EP2483005A1 - Procédé de détermination, basée sur un modèle, de valeurs théoriques pour les actionneurs asymétriques des cages d'un laminoir à chaud à larges bandes - Google Patents

Procédé de détermination, basée sur un modèle, de valeurs théoriques pour les actionneurs asymétriques des cages d'un laminoir à chaud à larges bandes

Info

Publication number
EP2483005A1
EP2483005A1 EP10742814A EP10742814A EP2483005A1 EP 2483005 A1 EP2483005 A1 EP 2483005A1 EP 10742814 A EP10742814 A EP 10742814A EP 10742814 A EP10742814 A EP 10742814A EP 2483005 A1 EP2483005 A1 EP 2483005A1
Authority
EP
European Patent Office
Prior art keywords
strip
framework
gantry
contour
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10742814A
Other languages
German (de)
English (en)
Inventor
Johannes Reinschke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2483005A1 publication Critical patent/EP2483005A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/68Camber or steering control for strip, sheets or plates, e.g. preventing meandering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2263/00Shape of product
    • B21B2263/02Profile, e.g. of plate, hot strip, sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2263/00Shape of product
    • B21B2263/04Flatness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/04Lateral deviation, meandering, camber of product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/16Adjusting or positioning rolls
    • B21B31/18Adjusting or positioning rolls by moving rolls axially
    • B21B31/185Adjusting or positioning rolls by moving rolls axially and by crossing rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/38Control of flatness or profile during rolling of strip, sheets or plates using roll bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/04Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring thickness, width, diameter or other transverse dimensions of the product

