EP2491237A1 - Verfahren zur steuerung und regelung einer brennkraftmaschine - Google Patents

Verfahren zur steuerung und regelung einer brennkraftmaschine

Info

Publication number
EP2491237A1
EP2491237A1 EP10768697A EP10768697A EP2491237A1 EP 2491237 A1 EP2491237 A1 EP 2491237A1 EP 10768697 A EP10768697 A EP 10768697A EP 10768697 A EP10768697 A EP 10768697A EP 2491237 A1 EP2491237 A1 EP 2491237A1
Authority
EP
European Patent Office
Prior art keywords
pressure
rail pressure
pcr
rail
emergency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10768697A
Other languages
English (en)
French (fr)
Inventor
Armin DÖLKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP2491237A1 publication Critical patent/EP2491237A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • F02D2041/223Diagnosis of fuel pressure sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/227Limping Home, i.e. taking specific engine control measures at abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • F02D2200/0604Estimation of fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables

Definitions

  • the invention relates to a method for controlling and regulating a
  • a rail pressure control loop comprises a reference junction for determining a control deviation, a pressure regulator for calculating a control signal, the controlled system and a
  • the controlled system comprises the pressure actuator, the rail and the injectors for injecting the fuel into the combustion chambers of the internal combustion engine.
  • a common rail system with pressure control in which the pressure regulator accesses via the control signal to a suction throttle.
  • the suction throttle is controlled in negative logic, that is, it is fully open at a current value of zero amperes.
  • a passive pressure relief valve is provided as a protective measure against excessive rail pressure. If the rail pressure exceeds a critical value, for example 2400 bar, the pressure relief valve opens. The fuel is then discharged from the rail into the fuel tank via the opened pressure relief valve.
  • Pressure relief valve adjusts itself in the rail a pressure level, which of the Injection quantity and the engine speed depends. At idle, this pressure level is about 900 bar, while at full load it is about 700 bar.
  • transition function is provided. This transition function is previously determined in normal operation from the time course of the control deviation of the rail pressure. With the end of normal operation is then the pressure regulator by the
  • Transition function specified a negative control deviation.
  • the control path is given a correction volume flow.
  • Central idea of the invention is to produce a stable operating state after failure of the rail pressure sensor in emergency operation, that a conscious opening of the passive pressure relief valve is brought about. When open
  • Pressure relief valve in turn is the rail pressure between the pressure value at idle, z. B. 900 bar, and the pressure value at full load, z. B. 700 bar.
  • the uniform engine power in emergency operation is achieved by the fact that the rail pressure in emergency operation is always within this pressure range. An advantage is therefore a stable emergency operation.
  • a desired current is set as the drive signal of the suction throttle or a PWM signal as the drive signal of the suction throttle to a corresponding Notlaufwert.
  • a supplementary embodiment provides that when switching to emergency operation, the setpoint current is calculated as a function of a leakage volume flow. This is calculated via a leakage map depending on the target injection quantity and the engine speed.
  • the energization duration of the injectors is additionally adapted.
  • the energization duration is calculated via a characteristic field as a function of the desired injection quantity and the actual rail pressure.
  • a mean rail pressure is set as the input variable for the characteristic map.
  • the mean rail pressure is specified as a constant value. If, for example, the pressure level in the rail at idle is 900 bar and 700 bar at full load when the passive pressure relief valve is open, the average rail pressure is set to 800 bar.
  • the procedure according to the invention can also be used in a common rail system with an electrically actuatable high-pressure pump. If the rail pressure sensor is defective, the high-pressure pump will then open during emergency operation
  • FIG. 1 shows a system diagram
  • FIG. 2 shows a rail pressure control circuit in a first embodiment
  • FIG. 4 shows a second block diagram
  • FIG. 5 shows a rail pressure control circuit in a second embodiment
  • FIG. 6 is a first block diagram
  • FIG. 7 shows a second block diagram
  • FIG. 8 shows a pump curve with limit curve
  • FIG. 9 shows a block diagram for calculating the energization duration
  • FIG 11 is a program flowchart for the first embodiment
  • FIG. 12 shows a program flow chart for the second embodiment.
  • the common rail system comprises the following mechanical components: a low-pressure pump 3 for
  • High-pressure pump 5 for conveying the fuel under pressure increase, a rail 6 for storing the fuel and injectors 7 for injecting the fuel into the combustion chambers of the internal combustion engine 1.
  • the common rail system can also be designed with individual memories, in which case, for example, in the injector 7 a Single memory 8 is integrated as an additional buffer volume.
  • a passive pressure relief valve 11 is provided which opens, for example, at a rail pressure of 2400 bar and abgrest the fuel from the rail 6 into the fuel tank 2 in the open state.
  • the operation of the internal combustion engine 1 is determined by an electronic control unit (ECU) 10.
  • the electronic control unit 10 includes the usual
  • Components of a microcomputer system such as a microprocessor, I / O devices, buffers and memory devices (EEPROM, RAM).
  • EEPROM electrically erasable programmable read-only memory
  • RAM random access memory
  • Memory chips are the relevant for the operation of the internal combustion engine 1 operating data applied in maps / curves. About this calculates the
  • the electronic control unit 10 from the input variables the output variables.
  • the following input variables are shown by way of example in FIG. 1: the rail pressure pCR, which is measured by means of a rail pressure sensor 9, an engine speed nMOT, a signal FP for output specification by the operator and an input variable EIN.
  • FIG. 2 shows a rail pressure control circuit 12 for regulating the rail pressure pCR in a first embodiment.
  • the input variables of the rail pressure control circuit 12 are: a
  • Target rail pressure pCR (SL), a target consumption Wb, the engine speed nMOT, a signal SD and a quantity El
  • the signal SD is set when a malfunction of the rail pressure sensor is detected.
  • E1 for example, the PWM fundamental frequency
  • the output of the rail pressure control circuit 12 is the raw value of the rail pressure pCR.
  • the actual rail pressure pCR (IST) is calculated by means of a filter 13. This is then compared with the desired rail pressure pCR (SL) at a summation point A, resulting in a control deviation ep.
  • a pressure regulator 14 calculates its control variable, which corresponds to a regulator volume flow VR with the physical unit liters / minute.
  • the calculated target consumption Wb is added to a summation point B.
  • the target consumption Wb is calculated as a function of a desired injection quantity and
  • the functional block 17 is shown and explained in detail in conjunction with FIGS. 3 and 4.
  • the output variable of the functional block 17 corresponds to the actual volume flow V (IST) which is conveyed by the high-pressure pump into the rail 6.
  • the pressure level pCR in the rail is detected by the rail pressure sensor.
  • FIG. 3 shows the functional block 17 of FIG. 2 in a first block diagram.
  • the PWM signal to control the suction throttle and the switching of the drive signal of the suction throttle from normal operation to emergency operation are set.
  • the input variables of the functional block 17 here are the nominal current i (SL), a nominal emergency current iN (SL), the signal SD and the input quantity E1.
  • the output variable of the function block 17 is the actual volume flow V (IST) actually conveyed into the rail.
  • the elements of the functional block 17 are a switch S1, a calculation 18 of the PWM signal and the high pressure pump and suction throttle as a unit 19.
  • the switch S1 is in the position 1, that is, the PWM signal PWM is calculated via the calculation 18 in response to the desired current i (SL). With the PWM signal PWM then the solenoid of the suction throttle is applied.
  • the path of the magnetic core is changed, whereby the flow rate of the high-pressure pump is influenced freely.
  • the suction throttle is normally open and is acted upon with increasing PWM value in the direction of the closed position.
  • the calculation 18 of the PWM signal can be subordinated to a current control loop 20 with filter 21, as is known from DE 10 2004 061 474 A1.
  • the PWM signal PWM is calculated as a function of the nominal run-flat current iN (SL).
