EP2487337A1 - Dampfturbine in dreischaliger Bauweise - Google Patents

Dampfturbine in dreischaliger Bauweise Download PDF

Info

Publication number
EP2487337A1
EP2487337A1 EP11154199A EP11154199A EP2487337A1 EP 2487337 A1 EP2487337 A1 EP 2487337A1 EP 11154199 A EP11154199 A EP 11154199A EP 11154199 A EP11154199 A EP 11154199A EP 2487337 A1 EP2487337 A1 EP 2487337A1
Authority
EP
European Patent Office
Prior art keywords
flow
turbomachine
steam
cooling steam
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11154199A
Other languages
English (en)
French (fr)
Inventor
Tobias Hogen
Christoph Kästner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP11154199A priority Critical patent/EP2487337A1/de
Priority to EP11805032.7A priority patent/EP2652271A1/de
Priority to CN201180067356.1A priority patent/CN103370498B/zh
Priority to PCT/EP2011/073744 priority patent/WO2012107140A1/de
Publication of EP2487337A1 publication Critical patent/EP2487337A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft eine Strömungsmaschine, insbesondere eine Dampfturbine, umfassend einen Rotor (5) sowie ein inneres Innengehäuse (3), ein äußeres Innengehäuse (4) und ein Außengehäuse (2), wobei die Strömungsmaschine eine Mitteldruck-Beschaufelung bzw. Niederdruck-Beschaufelung aufweist, wobei das innere Innengehäuse (3) aus einem höherwertigen Material als das äußere Innengehäuse (4) gefertigt ist.