Definitions

  • the invention relates to a concept for a model-based stripline control for a hot strip mill, in particular a finishing train.
  • a hot strip mill in particular a finishing train, comprises a plurality of rolling stands Gi, G2, G3,... G n, which are to be rolled, typically a metal strip such as a steel, aluminum, copper or generally a non-ferrous metal strip , wherein it can be achieved by means of conventional control methods that the rolled strip has a desired final temperature and a desired final thickness.
  • Other relevant parameters for assessing the rolling quality are, for example, the profile, the contour and the flatness of the strip. In this context, the
  • the band profile or the “profile value” of the band indicates the deviation of the band thickness at the band edges from the band thickness in the band center.
  • the term “tape thickness contour” is understood to mean the strip thickness profile over the strip width minus the strip thickness in the middle of the strip.
  • the strip thickness contour can be split into one with respect to the center of the strip symmetrical and one asymmetric portion.
  • the asymmetric component is called “tape thickness wedge”.
  • flatness is used synonymously with the internal stresses prevailing in the strip, regardless of whether or not these internal stresses lead to visible distortions of the metal strip.
  • the tape may have a temperature gradient across the tape, the tape may enter the nip off-center, or the nip itself may be wedge-shaped. Also combinations of these (and other) causes are possible.
  • the strip shape in the following intermediate stand section between the stands G ⁇ and Gi + i will generally not be straight but saber-shaped.
  • the saber-shaped course depends on whether the band is clamped on only one side in a scaffold (when threading in or out of the scaffold) or on both sides of two successive scaffolds (when rolling the main part of the tape, ie with the exception of tape head and tape foot).
  • the stripline control actuators are used on the individual stands G ⁇ the rolling mill, which influence the shape of the roll gap - and thus the strip thickness profile - asymmetrically over the bandwidth with respect to the center of the frame or the center of the belt.
  • Such actuators are, for example, pivoting and asymmetric bending forces.
  • symmetrical actuators are provided, for example. Symmetrical bending forces, means for the axial displacement of so-called. CVC work rolls (rolls with S-shaped cut) and / or so-called. "Pair crossing". These symmetrical actuators are used for profile and flatness control.
  • An automatic, model-based method or a device for profile and flatness control is disclosed in DE 102 11 623 AI.
  • a concept of a complete, model-based control method for the stripline control of the rolling train is given.
  • a method is presented that can be used to calculate the setpoint values of the asymmetrical rolling stand actuators for the stripline control.
  • the process is an iterative process, which has five individual steps per process cycle:
  • Speed wedges (v 'fk)) are compared with the desired speed wedges fk)) specified in the first step,
  • G ⁇ applied rolling force distributions f ⁇ (z; k) are determined for each framework by means of material flow models, whereby each framework G ⁇ is assigned a material flow model.
  • the target contour Ki (z; k) is determined for the tape drive actuators, wherein
  • the actuator setpoint values are calculated from the target contour Ki (z; k).
  • the band thickness contour ⁇ ⁇ (z; k) is measured after the last framework G n ,
  • the setpoint speed wedges v.sub.10 (k) to be specified are determined in a control loop from the setpoint
  • the following data is supplied to the band flatness model assigned to the framework G ⁇ :
  • the same data is fed to the material flow models as the band flatness models. Additionally serve as input variables of the material flow models friction parameters R serve, which describe the friction conditions in the longitudinal and transverse direction in the nip.
  • friction parameters R serve, which describe the friction conditions in the longitudinal and transverse direction in the nip.
  • the thus corrected residual strip thickness profile is subsequently used to determine the target contour Ki (z; k).
  • a computer program product according to the invention for carrying out the method according to the invention is proposed as well as a control computer programmed for the computer program product for a rolling train with at least two rolling stands G ⁇ .
  • the inventive solution bpsw. the advantages that, after successful piloting of a plant for downstream plants, shorter commissioning and service times are required and that a better extrapolability to a new product range is possible.
  • Figure 1 is a schematic representation of a
  • Figure 2 is a schematic representation of the rolling mill for
  • Figure 3 is a schematic representation of the rolling mill for
  • Figure 4 is a schematic representation of the rolling mill for
  • Figure 5 is a schematic representation of the rolling mill for
  • the rolling train should have n stands, of which only the first two stands Gi, G 2 and the last two stands G n -i and G n are shown.
  • a rolling train 1 for rolling a metal strip 10 is controlled by a control computer 2.
  • the mode of operation of the control computer 2 is determined by a computer program product 2 ', with which the control computer 2 is programmed.
  • the following is based on a Cartesian coordinate system, wherein the x-axis of the coordinate system corresponds to the running direction of the belt 10, the y-axis indicates the belt thickness direction and the z-axis in the direction across the belt 10 and in the direction of the longitudinal axes of the rollers 21 ⁇ the frameworks G ⁇ is oriented.
  • the belt 10 is in the rolling mill 1 in a Rolling direction x rolled.
  • Each gantry G ⁇ has at least work rolls 21i and possibly (in FIG. 1 but not shown) also support rolls.
  • each scaffolding Gi a scaffold controller 30 ⁇ is provided setpoints for only indicated in Figure 1 asymmetric actuators 22i or "actuators" specified, which ultimately act on the rollers 21i and so the desired target shape or To realize the contour of the respective roll gap.