  • Fuel tank is heated less.
  • FIG. 5 shows the rail pressure control circuit 12 in a second embodiment.
  • the input variables of the rail pressure control circuit 12 are: the desired rail pressure pCR (SL), the input quantity E1 and an input quantity E2.
  • the size E1 includes, for example, the basic PWM frequency, the battery voltage and the ohmic resistance of the intake throttle coil with supply line, which are included in the calculation of the PWM signal.
  • the input quantity E2 includes, among other things, the desired consumption Wb, the engine speed nMOT and a desired injection quantity.
  • the output of the rail pressure control circuit 12 is the raw value of the rail pressure pCR. From the raw value of the rail pressure pCR, the actual rail pressure pCR (IST) is calculated by means of the filter 13.
  • the pressure regulator 14 calculates its manipulated variable, that is, the regulator volume flow VR with the physical unit liters / minute.
  • the regulator volume flow VR is a
  • the output of the function block 17 corresponds to the desired current i (SL), which is a is the input of the calculation 18 of the PWM signal.
  • the calculation 18 of the PWM signal may be underlaid by a current control loop 20 with filter 21.
  • the suction throttle is then applied to the PWM signal PWM, which is combined with the high-pressure pump in the unit 19.
  • the output quantity of the unit 19 corresponds to the actual volume flow V (IST) conveyed by the high-pressure pump into the rail 6.
  • the pressure level pCR in the rail is detected by the rail pressure sensor.
  • the rail pressure control circuit 12 is closed.
  • FIG. 6 shows functional block 17 of FIG. 5 in a first block diagram. If the rail pressure sensor fails, it switches from the pump characteristic to a limit curve.
  • the input variables of the function block 17 are the regulator volume flow VR, which corresponds to the manipulated variable of the pressure regulator, the desired consumption Wb, the engine speed nMOT and the signal SD.
  • the output quantity corresponds to the nominal current i (SL).
  • SL nominal current
  • the output of the switch S2 and the target consumption Wb are added.
  • the result corresponds to the unlimited nominal volume flow Vu, which is then limited via the limit 15 as a function of the engine speed nMOT.
  • the output quantity corresponds to the nominal volume flow V (SL), which is the input variable of both the pump characteristic curve 16 and the limit curve 22.
  • the switch S1 In normal operation, the switch S1 is in the position 1, which in turn means that the desired current i (SL) is determined via the pump characteristic 16. If a defective rail pressure sensor is detected, the signal SD is set, whereby the switch S1 changes to position 2. The desired current i (SL) is now determined via the limit curve 22.
  • the pump characteristic curve 16 and the limit curve 22 are shown in FIG. 8 and will be explained in more detail in connection therewith. The embodiment of FIG. 6 minimizes the heating of the fuel. If the signal SD is set, the switch S2 changes from position 1 to position 2. The controller volume flow VR is thereby replaced by the value zero.
  • FIG. 7 shows the functional block 17 of FIG. 5 in a second block diagram.
  • the function block has been supplemented by a leakage map 23 with the desired injection quantity Q (SL) as a further input variable.
  • the switches S1 and S2 are in the position 1.
  • the setpoint current i (SL) is calculated via the pump characteristic curve 16 as a function of the setpoint volume flow V (SL).
  • the setpoint volume flow V (SL) is determined from the unlimited setpoint volume flow Vu, which is the sum of the regulator volume flow VR and the setpoint Consumption Wb corresponds. If a defective rail pressure sensor is detected, the signal SD is set, causing the switches S1 and S2 to change to position 2.
  • Engine speed nMOT calculated.
  • a leakage map and its definition is described in DE 101 57 641 A1, to which reference is hereby made.
  • the desired current i (SL) is calculated via the limit curve 22.
  • the abscissa represents the nominal volume flow V (SL) in liters / minute.
  • the nominal current i (SL) is plotted in amperes on the ordinate.
  • the pump characteristic 16 is shown as a solid line.
  • High pressure pump to high pressure pump is very large, it is in the pump characteristic 16 is a mean pump characteristic.
  • the two dashed lines 24 and 25 represent the scattering band within which the high-pressure pumps must be located.
  • a desired volume flow V (SL) V1
  • a scattering di (ST) of the setpoint current i (SL) results.
  • the limit curve 22 is shown as a dashed line. This results from the fact that the pump characteristic 24 is shifted to smaller desired current values, ie in the direction of the abscissa, taking into account a reserve. For the set volume flow V1, this results in a reserve di (Re) in the energization.
  • the limit curve 22 represents an assignment of the setpoint volume flow to those maximum values of the setpoint flow i (SL) which reliably enable an opening of the pressure-limiting valve.
  • FIG. 9 shows a block diagram for calculating the energization duration BD.
  • the energization duration BD results here as the output variable of a 3-dimensional injector map 26.
  • Its input variables are the desired injection quantity Q (SL) and a pressure pINJ.
  • the switch S1 In normal operation, the switch S1 is in position 1, so that the pressure pINJ is identical to the actual rail pressure pCR (IST). In case of failure of the rail pressure sensor, the switch S1 is reversed via the signal SD in the position 2.
  • the pressure pINJ is set to a mean rail pressure pCR (M).
  • the mean rail pressure pCR (M) corresponds to the rail pressure, which occurs on average when the pressure relief valve opens.
  • Accuracy can be calculated. It is advantageous that the internal combustion engine can thus be operated in emergency mode with very high power.
  • FIG. 10 shows a time diagram.
  • FIG. 10 consists of the partial diagrams 10A to 10D. These each show over time: the signal SD in FIG. 10A, the desired current i (SL) in FIG. 10B, the actual rail pressure pCR (IST) in FIG. 10C and the pressure pINJ as the input variable of the injector map in FIG. 10D.
  • the defect of the rail pressure sensor occurs, that is, the signal SD is set to the value 1.
  • the suction throttle is fully open, so that the high-pressure pump delivers the maximum possible amount of fuel. This causes the actual rail pressure pCR (IST) from the pressure level at time t1
  • FIG. 11 shows a program flow chart of a subroutine which corresponds to the embodiment according to FIGS. 2 to 4.
  • S1 it is checked whether the rail pressure sensor is defective. If this is not the case, query result S1: no, the program part is run through with the steps S2 to S6.
  • the regulator volume flow VR is calculated as the manipulated variable at S2 from the control deviation of the rail pressure via the pressure regulator.
  • the target consumption Wb determined from the target injection quantity and the engine speed and then calculated at S4 via summation of the unlimited nominal volume flow Vu. Thereafter, this is at S5 depending on
  • the alternative in which the PWM signal is set to the PWM emergency value PWMNL is shown in dashed lines as step S8A. Corresponding to this alternative, the figure 4.
  • FIG. 12 shows a program flow chart of a subroutine which corresponds to the embodiment according to FIGS. 5 and 7.
  • S1 it is checked whether the rail pressure sensor is defective. If this is not the case, query result S1: no, the program part is run through with the steps S2 to S6.
  • the steps S2 to S6 correspond to the steps S2 to S6 of FIG. 11, ie the normal operation, so that what is said there also applies here. If a faulty rail pressure sensor was detected at S1,
  • Query result S1 yes, then at S8 a leakage volume flow VLKG is calculated as a function of the desired injection quantity Q (SL) and the engine speed nMOT via a leakage characteristic map. Following this, the desired consumption Wb is determined at S9 and the unlimited desired volume flow Vu is calculated from the sum of the leakage volume flow VLKG and the desired consumption Wb, S10. At S1 1, this is limited depending on the engine speed and set as the desired flow rate V (SL). Subsequently, at S12, the setpoint current i (SL) is calculated via the limit curve and from this the PWM signal for controlling the intake throttle is determined, S7. Thereafter, the subroutine is ended. reference numeral
  • ECU electronice control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Vorgeschlagen wird ein Verfahren zur Steuerung und Regelung einer Brennkraftmaschine (1), bei dem im Normalbetrieb der Raildruck (pCR) geregelt wird und bei dem mit Erkennen eines defekten Rail-Drucksensors (9) vom Normalbetrieb auf einen Notbetrieb gewechselt wird, wobei im Notbetrieb der Raildruck (pCR) gesteuert wird. Die Erfindung ist dadurch gekennzeichnet, dass im Notbetrieb der Raildruck (pCR) sukzessiv bis zum Ansprechen eines passiven Druckbegrenzungsventils (11) erhöht wird, welches im geöffneten Zustand Kraftstoff aus dem Rail (6) in den Kraftstofftank (2) absteuert.