Description

  • Die Erfindung betrifft eine Strömungsmaschine umfassend einen um eine Rotationsachse drehbar gelagerten Rotor, ein in radialer Richtung um den Rotor angeordnetes inneres Innengehäuse und ein äußeres Innengehäuse, wobei um das innere Innengehäuse und das äußere Innengehäuse ein Außengehäuse angeordnet ist, wobei die Strömungsmaschine eine für Mitteldruckdampf ausgebildete erste Flut und eine für Niederdruckdampf ausgebildete zweite Flut aufweist, wobei die zweite Flut in die gleiche Richtung wie die ersten Flut ausgerichtet ist.
  • Unter einer Strömungsmaschine wird beispielsweise eine Dampfturbine verstanden. Eine Dampfturbine weist üblicher Weise einen drehbar gelagerten Rotor und ein Gehäuse, das um den Rotor angeordnet ist auf. Zwischen dem Rotor und dem Innengehäuse ist ein Strömungskanal ausgebildet. Das Gehäuse in einer Dampfturbine muss mehrere Funktionen erfüllen können. Zum einen werden die Leitschaufeln im Strömungskanal am Gehäuse angeordnet und zum zweiten muss das Innengehäuse den Druck und den Temperaturen des Strömungsmediums für alle Last- und besondere Betriebsfälle standhalten. Bei einer Dampfturbine ist das Strömungsmedium Dampf. Des Weiteren muss das Gehäuse derart ausgebildet sein, dass Zu- und Abführungen, die auch als Anzapfungen bezeichnet werden, möglich sind. Eine weitere Funktion, die ein Gehäuse erfüllen muss, ist die Möglichkeit, dass ein Wellenende durch das Gehäuse durchgeführt werden kann.
  • Bei den im Betrieb auftretenden hohen Spannungen, Drücken und Temperaturen ist es erforderlich, dass die Werkstoffe geeignet ausgewählt werden sowie die Konstruktion derart gewählt ist, dass die mechanische Integrität und Funktionalität ermöglicht wird. Dafür ist es erforderlich, dass hochwertige Werkstoffe zum Einsatz kommen, insbesondere im Bereich der Einströmung und der ersten Leitschaufelnuten.
  • Für die Anwendungen bei Frischdampftemperaturen von über 650°C, wie z.B. 700°C, sind Nickel-Basis-Legierungen geeignet, da sie den bei hohen Temperaturen auftretenden Belastungen standhalten. Allerdings ist die Verwendung einer solchen Nickel-Basis-Legierung mit neuen Herausforderungen verbunden. So sind die Kosten für Nickel-Basis-Legierungen vergleichsweise hoch und außerdem ist die Fertigbarkeit von Nickel-Basis-Legierungen, z.B. durch beschränkte Gussmöglichkeit begrenzt. Dies führt dazu, dass die Verwendung von Nickel-Basis-Werkstoffen minimiert werden muss. Des Weiteren sind die Nickel-Basis-Werkstoffe schlechte Wärmeleiter. Dadurch sind die Temperaturgradienten über der Wandstärke so starr, dass Thermospannungen vergleichsweise hoch sind. Des Weiteren ist zu berücksichtigen, dass bei der Verwendung von Nickel-Basis-Werkstoffen die Temperaturdifferenz zwischen Ein- und Auslass der Dampfturbine steigt.
  • Es werden derzeit verschiedene Konzepte verfolgt, um eine Dampfturbine bereitzustellen, die für hohe Temperaturen und für hohe Drücke geeignet ist. So ist es bekannt, eine aus mehreren Teilen umfassende Innengehäusestruktur in eine Außengehäusestruktur einzuarbeiten gemäß dem Artikel Y. Tanaka et al. "Advanced Design of Mitsubishi Large Steam Turbines", Mitsubishi Heavy Industries, Power Gen Europe, 2003, Düsseldorf, May 06.-08., 2003.
  • Es ist ebenso bekannt, ein Innengehäuse aus zwei Teilen auszubilden gemäß DE 10 2006 027 237 A1 .
  • In der DE 342 1067 wird ebenfalls eine mehrkomponentige Innengehäusestruktur offenbart sowie in der DE 103 53 451 A1 .
  • In einer besonderen Ausführungsform der Strömungsmaschine sind der Mitteldruck-Teil und der Niederdruck-Teil in einem Außengehäuse untergebracht. Der Mitteldruck -Teil wird mit einem Dampf beaufschlagt, der in der Regel hohe Dampfparameter wie Temperatur und Druck aufweist und direkt von der Zwischenüberhitzereinheit von der Hochdruck-Teilturbine strömt. Der aus dem Hochdruck-Teil nach Expansion ausströmende Dampf wird zu einer Zwischenüberhitzereinheit eines Kessels geführt und dort auf eine höhere Temperatur, die der Frischdampftemperatur entsprechen kann, erhitzt. Dieser zwischenüberhitzte Dampf wird anschließend in die Strömungsmaschine in den Mitteldruck-Teil geleitet und strömt anschließend durch eine Mitteldruck-Beschaufelung. Es sind Strömungsmaschinen bekannt, die in einer so genannten Single-Flow-Bauart gefertigt werden. In dieser Bauart ist der Mitteldruck-Teil und der Niederdruck-Teil nacheinander angeordnet und wird in derselben Strömungsrichtung durchströmt.
