed to the slab and the spacing of the joint is fixed by sliding of the free edge of a profile relative to the free edge of the other.
  • One of the two sections has a U-shaped section and the other section is in the form of a plate.
  • Such an embodiment allows a spacing of the seal.
  • the minimum width of the joint is fixed by the width of the profiles and it is therefore not possible to allow a tightening of the joint which is narrower than this width.
  • the document DE-A-3015011 also discloses a seismic seal formed of two profiled elements sliding relative to each other. Both elements have a U-shaped section and are nested one inside the other. The longitudinal fasteners of the profiles are recessed relative to the seal, which allows a tightening of the joint over a width less than the width of a profile. However, the seal does not absorb, without being destroyed, a shearing movement.
  • An object of an embodiment of the present invention is to overcome all or part of the disadvantages of known seismic joints.
  • Another object of an embodiment of the present invention is to provide a seismic seal capable of returning to its state of rest following a shake of acceptable amplitude.
  • Another object of an embodiment of the present invention is to provide a seismic seal allowing a large amplitude of deformation in the plane of the structure.
  • Another object of an embodiment of the present invention is to provide an easy-to-install seismic seal.
  • Another object of an embodiment of the present invention is to provide a seismic seal of simple structure.
  • Another object of an embodiment of the present invention is to provide a seismic seal allowing a reversible deformation in shear.
  • the first and second elements comprise said inclined portion (134, 144, 54).
  • the slope of said inclined portion (134, 144, 54) is chosen according to the desired shear amplitude.
  • said inclined portion is at an angle greater than 10 ° relative to the horizontal.
  • said inclined portion makes an angle between 15 and 60 ° with the horizontal.
  • the third element consists of a profiled plate, the second element consisting of a U-shaped profile, whose opening is intended to slidably receive said plate.
  • the depth of the U is approximately equal to the section length of the plate.
  • the third and fourth elements are identical and each has, in section, a U-shape of which one of the branches is tapered towards its free end.
  • the amplitude of the sliding between the third and fourth elements is chosen as a function of the maximum amplitude of desired expansion in contraction and expansion.
  • the articulation amplitude of the third and fourth elements with respect to the first and second elements is chosen as a function of the desired amplitude of shear expansion.
  • sealing tabs are articulated to the first and second elements.
  • the respective free ends of the third and fourth elements comprise spheres adapted to cooperate in opposite shape with grooves of the first and second elements.
  • At least one of the first and second elements consists of two brackets assembled to one another.
  • each of the first and second elements consists of two brackets assembled to one another.
  • the other of the first and second elements is a plate.
  • the figure 1 is a schematic sectional view of a load bearing floor equipped with an embodiment of a seismic seal 1.
  • the floor comprises a bearing slab 2 made in the form of parts 22 and 24 disjointed so as to withstand a seismic shock of a certain amplitude without collapsing the building.
  • the load-bearing slab 2 is generally scraped (irons 25) and is carried by the walls of the building or by poles 27 shown in dashed lines.
  • Each zone 22 or 24 of the bearing slab is independent, that is to say that it is free from neighboring areas, all of these areas constituting the load-bearing structure of the building. If necessary, this structure can be essentially metallic.
  • the load-bearing structure of the building is covered with a screed 3, generally called traffic screed, made of concrete.
  • a screed 3 generally called traffic screed, made of concrete.
  • the yoke 3 is formed as zones 32 and 34 respecting the distribution of the carrier structure.
  • the zones or clevises 32 and 34 must be connected one or the other using earthquake-resistant expansion joints 1, so as to ensure a finish and to prevent the space between the zones 22 and 24 from being obstructed, which would harm its function.
  • the seal 1 has, for example, a height corresponding to the thickness of the yoke 32 and 34.
  • a coating not shown in the upper part
  • the bearing slab zones 22 and 24
  • a ceiling not shown in the lower part
  • Floor and ceiling coverings may themselves be one or more coatings. These coatings are likely to be damaged in case of seismic shock. However, thanks to the seal 1, the load-bearing structure of the building is not affected.
  • Thermal expansion joints may optionally be provided in addition to the seismic joints.
  • these heat seals are generally narrow compared to seismic joints and they also advantageously also fulfill the role of thermal expansion joints of the supporting structure.
  • the figure 2 is a perspective view of an embodiment of the earthquake seal 1 of the figure 1 .
  • This joint comprises two angles 11 and 12, or brackets, having, in section, an L-shaped.
  • the angles 11 and 12 are intended to constitute the foot of the joint.
  • the angles 11 and 12 are arranged in such a way that their respective vertical branches 112 and 122 (in the orientation of the figure) are parallel to one another and that their respective horizontal branches 114 and 124 extend towards the outside of the gasket 1 .
  • Each angle 11, 12 is intended to receive, in its upper part, another angle 13, 14, a vertical branch 132, 142 is attached against a face (internal or external) of the branch 112 or 122 of the bracket 11 or 12, and a flange 134, 144 extends outwardly of the seal.
  • the wings 134 and 144 form an angle greater than 10 ° with the horizontal so that, seen in section, the expansion joint has a slightly flared shape at its upper part.
  • the inclined portions 134 and 144 form an angle between 15 and 60 ° with the horizontal so that the angles 13 and 14 have between them an open angle of between 60 and 150 °.
  • the respective free ends of the flanges 134 and 144 terminate in grooves 136 and 146 directed towards the inside of the seal.
  • the grooves 136 and 146 preferably have circular sections and are intended to receive, in an articulated manner in the length of the profile, two profiled elements 15 and 16 of absorption of the expansion / contraction.
  • the element 15 is for example a profiled plate comprising at a first end a rib 152 of rounded cross-section, forming a ball joint, designed to cooperate with the groove 136 to articulate the element 15.
  • the element 16 has, in section , an elongated U-shaped whose opening 164 is intended to receive the free end of the plate 15.
  • the bottom of the U carries a rounded rib 162, forming a ball joint intended to cooperate with the groove 146 to articulate therein element 16.
  • first and second elements define, in section, an inclined portion, shifting the points of articulation of the third and fourth elements towards the outside of the joint. In other words the difference between the points of articulation is greater than the distance between the vertical branches 112 and 122.
  • the wings 134 and 144 are horizontal, they are extended by vertical ends supporting the grooves 136 and 146 so as to allow a vertical movement of the seal.
  • the figure 3 is a sectional view to bring closer to the figure 1 illustrating an example of deformation of the joint 1 suite, for example, to a seismic shock.
  • the stress on the building causes the zones 22 and 24 of the bearing slab to be spaced apart from one another. This spacing is absorbed by the seal 1 by sliding the element 15 in the element 16.
  • the joints provided by the grooves 136 and 146 for mounting elements 15 and 16 absorb this deformation in shear.
  • the elements 15 and 16 slide relative to each other in the length. We obtain a seal that can absorb deformation in all directions.
  • the seal 1 is placed elements 15 and 16 above. On the underside of the slab, the seal can remain open.
  • the elements 15 and 16 will preferably be on the side of the wall capable of receiving a coating of the coated type.
  • the figure 4 is another example of deformation likely to be experienced by the expansion joint 1.
  • this deformation is a deformation in compression.
  • the two parts 22 and 24 come closer to each other, the two parts of the joint 1 come closer and the plate 15 enters more deeply into the U of the element 16.
  • the earthquake seal allows the parts 22 and 24 to the slab and 32 and 34 of the screed to get closer to each other without causing breakage of the slab carrier.
  • the maximum deformation capacity of the seismic seal is usually set by standards. Depending on these standards or other constraints, the dimensions of the expansion joint and more particularly of its elements 15 and 16 are modified. It is the same for the angles of the brackets 13 and 14 which are adapted in functions of the vertical movements to compensate.
  • the amplitude of acceptable vertical deformation depends on the range of motion that the joints formed of the grooves 136 and 146 and the ribs 152 and 162, as well as the angle between the flanges 134 and 144, can be accepted.
  • the amplitude of horizontal deformation perpendicular to the direction of the profile is fixed by the depth of the U of the element 16 and the width (length in section) of the element 15.
  • the depth of the U is equal to the length in section of the plate 15.
  • the amplitude of horizontal deformation in the direction of the profile is, in practice, not limited by the seal, inasmuch as its length is greater than this amplitude.
  • the seismic expansion joint at rest sets a gap of 40 millimeters between the parts 22 and 24 of the slab.
  • the height of the expansion joint is 10 cm, corresponding to the height provided for the screed 3.
  • the width in section of the expansion joint in its upper part is about 10 cm also.
  • the Figures 5A and 5B are sectional views illustrating the maximum horizontal deformations acceptable by the joint of the figure 2 .
  • the Figure 5A shows a maximum gap of about 60 mm. Beyond, the parts 15 and 16 separate from one another and the seal is no longer reusable.
  • the Figure 5B illustrates a maximum deformation in compression in which the spacing between the slab portions is reduced to about 20 mm. Again, if the slab portions tend to get closer to each other, the expansion members 15 and 16 will be damaged.
  • FIGS. 6A and 6B illustrate two configurations in which the joint undergoes, respectively, deformations by spacing and vertical.
  • the expansion joint is capable of absorbing a vertical deformation of the order of 14 mm without being irreversibly damaged.
  • the joint is laid during the construction, for example during the pouring of concrete screed.
  • the seal 1 is placed by resting, by its foot, on the portions 22 and 24 of the slab by interposing spacers (for example pieces of expanded polystyrene) maintaining the spacing between the angles 11 and 12 during drying .
  • the brackets 11 and 12 are fixed, for example aimed or bolted, to the parts 22 and 24.
  • sealing tabs 17 and 18 are articulated to grooves 138 and 148 provided in the lower face of the flanges 134 and 144, and / or in the face of the branches 132 and 142 (or 112 and 122) outside the seal.
  • the seal is directly made at the slab 2.
  • the brackets 11 and 12 are arranged at the formwork of the slab.
  • angles 11, 12, 13 and 14 assembled in pairs to each other for example by welding, riveting or bolting is a preferred embodiment.
  • a bolting allows, by providing vertical lights in the angles, a height adjustment according to the thickness of the slab.
  • the angles 13 and 14 are then shifted upwards relative to the angles 11 and 12.
  • the minimum height is however fixed by the height of the foot to the extent that it is not desirable that the branches 112 and 122 exceed in the space defined by angles 13 and 14, as this would limit the possible pivoting amplitude of the elements 15 and 16.
  • the seal 1 is preferably metallic (for example aluminum or aluminum alloy).
  • the thickness of the profiles is chosen according to the desired strength and, as a particular example, is a few millimeters thick.
  • the lengths of the profiles depend on the manufacturing constraints. These are reported end-to-end if necessary during installation.
  • an articulated head (angles 13, 14 and elements 15, 16) is provided on both sides of the seal.
  • Such an embodiment is more particularly suitable for producing joints for a load-bearing wall.
  • the figure 7 is a sectional view of another embodiment of a seal 1 ', adapted to a connection on the periphery of a slab 2 (or slab portion) and a wall.
  • the seal is, as before, made at a clevis 3.
  • One half of the seal is identical to the previous embodiment.
  • the part carrying the element 16 is unchanged.
  • the other part carrying the element 15 is adapted to be pressed against the wall 4.
  • the ball of the element 15 is received in a groove 196 of a plate 19 pressed against the wall 4 and, for example, covered with wall cladding.
  • the plate 19 is, for example, screwed or sealed in the wall 4.
  • the Figures 8A and 8B are views illustrating the deformation capacity of the seal 1 'respectively in the compressed position and in the spread position and in vertical movements.
  • the figure 9 is a sectional view illustrating another embodiment of a seismic seal. This mode of embodiment illustrates several variants which may be provided separately or combined with other variants or other embodiments.
  • Such an embodiment of the branches makes the symmetrical structure, which facilitates the production to the extent that all the components can be indifferently mounted on one side or the other of the seal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