  • the frame controllers 30 ⁇ regulate the actuators 22 ⁇ according to the specified setpoints. The basic interaction between the actuators 22i or actuators, the rollers and the resulting nip can be assumed to be known.
  • the nominal values for each rolling stand G ⁇ influence an outlet-saprificed nip course which is established between the work rolls 21i - in interaction with the metal strip located between the work rolls.
  • the outlet-side roll gap course corresponds to a run-out contour of the strip 10.
  • the setpoint values for the actuators 22 ⁇ must therefore be determined in such a way that the roll gap curve, which corresponds to the desired outlet-soaping strip thickness contour, results.
  • control calculator 2 determines the setpoint values from the input variables supplied to it.
  • the strip thickness contour ⁇ ( ⁇ ) which, depending on the position z, indicates the thickness of the strip 10, ie its extension in the y direction minus the strip center thickness, can be approximately approximated by a second degree polynomial, with the exception of the strip edges:
  • the coefficient ⁇ describes the wedging of the band 10 or the band thickness contour.
  • the coefficient v- describes a speed wedge or a material flow wedging, which leads to the initially described saber formation of the band 10, while the coefficient vi 2) is a measure of the flatness or unevenness of the band 10.
  • vi 2) > 0 edge waves
  • vi 2) ⁇ 0 means center waves.
  • a calculation cycle k of the iterative method according to the invention has five individual steps 1) to 5), which are executed, for example, with the aid of a computer program on the control computer 2 (in the figures, the parameters "k" and "z” used hereinafter are for the sake of clarity not listed) : Step 1)
  • the eccentricity d ⁇ _i of the strip 10 before each gantry G ⁇ is preferably measured optically, for example by means of a laser or camera system.
  • the eccentricity d n of the strip after the last stand G n no additional measuring device is required, because this size can be determined by means of the (usually traversing) strip thickness contour measuring device after the last stand.
  • band thickness contour ⁇ ( ⁇ ) in front of the first gantry Gi is either measured online or estimates are used for ⁇ ( ⁇ ), which are based, for example, on isolated offline or hand measurements.
  • Velocity equations calculated at the effluents of the frameworks G ⁇ , where each framework G ⁇ is assigned a model 40 ⁇ .
  • Models 40 ⁇ as well as other models used below are implemented in the computer program.
  • the model 40 ⁇ is an extension of the model described in DE 102 11 623 A1 and designated there as "flatness estimator” or its approximation function with additional consideration of asymmetric effects.
  • the model 40 ⁇ associated with framework G ⁇ is supplied with the following data:
  • this comparison shows that the computation values for the velocity profiles Vi (z; k) are not within a tolerance range, ie between a maximum and a minimum value, around these nominal values, the band thickness contours ⁇ ( ⁇ ) to 0 n -i (z; k) is modified until the comparison gives a sufficient match.
  • the comparison reveals that the calculated values for the velocity profiles v ⁇ (z; k) are actually within the tolerance range around the target values, the method goes to step 3), where the band thickness contours determined in the context of the described comparison 9 ⁇ ( z; k) continue to be used.
  • Each framework G ⁇ is a physical material flow model 50i (or a look-up table) of a such material flow model) to which the same data as the model 40 ⁇ in step 2) are supplied.
  • the material flow model 50 ⁇ receives as input variables from a unit 51 friction parameters R, which describe the different friction conditions in the longitudinal and transverse direction in the roll gap.
  • the friction parameters R are model adaptation parameters that are determined so that the overall algorithm predicts the measured strip thickness contour and the measured strip flatness after the last stand as well as possible.
  • the material flow models 50 ⁇ model the physical behavior of the belt 10 in the nip of the gantry G ⁇ .
  • the material flow models 50 ⁇ are used to determine the rolling force distributions fi (z; k) based on the above input data.
  • the respective material flow model 50i determines for a gantry G ⁇ the line load distribution f ⁇ (z) between strip and work rolls.
  • the integral of f ⁇ (z) over the bandwidth gives the rolling force in the framework G ⁇ .
  • the friction parameters R are therefore the main Model1 adaptation parameters.
  • FIG. 4 shows the further processing of the rolling force distributions fi (z; k) determined in step 3) of the cycle k.
  • These rolling force distributions are supplied for each framework G ⁇ a computing unit 70 associated with the stand G ⁇ in which the flattening Ai (z, k) of the work rolls in the framework G ⁇ connected to the rolling force distributions f ⁇ (z) is determined by means of a work roll flattening model 71 is calculated.
  • This flattening Ai (z; k) is subtracted from the strip thickness contour 9 ⁇ (z; k) at the outlet of the stand G ⁇ in a subtracter 72, ie in the subtracter 72 ⁇ a residual strip thickness profile ⁇ ⁇ (z; k ) - ⁇ (z; k).
  • 73 ⁇ 75 ⁇ correction values a ⁇ (z; k), b ⁇ (z; k), c ⁇ (z; k) can be subtracted in further subtractors, where a ⁇ (z; k) the initial contour of the work rolls (ie, the finish), b ⁇ (z; k) represents the current calculated thermal and wear crown, and c ⁇ (z; k) describes the contour of the symmetrical profile and planarity actuators of the stand Gi.
  • the current eccentricity d ⁇ (k) of the band is taken into account.
  • the remaining band thickness contour is the target contour Ki (z; k) to be adjusted by means of the band-winder actuators 22 ⁇ of the gantry G ⁇ .
  • the arithmetic unit 70 ⁇ thus ultimately supplies this target contour K ⁇ (z; k).
  • Tape running actuators are present, for example. Panning and asymmetric bending, can in the optimization step
  • Step 5 the optimal combination of these actuators are determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Complex Calculations (AREA)