  • Es ist Aufgabe der Erfindung, eine weitere Möglichkeit anzubieten, eine Strömungsmaschine auszubilden.
  • Gelöst wird diese Aufgabe durch eine Strömungsmaschine mit den Merkmalen nach Anspruch 1. In den Unteransprüchen sind vorteilhafte Weiterbildungen angegeben.
  • Ein wesentlicher Gedanke der Erfindung ist es, eine dreischalige Dampfturbine auszubilden. Das Innengehäuse wird hierbei in ein inneres Innengehäuse und ein äußeres Innengehäuse ausgebildet. Das innere Innengehäuse ist im Bereich des Einströmbereichs angeordnet und muss daher den hohen Temperaturen und den hohen Drücken standhalten. Daher ist das innere Innengehäuse aus einem geeigneten Material, wie z.B. aus einer Nickel-Basislegierung oder aus einem höherwertigen Werkstoff wie z.B. einen Stahl, der 9 - 10 Gew.-% Chrom umfasst. Zwischen dem inneren Innengehäuse und dem Rotor ist der Strömungskanal ausgebildet. Das innere Innengehäuse weist daher Vorrichtungen wie z.B. Nuten, um darin Leitschaufeln zu tragen. Um das Innengehäuse ist ein äußeres Innengehäuse angeordnet. Wesentlich hierbei ist, dass zwischen dem inneren Innengehäuse und dem äußeren Innengehäuse ein Kühldampfraum entsteht, der mit Kühlmedium beaufschlagt wird. Das äußere Innengehäuse ist dabei derart ausgebildet, dass es in Strömungsrichtung gesehen, an das innere Innengehäuse angrenzt und eine Begrenzung des Strömungskanals darstellt, wobei auch in dem äußeren Innengehäuse Vorrichtungen wie z.B. Nuten, vorgesehen sind, um Leitschaufeln tragen zu können.
  • Das äußere Innengehäuse wird durch Dampfeinleitung in den Kühldampfraum mit einem Dampf beaufschlagt, der eine geringere Temperatur und einen geringeren Druck aufweist, so dass das Material des äußeren Innengehäuses weniger warmfest sein muss als das Material des inneren Innengehäuses. Insbesondere genügt es, wenn das äußere Innengehäuse aus einem weniger hochwertigen Werkstoff ausgebildet ist. Um das innere Innengehäuse und dem äußeren Innengehäuse ist ein Außengehäuse angeordnet.
  • Die Strömungsmaschine weist eine erste Flut auf, die mit einem Mitteldruckdampf beaufschlagt wird und in einer ersten Strömungsrichtung strömt. Des Weiteren weist die Strömungsmaschine eine zweite Flut auf, die mit Niederdruckdampf beaufschlagt wird und in einer zweiten Strömungsrichtung strömt. Die zweite Strömungsrichtung zeigt in die gleiche Richtung wie die erste Strömungsrichtung, so dass diese Strömungsmaschine in einer so genannten Straight-Flow-Bauart ausgebildet ist. Der Mitteldruck-Einströmbereich wird von dem inneren Innengehäuse umgeben bzw. ausgebildet. Das innere Innengehäuse wird aus einem höherwertigen Material gefertigt und nimmt nur die Mitteldruck-Einströmung auf. Dadurch kann das innere Innengehäuse kompakt gehalten platzsparend gefertigt werden und weist darüber hinaus ein geringeres Gewicht auf.
  • In einer vorteilhaften Weiterbildung ist zwischen dem inneren Innengehäuse und dem äußeren Innengehäuse ein Kühldampfraum ausgebildet. Der zwischen dem inneren Innengehäuse und dem äußeren Innengehäuse im Betrieb befindliche Kühldampf stellt gleichzeitig die Isolierung zum äußeren Innengehäuse dar, welches den Kühldampfraum und das innere Innengehäuse umschließt und den Expansionspfad hinter der Kühldampfentnahme ausbildet. Das äußere Innengehäuse befindet sich in Kontakt zu diesem Kühldampf und kann daher aus einem minderwertigeren Material als das innere Innengehäuse gefertigt bzw. ausgebildet sein. Darüber hinaus werden die Primär- und Sekundärspannungen im äußeren Innengehäuse lediglich durch die Differenz zwischen dem Dampfzustand des Dampfes im Kühldampfraum und des Mitteldruck-Abdampfes beeinflusst. Primärspannungen sind mechanische Spannungen, die in Folge von äußeren Lasten, z.B. durch Dampfdrücke, Gewichtskräfte und ähnliches entstehen. Unter Sekundärspannungen sind beispielsweise Thermospannungen zu verstehen und stellen mechanische Spannungen dar, die in Folge von nicht ausgeglichenen Temperaturfeldern oder Behinderungen der Wärmedehnungen (thermische Verzwängungen) entstehen.