Description

Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
Die Erfindung betrifft ein Verfahren zur Steuerung und Regelung einer
Brennkraftmaschine, bei dem im Normalbetrieb der Raildruck geregelt wird und bei dem mit Erkennen eines defekten Rail-Drucksensors vom Normalbetrieb auf einen Notbetrieb gewechselt wird, wobei im Notbetrieb der Raildruck gesteuert wird.
Bei einer Brennkraftmaschine mit Common-Railsystem wird die Güte der Verbrennung maßgeblich über das Druckniveau im Rail bestimmt. Zur Einhaltung der gesetzlichen Emissionsgrenzwerte wird daher der Raildruck geregelt. Typischerweise umfasst ein Raildruck-Regelkreis eine Vergleichsstelle zur Bestimmung einer Regelabweichung, einen Druckregler zum Berechnen eines Stellsignals, die Regelstrecke und ein
Softwarefilter zur Berechnung des Ist-Raildrucks im Rückkopplungszweig. Berechnet wird die Regelabweichung aus einem Soll-Raildruck zum Ist-Raildruck. Die Regelstrecke umfasst das Druckstellglied, das Rail und die Injektoren zum Einspritzen des Kraftstoffs in die Brennräume der Brennkraftmaschine.
Aus der DE 10 2006 040 441 B3 ist ein Common-Railsystem mit Druckregelung bekannt, bei dem der Druckregler über das Stellsignal auf eine Saugdrossel zugreift. Über die Saugdrossel wiederum wird der Zulaufquerschnitt zur Hochdruckpumpe und damit das geförderte Kraftstoffvolumen festgelegt. Angesteuert wird die Saugdrossel in negativer Logik, das heißt, diese ist bei einem Stromwert von Null Ampere vollständig geöffnet. Als Schutzmaßnahme vor einem zu hohen Raildruck, zum Beispiel nach einem Kabelbruch in der Stromzuführung zur Saugdrossel, ist ein passives Druckbegrenzungsventil vorgesehen. Überschreitet der Raildruck einen kritischen Wert, zum Beispiel 2400 bar, so öffnet das Druckbegrenzungsventil. Über das geöffnete Druckbegrenzungsventil wird dann der Kraftstoff aus dem Rail in den Kraftstofftank abgeleitet. Bei geöffnetem
Druckbegrenzungsventil stellt sich im Rail ein Druckniveau ein, welches von der Einspritzmenge und der Motordrehzahl abhängt. Bei Leerlauf beträgt dieses Druckniveau ca. 900 bar, während es bei Volllast ca. 700 bar beträgt.
Aus der DE 101 57 641 A1 ist ein Common-Railsystem bekannt, bei dem mit Erkennen eines defekten Rail-Drucksensors vom Normalbetrieb mit Druckregelung in einen Notbetrieb gewechselt wird. Im Notbetrieb wird der Raildruck gesteuert. Um beim
Übergang vom Normalbetrieb auf den Notbetrieb einen Undefinierten Betriebszustand zu vermeiden, ist eine Übergangsfunktion vorgesehen. Diese Übergangsfunktion wird zuvor im Normalbetrieb aus dem zeitlichen Verlauf der Regelabweichung des Raildrucks ermittelt. Mit Ende des Normalbetriebs wird dann dem Druckregler durch die
Übergangsfunktion eine negative Regelabweichung vorgegeben. Als Alternative ist vorgesehen, dass der Regelstrecke ein Korrekturvolumenstrom vorgegeben wird. Diese Lösung hat sich in der Praxis bewährt, wobei jedoch festgestellt wurde, dass sich der Raildruck nach Ausfall des Rail-Drucksensors nicht immer auf demselben Druckniveau einpendelt und daher unterschiedliche Motorleistungen im Notbetrieb verursacht.
Ausgehend von einem Common-Railsystem mit einer Regelung des Raildrucks und einem passiven Druckbegrenzungsventil, liegt der Erfindung die Aufgabe zu Grunde, nach Ausfall des Rail-Drucksensors einen Motorbetrieb mit einheitlicher Motorleistung zu gewährleisten.
Gelöst wird diese Aufgabe durch ein Verfahren zur Steuerung und Regelung einer Brennkraftmaschine mit den Merkmalen von Anspruch 1. Die Ausgestaltungen sind in den Unteransprüchen dargestellt.
Zentrale Idee der Erfindung ist es nach Ausfall des Rail-Drucksensors im Notbetrieb einen stabilen Betriebszustand dadurch herzustellen, dass ein bewusstes öffnen des passiven Druckbegrenzungsventils herbei geführt wird. Bei geöffnetem
Druckbegrenzungsventil wiederum liegt der Raildruck zwischen dem Druckwert bei Leerlauf, z. B. 900 bar, und dem Druckwert bei Volllast, z. B. 700 bar. Die einheitliche Motorleistung im Notbetrieb wird dadurch erreicht, dass der Raildruck im Notbetrieb stets innerhalb dieses Druckbereichs liegt. Von Vorteil ist daher ein stabiler Notbetrieb.
Bei einem Common-Railsystem mit einer niederdruckseitigen Saugdrossel als
Druckstellglied wird im Notbetrieb die sukzessive Druckerhöhung im Rail erreicht, indem die Saugdrossel in Öffnungsrichtung beaufschlagt wird, wodurch dann die
Hochdruckpumpe mehr Kraftstoff fördern kann.
In einer ersten Ausführungsform hierzu wird ein Soll-Strom als Ansteuersignal der Saugdrossel oder ein PWM-Signal als Ansteuersignal der Saugdrossel auf einen entsprechenden Notlaufwert gesetzt. In einer zweiten Ausführungsform erfolgt eine Kennlinienumschaltung von einer Pumpen-Kennlinie im Normalbetrieb auf eine
Grenzkurve im Notbetrieb. Eine ergänzende Ausgestaltung sieht vor, dass beim Wechsel in den Notbetrieb der Soll-Strom in Abhängigkeit eines Leckage-Volumenstroms berechnet wird. Berechnet wird dieser über ein Leckage-Kennfeld in Abhängigkeit der Soll-Einspritzmenge und der Motordrehzahl.
Um auch im Notbetrieb die Brennkraftmaschine mit hoher Leistung betreiben zu können, wird zusätzlich die Bestromungsdauer der Injektoren angepasst. Im Normalbetrieb wird die Bestromungsdauer über ein Kennfeld in Abhängigkeit der Soll-Einspritzmenge und des Ist-Raildrucks berechnet. Bei defektem Rail-Drucksensor wird dann an Stelle des Ist- Raildrucks ein mittlerer Raildruck als Eingangsgröße für das Kennfeld gesetzt. Der mittlere Raildruck wird als Konstantwert vorgegeben. Beträgt bei geöffnetem passivem Druckbegrenzungsventil das Druckniveau im Rail bei Leerlauf beispielsweise 900 bar und bei Volllast 700 bar, so wird der mittlere Raildruck auf 800 bar festgelegt.
Selbstverständlich lässt sich die erfindungsgemäße Vorgehensweise auch bei einem Common-Railsystem mit einer elektrisch ansteuerbaren Hochdruckpumpe einsetzen. Bei defektem Rail-Drucksensor wird dann im Notbetrieb die Hochdruckpumpe auf
Maximalförderung gesetzt.
In den Figuren sind die bevorzugten Ausführungsbeispiele an Hand eines Common- Railsystems mit Saugdrossel dargestellt. Es zeigen:
Figur 1 ein Systemschaubild,
Figur 2 einen Raildruck-Regelkreis in einer ersten Ausführung,
Figur 3 ein erstes Blockschaltbild,
Figur 4 ein zweites Blockschaltbild,
Figur 5 einen Raildruck-Regelkreis in einer zweiten Ausführung,
Figur 6 ein erstes Blockschaltbild, Figur 7 ein zweites Blockschaltbild,
Figur 8 eine Pumpen-Kennlinie mit Grenzkurve,
Figur 9 ein Blockschaltbild zur Berechnung der Bestromungsdauer,
Figur 10 ein Zeitdiagramm,
Figur 11 einen Programm-Ablaufplan zur ersten Ausführung und
Figur 12 einen Programm-Ablaufplan zur zweiten Ausführung.
Die Figur 1 zeigt ein Systemschaubild einer elektronisch gesteuerten
Brennkraftmaschine 1 mit einem Common-Railsystem. Das Common-Railsystem umfasst folgende mechanische Komponenten: eine Niederdruckpumpe 3 zur