The seal (1) has a set of brackets (11, 13) and another set of brackets (12, 14) extended along as separated parts of construction. Profile element (15) i.e. profile plate, and another profile element (16) i.e. U-profile, slide with respect to each other and extend in width of the seal. The profile elements are respectively articulated at the brackets. One of the brackets from the former and the latter sets define an inclined portion e.g. wing (134) in section, where the brackets shift articulations of the sets of the profile elements toward outside of the seal.

Description

Domaine de l'inventionField of the invention

La présente invention concerne de façon générale les constructions de bâtiments et, plus particulièrement, un joint parasismique pour dalles ou murs porteurs.The present invention generally relates to building constructions and, more particularly, a seismic seal for slabs or load-bearing walls.

Exposé de l'art antérieurPresentation of the prior art

De plus en plus de constructions sont réalisées en prévoyant qu'elles résistent à des secousses sismiques. Des normes parasismiques fixent, selon les pays et les régions, l'amplitude des déformations éventuelles que doit supporter un bâtiment.More and more constructions are realized by providing that they resist seismic shaking. According to the countries and regions, seismic standards set the amplitude of the possible deformations that a building must support.

Parmi les moyens parasismiques, on utilise généralement des joints qui ont la propriété d'absorber une déformation imposée à une dalle porteuse sans engendrer de rupture d'une chape de revêtement. Ces joints de dilation sont répartis dans la construction, à intervalle régulier ou non, généralement tous les quelques mètres. Par rapport à des joints de dilatation thermique, les joints parasismiques doivent absorber des amplitudes de déformation beaucoup plus importantes (généralement de plusieurs centimètres) dans toutes les directions.Among the seismic means, joints are generally used which have the property of absorbing a deformation imposed on a bearing slab without causing rupture of a covering screed. These expansion joints are distributed in the construction, at regular intervals or not, generally every few meters. With respect to thermal expansion joints, seismic joints must absorb much larger deformation amplitudes (usually several centimeters) in all directions.

Pour une dalle porteuse, ces joints parasismiques n'ont pas pour objet d'empêcher qu'un éventuel revêtement de sol ou de plafond ne soit endommagé, mais servent à ce que la chape de béton rapportée sur la dalle porteuse, ou la dalle porteuse elle-même ne soit pas endommagée. L'intervalle entre les deux parties de la chape, donc de la dalle sous-jacente, doit être fermé, c'est-à-dire qu'il ne doit pas être obstrué, que ce soit lors de la fabrication d'un plancher ou lors du coulage de la chape recouvrant la dalle porteuse.For a load bearing slab, these seismic joints are not intended to prevent any floor covering or ceiling are damaged, but are used so that the concrete screed reported on the carrier slab, or the carrier slab itself is not damaged. The gap between the two parts of the screed, therefore the underlying slab, must be closed, that is to say, it must not be obstructed, whether during the manufacture of a floor or during pouring of the screed covering the bearing slab.

On connaît de nombreux joints parasismiques qui ne permettent pas d'absorber les mouvements des bâtiments liés aux secousses et qui sont endommagés à la moindre secousse, endommageant alors la dalle (ou partie de dalle) en périphérie.Many seismic joints are known which do not allow to absorb the movements of buildings related to shaking and which are damaged at the slightest jolt, thus damaging the slab (or part of slab) on the periphery.

Le document DE-U-20 2009 006808 décrit un joint parasismique dans lequel deux éléments profilés coulissent l'un par rapport à l'autre dans la largeur, chaque profilé est monté à pivotement vertical par un de ses bords longitudinaux sur un support fixé à la dalle et l'écartement du joint est fixé par coulissement du bord libre d'un profilé par rapport au bord libre de l'autre. Un des deux profilés a une section en forme de U et l'autre profilé a la forme d'une plaque.The document DE-U-20 2009 006808 describes a seismic seal in which two profiled elements slide relative to one another in the width, each section is mounted to pivot vertically by one of its longitudinal edges on a support fixed to the slab and the spacing of the joint is fixed by sliding of the free edge of a profile relative to the free edge of the other. One of the two sections has a U-shaped section and the other section is in the form of a plate.

Une telle réalisation permet un écartement du joint. Toutefois, la largeur minimale du joint est fixée par la largeur des profilés et il n'est donc pas possible d'autoriser un resserrement du joint qui soit plus étroit que cette largeur.Such an embodiment allows a spacing of the seal. However, the minimum width of the joint is fixed by the width of the profiles and it is therefore not possible to allow a tightening of the joint which is narrower than this width.