  • Die Strömungsmaschine wird unter anderem im Kühldampfraum mit einer Entwässerungsleitung ausgebildet, die bei einem Stillstand oder Startvorgang ein anfallendes Kondensationswasser ableitet oder bei einem Ausfall einer Anzapfung, welche durch Dampfentnahme über Stutzen aus dem Kühlraum beispielhaft realisiert sein könnte, eine ausreichende Restbeströmung sicherstellt.
  • In einer vorteilhaften Weiterbildung ist eine Kühldampfströmungsleitung zum Zuströmen von Kühldampf in den Kühldampfraum vorgesehen. Die Kühldampfströmungsleitung ist vorteilhafter Weise strömungstechnisch mit der zweiten Flut verbunden. Das bedeutet, dass der Niederdruck-Dampf vorwiegend in den Kühldampfraum eingeströmt wird, der ideale Dampfparameter aufweist, um das innere Innengehäuse adäquat zu kühlen.
  • In einer vorteilhaften Weiterbildung ist der Kühldampfraum mit einer Kühldampfausströmungsleitung zum Ausströmen von Kühldampf aus dem Kühldampfraum ausgebildet. Durch das im Betrieb fortwährende Ausströmen des Kühldampfes aus dem Kühldampfraum wird eine sehr gute Kühlung erwirkt, wodurch die Werkstoffauslastungen (insbesondere Primär- und Sekundärspannungen) in der Strömungsmaschine geringer werden.
  • In einer vorteilhaften Weiterbildung weist der Rotor einen Schubausgleichskolben auf, wobei eine Strömungsmaschine-Kühlströmungsleitung zum Zuströmen von Kühldampf zur Strömungsmaschine vorgesehen ist. Die Strömungsmaschine-Kühlströmungsleitung ist hierbei vorteilhafter Weise mit einer Kühlströmungsüberleitung strömungstechnisch verbunden.
  • Das innere Innengehäuse ist hierbei aus einem höherwertigeren Werkstoff ausgebildet als das äußere Innengehäuse. Das innere Innengehäuse ist in einer ersten Ausführungsform aus einem hochchromigen Werkstoff, der 9 - 10 Gew.-% Chrom umfasst, ausgebildet. In einer zweiten vorteilhaften Weiterbildung ist das innere Innengehäuse aus einem Nickel-Basiswerkstoff ausgebildet. Das äußere Innengehäuse ist aus einem Werkstoff, der 1 - 2 Gew.-% Chrom umfasst ausgebildet.
  • Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnung beschrieben. Diese sollen die Ausführungsbeispiele nicht maßstäblich darstellen, vielmehr ist die Zeichnung in schematisierter und/oder leicht verzerrter Form ausgeführt. Im Hinblick auf Ergänzungen der aus der Zeichnung unmittelbar erkennbaren Lehren wird hier auf den einschlägigen Stand der Technik verwiesen.
  • Im Einzelnen zeigt die Zeichnung in:
  • Figur 1
    eine Schnittdarstellung durch eine einflutige Dampfturbine,
    Figur 2
    eine Schnittdarstellung durch eine zweiflutige Dampfturbine.
  • Die in Figur 1 dargestellte Dampfturbine 1 ist eine Ausführungsform einer Strömungsmaschine. Die Dampfturbine 1 umfasst ein Außengehäuse 2, ein inneres Innengehäuse 3, ein äußeres Innengehäuse 4 sowie einen drehbar gelagerten Rotor 5. Der Rotor 5 ist um eine Rotationsachse 6 drehbar gelagert. Das Außengehäuse 2 ist aus einem Oberteil und einem Unterteil ausgebildet, wobei das Oberteil oberhalb der Rotationsachse 6 und das Unterteil unterhalb der Rotationsachse 6 in der Zeichenebene dargestellt ist. Sowohl das innere Innengehäuse 3 als auch das äußere Innengehäuse 4 weisen ebenfalls ein Oberteil und ein Unterteil auf, das wie beim Außengehäuse 2 beschrieben, oberhalb und unterhalb der Rotationsachse 6 angeordnet ist. Somit weisen das innere Innengehäuse 3, das äußere Innengehäuse 4 und das Außengehäuse 2 jeweils eine horizontale Teilfuge auf.