Förderung von Kraftstoff aus einem Kraftstofftank 2, eine veränderbare Saugdrossel 4 zur Beeinflussung des durchströmenden Kraftstoff-Volumenstroms, eine
Hochdruckpumpe 5 zur Förderung des Kraftstoffs unter Druckerhöhung, ein Rail 6 zum Speichern des Kraftstoffs und Injektoren 7 zum Einspritzen des Kraftstoffs in die Brennräume der Brennkraftmaschine 1. Optional kann das Common-Railsystem auch mit Einzelspeichern ausgeführt sein, wobei dann zum Beispiel im Injektor 7 ein Einzelspeicher 8 als zusätzliches Puffervolumen integriert ist. Als Schutz vor einem unzulässig hohen Druckniveau im Rail 6 ist ein passives Druckbegrenzungsventil 11 vorgesehen, welches zum Beispiel bei einem Raildruck von 2400 bar öffnet und im geöffneten Zustand den Kraftstoff aus dem Rail 6 in den Kraftstofftank 2 absteuert.
Die Betriebsweise der Brennkraftmaschine 1 wird durch ein elektronisches Steuergerät (ECU) 10 bestimmt. Das elektronische Steuergerät 10 beinhaltet die üblichen
Bestandteile eines Mikrocomputersystems, beispielsweise einen Mikroprozessor, I/O-Bausteine, Puffer und Speicherbausteine (EEPROM, RAM). In den
Speicherbausteinen sind die für den Betrieb der Brennkraftmaschine 1 relevanten Betriebsdaten in Kennfeldern/Kennlinien appliziert. Über diese berechnet das
elektronische Steuergerät 10 aus den Eingangsgrößen die Ausgangsgrößen. In der Figur 1 sind exemplarisch folgende Eingangsgrößen dargestellt: der Raildruck pCR, der mittels eines Rail-Drucksensors 9 gemessen wird, eine Motordrehzahl nMOT, ein Signal FP zur Leistungsvorgabe durch den Betreiber und eine Eingangsgröße EIN. Unter der
Eingangsgröße EIN sind die weiteren Sensorsignale zusammengefasst, beispielsweise der Ladeluftdruck eines Abgasturboladers. In Figur 1 sind als Ausgangsgrößen des elektronischen Steuergeräts 10 ein Signal PWM zur Ansteuerung der Saugdrossel 4, ein Signal ve zur Ansteuerung der Injektoren 7 (Spritzbeginn/Spritzende) und eine Ausgangsgröße AUS dargestellt. Die Ausgangsgröße AUS steht stellvertretend für die weiteren Stellsignale zur Steuerung und Regelung der Brennkraftmaschine 1 ,
beispielsweise für ein Stellsignal zur Aktivierung eines zweiten Abgasturboladers bei einer Registeraufladung.
Die Figur 2 zeigt einen Raildruck-Regelkreis 12 zur Regelung des Raildrucks pCR in einer ersten Ausführung. Die Eingangsgrößen des Raildruck-Regelkreises 12 sind: ein
Soll-Raildruck pCR(SL), ein Soll-Verbrauch Wb, die Motordrehzahl nMOT, ein Signal SD und eine Größe El Das Signal SD wird bei erkannter Fehlfunktion des Rail-Drucksensors gesetzt. Unter der Größe E1 sind beispielsweise die PWM-Grundfrequenz, die
Batteriespannung und der ohmsche Widerstand der Saugdrosselspule mit Zuleitung zusammengefasst, welche in die Berechnung des PWM-Signals mit eingehen. Die Ausgangsgröße des Raildruck-Regelkreises 12 ist der Rohwert des Raildrucks pCR. Aus dem Rohwert des Raildrucks pCR wird mittels eines Filters 13 der Ist-Raildruck pCR(IST) berechnet. Dieser wird dann mit dem Soll-Raildruck pCR(SL) an einem Summationspunkt A verglichen, woraus eine Regelabweichung ep resultiert. Aus der Regelabweichung ep berechnet ein Druckregler 14 seine Stellgröße, welche einem Regler-Volumenstrom VR mit der physikalischen Einheit Liter/Minute entspricht. Zum Regler-Volumenstrom VR wird an einem Summationspunkt B der berechnete Soll-Verbrauch Wb addiert. Berechnet wird der Soll-Verbrauch Wb in Abhängigkeit einer Soll-Einspritzmenge und der
Motordrehzahl. Das Ergebnis der Addition am Summationspunkt B entspricht einem unbegrenzten Volumenstrom Vu, welcher über eine Begrenzung 15 in Abhängigkeit der Motordrehzahl nMOT limitiert wird. Die Ausgangsgröße der Begrenzung 15 entspricht einem Soll-Volumenstrom V(SL), der die Eingangsgröße einer Pumpen-Kennlinie 16 ist. Über die Pumpen-Kennlinie 16 wird dem Soll-Volumenstrom V(SL) ein elektrischer Soll-Strom i(SL) zugeordnet. Die Pumpen-Kennlinie 16 ist in der Figur 8 dargestellt und wird in Verbindung mit dieser näher erklärt. Der Soll-Strom i(SL) ist eine Eingangsgröße eines Funktionsblocks 17. Im Funktionsblock 17 sind die Berechnung des PWM-Signals und die Umschaltung des Ansteuersignais der Saugdrossel vom Normalbetrieb auf den Notbetrieb zusammengefasst. Detailliert dargestellt und erläutert wird der Funktionsblock 17 in Verbindung mit den Figuren 3 und 4. Die Ausgangsgröße des Funktionsblocks 17 entspricht dem Ist-Volumenstrom V(IST), welcher von der Hochdruckpumpe in das Rail 6 gefördert wird. Das Druckniveau pCR im Rail wird vom Rail-Drucksensor erfasst. Damit ist der Regelkreis 12 geschlossen. Die Figur 3 zeigt den Funktionsblock 17 der Figur 2 in einem ersten Blockschaltbild. Über den Funktionsblock 17 werden das PWM-Signal zur Ansteuerung der Saugdrossel und die Umschaltung des Ansteuersignais der Saugdrossel vom Normalbetrieb auf den Notbetrieb festgelegt. Die Eingangsgrößen des Funktionsblocks 17 sind hier der Soll- Strom i(SL), ein Soll-Notlaufstrom iN(SL), das Signal SD und die Eingangsgröße E1. Unter letzterer sind die PWM-Grundfrequenz, die Batteriespannung und der ohmsche Widerstand der Saugdrosselspule mit Zuleitung zusammengefasst. Die Ausgangsgröße des Funktionsblocks 17 ist der tatsächlich in das Rail geförderte Ist-Volumenstrom V(IST). Die Elemente des Funktionsblocks 17 sind ein Schalter S1 , eine Berechnung 18 des PWM-Signals und die Hochdruckpumpe und Saugdrossel als Einheit 19. Im
Normalbetrieb befindet sich der Schalter S1 in der Stellung 1 , das heißt, das PWM-Signal PWM wird über die Berechnung 18 in Abhängigkeit des Soll-Stroms i(SL) berechnet. Mit dem PWM-Signal PWM wird dann die Magnetspule der Saugdrossel beaufschlagt.
Dadurch wird der Weg des Magnetkerns verändert, wodurch der Förderstrom der Hochdruckpumpe frei beeinflusst wird. Aus Sicherheitsgründen ist die Saugdrossel stromlos offen und wird mit zunehmendem PWM-Wert in Richtung der Schließstellung beaufschlagt. Der Berechnung 18 des PWM-Signals kann ein Stromregelkreis 20 mit Filter 21 unterlagert sein, wie dieser aus der DE 10 2004 061 474 A1 bekannt ist.
Wird nun ein defekter Rail-Drucksensor erkannt, so wird das Signal SD gesetzt, wodurch der Schalter S1 in die Stellung 2 umgesteuert wird. Jetzt wird das PWM-Signal PWM in Abhängigkeit des Soll-Notlaufstroms iN(SL) berechnet. Der Soll-Notlaufstrom iN(SL) wird so gewählt, dass es zuverlässig zu einem Öffnen des passiven Druckbegrenzungsventils (Fig. 1 : 11) kommt. Wird die Saugdrossel -wie zuvor beschrieben- in negativer Logik angesteuert, so öffnet das Druckbegrenzungsventil zuverlässig, wenn der Notlaufstrom auf den Wert iN(SL)= 0 A gesetzt wird. Ein Öffnen des passiven Druckbegrenzungsventils kann aber auch dann hervorgerufen werden, wenn der Soll-Notlaufstrom iN(SL) auf einen etwas größeren Wert, zum Beispiel iN(SL)=0.4 A, gesetzt wird. Dies hat den Vorteil, dass durch die größere Kraftstoff-Drosselung der Kraftstoff beim Absteuern in den
Kraftstofftank weniger stark erwärmt wird.