Le document DE-A-3015011 décrit également un joint parasismique formé de deux éléments profilés coulissant l'un par rapport à l'autre. Les deux éléments ont une section en forme de U et sont imbriqués l'un dans l'autre. Les attaches longitudinales des profilés sont en retrait par rapport au joint, ce qui permet un resserrement du joint sur une largeur inférieure à la largeur d'un profilé. Toutefois, le joint ne permet pas d'absorber, sans être détruit, un mouvement de cisaillement.The document DE-A-3015011 also discloses a seismic seal formed of two profiled elements sliding relative to each other. Both elements have a U-shaped section and are nested one inside the other. The longitudinal fasteners of the profiles are recessed relative to the seal, which allows a tightening of the joint over a width less than the width of a profile. However, the seal does not absorb, without being destroyed, a shearing movement.

Résumésummary

Un objet d'un mode de réalisation de la présente invention est de pallier tout ou partie des inconvénients des joints parasismiques connus.An object of an embodiment of the present invention is to overcome all or part of the disadvantages of known seismic joints.

Un autre objet d'un mode de réalisation de la présente invention est de proposer un joint parasismique susceptible de reprendre son état de repos suite à une secousse d'amplitude acceptable.Another object of an embodiment of the present invention is to provide a seismic seal capable of returning to its state of rest following a shake of acceptable amplitude.

Un autre objet d'un mode de réalisation de la présente invention est de proposer un joint parasismique autorisant une grande amplitude de déformation dans le plan de la structure.Another object of an embodiment of the present invention is to provide a seismic seal allowing a large amplitude of deformation in the plane of the structure.

Un autre objet d'un mode de réalisation de la présente invention est de proposer un joint parasismique facile à poser.Another object of an embodiment of the present invention is to provide an easy-to-install seismic seal.

Un autre objet d'un mode de réalisation de la présente invention est de proposer un joint parasismique de structure simple.Another object of an embodiment of the present invention is to provide a seismic seal of simple structure.

Un autre objet d'un mode de réalisation de la présente invention est de proposer un joint parasismique autorisant une déformation réversible en cisaillement.Another object of an embodiment of the present invention is to provide a seismic seal allowing a reversible deformation in shear.

Pour atteindre tout ou partie de ces objets ainsi que d'autres, on prévoit un joint parasismique, comportant :

  • un premier et un deuxième éléments profilés, adaptés à s'étendre le long de deux parties à séparer d'une construction ; et
  • au moins un troisième et un quatrième éléments profilés, coulissant l'un par rapport à l'autre et s'étendant dans la largeur du joint, les troisième et quatrième éléments profilés étant respectivement articulés aux premier et deuxième éléments,
  • au moins un élément parmi les premier et deuxième éléments définissant, en section, une portion inclinée, décalant les articulations des troisième et quatrième éléments vers l'extérieur du joint.
To achieve all or part of these objects and others, there is provided a seismic seal, comprising:
  • first and second profiled members adapted to extend along two parts to be separated from a construction; and
  • at least a third and a fourth profiled element, sliding relative to one another and extending in the width of the joint, the third and fourth profiled elements being respectively articulated to the first and second elements,
  • at least one of the first and second elements defining, in section, an inclined portion, shifting the joints of the third and fourth elements outwardly of the joint.

Selon un mode de réalisation de la présente invention, les premier et deuxième éléments comportent ladite portion inclinée (134, 144, 54).According to an embodiment of the present invention, the first and second elements comprise said inclined portion (134, 144, 54).

Selon un mode de réalisation de la présente invention, la pente de ladite portion inclinée (134, 144, 54) est choisie en fonction de l'amplitude de cisaillement souhaitée.According to an embodiment of the present invention, the slope of said inclined portion (134, 144, 54) is chosen according to the desired shear amplitude.

Selon un mode de réalisation de la présente invention, ladite portion inclinée fait un angle supérieur à 10° par rapport à l'horizontale.According to an embodiment of the present invention, said inclined portion is at an angle greater than 10 ° relative to the horizontal.

Selon un mode de réalisation de la présente invention, ladite portion inclinée fait un angle compris entre 15 et 60° avec l'horizontale.According to an embodiment of the present invention, said inclined portion makes an angle between 15 and 60 ° with the horizontal.

Selon un mode de réalisation de la présente invention, le troisième élément est constitué d'une plaque profilée, le deuxième élément étant constitué d'un profilé en forme de U, dont l'ouverture est destinée à recevoir à coulissement ladite plaque.According to one embodiment of the present invention, the third element consists of a profiled plate, the second element consisting of a U-shaped profile, whose opening is intended to slidably receive said plate.

Selon un mode de réalisation de la présente invention, la profondeur du U est approximativement égale à longueur en section de la plaque.According to one embodiment of the present invention, the depth of the U is approximately equal to the section length of the plate.

Selon un mode de réalisation de la présente invention, les troisième et quatrième éléments sont identiques et présente chacun, en section, une forme de U dont une des branches est effilée vers son extrémité libre.According to one embodiment of the present invention, the third and fourth elements are identical and each has, in section, a U-shape of which one of the branches is tapered towards its free end.

Selon un mode de réalisation de la présente invention, l'amplitude du coulissement entre les troisième et quatrième éléments est choisie en fonction de l'amplitude maximale de dilatation souhaitée en contraction et expansion.According to an embodiment of the present invention, the amplitude of the sliding between the third and fourth elements is chosen as a function of the maximum amplitude of desired expansion in contraction and expansion.

Selon un mode de réalisation de la présente invention, l'amplitude d'articulation des troisième et quatrième éléments par rapport aux premier et deuxième éléments est choisie en fonction de l'amplitude de dilatation en cisaillement souhaitée.According to one embodiment of the present invention, the articulation amplitude of the third and fourth elements with respect to the first and second elements is chosen as a function of the desired amplitude of shear expansion.

Selon un mode de réalisation de la présente invention, des pattes de scellement sont articulées aux premier et deuxième éléments.According to one embodiment of the present invention, sealing tabs are articulated to the first and second elements.

Selon un mode de réalisation de la présente invention, les extrémités libres respectives des troisième et quatrième éléments comportent des rotules propres à coopérer à forme contraire avec des gorges des premier et deuxième éléments.According to one embodiment of the present invention, the respective free ends of the third and fourth elements comprise spheres adapted to cooperate in opposite shape with grooves of the first and second elements.

Selon un mode de réalisation de la présente invention, au moins un des premier et deuxième éléments est constitué de deux cornières assemblées l'une à l'autre.According to one embodiment of the present invention, at least one of the first and second elements consists of two brackets assembled to one another.

Selon un mode de réalisation de la présente invention, chacun des premier et deuxième éléments est constitué de deux cornières assemblées l'une à l'autre.According to an embodiment of the present invention, each of the first and second elements consists of two brackets assembled to one another.

Selon un mode de réalisation de la présente invention, l'autre des premier et deuxième éléments est une platine.According to an embodiment of the present invention, the other of the first and second elements is a plate.

On prévoit également une construction en béton comportant au moins un tel joint parasismique.There is also provided a concrete construction comprising at least one such seismic seal.

Brève description des dessinsBrief description of the drawings

Ces objets, caractéristiques et avantages, ainsi que d'autres seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles :

  • la figure 1 est une vue en coupe schématique d'une structure porteuse équipée d'un mode de réalisation d'un joint parasismique ;
  • la figure 2 est une vue en coupe transversale d'un mode de réalisation d'un joint parasismique au repos ;
  • la figure 3 est une vue en coupe illustrant un exemple de fonctionnement du joint parasismique de la figure 1 ;
  • la figure 4 est une vue en coupe illustrant un autre exemple de fonctionnement du joint parasismique de la figure 1 ;
  • les figures 5A et 5B illustrent des amplitudes maximales de déformation horizontale du joint parasismique de la figure 2 ; et
  • les figures 6A et 6B illustrent des amplitudes de déformation verticale et horizontale du joint parasismique de la figure 2 ;
  • la figure 7 est un vue en coupe transversale d'un autre mode de réalisation de joint parasismique, adapté à un joint entre plancher et mur ;
  • les figures 8A et 8B illustrent des amplitudes de déformation du joint parasismique de la figure 7 ; et
  • la figure 9 est une vue en coupe d'un autre mode de réalisation d'un joint parasismique.
These and other objects, features, and advantages will be set forth in detail in the following description of particular embodiments in a non-limitative manner with reference to the accompanying figures in which:
  • the figure 1 is a schematic sectional view of a supporting structure equipped with an embodiment of a seismic seal;
  • the figure 2 is a cross-sectional view of an embodiment of a seismic seal at rest;
  • the figure 3 is a sectional view illustrating an example of operation of the seismic seal of the figure 1 ;
  • the figure 4 is a sectional view illustrating another example of operation of the seismic seal of the figure 1 ;
  • the Figures 5A and 5B illustrate maximum amplitudes of horizontal deformation of the seismic seal of the figure 2 ; and
  • the Figures 6A and 6B illustrate amplitudes of vertical and horizontal deformation of the earthquake figure 2 ;
  • the figure 7 is a cross-sectional view of another seismic seal embodiment adapted to a floor-to-wall joint;
  • the Figures 8A and 8B illustrate amplitudes of deformation of the seismic seal of the figure 7 ; and
  • the figure 9 is a sectional view of another embodiment of a seismic seal.