  • Im Betrieb strömt ein Mitteldruckdampf in einen Mitteldruck-Einströmbereich 7. Anschließend strömt der Mitteldruckdampf entlang einer ersten Strömungsrichtung 9 durch eine nicht näher dargestellte Beschaufelung 8, die Leitschaufeln und Laufschaufeln umfasst. Die Laufschaufeln sind hierbei auf dem Rotor 5 und die Leitschaufeln am inneren Innengehäuse 3 und äußeren Innengehäuse 4 angeordnet. Die Temperatur und der Druck des Mitteldruckdampfes werden während der Durchströmung verringert. Der Mitteldruckdampf strömt anschließend aus einem Ausströmbereich 10 aus der Strömungsmaschine.
  • Das innere Innengehäuse 3 und das äußere Innengehäuse 4 sind in radialer Richtung 11 um den Rotor 5 angeordnet. Die radiale Richtung 11 ist im Wesentlichen senkrecht zur Rotationsachse 6 ausgebildet. Um das innere Innengehäuse 3 und das äußere Innengehäuse 4 ist das Außengehäuse 2 angeordnet. Das innere Innengehäuse 3 ist im Bereich des Mitteldruck-Einströmbereiches 7 ausgebildet. Da im Mitteldruck-Einströmbereich 7 die Temperatur des Dampfes am höchsten ist, wird das innere Innengehäuse 3 aus einem höherwertigen Material gefertigt. In einer ersten Ausführungsform wird das innere Innengehäuse 3 aus einer Nickel-Basis-Legierung ausgebildet. In einer zweiten Ausführungsform wird das innere Innengehäuse 3 aus einem höherwertigen Material, das 9 - 10 Gew.-% Chrom umfasst, ausgebildet. Das äußere Innengehäuse 4 kann aus einem weniger hochwertigen Material ausgebildet sein. In einer Ausführungsform kann das innere Außengehäuse 3 aus einem Stahl mit 1 - 2 Gew.-% Chrom ausgebildet sein.
  • Die Figur 2 zeigt eine Dampfturbine 1 mit einem integrierten Mitteldruck-Teil 12 und einen Niederdruck-Teil 13. Die Strömungsmaschine 1 ist hierbei in einer Straight-Flow-Bauweise ausgebildet, d.h., der Dampf strömt sowohl im Mitteldruck-Teil 12 als auch im Niederdruck-Teil 13 entlang einer gemeinsamen Strömungsrichtung. Der Niederdruck-Teil 13 wird zwischen dem Rotor 5 und einem Niederdruck-Innengehäuse 14 gebildet. Der Niederdruck-Teil 13 ist durch unterschiedliche Dampfparameter wie Temperatur und Druck gegenüber dem Mitteldruck Teil 12 gekennzeichnet. Die Strömungsmaschine weist eine für Mitteldruckdampf ausgebildete erste Flut 18 und eine für Niederdruckdampf ausgebildete zweite Flut 19 auf, wobei die zweite Flut 19 in die gleiche Richtung wie die erste Flut 18 ausgerichtet ist.
  • Der Rotor 5 weist einen Schubausgleichskolben auf, wobei eine Strömungsmaschinen-Kühlströmungsleitung zum Zuströmen von Kühldampf der Strömungsmaschine vorgesehen ist.
  • Nach Durchströmen des Niederdruck-Teils 13 strömt der Dampf über den Ausströmbereich 10 aus der Dampfturbine 1 heraus.
  • Das äußere Innengehäuse 4 erstreckt sich über den gesamten Mitteldruck-Teil 12. Das bedeutet, dass das innere Innengehäuse 3 im Bereich des Mitteldruck-Einströmbereichs 7 innerhalb des äußeren Innengehäuses 4 angeordnet wird. Zwischen dem inneren Innengehäuse 3 und dem äußeren Innengehäuse 4 ist ein Kühldampfraum 16 ausgebildet. Dieser Kühldampfraum 16 ist mit einer Kühldampfströmungsleitung zum Zuströmen von Kühldampf ausgebildet. Der Kühldampf wird an einer geeigneten Stelle aus einer Niederdruck-Beschaufelung 17 entnommen.
  • Das innere Innengehäuse 3 ist somit verhältnismäßig klein und kostensparend und bietet wegen der geringen Tonnage eine Verbreiterung der potentiellen Lieferanten.
  • Der aus dem Kühldampfraum 16 wieder ausströmende Kühldampf führt zu einer guten Kühlwirkung. Dieser ausströmende Kühldampf kann beispielweise durch das äußere Innengehäuse 4 in einen Abdampfraum geführt oder z.B. durch eine Anzapfung abgeführt werden. Das innere Innengehäuse 3 und das äußere Innengehäuse 4 werden gegeneinander mittels Dichtungen abgedichtet. Im Kühldampfraum 16 ist eine nicht näher dargestellte Entwässerungsleitung, die bei einem Stillstand oder Startvorgang der Dampfturbine 1 ein anfallendes Kondenswasser ableitet oder bei einem Ausfall der Anzapfung eine ausreichende Restdurchströmung sicherstellt.
  • Das innere Innengehäuse 3, das äußere Innengehäuse 4 und das Außengehäuse 2 sind drucktragend ausgebildet.
  • Anschließend strömt der Dampf über einen Ausströmstutzen 15 aus der Dampfturbine 1.