Die Figur 4 zeigt den Funktionsblock 17 der Figur 2 in einem zweiten Blockschaltbild als alternative Ausführungsform zur Figur 3. Die Eingangsgrößen des Funktionsblocks 17 sind hier der Soll-Strom i(SL), ein PWM-Notlaufwert PWMNL, das Signal SD und die Eingangsgröße E1. Die Ausgangsgröße des Funktionsblocks 17 ist auch hier der tatsächlich in das Rail geförderte Ist-Volumenstrom V(IST). Die Elemente des
Funktionsblocks 17 sind die Berechnung 18 des PWM-Signals, ein Schalter S1 und die Hochdruckpumpe und Saugdrossel als Einheit 19. Im Normalbetrieb befindet sich der Schalter S1 in der Stellung 1 , das heißt, das PWM-Signal PWM wird über die Berechnung 18 in Abhängigkeit des Soll-Stroms i(SL) berechnet. Mit dem PWM-Signal PWM wird dann die Magnetspule der Saugdrossel (Einheit 19) beaufschlagt. Wird nun ein defekter Rail-Drucksensor erkannt, so wird das Signal SD gesetzt, wodurch der Schalter S1 in die Stellung 2 umgesteuert wird. Jetzt wird die Saugdrossel mit dem PWM-Notlaufwert PWMNL beaufschlagt. Der PWM-Notlaufwert PWMNL wird so gewählt, dass es zuverlässig zu einem öffnen des passiven Druckbegrenzungsventils (Fig. 1 : 11) kommt. Wird die Saugdrossel -wie zuvor beschrieben- in negativer Logik angesteuert, so öffnet das Druckbegrenzungsventil zuverlässig, wenn der PWM-Notlaufwert auf 0 % gesetzt wird. Ein öffnen des passiven Druckbegrenzungsventils kann aber auch dann
hervorgerufen werden, wenn ein etwas größerer Wert gewählt wird, zum Beispiel PWMNL=5%. Auch hier ergibt sich der Vorteil, dass durch die größere Kraftstoff- Drosselung der Kraftstoff beim Absteuem in den Kraftstofftank weniger stark erwärmt wird.
In der Figur 5 ist der Raildruck-Regelkreis 12 in einer zweiten Ausführung dargestellt. Die Eingangsgrößen des Raildruck-Regelkreises 12 sind: der Soll-Raildruck pCR(SL), die Eingangsgröße E1 und eine Eingangsgröße E2. Unter der Größe E1 sind beispielsweise die PWM-Grundfrequenz, die Batteriespannung und der ohmsche Widerstand der Saugdrosselspule mit Zuleitung zusammengefasst, welche in die Berechnung des PWM- Signals mit eingehen. Unter Eingangsgröße E2 sind unter anderem der Soll-Verbrauch Wb, die Motordrehzahl nMOT und eine Soll-Einspritzmenge zusammengefasst. Die Ausgangsgröße des Raildruck-Regelkreises 12 ist der Rohwert des Raildrucks pCR. Aus dem Rohwert des Raildrucks pCR wird mittels des Filters 13 der Ist-Raildruck pCR(IST) berechnet. Dieser wird dann mit dem Soll-Raildruck pCR(SL) an einem Summationspunkt A verglichen, woraus die Regelabweichung ep resultiert. Aus der Regelabweichung ep berechnet der Druckregler 14 seine Stellgröße, also den Regler- Volumenstrom VR mit der physikalischen Einheit Liter/Minute. Der Regler-Volumenstrom VR ist eine
Eingangsgröße des Funktionsblocks 17. Im Funktionsblock 17 sind unter anderem die Pumpen-Kennlinie und die Umschaltung vom Normal- auf den Notbetrieb integriert. Der Funktionsblock 17 wird in Verbindung mit den Figuren 6 und 7 näher erläutert. Die Ausgangsgröße des Funktionsblocks 17 entspricht dem Soll-Strom i(SL), welcher eine der Eingangsgrößen der Berechnung 18 des PWM-Signals ist. Der Berechnung 18 des PWM-Signals kann ein Stromregelkreis 20 mit Filter 21 unterlagert sein. Mit dem PWM- Signal PWM wird dann die Saugdrossel beaufschlagt, welche mit der Hochdruckpumpe in der Einheit 19 zusammengefasst ist. Die Ausgangsgröße der Einheit 19 entspricht dem von der Hochdruckpumpe in das Rail 6 geförderten Ist-Volumenstrom V(IST). Das Druckniveau pCR im Rail wird vom Rail-Drucksensor erfasst. Damit ist der Raildruck- Regelkreis 12 geschlossen.
In der Figur 6 ist der Funktionsblock 17 der Figur 5 in einem ersten Blockschaltbild dargestellt. Hierbei wird bei Ausfall des Rail-Drucksensors von der Pumpen-Kennlinie auf eine Grenzkurve umgeschaltet. Die Eingangsgrößen des Funktionsblocks 17 sind der Regler-Volumenstrom VR, welcher der Stellgröße des Druckreglers entspricht, der Soll- Verbrauch Wb, die Motordrehzahl nMOT und das Signal SD. Die Ausgangsgröße entspricht dem Soll-Strom i(SL). An einem Summationspunkt B werden der Ausgang des Schalters S2 und der Soll-Verbrauch Wb addiert. Das Ergebnis entspricht dem unbegrenzten Soll-Volumenstrom Vu, welcher anschließend über die Begrenzung 15 in Abhängigkeit der Motordrehzahl nMOT begrenzt wird. Die Ausgangsgröße entspricht dem Soll-Volumenstrom V(SL), welcher die Eingangsgröße sowohl der Pumpen-Kennlinie 16 als auch der Grenzkurve 22 ist. Im Normalbetrieb befindet sich der Schalter S1 in der Stellung 1 , was wiederum bedeutet, das der Soll-Strom i(SL) über die Pumpen-Kennlinie 16 bestimmt wird. Wird nun ein defekter Rail-Drucksensor erkannt, so wird das Signal SD gesetzt, wodurch der Schalter S1 in die Stellung 2 wechselt. Nunmehr wird der Soll-Strom i(SL) über die Grenzkurve 22 bestimmt. Die Pumpen-Kennlinie 16 und die Grenzkurve 22 sind in der Figur 8 dargestellt und werden in Verbindung mit dieser näher erläutert. Über die Ausführungsform der Figur 6 wird die Erwärmung des Kraftstoffs minimiert. Wird das Signal SD gesetzt, so wechselt der Schalter S2 von der Stellung 1 in die Stellung 2. Der Regler-Volumenstrom VR wird dadurch durch den Wert Null ersetzt.
Die Figur 7 zeigt den Funktionsblock 17 der Figur 5 in einem zweiten Blockschaltbild. Gegenüber der Figur 6 wurde der Funktionsblock durch ein Leckage-Kennfeld 23 mit der Soll-Einspritzmenge Q(SL) als weitere Eingangsgröße ergänzt. Im Normalbetrieb befinden sich die Schalter S1 und S2 in der Stellung 1. Damit wird der Soll-Strom i(SL) über die Pumpen-Kennlinie 16 in Abhängigkeit des Soll-Volumenstroms V(SL) berechnet. Der Soll-Volumenstrom V(SL) wiederum wird aus dem unbegrenzten Soll-Volumenstrom Vu bestimmt, welcher der Summe des Regler-Volumenstroms VR und des Soll- Verbrauchs Wb entspricht. Wird nun ein defekter Rail-Drucksensor erkannt, so wird das Signal SD gesetzt, wodurch die Schalter S1 und S2 in die Stellung 2 wechseln. In der Stellung 2 des Schalters S2 ist die Stellgröße des Druckreglers, hier: der Regler- Volumenstrom VR, nicht mehr bestimmend für den unbegrenzten Soll-Volumenstrom Vu. Dieser berechnet sich nunmehr aus der Summe des Soll-Verbrauchs Wb und einem Leckage-Volumenstrom VLKG. Der Leckage-Volumenstrom VLKG wiederum wird über das Leckage-Kennfeld 23 in Abhängigkeit der Soll-Einspritzmenge Q(SL) und der
Motordrehzahl nMOT berechnet. Ein Leckage-Kennfeld und dessen Festlegung ist in der DE 101 57 641 A1 beschrieben, auf weiche hiermit verwiesen wird. In der Stellung 2 des Schalters S1 wird der Soll-Strom i(SL) über die Grenzkurve 22 berechnet.
In der Figur 8 sind die Pumpen-Kennlinie 16 und die Grenzkurve 22 zur besseren
Erläuterung gemeinsam in einem Diagramm dargestellt. Auf der Abszisse ist der Soll- Volumenstrom V(SL) in Liter/Minute aufgetragen. Auf der Ordinate ist der Soll-Strom i(SL) in Ampere aufgetragen. Die Pumpen-Kennlinie 16 ist als durchgezogene Linie dargestellt. Über die Pumpen-Kennlinie 16 wird einem Soll-Volumenstrom V(SL) ein entsprechender Soll-Strom i(SL) zugeordnet, beispielsweise dem Soll-Volumenstrom V(SL)=V1 über den Arbeitspunkt A der Soll-Strom i(SL)=i1. Da in der Praxis die Streuung von