Description détailléedetailed description

De mêmes éléments ont été désignés par de mêmes références aux différentes figures. Par souci de clarté, seuls les éléments qui sont utiles à la compréhension de l'invention ont été représentés et seront décrits. En particulier, les procédés de construction des bâtiments parasismiques n'ont pas été détaillés, les modes de réalisation qui vont être décrits étant compatibles avec les techniques de fabrication et de pose usuelles de joints parasismiques. De plus, les modes de réalisation vont être décrits en relation avec un exemple appliqué à la réalisation d'une dalle, mais ils s'appliquent plus généralement à la réalisation de toute structure porteuse parasismique, par exemple un mur, un ouvrage d'art, etc.The same elements have been designated with the same references in the various figures. For the sake of clarity, only the elements that are useful for understanding the invention have been shown and will be described. In particular, the methods of construction of seismic buildings have not been detailed, the embodiments to be described are compatible with the usual manufacturing techniques and laying seismic joints. In addition, the embodiments will be described in connection with an example applied to the realization of a slab, but they apply more generally to the realization of any seismic load bearing structure, for example a wall, a work of art etc.

La figure 1 est une vue en coupe schématique d'un plancher porteur équipé d'un mode de réalisation d'un joint parasismique 1. Le plancher comporte une dalle porteuse 2 réalisée sous la forme de parties 22 et 24 disjointes de façon à supporter une secousse sismique d'une certaine amplitude sans effondrer le bâtiment. La dalle porteuse 2 est généralement ferraillée (fers 25) et est portée par des murs du bâtiment ou par des poteaux 27 illustrés en pointillés. Chaque zone 22 ou 24 de la dalle porteuse est indépendante, c'est-à-dire qu'elle est libre par rapport aux zones voisines, l'ensemble de ces zones constituant la structure porteuse du bâtiment. Le cas échéant, cette structure peut être essentiellement métallique.The figure 1 is a schematic sectional view of a load bearing floor equipped with an embodiment of a seismic seal 1. The floor comprises a bearing slab 2 made in the form of parts 22 and 24 disjointed so as to withstand a seismic shock of a certain amplitude without collapsing the building. The load-bearing slab 2 is generally scraped (irons 25) and is carried by the walls of the building or by poles 27 shown in dashed lines. Each zone 22 or 24 of the bearing slab is independent, that is to say that it is free from neighboring areas, all of these areas constituting the load-bearing structure of the building. If necessary, this structure can be essentially metallic.

La structure porteuse du bâtiment, plus particulièrement la dalle 2, est recouverte d'une chape 3, généralement appelée chape de circulation, en béton. Pour préserver le caractère indépendant des zones 22 et 24 de la structure porteuse, la chape 3 est réalisée sous forme de zones 32 et 34 respectant la distribution de la structure porteuse. Les zones ou chapes 32 et 34 doivent être reliées les unes ou autres à l'aide de joints de dilatation parasismiques 1, de façon à assurer une finition et à empêcher que l'espace entre les zones 22 et 24 ne soient obstrué, ce qui nuirait à sa fonction.The load-bearing structure of the building, more particularly the slab 2, is covered with a screed 3, generally called traffic screed, made of concrete. To preserve the independent of the zones 22 and 24 of the carrier structure, the yoke 3 is formed as zones 32 and 34 respecting the distribution of the carrier structure. The zones or clevises 32 and 34 must be connected one or the other using earthquake-resistant expansion joints 1, so as to ensure a finish and to prevent the space between the zones 22 and 24 from being obstructed, which would harm its function.

Le joint 1 a, par exemple, une hauteur correspondant à l'épaisseur de la chape 32 et 34. Une fois la chape réalisée, celle-ci est éventuellement recouverte d'un revêtement (non représenté en partie supérieure) et la dalle porteuse (zones 22 et 24) peut le cas échéant être revêtue d'un plafond (non représenté en partie inférieure). Les revêtements de sol et de plafond peuvent être constitués eux-mêmes d'un ou plusieurs revêtements. Ces revêtements sont susceptibles d'être endommagés en cas de secousse sismique. Toutefois, grâce au joint 1, la structure porteuse du bâtiment n'est pas affectée.The seal 1 has, for example, a height corresponding to the thickness of the yoke 32 and 34. Once the yoke is made, it is optionally covered with a coating (not shown in the upper part) and the bearing slab ( zones 22 and 24) can optionally be covered with a ceiling (not shown in the lower part). Floor and ceiling coverings may themselves be one or more coatings. These coatings are likely to be damaged in case of seismic shock. However, thanks to the seal 1, the load-bearing structure of the building is not affected.

Des joints de dilatation thermique peuvent le cas échéant être prévus en plus des joints parasismiques. Toutefois, ces joints thermiques sont généralement étroits par rapport aux joints parasismiques et ces derniers remplissent avantageusement également aussi le rôle de joints de dilatation thermique de la structure porteuse.Thermal expansion joints may optionally be provided in addition to the seismic joints. However, these heat seals are generally narrow compared to seismic joints and they also advantageously also fulfill the role of thermal expansion joints of the supporting structure.

La figure 2 est une vue en perspective d'un mode de réalisation du joint parasismique 1 de la figure 1. Ce joint comporte deux cornières 11 et 12, ou équerres, ayant, en section, une forme de L. Les cornières 11 et 12 sont destinées à constituer le pied du joint. Les cornières 11 et 12 sont disposées de telle sorte que leurs branches verticales respectives 112 et 122 (dans l'orientation de la figure) soient parallèles entre elles et que leurs branches horizontales respectives 114 et 124 s'étendent vers l'extérieur du joint 1.The figure 2 is a perspective view of an embodiment of the earthquake seal 1 of the figure 1 . This joint comprises two angles 11 and 12, or brackets, having, in section, an L-shaped. The angles 11 and 12 are intended to constitute the foot of the joint. The angles 11 and 12 are arranged in such a way that their respective vertical branches 112 and 122 (in the orientation of the figure) are parallel to one another and that their respective horizontal branches 114 and 124 extend towards the outside of the gasket 1 .

Chaque cornière 11, 12 est destinée à recevoir, dans sa partie supérieure, une autre cornière 13, 14 dont une branche verticale 132, 142 est rapportée contre une face (interne ou externe) de la branche 112 ou 122 de la cornière 11 ou 12, et dont une aile 134, 144 s'étend vers l'extérieur du joint. Les ailes 134 et 144 forment un angle supérieur à 10° avec l'horizontale de sorte que, vu en coupe, le joint de dilatation a une forme légèrement évasée en sa partie supérieure. De préférence, les portions inclinées 134 et 144 forment un angle compris entre 15 et 60° avec l'horizontale de telle sorte que les cornières 13 et 14 présentent entre elles un angle ouvert compris entre 60 et 150°.Each angle 11, 12 is intended to receive, in its upper part, another angle 13, 14, a vertical branch 132, 142 is attached against a face (internal or external) of the branch 112 or 122 of the bracket 11 or 12, and a flange 134, 144 extends outwardly of the seal. The wings 134 and 144 form an angle greater than 10 ° with the horizontal so that, seen in section, the expansion joint has a slightly flared shape at its upper part. Preferably, the inclined portions 134 and 144 form an angle between 15 and 60 ° with the horizontal so that the angles 13 and 14 have between them an open angle of between 60 and 150 °.