Claims (10)

  1. Strömungsmaschine
    umfassend einen um eine Rotationsachse (6) drehbar gelagerten Rotor (5), ein in radialer Richtung (11) um den Rotor (5) angeordnetes inneres (3) und ein äußeres Innengehäuse (4),
    wobei um das innere Innengehäuse (3) und das äußere Innengehäuse (4) ein Außengehäuse (2) angeordnet ist,
    wobei die Strömungsmaschine eine für Mitteldruckdampf ausgebildete erste Flut (18) und eine für Niederdruckdampf ausgebildete zweite Flut (19) aufweist,
    wobei die zweite Flut (19) in die gleiche Richtung wie die erste Flut (18) ausgerichtet ist,
    wobei die erste Flut (18) einen Mitteldruck-Einströmbereich (7) und die zweite Flut (19) einen Niederdruck-Einströmbereich aufweist und das innere Innengehäuse (3) in radialer Richtung (11) um den Mitteldruck-Einströmbereich (7) angeordnet ist.
  2. Strömungsmaschine nach Anspruch 1 oder 2,
    wobei zwischen dem inneren Innengehäuse (3) und dem äußeren Innengehäuse (4) ein Kühldampfraum (16) ausgebildet ist.
  3. Strömungsmaschine nach Anspruch 3,
    wobei eine Kühldampfströmungsleitung zum Zuströmen von Kühldampf in den Kühldampfraum (16) vorgesehen ist.
  4. Strömungsmaschine nach Anspruch 4,
    wobei die Kühldampfströmungsleitung strömungstechnisch mit der zweiten Flut (19) verbunden ist.
  5. Strömungsmaschine nach einem der Ansprüche 3 bis 5, wobei der Kühldampfraum (16) mit einer Kühldampfausströmungsleitung zum Ausströmen von Kühldampf aus dem Kühldampfraum (16) ausgebildet ist.
  6. Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche,
    wobei der Rotor (5) einen Schubausgleichskolben aufweist, wobei eine Strömungsmaschine-Kühlströmungsleitung zum Zuströmen von Kühldampf zur Strömungsmaschine vorgesehen ist.
  7. Strömungsmaschine (1) nach Anspruch 6,
    wobei die Strömungsmaschine-Kühlströmungsleitung mit einer Kühldampfströmungszuleitung strömungstechnisch verbunden ist.
  8. Strömungsmaschine nach einem der vorhergehenden Ansprüche,
    wobei das innere Innengehäuse (3) aus einem hochchromigen Werkstoff, der 9 - 10 Gew.-% Chrom umfasst, ausgebildet ist.
  9. Strömungsmaschine nach einem der vorhergehenden Ansprüche,
    wobei das innere Innengehäuse (3) aus einem Nickel-BasisWerkstoff ausgebildet ist.
  10. Strömungsmaschine nach einem der vorhergehenden Ansprüche,
    wobei das äußere Innengehäuse (4) aus einem Werkstoff, der 1 - 2 Gew.-% Chrom umfasst, ausgebildet ist.
EP11154199A 2011-02-11 2011-02-11 Dampfturbine in dreischaliger Bauweise Withdrawn EP2487337A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11154199A EP2487337A1 (de) 2011-02-11 2011-02-11 Dampfturbine in dreischaliger Bauweise
EP11805032.7A EP2652271A1 (de) 2011-02-11 2011-12-22 Dampfturbine in dreischaliger bauweise
CN201180067356.1A CN103370498B (zh) 2011-02-11 2011-12-22 三壳结构形式的蒸汽轮机
PCT/EP2011/073744 WO2012107140A1 (de) 2011-02-11 2011-12-22 Dampfturbine in dreischaliger bauweise