Abstract

La présente invention concerne un concept en vue de la détermination, basée sur un modèle, de valeurs théoriques relatives aux actionneurs pour un laminoir à chaud à larges bandes comportant plusieurs cages, grâce auquel l'application des valeurs théoriques relatives aux actionneurs permet le réglage d'une forme cible souhaitée de l'emprise des cages. Lors d'une première étape de procédé, une vitesse théorique cunéiforme du feuillard à chaud est définie après chaque cage. Dans une deuxième étape, des valeurs sont déterminées à l'aide de modèles de planéité de bande pour des profils d'épaisseur de bande à la sortie des cages. Dans une troisième étape, la répartition de forces de laminage devant être appliquées par chaque cage est déterminée à l'aide de modèles de flux de matière. Dans une quatrième étape, le profil cible pour les actionneurs de défilement de bande est déterminé, et dans une cinquième étape, les valeurs théoriques relatives aux actionneurs sont calculées pour chaque cage à partir du profil cible à l'aide d'un procédé d'optimisation.
EP10742814A 2009-09-29 2010-08-06 Procédé de détermination, basée sur un modèle, de valeurs théoriques pour les actionneurs asymétriques des cages d'un laminoir à chaud à larges bandes Withdrawn EP2483005A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009043400A DE102009043400A1 (de) 2009-09-29 2009-09-29 Verfahren zur modellbasierten Ermittlung von Stellglied-Sollwerten für die asymmetrischen Stellglieder der Walzgerüste einer Warmbreitbandstraße
PCT/EP2010/061516 WO2011038965A1 (fr) 2009-09-29 2010-08-06 Procédé de détermination, basée sur un modèle, de valeurs théoriques pour les actionneurs asymétriques des cages d'un laminoir à chaud à larges bandes

Publications (1)

Publication Number Publication Date
EP2483005A1 true EP2483005A1 (fr) 2012-08-08

Family

ID=43064869

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10742814A Withdrawn EP2483005A1 (fr) 2009-09-29 2010-08-06 Procédé de détermination, basée sur un modèle, de valeurs théoriques pour les actionneurs asymétriques des cages d'un laminoir à chaud à larges bandes

Country Status (6)

Country Link
EP (1) EP2483005A1 (fr)
CN (1) CN102510779A (fr)
BR (1) BR112012007100A2 (fr)
DE (1) DE102009043400A1 (fr)
IN (1) IN2012DN02028A (fr)
WO (1) WO2011038965A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527052A1 (fr) 2011-05-24 2012-11-28 Siemens Aktiengesellschaft Procédé de fonctionnement pour une voie de laminage
CN106903166B (zh) * 2017-03-21 2019-11-08 北京科技大学 一种铝合金板材异步轧制翘曲预报和优化的方法
EP3566790B1 (fr) * 2018-05-08 2021-01-06 Muhr und Bender KG Procédé de réglage dynamique d'écartement entre cylindres lors du laminage flexible de bandes métalliques
AT522345B1 (de) * 2019-03-29 2020-11-15 Primetals Technologies Austria GmbH Heizungsvorrichtung zum induktiven Erhitzen eines Flachstahlstreifens in einem Warmwalzwerk
CN112974521B (zh) * 2021-02-08 2022-08-16 太原科技大学 一种求解铝合金厚板在同速异径蛇形轧制下曲率的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626723B2 (ja) * 1986-09-24 1994-04-13 三菱電機株式会社 板材の形状制御方法
JP3607029B2 (ja) * 1997-01-16 2005-01-05 東芝三菱電機産業システム株式会社 圧延機の制御方法及び制御装置
DE10211623A1 (de) 2002-03-15 2003-10-16 Siemens Ag Rechnergestütztes Ermittlungverfahren für Sollwerte für Profil-und Planheitsstellglieder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011038965A1 *