Hochdruckpumpe zu Hochdruckpumpe sehr groß ist, handelt es sich bei der Pumpen- Kennlinie 16 um eine mittlere Pumpen-Kennlinie. Die beiden gestrichelt dargestellten Kennlinien 24 und 25 stellen das Streuband dar, innerhalb dem die Hochdruckpumpen liegen müssen. Für einen Soll-Volumenstrom V(SL)=V1 ergibt sich zum Beispiel eine Streuung di(ST) des Soll-Stroms i(SL). Die Grenzkurve 22 ist als strichpunktierte Linie eingezeichnet. Diese ergibt sich dadurch, dass die Pumpen-Kennlinie 24 zu kleineren Soll-Stromwerten, also in Richtung der Abszisse, unter Berücksichtigung einer Reserve verschoben wird. Für den Soll-Volumenstrom V1 ergibt sich damit in der Bestromung eine Reserve di(Re). Die Grenzkurve 22 stellt insgesamt eine Zuordnung des Soll- Volumenstroms zu denjenigen maximalen Werten des Soll-Stroms i(SL) dar, welche ein öffnen des Druckbegrenzungsventils zuverlässig ermöglichen.
In der Figur 9 ist ein Blockschaltbild zur Berechnung der Bestromungsdauer BD dargestellt. Die Bestromungsdauer BD ergibt sich hierbei als Ausgangsgröße eines 3- dimensionalen Injektorkennfelds 26. Dessen Eingangsgrößen sind die Soll- Einspritzmenge Q(SL) und ein Druck pINJ. Im Normalbetrieb befindet sich der Schalter S1 in der Stellung 1 , so dass der Druck pINJ identisch mit dem Ist-Raildruck pCR(IST) ist. Bei Ausfall des Rail-Drucksensors wird der Schalter S1 über das Signal SD in die Stellung 2 umgesteuert. Nunmehr wird der Druck pINJ auf einen mittleren Raildruck pCR(M) gesetzt. Der mittlere Raildruck pCR(M) entspricht demjenigen Raildruck, welcher sich im Mittel einstellt, wenn das Druckbegrenzungsventil öffnet. Stellt sich zum Beispiel bei Leerlauf ein Raildruck von 900 bar ein und bei Volllast ein Raildruck von 700 bar, so beträgt der mittlere Raildruck pCR(M)=800 bar. Der mittlere Raildruck pCR(M) stellt somit eine sehr gute Näherung für den tatsächlichen Raildruck dar. Damit kann die
Bestromungsdauer BD auch bei Ausfall des Rail-Drucksensors mit hinreichender
Genauigkeit berechnet werden. Von Vorteil ist, dass die Brennkraftmaschine damit auch im Notbetrieb mit sehr hoher Leistung betrieben werden kann.
Die Figur 10 zeigt ein Zeitdiagramm. Die Figur 10 besteht aus den Teildiagrammen 10A bis 10D. Diese zeigen jeweils über der Zeit: das Signal SD in Figur 10A, den Soll-Strom i(SL) in Figur 10B, den Ist-Raildruck pCR(IST) in Figur 10C und den Druck pINJ als Eingangsgröße des Injektorkennfelds in Figur 10D. Zum Zeitpunkt t1 tritt der Defekt des Rail-Drucksensors auf, das heißt, das Signal SD wird auf den Wert 1 gesetzt. Mit
Erkennen des Defekts wird der Soll-Strom i(SL) vom ursprünglichen Wert i(SL)=1.5 A auf den Wert i(SL)=0 A gesetzt. Im unbestromten Zustand ist die Saugdrossel voll geöffnet, so dass die Hochdruckpumpe die maximal mögliche Kraftstoffmenge fördert. Dies bewirkt, dass der Ist-Raildruck pCR(IST) vom Druckniveau zum Zeitpunkt t1
(pCR(IST)=2000 bar) sukzessive so lange ansteigt bis der Öffnungsdruck des
Druckbegrenzungsventils erreicht ist. Der Öffnungsdruck beträgt hier 2400 bar (Fig. 10C). Hat das Druckbegrenzungsventil geöffnet, fällt der Ist-Raildruck pCR(IST) ab und pendelt sich auf einem Druckniveau zwischen 700 bar und 900 bar ein. Ebenfalls zum Zeitpunkt t1 wird die Eingangsgröße pINJ des Injektorkennfelds vom Ist-Raildruck pCR(IST) zum Zeitpunkt t1 , hier: pCR(IST)=2000 bar, auf den mittleren Raildruck pCR(M), hier: 800 bar, umgeschaltet. Siehe Figur 10D.
In der Figur 11 ist ein Programm-Ablaufplan eines Unterprogramms dargestellt, welcher zur Ausführungsform nach den Figuren 2 bis 4 korrespondiert. Bei S1 wird geprüft, ob der Rail-Drucksensor defekt ist. Ist dies nicht der Fall, Abfrageergebnis S1 : nein, wird der Programmteil mit den Schritten S2 bis S6 durchlaufen.
Anderenfalls wird der Notbetrieb aktiviert. Wurde bei S1 die Fehlerfreiheit des Rail- Drucksensors festgestellt, so wird bei S2 aus der Regelabweichung des Raildrucks über den Druckregler der Regler-Volumenstrom VR als Stellgröße berechnet. Bei S3 wird der Soll-Verbrauch Wb aus der Soll-Einspritzmenge und der Motordrehzahl bestimmt und anschließend bei S4 über Summenbildung der unbegrenzte Soll- Volumenstrom Vu berechnet. Danach wird dieser bei S5 in Abhängigkeit der
Motordrehzahl begrenzt und als Soll-Volumenstrom V(SL) gesetzt. Über die Pumpen- Kennlinie wird dem Soll-Volumenstrom V(SL) ein Soll-Strom i(SL) zugeordnet, S6, aus welchem dann ein PWM-Signal zur Ansteuerung der Saugdrossel berechnet wird, S7. Danach wird das Unterprogramm beendet. Wurde bei S1 ein defekter Rail- Drucksensor festgestellt, so wird in den Notbetrieb gewechselt, indem bei S8 der Soll-Strom i(SL) auf den Soll-Notlaufstrom iN(SL), zum Beispiel iN(SL)=0 A, gesetzt wird. Danach wird bei S7 das PWM-Signal aus dem Soll-Notlaufstrom iN(SL) berechnet und das Unterprogramm beendet. In der Figur 11 ist gestrichelt als Schritt S8A die Alternative eingezeichnet, bei welcher das PWM-Signal auf den PWM- Notlaufwert PWMNL gesetzt wird. Zu dieser Alternative korrespondiert die Figur 4.
In der Figur 12 ist ein Programm-Ablaufplan eines Unterprogramms dargestellt, welcher zur Ausführungsform nach den Figuren 5 und 7 korrespondiert. Bei S1 wird geprüft, ob der Rail-Drucksensor defekt ist. Ist dies nicht der Fall, Abfrageergebnis S1 : nein, wird der Programmteil mit den Schritten S2 bis S6 durchlaufen.
Anderenfalls wird der Notbetrieb aktiviert. Die Schritte S2 bis S6 entsprechen den Schritten S2 bis S6 der Figur 11 , also dem Normalbetrieb, so dass das dort Gesagte auch hier gilt. Wurde bei S1 ein defekter Rail-Drucksensor festgestellt,
Abfrageergebnis S1 : ja, dann wird bei S8 ein Leckage-Volumenstrom VLKG in Abhängigkeit der Soll-Einspritzmenge Q(SL) und der Motordrehzahl nMOT über ein Leckagekennfeld berechnet. Im Anschluss wird bei S9 der Soll-Verbrauch Wb bestimmt und der unbegrenzte Soll-Volumenstrom Vu aus der Summe des Leckage- Volumenstroms VLKG und des Soll-Verbrauchs Wb berechnet, S10. Bei S1 1 wird dieser in Abhängigkeit der Motordrehzahl begrenzt und als Soll-Volumenstrom V(SL) gesetzt. Anschließend wird bei S12 der Soll-Strom i(SL) über die Grenzkurve berechnet und hieraus das PWM-Signal zur Ansteuerung der Saugdrossel festgelegt, S7. Danach wird das Unterprogramm beendet. Bezugszeichen
1 Brennkraftmaschine
2 Kraftstofftank
3 Niederdruckpumpe
4 Saugdrossel
5 Hochdruckpumpe
6 Rail
7 Injektor
8 Einzelspeicher (optional)
9 Rail-Drucksensor
10 elektronisches Steuergerät (ECU)
1 1 Druckbegrenzungsventil, passiv
12 Raildruck-Regelkreis
13 Filter
14 Druckregler
15 Begrenzung
16 Pumpen-Kennlinie
17 Funktionsblock
18 Berechnung PWM-Signal
19 Einheit (Saugdrossel mit Hochdruckpumpe)
20 Strom-Regelkreis
21 Filter
22 Grenzkurve
23 Leckage-Kennfeld
24 Kennlinie
25 Kennlinie
26 Injektorkennfeld