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11154199A EP2487337A1 (de) 2011-02-11 2011-02-11 Dampfturbine in dreischaliger Bauweise

Publications (1)

Publication Number Publication Date
EP2487337A1 true EP2487337A1 (de) 2012-08-15

Family

ID=44259981

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11154199A Withdrawn EP2487337A1 (de) 2011-02-11 2011-02-11 Dampfturbine in dreischaliger Bauweise
EP11805032.7A Withdrawn EP2652271A1 (de) 2011-02-11 2011-12-22 Dampfturbine in dreischaliger bauweise

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11805032.7A Withdrawn EP2652271A1 (de) 2011-02-11 2011-12-22 Dampfturbine in dreischaliger bauweise

Country Status (3)

Country Link
EP (2) EP2487337A1 (de)
CN (1) CN103370498B (de)
WO (1) WO2012107140A1 (de)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE420755C (de) * 1924-03-13 1925-10-31 Escher Wyss Maschf Ag Mehrstufige Dampf- oder Gasturbine fuer hohe Druecke mit Laufscheiben
GB662371A (en) * 1948-07-17 1951-12-05 Westinghouse Electric Int Co Improvements in or relating to steam turbine apparatus
GB773430A (en) * 1954-04-28 1957-04-24 Siemens Ag Improvements in or relating to steam turbines
DE3421067A1 (de) 1983-06-10 1984-12-13 Hitachi, Ltd., Tokio/Tokyo Hauptdampf-einlasseinheit fuer eine dampfturbine
JPH1089013A (ja) * 1996-07-23 1998-04-07 Fuji Electric Co Ltd 再熱式軸流蒸気タービン
DE10353451A1 (de) 2003-11-15 2005-06-16 Alstom Technology Ltd Dampfturbine sowie Verfahren zum Herstellen einer solchen Dampfturbine
DE102006027237A1 (de) 2005-06-14 2006-12-28 Alstom Technology Ltd. Dampfturbine
EP1925785A1 (de) * 2006-11-22 2008-05-28 Siemens Aktiengesellschaft Turbinenentwässerungsvorrichtung
EP2151547A2 (de) * 2008-08-07 2010-02-10 Kabushiki Kaisha Toshiba Dampfturbine und Dampfturbinenanlagensystem
EP2216515A1 (de) * 2009-02-10 2010-08-11 Siemens Aktiengesellschaft Dreischalige Dampfturbine mit Ventil