Also Published As

Publication number Publication date
IN2012DN02028A (fr) 2015-07-31
WO2011038965A1 (fr) 2011-04-07
CN102510779A (zh) 2012-06-20
DE102009043400A1 (de) 2011-04-07
BR112012007100A2 (pt) 2016-04-26

Similar Documents

Publication Publication Date Title
EP1485216B1 (fr) Procede de determination assiste par ordinateur pour des valeurs de consigne destinees a des actionneurs de profil et de planeite
EP2691188B1 (fr) Procédé permettant de faire fonctionner un train de laminoir
DE69710817T2 (de) Walzverfahren und Walzwerk für Band zur Reduzierung der Kantenanschärfung
EP3107666B1 (fr) Précommande simple du pas de filetage d'un ébaucheur
EP3271092B1 (fr) Procédé de fabrication de bandes métalliques
EP2483005A1 (fr) Procédé de détermination, basée sur un modèle, de valeurs théoriques pour les actionneurs asymétriques des cages d'un laminoir à chaud à larges bandes
DE19618712B4 (de) Regelverfahren für ein Walzgerüst zum Walzen eines Bandes
EP3194087B1 (fr) Réglage de largeur d'une ligne de fabrication
DE10211623A1 (de) Rechnergestütztes Ermittlungverfahren für Sollwerte für Profil-und Planheitsstellglieder
EP2662158A1 (fr) Procédé de traitement de produits à laminer et laminoir
WO2011038964A1 (fr) Procédé de détermination, basée sur un modèle, de valeurs théoriques pour les actionneurs symétriques et asymétriques des cages d'un laminoir à chaud à larges bandes
DE19731980A1 (de) Verfahren zur Steuerung und Voreinstellung eines Walzgerüstes oder einer Walzstraße zum Walzen eines Walzbandes
DE69811615T2 (de) Verfahren zur Steuerung des Ziehens von Walzgut
DE102011077454A1 (de) Stranggießanlage
EP3798750B1 (fr) Procédé de surveillance et de commande d'une installation de laminage de produits métalliques
EP2957360A1 (fr) Procédé de fonctionnement d'un train de laminoir
EP4061552B1 (fr) Procédé, dipositif de contrôle et laminoir pour le réglage d'une température de sortie d'une bande métallique quittant un train de laminage
EP3231522B1 (fr) Controle robuste de tension de bande
EP1481742B1 (fr) Ordinateur de commande et procédé de détermination assistée par ordinateur pour le control de la planéité et du profile pour une cage de laminoir
DE3401894A1 (de) Verfahren zum herstellen von walzband mit hoher bandprofil- und bandplanheitsguete
EP3009204A1 (fr) Modelisation de bande metallique dans un laminoir
EP3974073B1 (fr) Laminage en fonction de la réponse de fréquence
DE4141086C2 (de) Verfahren zur Steuerung von Rohrkontiwalzwerken
EP4341016A1 (fr) Procédé de fonctionnement d'une cage de laminage
WO2010112196A1 (fr) Installation de laminage pour le laminage en continu d'un produit laminé en bande

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20131112

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140616

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141028