Claims

Patentansprüche
1. Verfahren zur Steuerung und Regelung einer Brennkraftmaschine (1), bei dem im Normalbetrieb der Raildruck (pCR) geregelt wird und bei dem mit Erkennen eines defekten Rail-Drucksensors (9) vom Normalbetrieb auf einen Notbetrieb gewechselt wird, wobei im Notbetrieb der Raildruck (pCR) gesteuert wird, dadurch gekennzeichnet,
dass im Notbetrieb der Raildruck (pCR) sukzessiv bis zum Ansprechen eines passiven Druckbegrenzungsventils (11) erhöht wird, welches im geöffneten Zustand Kraftstoff aus dem Rail (6) in den Kraftstofftank (2) absteuert.
2. Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet,
dass im Notbetrieb der Raildruck (pCR) erhöht wird, indem eine niederdruckseitige Saugdrossel (4) als Druckstellglied in Öffnungsrichtung beaufschlagt wird.
3. Verfahren nach Anspruch 2,
dadurch gekennzeichnet,
dass ein Soll-Strom (i(SL)) als Ansteuersignal der Saugdrossel (4) auf einen Soll- Notlaufstrom (iN(SL)) gesetzt wird.
4. Verfahren nach Anspruch 2,
dadurch gekennzeichnet,
dass ein PWM-Signal (PW ) als Ansteuersignal der Saugdrossel (4) auf einen PWM-Notlaufwert (PMWNL) gesetzt wird.
5. Verfahren nach einem der vorausgegangen Ansprüche, dadurch gekennzeichnet,
dass im Normalbetrieb der Soll-Strom (i(SL)) als Ansteuersignal der Saugdrossel (4) über eine Pumpen-Kennlinie (16) und im Notbetrieb der Soll-Strom (i(SL)) über eine Grenzkurve (22) bestimmt wird.
6. Verfahren nach Anspruch 5,
dadurch gekennzeichnet,
dass im Notbetrieb der Soll-Strom (i(SL)) über die Grenzkurve (22) zumindest in Abhängigkeit eines Sollverbrauchs (Wb) von Kraftstoff bestimmt wird.
7. Verfahren nach Anspruch 5,
dadurch gekennzeichnet,
dass im Notbetrieb der Soll-Strom (i(SL)) über die Grenzkurve (22) in Abhängigkeit eines Leckage-Volumenstroms (VLKG) bestimmt wird, welcher über ein Leckage- Kennfeld (23) in Abhängigkeit der Soll-Einspritzmenge (Q(SL)) und der
Motordrehzahl (nMOT) berechnet wird.
8. Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet,
dass im Notbetrieb der Raildruck (pCR) erhöht wird, indem eine Hochdruckpumpe auf Maximalförderung gesetzt wird.
9. Verfahren nach einem der vorausgegangenen Ansprüche,
dadurch gekennzeichnet,
dass im Notbetrieb die Bestromungsdauer (BD) eines Injektors (7) in Abhängigkeit der Soll-Einspritzmenge (Q(SL)) und eines mittleren Raildrucks (pCR(M)) bestimmt wird.
10. Verfahren nach Anspruch 9,
dadurch gekennzeichnet,
dass der mittlere Raildruck (pCR(M)) als Konstantwert vorgegeben wird.
EP10768697A 2009-10-23 2010-10-19 Verfahren zur steuerung und regelung einer brennkraftmaschine Withdrawn EP2491237A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009050468.0A DE102009050468B4 (de) 2009-10-23 2009-10-23 Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
PCT/EP2010/006382 WO2011047833A1 (de) 2009-10-23 2010-10-19 Verfahren zur steuerung und regelung einer brennkraftmaschine

Publications (1)

Publication Number Publication Date
EP2491237A1 true EP2491237A1 (de) 2012-08-29

Family

ID=43471551

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10768697A Withdrawn EP2491237A1 (de) 2009-10-23 2010-10-19 Verfahren zur steuerung und regelung einer brennkraftmaschine

Country Status (5)

Country Link
US (1) US8886441B2 (de)
EP (1) EP2491237A1 (de)
CN (2) CN102713220B (de)
DE (1) DE102009050468B4 (de)
WO (1) WO2011047833A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009051390B4 (de) * 2009-10-30 2015-10-22 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
GB2489463A (en) * 2011-03-29 2012-10-03 Gm Global Tech Operations Inc Method of controlling fuel injection in a common rail engine
DE102011100187B3 (de) * 2011-05-02 2012-11-08 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102011100189A1 (de) 2011-05-02 2012-11-08 Mtu Friedrichshafen Gmbh Verfahren zur Übenwachung eines passiven Druckbegrenzungsventils
DE102011115244A1 (de) * 2011-09-28 2013-03-28 Airbus Operations Gmbh Verfahren und System zur Überwachung des Betriebszustands einer Pumpe
DE102012008538B4 (de) 2012-01-30 2014-05-15 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
JP2014058886A (ja) * 2012-09-17 2014-04-03 Bosch Corp エンジン回転制御装置
DE102013206428A1 (de) * 2013-04-11 2014-10-30 Robert Bosch Gmbh Verfahren zum Betreiben eines Common-Rail-Systems eines Kraftfahrzeugs und Mittel zu dessen Implementierung
DE102013009147B4 (de) * 2013-05-31 2015-11-05 Mtu Friedrichshafen Gmbh Verfahren zum Regeln eines Drucks und Anordnung zum Regeln eines Drucks
DE102014203364B4 (de) * 2014-02-25 2023-03-23 Vitesco Technologies GmbH Verfahren und Vorrichtung zum Betrieb eines Ventils, insbesondere für ein Speichereinspritzsystem
DE102015207672B3 (de) * 2015-04-27 2016-09-01 Continental Automotive Gmbh Verfahren zur Regelung eines Kraftstofffördersystems
DE102015207702B3 (de) 2015-04-27 2016-07-28 Continental Automotive Gmbh Verfahren zur Regelung eines Kraftstofffördersystems
US10012168B2 (en) * 2015-06-11 2018-07-03 Toyota Jidosha Kabushiki Kaisha Control system
EP3165745A1 (de) 2015-11-04 2017-05-10 GE Jenbacher GmbH & Co. OG Brennkraftmaschine mit einspritzmengensteuerung
US9885310B2 (en) * 2016-01-20 2018-02-06 Ford Global Technologies, Llc System and methods for fuel pressure control
DE102016214760B4 (de) 2016-04-28 2018-03-01 Mtu Friedrichshafen Gmbh Verfahren zum Betrieb einer Brennkraftmaschine, Einrichtung zum Steuern und/oder Regeln einer Brennkraftmaschine, Einspritzsystem und Brennkraftmaschine
DE102017005537A1 (de) * 2017-06-10 2018-12-13 Mtu Friedrichshafen Gmbh Kraftstoffeinspritzsystem und Verfahren zur Ausführung damit
IT201900010059A1 (it) * 2019-06-25 2020-12-25 Bosch Gmbh Robert Sistema e metodo di controllo di una elettrovalvola di dosaggio in un gruppo di pompaggio per alimentare combustibile ad un motore a combustione interna