Les extrémités libres respectives des ailes 134 et 144 se terminent par des gorges 136 et 146 dirigées vers l'intérieur du joint. Les gorges 136 et 146 ont, de préférence, des sections circulaires et sont destinées à recevoir, de façon articulée dans la longueur du profilé, deux éléments profilés 15 et 16 d'absorption de la dilatation/contraction. L'élément 15 est par exemple une plaque profilée comportant à une première extrémité une nervure 152 de section arrondie, formant rotule, destinée à coopérer à forme contraire avec la gorge 136 pour articuler l'élément 15. L'élément 16 a, en section, une forme en U allongée dont l'ouverture 164 est destinée à recevoir l'extrémité libre de la plaque 15. Le fond du U porte une nervure arrondie 162, formant rotule, destinée à coopérer à forme contraire avec la gorge 146 pour y articuler l'élément 16.The respective free ends of the flanges 134 and 144 terminate in grooves 136 and 146 directed towards the inside of the seal. The grooves 136 and 146 preferably have circular sections and are intended to receive, in an articulated manner in the length of the profile, two profiled elements 15 and 16 of absorption of the expansion / contraction. The element 15 is for example a profiled plate comprising at a first end a rib 152 of rounded cross-section, forming a ball joint, designed to cooperate with the groove 136 to articulate the element 15. The element 16 has, in section , an elongated U-shaped whose opening 164 is intended to receive the free end of the plate 15. The bottom of the U carries a rounded rib 162, forming a ball joint intended to cooperate with the groove 146 to articulate therein element 16.

On peut considérer que les premier et deuxième éléments définissent, en section, une portion inclinée, décalant les points d'articulation des troisième et quatrième éléments vers l'extérieur du joint. En d'autres termes l'écart entre les points d'articulation est supérieur à l'écart entre les branches verticales 112 et 122.It can be considered that the first and second elements define, in section, an inclined portion, shifting the points of articulation of the third and fourth elements towards the outside of the joint. In other words the difference between the points of articulation is greater than the distance between the vertical branches 112 and 122.

Dans le cas où les ailes 134 et 144 sont horizontales, elles se prolongent par des extrémités verticales supportant les gorges 136 et 146 de façon à autoriser un débattement vertical du joint.In the case where the wings 134 and 144 are horizontal, they are extended by vertical ends supporting the grooves 136 and 146 so as to allow a vertical movement of the seal.

La figure 3 est une vue en coupe à rapprocher de la figure 1 illustrant un exemple de déformation du joint 1 suite, par exemple, à une secousse sismique. Dans l'exemple de la figure 3, on suppose que la contrainte apportée au bâtiment engendre un écartement des zones 22 et 24 de la dalle porteuse l'une par rapport à l'autre. Cet écartement est absorbé par le joint 1 grâce au coulissement de l'élément 15 dans l'élément 16. De plus, en supposant comme cela est représenté qu'une des dalles (ou zones) s'affaisse par rapport à l'autre, les articulations apportées par les gorges 136 et 146 de montage des éléments 15 et 16 absorbent cette déformation en cisaillement. En outre, pour le cas d'un décalage des zones 22 et 24 parallèlement à la direction longitudinale du joint profilé, les éléments 15 et 16 coulissent l'un par rapport à l'autre dans la longueur. On obtient bien un joint susceptible d'absorber une déformation dans toutes les directions.The figure 3 is a sectional view to bring closer to the figure 1 illustrating an example of deformation of the joint 1 suite, for example, to a seismic shock. In the example of the figure 3 it is assumed that the stress on the building causes the zones 22 and 24 of the bearing slab to be spaced apart from one another. This spacing is absorbed by the seal 1 by sliding the element 15 in the element 16. In addition, assuming, as shown, that one of the slabs (or zones) collapses relative to the other, the joints provided by the grooves 136 and 146 for mounting elements 15 and 16 absorb this deformation in shear. In addition, for the case of an offset of the zones 22 and 24 parallel to the longitudinal direction of the profiled seal, the elements 15 and 16 slide relative to each other in the length. We obtain a seal that can absorb deformation in all directions.

Pour éviter que l'intervalle entre les partie 22 et 24 de la dalle ne se colmate, ce qui empêcherait au joint de pouvoir reprendre son écartement normal, le joint 1 est posé éléments 15 et 16 au dessus. En face inférieure de la dalle, le joint peut rester ouvert. Dans le cas d'un mur, les éléments 15 et 16 seront, de préférence, du côté du mur susceptible de recevoir un revêtement de type enduit.To prevent the gap between the portion 22 and 24 of the slab is clogged, which would prevent the seal to resume its normal spacing, the seal 1 is placed elements 15 and 16 above. On the underside of the slab, the seal can remain open. In the case of a wall, the elements 15 and 16 will preferably be on the side of the wall capable of receiving a coating of the coated type.

La figure 4 est un autre exemple de déformation susceptible d'être subie par le joint de dilatation 1. Dans l'exemple de la figure 4, cette déformation est une déformation en compression. Les deux parties 22 et 24 se rapprochant l'une de l'autre, les deux parties du joint 1 se rapprochent et la plaque 15 entre plus profondément dans le U de l'élément 16. Le joint parasismique permet aux parties 22 et 24 de la dalle et 32 et 34 de la chape de se rapprocher l'une de l'autre sans engendrer de ruptures de cette dalle porteuse.The figure 4 is another example of deformation likely to be experienced by the expansion joint 1. In the example of the figure 4 this deformation is a deformation in compression. As the two parts 22 and 24 come closer to each other, the two parts of the joint 1 come closer and the plate 15 enters more deeply into the U of the element 16. The earthquake seal allows the parts 22 and 24 to the slab and 32 and 34 of the screed to get closer to each other without causing breakage of the slab carrier.

La capacité maximum de déformation du joint parasismique est généralement fixée par des normes. En fonction de ces normes ou autres contraintes, les dimensions du joint de dilatation et plus particulièrement de ses éléments 15 et 16 sont modifiées. Il en est de même pour les angles des équerres 13 et 14 qui sont adaptés en fonctions des mouvements verticaux à compenser.The maximum deformation capacity of the seismic seal is usually set by standards. Depending on these standards or other constraints, the dimensions of the expansion joint and more particularly of its elements 15 and 16 are modified. It is the same for the angles of the brackets 13 and 14 which are adapted in functions of the vertical movements to compensate.

L'amplitude de déformation verticale acceptable dépend de l'amplitude de mouvement que sont susceptibles d'accepter les articulations formées des gorges 136 et 146 et des nervures 152 et 162, ainsi que de l'angle entre les ailes 134 et 144.The amplitude of acceptable vertical deformation depends on the range of motion that the joints formed of the grooves 136 and 146 and the ribs 152 and 162, as well as the angle between the flanges 134 and 144, can be accepted.

L'amplitude de déformation horizontale perpendiculairement à la direction du profilé est fixée par la profondeur du U de l'élément 16 et la largeur (longueur en section) de l'élément 15. De préférence, la profondeur du U est égale à la longueur en section de la plaque 15.The amplitude of horizontal deformation perpendicular to the direction of the profile is fixed by the depth of the U of the element 16 and the width (length in section) of the element 15. Preferably, the depth of the U is equal to the length in section of the plate 15.

L'amplitude de déformation horizontale dans la direction du profilé n'est, en pratique, pas limitée par le joint, dans la mesure où sa longueur est supérieure à cette amplitude.The amplitude of horizontal deformation in the direction of the profile is, in practice, not limited by the seal, inasmuch as its length is greater than this amplitude.

Dans l'exemple particulier de réalisation de la figure 2, le joint de dilatation parasismique au repos fixe un écartement de 40 millimètres entre les parties 22 et 24 de la dalle. Selon cet exemple, la hauteur du joint de dilatation est de 10 cm, correspondant à la hauteur prévue pour la chape 3. La largeur en section du joint de dilatation dans sa partie supérieure est d'environ 10 cm également.In the particular embodiment of the figure 2 , the seismic expansion joint at rest sets a gap of 40 millimeters between the parts 22 and 24 of the slab. According to this example, the height of the expansion joint is 10 cm, corresponding to the height provided for the screed 3. The width in section of the expansion joint in its upper part is about 10 cm also.

Les figures 5A et 5B sont des vues en coupe illustrant les déformations horizontales maximum acceptables par le joint de la figure 2. La figure 5A illustre un écartement maximum d'environ 60 mm. Au-delà, les parties 15 et 16 se désolidarisent l'une de l'autre et le joint n'est plus réutilisable.The Figures 5A and 5B are sectional views illustrating the maximum horizontal deformations acceptable by the joint of the figure 2 . The Figure 5A shows a maximum gap of about 60 mm. Beyond, the parts 15 and 16 separate from one another and the seal is no longer reusable.