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6752589B2 (en) * 2002-10-15 2004-06-22 General Electric Company Method and apparatus for retrofitting a steam turbine and a retrofitted steam turbine
JP4783053B2 (ja) * 2005-04-28 2011-09-28 株式会社東芝 蒸気タービン発電設備

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE420755C (de) * 1924-03-13 1925-10-31 Escher Wyss Maschf Ag Mehrstufige Dampf- oder Gasturbine fuer hohe Druecke mit Laufscheiben
GB662371A (en) * 1948-07-17 1951-12-05 Westinghouse Electric Int Co Improvements in or relating to steam turbine apparatus
GB773430A (en) * 1954-04-28 1957-04-24 Siemens Ag Improvements in or relating to steam turbines
DE3421067A1 (de) 1983-06-10 1984-12-13 Hitachi, Ltd., Tokio/Tokyo Hauptdampf-einlasseinheit fuer eine dampfturbine
JPH1089013A (ja) * 1996-07-23 1998-04-07 Fuji Electric Co Ltd 再熱式軸流蒸気タービン
DE10353451A1 (de) 2003-11-15 2005-06-16 Alstom Technology Ltd Dampfturbine sowie Verfahren zum Herstellen einer solchen Dampfturbine
DE102006027237A1 (de) 2005-06-14 2006-12-28 Alstom Technology Ltd. Dampfturbine
EP1925785A1 (de) * 2006-11-22 2008-05-28 Siemens Aktiengesellschaft Turbinenentwässerungsvorrichtung
EP2151547A2 (de) * 2008-08-07 2010-02-10 Kabushiki Kaisha Toshiba Dampfturbine und Dampfturbinenanlagensystem
EP2216515A1 (de) * 2009-02-10 2010-08-11 Siemens Aktiengesellschaft Dreischalige Dampfturbine mit Ventil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y. TANAKA ET AL.: "Advanced Design of Mitsubishi Large Steam Turbines", MITSUBISHI HEAVY INDUSTRIES, POWER GEN EUROPE, 6 May 2003 (2003-05-06)

Also Published As

Publication number Publication date
WO2012107140A1 (de) 2012-08-16
CN103370498A (zh) 2013-10-23
EP2652271A1 (de) 2013-10-23
CN103370498B (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
EP1735525B1 (de) Dampfturbine
EP2344730B1 (de) Innengehäuse für eine strömungsmaschine
WO1997025521A1 (de) Turbinenwelle einer dampfturbine mit interner kühlung
EP2396517B1 (de) Dreischalige dampfturbine
EP2601382B1 (de) Sperrschaltung bei dampfturbinen zur nassdampfabsperrung
EP2513432B1 (de) Dampfturbine in dreischaliger Bauweise
EP2487337A1 (de) Dampfturbine in dreischaliger Bauweise
EP2112334A1 (de) Außengehäuse für eine Strömungsmaschine
EP2396518B1 (de) Dreischalige dampfturbine mit ventil
EP2274504B1 (de) Dampfturbine mit kühlvorrichtung
EP2216515A1 (de) Dreischalige Dampfturbine mit Ventil
EP3183426B1 (de) Kontrollierte kühlung von turbinenwellen
EP2173973B1 (de) Dampfzuführung für eine dampfturbine
EP2295725A1 (de) Ströhmungsmaschine mit Dampfentnahme
EP2510195B1 (de) Innengehäuse für eine Dampfturbine
EP2119878A1 (de) Dampfturbine mit geteiltem Innengehäuse
EP2423454A1 (de) Gehäuse für Strömungsmaschine sowie Verfahren zur Herstellung
WO2011069986A1 (de) Mehrteiliges innengehäuse für eine dampfturbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130216