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19626689C1 (de) * 1996-07-03 1997-11-20 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überwachung eines Einspritzsystems
JPH10227268A (ja) * 1997-02-12 1998-08-25 Nippon Soken Inc 蓄圧式燃料噴射装置
DE19731201C2 (de) 1997-07-21 2002-04-11 Siemens Ag Verfahren zum Regeln des Kraftstoffdruckes in einem Kraftstoffspeicher
JP3680515B2 (ja) 1997-08-28 2005-08-10 日産自動車株式会社 内燃機関の燃料系診断装置
US5937826A (en) * 1998-03-02 1999-08-17 Cummins Engine Company, Inc. Apparatus for controlling a fuel system of an internal combustion engine
US6053147A (en) 1998-03-02 2000-04-25 Cummins Engine Company, Inc. Apparatus and method for diagnosing erratic pressure sensor operation in a fuel system of an internal combustion engine
JP3884577B2 (ja) * 1998-08-31 2007-02-21 株式会社日立製作所 内燃機関の制御装置
DE19916100A1 (de) 1999-04-09 2000-10-12 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP2001152922A (ja) * 1999-11-26 2001-06-05 Mitsubishi Motors Corp コモンレール式燃料噴射装置
DE10003298A1 (de) 2000-01-27 2001-08-02 Bosch Gmbh Robert Verfahren und Vorrichtung zur Druckregelung
DE10014737A1 (de) 2000-03-24 2001-10-11 Bosch Gmbh Robert Verfahren zur Bestimmung des Raildrucks eines Einspritzventils mit einem piezoelektrischen Aktor
GB2372583A (en) * 2001-02-21 2002-08-28 Delphi Tech Inc High pressure fuel injected engine limp home control system
CN1575540A (zh) 2001-10-25 2005-02-02 皇家飞利浦电子股份有限公司 直流电动机的无传感器感换向
DE10155247B4 (de) * 2001-11-09 2006-08-24 Siemens Ag Einspritzanlage mit Notlauffunktion
DE10156637C1 (de) * 2001-11-17 2003-05-28 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung des Startbetriebs einer Brennkraftmaschine
DE10157641C2 (de) * 2001-11-24 2003-09-25 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung einer Brennkraftmaschine
EP1359316B1 (de) * 2002-05-03 2007-04-18 Delphi Technologies, Inc. Kraftstoffeinspritzeinrichtung
US7207319B2 (en) * 2004-03-11 2007-04-24 Denso Corporation Fuel injection system having electric low-pressure pump
DE102004016943B4 (de) * 2004-04-06 2006-06-29 Siemens Ag Verfahren zum Steuern einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine
DE102004037963A1 (de) * 2004-08-05 2006-03-16 Robert Bosch Gmbh Prüfverfahren
DE102004061474B4 (de) * 2004-12-21 2014-07-17 Mtu Friedrichshafen Gmbh Verfahren und Einrichtung zur Regelung des Raildrucks
JP4466509B2 (ja) * 2005-08-25 2010-05-26 株式会社デンソー コモンレール式燃料噴射システムの制御装置
DE102006009068A1 (de) 2006-02-28 2007-08-30 Robert Bosch Gmbh Verfahren zum Betreiben eines Einspritzsystems einer Brennkraftmaschine
JP4781899B2 (ja) * 2006-04-28 2011-09-28 日立オートモティブシステムズ株式会社 エンジンの燃料供給装置
JP2007327404A (ja) * 2006-06-07 2007-12-20 Denso Corp コモンレール式燃料噴射装置
DE102006040441B3 (de) * 2006-08-29 2008-02-21 Mtu Friedrichshafen Gmbh Verfahren zum Erkennen des Öffnens eines passiven Druck-Begrenzungsventils
DE602007009109D1 (de) * 2007-09-21 2010-10-21 Magneti Marelli Spa Steuerverfahren für ein Common-Rail Einspritzsystem mit einem Absperrventil zur Steuerung des Flusses einer Hochdruckbrennstoffpumpe
DE102008000983A1 (de) * 2008-04-03 2009-10-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Kraftstoffzumesssystems
DE102009050469B4 (de) * 2009-10-23 2015-11-05 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009050467B4 (de) * 2009-10-23 2017-04-06 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102009051390B4 (de) * 2009-10-30 2015-10-22 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
JP5267446B2 (ja) * 2009-12-22 2013-08-21 日産自動車株式会社 内燃機関の燃料供給装置
DE102012008538B4 (de) * 2012-01-30 2014-05-15 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2011047833A1 *

Also Published As

Publication number Publication date
DE102009050468B4 (de) 2017-03-16
CN102713220A (zh) 2012-10-03
US8886441B2 (en) 2014-11-11
WO2011047833A1 (de) 2011-04-28
DE102009050468A1 (de) 2011-04-28
US20120221226A1 (en) 2012-08-30
CN107448315B (zh) 2021-02-26
CN107448315A (zh) 2017-12-08
CN102713220B (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
DE102009050468B4 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE10162989C1 (de) Schaltungsanordnung zum Regeln einer regelbaren Kraftstoffpumpe, Verfahren zum Regeln einer Förderleistung und Verfahren zum Überprüfen der Funktionsfähigkeit einer regelbaren Kraftstoffpumpe
DE102006049266B3 (de) Verfahren zum Erkennen eines geöffneten passiven Druck-Begrenzungsventils
DE102009050467B4 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102006040441B3 (de) Verfahren zum Erkennen des Öffnens eines passiven Druck-Begrenzungsventils
EP1896712B1 (de) Steuer- und regelverfahren für eine brennkraftmaschine mit einem common-railsystem
EP2449241B1 (de) Verfahren zur regelung des raildrucks in einem common-rail einspritzsystem einer brennkraftmaschine
EP2494175B1 (de) Verfahren zur steuerung und regelung einer brennkraftmaschine
EP2006521B1 (de) Verfahren zur Regelung des Raildrucks während eines Startvorgangs
EP2491236B1 (de) Verfahren zur steuerung und regelung einer brennkraftmaschine
WO2005111402A1 (de) Verfahren zur druck-regelung eines speichereinspritzsystems
WO2011000478A1 (de) Verfahren zur steuerung und regelung des kraftstoffsdruckes eines common-rails einer brennkraftmaschine
DE19731994A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP2705236B1 (de) Verfahren zur überwachung eines passiven druckregelventils
EP0974826B1 (de) Verfahren und Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine
EP2449240A1 (de) Verfahren zur regelung des raildrucks in einem common-rail einspritzsystem einer brennkraftmaschine
WO2017186326A1 (de) Verfahren zum betrieb einer brennkraftmaschine, einrichtung zum steuern und/oder regeln einer brennkraftmaschine, einspritzsystem und brennkraftmaschine
DE19735938A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102007035718A1 (de) Verfahren zur Steuerung des Vorförderdruckes eines Common-Rail-Kraftstoffsystems
EP2358987B1 (de) Steuerung- und regelungsverfahren für eine brennkraftmaschine mit einem common-railsystem
DE102019202004A1 (de) Verfahren zum Betreiben eines Einspritzsystems einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine mit einem solchen Einspritzsystem
WO2002018765A1 (de) Verfahren zur verkürzung der startzeit bei brennkraftmaschinen mit speichereinspritzsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170620

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171031