La figure 5B illustre une déformation maximale en compression dans laquelle l'écartement entre les parties de dalle est réduit à environ 20 mm. Là encore, si les parties de dalle ont tendance à se rapprocher plus l'une de l'autre, les éléments 15 et 16 de dilatation seront endommagés.The Figure 5B illustrates a maximum deformation in compression in which the spacing between the slab portions is reduced to about 20 mm. Again, if the slab portions tend to get closer to each other, the expansion members 15 and 16 will be damaged.

Les figures 6A et 6B illustrent deux configurations dans lesquelles le joint subit, respectivement, des déformations par écartement et verticale. Dans l'exemple représenté, et avec les dimensions données précédemment, le joint de dilatation est susceptible d'absorber une déformation verticale de l'ordre de 14 mm sans être endommagé de façon irréversible.The Figures 6A and 6B illustrate two configurations in which the joint undergoes, respectively, deformations by spacing and vertical. In the example shown, and with the dimensions given above, the expansion joint is capable of absorbing a vertical deformation of the order of 14 mm without being irreversibly damaged.

Les dimensions ci-dessus sont données à titre d'exemple particulier de réalisation et peuvent, bien entendu, être modifiées en fonction de l'application.The above dimensions are given as a particular example of embodiment and may, of course, be modified depending on the application.

La pose du joint s'effectue lors de la réalisation de la construction, par exemple lors du coulage du béton de la chape. Par exemple, Le joint 1 est placé en reposant, par son pied, sur les portions 22 et 24 de la dalle en intercalant des entretoises (par exemple des morceaux de polystyrène expansé) maintenant l'écartement entre les cornières 11 et 12 pendant le séchage. De préférence, les équerres 11 et 12 sont fixées, par exemple visées ou boulonnées, aux parties 22 et 24. Une fois la chape sèche, on enlève les entretoises, ce qui rend le joint de dilatation fonctionnel.The joint is laid during the construction, for example during the pouring of concrete screed. For example, the seal 1 is placed by resting, by its foot, on the portions 22 and 24 of the slab by interposing spacers (for example pieces of expanded polystyrene) maintaining the spacing between the angles 11 and 12 during drying . Preferably, the brackets 11 and 12 are fixed, for example aimed or bolted, to the parts 22 and 24. Once the screed dries, the spacers are removed, which makes the expansion joint functional.

De préférence, des pattes de scellement 17 et 18 (figure 1) sont articulées à des gorges 138 et 148 prévues dans la face inférieure des ailes 134 et 144, et/ou dans la face des branches 132 et 142 (ou 112 et 122) à l'extérieur du joint.Preferably, sealing tabs 17 and 18 ( figure 1 ) are articulated to grooves 138 and 148 provided in the lower face of the flanges 134 and 144, and / or in the face of the branches 132 and 142 (or 112 and 122) outside the seal.

Selon une variante non représentée, le joint est directement réalisé au niveau de la dalle 2. Dans ce cas, les équerres 11 et 12 sont disposées au niveau du coffrage de la dalle.According to a variant not shown, the seal is directly made at the slab 2. In this case, the brackets 11 and 12 are arranged at the formwork of the slab.

La réalisation à l'aide de cornières 11, 12, 13 et 14 assemblées par paires les unes aux autres, par exemple par soudure, rivetage ou boulonnage constitue un mode de réalisation préféré. Un boulonnage autorise notamment, en prévoyant des lumières verticales dans les cornières, un réglage en hauteur en fonction de l'épaisseur de la dalle. Selon une telle variante non représentée, les cornières 13 et 14 sont alors décalées vers le haut par rapport aux cornières 11 et 12. La hauteur minimale est cependant fixée par la hauteur du pied dans la mesure où il n'est pas souhaitable que les branches 112 et 122 dépassent dans l'espace défini par les cornières 13 et 14, car cela limiterait l'amplitude de pivotement possible des éléments 15 et 16. Selon une autre variante non représentée, on pourra réaliser des profilés d'une seule pièce pour les cornières 11 et 13 et d'une seule pièce pour les cornières 12 et 14.The realization by means of angles 11, 12, 13 and 14 assembled in pairs to each other, for example by welding, riveting or bolting is a preferred embodiment. In particular, a bolting allows, by providing vertical lights in the angles, a height adjustment according to the thickness of the slab. According to such a variant not shown, the angles 13 and 14 are then shifted upwards relative to the angles 11 and 12. The minimum height is however fixed by the height of the foot to the extent that it is not desirable that the branches 112 and 122 exceed in the space defined by angles 13 and 14, as this would limit the possible pivoting amplitude of the elements 15 and 16. According to another variant not shown, it is possible to produce one-piece profiles for the angles 11 and 13 and in one piece for the angles 12 and 14.

Le joint 1 est de préférence métallique (par exemple en aluminium ou alliage d'aluminium). L'épaisseur des profilés est choisie en fonction de la résistance mécanique souhaitée et, à titre d'exemple particulier, est de quelques millimètres d'épaisseur.The seal 1 is preferably metallic (for example aluminum or aluminum alloy). The thickness of the profiles is chosen according to the desired strength and, as a particular example, is a few millimeters thick.

Les longueurs des profilés dépendent des contraintes de fabrication. Ceux-ci sont rapportés bout-à-bout si nécessaire lors de la pose.The lengths of the profiles depend on the manufacturing constraints. These are reported end-to-end if necessary during installation.

Selon une autre variante non représentée, une tête articulée (cornières 13, 14 et éléments 15, 16) est prévue des deux côtés du joint. Un tel mode de réalisation est plus particulièrement adapté à la réalisation de joints pour mur porteur.According to another variant not shown, an articulated head (angles 13, 14 and elements 15, 16) is provided on both sides of the seal. Such an embodiment is more particularly suitable for producing joints for a load-bearing wall.

La figure 7 est une vue en coupe d'un autre mode de réalisation d'un joint 1', adapté à une liaison en périphérie d'une dalle 2 (ou portion de dalle) et un mur. Le joint est, comme précédemment, réalisé au niveau d'une chape 3. Une moitié du joint est identique au mode de réalisation précédent. Dans l'exemple représenté, on suppose que la partie portant l'élément 16 est inchangée. L'autre partie portant l'élément 15 est adaptée à être plaquée contre le mur 4. Selon ce mode de réalisation, la rotule de l'élément 15 est reçue dans une gorge 196 d'une platine 19 plaquée contre le mur 4 et, par exemple, recouverte du revêtement de mur. La platine 19 est, par exemple, vissée ou scellée dans le mur 4.The figure 7 is a sectional view of another embodiment of a seal 1 ', adapted to a connection on the periphery of a slab 2 (or slab portion) and a wall. The seal is, as before, made at a clevis 3. One half of the seal is identical to the previous embodiment. In the example shown, it is assumed that the part carrying the element 16 is unchanged. The other part carrying the element 15 is adapted to be pressed against the wall 4. According to this embodiment, the ball of the element 15 is received in a groove 196 of a plate 19 pressed against the wall 4 and, for example, covered with wall cladding. The plate 19 is, for example, screwed or sealed in the wall 4.

Les figures 8A et 8B sont des vues illustrant la capacité de déformation du joint 1', respectivement en position comprimée et en position écartée et selon des mouvements verticaux.The Figures 8A and 8B are views illustrating the deformation capacity of the seal 1 'respectively in the compressed position and in the spread position and in vertical movements.

La figure 9 est une vue en coupe illustrant un autre mode de réalisation d'un joint parasismique. Ce mode de réalisation illustre plusieurs variantes qui peuvent être prévues séparément ou être combinées avec d'autres variantes ou d'autres modes de réalisation.The figure 9 is a sectional view illustrating another embodiment of a seismic seal. This mode of embodiment illustrates several variants which may be provided separately or combined with other variants or other embodiments.

Par rapport aux modes de réalisation ci-dessus :

  • les supports 51 des éléments coulissants sont chacun en une seule partie (incluant les portions horizontales 52 reposant sur la dalle 2, les portions verticales 53 définissant la largeur du joint, les portions inclinées 54 d'absorption du cisaillement et les articulations ou gorges 55) ;
  • les pattes de scellement 17' et 18' comportent des ailettes 55 favorisant l'accrochage dans la chape 3 ; et
  • les éléments 60 coulissant l'un dans l'autre sont identiques et ont tous les deux une section en forme de U, l'une 62 des branches 61 et 62 du U étant effilée vers son extrémité libre. La direction du U est de préférence inclinée par rapport à l'horizontale de sorte que, en imbriquant les deux éléments 60 de façon inversée (la partie effilée 62 de l'un au dessus, la partie effilée de l'autre en dessous), la surface supérieure est approximativement plane et sans cran à la transition d'un élément à l'autre. Le fait que l'autre branche 62 ne soit pas effilée assure la rigidité de la liaison.
Compared to the embodiments above:
  • the supports 51 of the sliding elements are each in one part (including the horizontal portions 52 resting on the slab 2, the vertical portions 53 defining the width of the joint, the inclined portions 54 of absorption of the shear and the joints or grooves 55) ;
  • the sealing lugs 17 'and 18' comprise fins 55 favoring attachment in the yoke 3; and
  • the elements 60 sliding one into the other are identical and both have a U-shaped section, one 62 of the branches 61 and 62 of the U being tapered towards its free end. The direction of the U is preferably inclined with respect to the horizontal so that, by interleaving the two elements 60 inversely (the tapered portion 62 of one above, the tapered portion of the other below), the upper surface is approximately planar and without notches at the transition from one element to another. The fact that the other branch 62 is not tapered ensures the rigidity of the connection.

Une telle réalisation des branches rend la structure symétrique, ce qui facilite la production dans la mesure où tous les constituants peuvent être indifféremment montés d'un côté ou de l'autre du joint.Such an embodiment of the branches makes the symmetrical structure, which facilitates the production to the extent that all the components can be indifferently mounted on one side or the other of the seal.

Divers modes de réalisation ont été décrits. Diverses variantes et modifications apparaîtront à l'homme de l'art. En particulier, si des formes lisses de cornières constituent des modes de réalisation simples, d'autres formes pourront leur être conférées (par exemple des formes ondulées ou crénelées pour améliorer l'accrochage du béton de la dalle porteuse au profilé), pourvu de respecter les fonctionnalités décrites et notamment le coulissement des éléments 15 et 16 entre eux et leurs articulations respectives aux deux parties fixes du joint. En outre, les différents modes de réalisation décrits sont combinables entièrement ou partiellement.Various embodiments have been described. Various variations and modifications will be apparent to those skilled in the art. In particular, if smooth forms of angles are simple embodiments, other forms may be conferred (eg corrugated or crenellated forms to improve the adhesion of the concrete slab carrier profiled), provided to respect the features described and in particular the sliding elements 15 and 16 between them and their respective joints to the two fixed parts of the seal. In addition, the various embodiments described are fully or partially combinable.

Claims (15)

Joint parasismique, comportant : un premier (11, 13, 51, 19) et un deuxième (12, 14, 51) éléments profilés, adaptés à s'étendre le long de deux parties à séparer d'une construction ; et au moins un troisième (15, 60) et un quatrième (16, 60) éléments profilés, coulissant l'un par rapport à l'autre et s'étendant dans la largeur du joint, les troisième et quatrième éléments profilés étant respectivement articulés aux premier et deuxième éléments, caractérisé en ce qu'au moins un élément parmi les premier et deuxième éléments définit, en section, une portion inclinée (134, 144, 54), décalant les articulations des troisième et quatrième éléments vers l'extérieur du joint.Seismic seal, comprising: a first (11, 13, 51, 19) and a second (12, 14, 51) profiled element, adapted to extend along two parts to separate a construction; and at least a third (15, 60) and a fourth (16, 60) profiled element, sliding relative to one another and extending in the width of the joint, the third and fourth profiled elements being respectively articulated to the first and second elements, characterized in that at least one of the first and second elements defines, in section, an inclined portion (134, 144, 54), shifting the joints of the third and fourth elements outwardly of the joint. Joint selon la revendication 1, dans lequel les premier et deuxième éléments comportent ladite portion inclinée (134, 144, 54).A seal according to claim 1, wherein the first and second members comprise said inclined portion (134, 144, 54). Joint selon la revendication 1 ou 2, dans lequel la pente de ladite portion inclinée (134, 144, 54) est choisie en fonction de l'amplitude de cisaillement souhaitée.A seal according to claim 1 or 2, wherein the slope of said inclined portion (134, 144, 54) is selected as a function of the desired shear magnitude. Joint selon l'une quelconque des revendications 1 à 3, dans lequel ladite portion inclinée fait un angle supérieur à 10° par rapport à l'horizontale.Joint according to any one of claims 1 to 3, wherein said inclined portion is at an angle greater than 10 ° to the horizontal. Joint selon la revendication 4, dans lequel ladite portion inclinée fait un angle compris entre 15 et 60° avec l'horizontale.A seal according to claim 4, wherein said inclined portion is at an angle of between 15 and 60 ° to the horizontal. Joint selon l'une quelconque des revendications 1 à 5, dans lequel le troisième élément (15) est constitué d'une plaque profilée, le deuxième élément (16) étant constitué d'un profilé en forme de U, dont l'ouverture est destinée à recevoir à coulissement ladite plaque.Seal according to any one of claims 1 to 5, wherein the third element (15) consists of a profiled plate, the second element (16) consisting of a U-shaped profile, whose opening is intended to slidably receive said plate. Joint selon l'une quelconque des revendications 1 à 6, dans lequel les troisième et quatrième éléments (60) sont identiques et présentent chacun, en section, une forme de U dont une (62) des branches est effilée vers son extrémité libre.Joint according to any one of claims 1 to 6, wherein the third and fourth elements (60) are identical and each have, in section, a U-shape of which one (62) branches is tapered towards its free end. Joint selon l'une quelconque des revendications 1 à 7, dans lequel l'amplitude du coulissement entre les troisième et quatrième éléments (15, 16) est choisie en fonction de l'amplitude maximale de dilatation souhaitée en contraction et expansion.Joint according to any one of claims 1 to 7, wherein the amplitude of the sliding between the third and fourth elements (15, 16) is chosen as a function of the maximum amplitude of expansion desired in contraction and expansion. Joint selon l'une quelconque des revendications 1 à 8, dans lequel l'amplitude d'articulation des troisième et quatrième éléments (15, 16) par rapport aux premier et deuxième éléments est choisie en fonction de l'amplitude de dilatation en cisaillement souhaitée.Seal according to any one of claims 1 to 8, wherein the articulation amplitude of the third and fourth elements (15, 16) with respect to the first and second elements is chosen as a function of the desired shear expansion amplitude . Joint selon l'une quelconque des revendications 1 à 9, dans lequel des pattes de scellement (17, 17') sont articulées aux premier et deuxième éléments.Joint according to any one of claims 1 to 9, wherein sealing tabs (17, 17 ') are hinged to the first and second elements. Joint selon l'une quelconque des revendications 1 à 10, dans lequel les extrémités libres respectives des troisième et quatrième éléments comportent des rotules (152, 162) propres à coopérer à forme contraire avec des gorges (136, 146) des premier et deuxième éléments.Seal according to any one of claims 1 to 10, wherein the respective free ends of the third and fourth elements comprise ball joints (152, 162) adapted to cooperate in opposite shape with grooves (136, 146) of the first and second elements. . Joint selon l'une quelconque des revendications 1 à 11, dans lequel au moins un des premier et deuxième éléments est constitué de deux cornières (12, 14) assemblées l'une à l'autre.Seal according to any one of claims 1 to 11, wherein at least one of the first and second elements consists of two brackets (12, 14) assembled to one another. Joint selon la revendication 12, dans lequel chacun des premier et deuxième éléments est constitué de deux cornières (11, 13 ; 12, 14) assemblées l'une à l'autre.The seal of claim 12, wherein each of the first and second members is comprised of two brackets (11,13; 12,14) joined to each other. Joint selon la revendication 12, dans lequel l'autre des premier et deuxième éléments est une platine (19).The seal of claim 12, wherein the other of the first and second members is a platen (19). Construction en béton comportant au moins un joint conforme à l'une quelconque des revendications précédentes.Concrete construction having at least one gasket according to any one of the preceding claims.
EP12158105A 2011-03-08 2012-03-05 Earthquake-resistant seal Withdrawn EP2497877A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1151874A FR2972469B1 (en) 2011-03-08 2011-03-08 PARASISMIC JOINT

Publications (1)

Publication Number Publication Date
EP2497877A1 true EP2497877A1 (en) 2012-09-12

Family

ID=45757345

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12158105A Withdrawn EP2497877A1 (en) 2011-03-08 2012-03-05 Earthquake-resistant seal

Country Status (2)

Country Link
EP (1) EP2497877A1 (en)
FR (1) FR2972469B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8869482B2 (en) * 2012-08-28 2014-10-28 Migua Fugensysteme Gmbh & Co. Kg Gap profile for movement gap
CN106906916A (en) * 2017-04-24 2017-06-30 荆门创佳机械科技有限公司 A kind of deformation joint between wall surfaces of appearance without nail and installation simple and fast
CN106988438A (en) * 2017-04-26 2017-07-28 荆门创佳机械科技有限公司 A kind of inside and outside metope combined type turning movement joint of the connectionless screw in surface
CN107012961A (en) * 2017-04-24 2017-08-04 荆门创佳机械科技有限公司 A kind of inside and outside metope combined deformation seam of appearance without nail
CN107044170A (en) * 2017-04-25 2017-08-15 荆门创佳机械科技有限公司 A kind of buckle-type flooring movement joint of the connectionless screw in surface
US10113308B2 (en) * 2016-04-20 2018-10-30 Underwood Companies Holdings Pty Ltd. Expansion joints
CN112814179A (en) * 2020-12-30 2021-05-18 南充职业技术学院 Civil engineering expansion joint waterproof construction
GB2592599A (en) * 2020-03-03 2021-09-08 Devlin Seamus Expansion joint cover

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3015011A1 (en) 1980-04-18 1981-10-22 Donau-Eisen Stahlbau Gmbh, 8070 Ingolstadt Heavy load expansion joint spanning unit - has top of edge clamped support rail meeting bridging rail bottom and includes waterproof diaphragm
EP1199424A1 (en) * 2000-10-12 2002-04-24 Schlüter-Systems KG Bridging device for expansion joints in walls or floors of buildings
DE202004005154U1 (en) * 2004-03-30 2004-08-26 Multiplast Kunststoffverarbeitung Gmbh Method for filling gaps between paving slabs with two part joints fitted to adjacent edges and with interlocking forked profiles
EP1975330A2 (en) * 2007-03-22 2008-10-01 Kivatec S.R.L. Aseismic joint
DE202009006808U1 (en) 2009-05-07 2009-09-03 Kovac, Franjo Joint profile arrangement for structures for bridging joints with a tread surface resistant to treading

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3015011A1 (en) 1980-04-18 1981-10-22 Donau-Eisen Stahlbau Gmbh, 8070 Ingolstadt Heavy load expansion joint spanning unit - has top of edge clamped support rail meeting bridging rail bottom and includes waterproof diaphragm
EP1199424A1 (en) * 2000-10-12 2002-04-24 Schlüter-Systems KG Bridging device for expansion joints in walls or floors of buildings
DE202004005154U1 (en) * 2004-03-30 2004-08-26 Multiplast Kunststoffverarbeitung Gmbh Method for filling gaps between paving slabs with two part joints fitted to adjacent edges and with interlocking forked profiles
EP1975330A2 (en) * 2007-03-22 2008-10-01 Kivatec S.R.L. Aseismic joint
DE202009006808U1 (en) 2009-05-07 2009-09-03 Kovac, Franjo Joint profile arrangement for structures for bridging joints with a tread surface resistant to treading

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8869482B2 (en) * 2012-08-28 2014-10-28 Migua Fugensysteme Gmbh & Co. Kg Gap profile for movement gap
US10113308B2 (en) * 2016-04-20 2018-10-30 Underwood Companies Holdings Pty Ltd. Expansion joints
US10711455B2 (en) 2016-04-20 2020-07-14 Underwood Companies Holdings Pty Ltd Expansion joints
CN106906916A (en) * 2017-04-24 2017-06-30 荆门创佳机械科技有限公司 A kind of deformation joint between wall surfaces of appearance without nail and installation simple and fast
CN107012961A (en) * 2017-04-24 2017-08-04 荆门创佳机械科技有限公司 A kind of inside and outside metope combined deformation seam of appearance without nail
CN107044170A (en) * 2017-04-25 2017-08-15 荆门创佳机械科技有限公司 A kind of buckle-type flooring movement joint of the connectionless screw in surface
CN106988438A (en) * 2017-04-26 2017-07-28 荆门创佳机械科技有限公司 A kind of inside and outside metope combined type turning movement joint of the connectionless screw in surface
GB2592599A (en) * 2020-03-03 2021-09-08 Devlin Seamus Expansion joint cover
GB2592599B (en) * 2020-03-03 2022-09-14 Devlin Seamus Expansion joint cover
CN112814179A (en) * 2020-12-30 2021-05-18 南充职业技术学院 Civil engineering expansion joint waterproof construction
CN112814179B (en) * 2020-12-30 2022-07-15 南充职业技术学院 Civil engineering expansion joint waterproof construction

Also Published As

Publication number Publication date
FR2972469A1 (en) 2012-09-14
FR2972469B1 (en) 2015-08-07

Similar Documents

Publication Publication Date Title
EP2497877A1 (en) Earthquake-resistant seal
EP1706551B1 (en) Device for the earthquake-resistant mounting of a partition
EP1783292B1 (en) Profile for a ceiling slab frame, in particular for a frame to be pocketed
FR2936263A1 (en) STRUCTURE CONSISTING OF THE ASSEMBLY OF AT LEAST TWO ELEMENTS OF CONSTRUCTION
FR2934616A1 (en) Roof structure, has carrier rafters formed of base, middle and top sections, where base and middle sections and middle and top sections are provided with cores and bands for direct assembling of sections or by using interface pieces
EP2313574A2 (en) Profile bowing means for a sinking surround
FR2950371A1 (en) Primarily parallelepiped flagstones attaching unit for construction of terrace, has support parts solidarized for support structures, and elastically deformable clips arranged primarily with respect to each other in perpendicular direction
FR3078086A1 (en) PLATFORMING SYSTEM COMPRISING MEANS FOR FIXING A VERTICAL PERIPHERAL BAND.
EP0152367A1 (en) Device for forming joints in industrial-type floors, especially concrete floors
FR2609488A1 (en) Extendable formwork panel
EP1327728B1 (en) Supporting structure with profiled elements
WO2000068526A1 (en) Ceiling slab
EP0767282B1 (en) Collaborating metallic girder
FR2955876A1 (en) DEVICE FOR FIXING SOLAR PANELS AND ROOF THUS EQUIPPED
EP2607564B3 (en) Rail for false-wall frame, in particular of a suspended ceiling
FR2931492A1 (en) Modular vertical carrier structure for constructing e.g. individual house, has interconnection units interconnecting panels together and forming structure assembly in form of shell, where panels integrally support loads applied to structure
FR2941725A1 (en) Parallelepiped block shaped thermal insulation element for construction block of e.g. longitudinal wall of concrete floor in building, has openings formed from lower and outer faces to open into housing to define assembling wall with block
WO2011061414A1 (en) Support structure
FR2960271A1 (en) DEVICE FOR FIXING A STRUCTURE ON AN ONDULATED COATING.
FR2796094A1 (en) DEVICE FOR FIXING AN INSULATION AND / OR PROTECTION COVER, OR MOUNTS OF MISCELLANEOUS DEVICES, IN PARTICULAR TO A ROOF OR THE LIKE, MADE BY MEANS OF JOINTED CORRUGATED PLATES
EP3259416A1 (en) Construction element and method for erecting such a construction element
FR3002243A1 (en) Device for bridging seals for expansion joint between set of crucible surfaces in e.g. carpark, has covering wing assembled with clamp support and for partially covering support, and side groove formed by mutual engagement to form pivot
WO1998015699A1 (en) Frontage element with decorative facing
FR2730514A1 (en) Sandwich construction prefab. wall for building etc. used as heat or acoustic insulation
FR3038631A1 (en) CONSTRUCTION ELEMENT AND METHOD FOR MOUNTING SUCH A BUILDING ELEMENT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20121105

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: 3M BRICOLAGE ET BATIMENT

17Q First examination report despatched

Effective date: 20141009

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170111