EP1485216B1 - Procede de determination assiste par ordinateur pour des valeurs de consigne destinees a des actionneurs de profil et de planeite - Google Patents

Procede de determination assiste par ordinateur pour des valeurs de consigne destinees a des actionneurs de profil et de planeite Download PDF

Info

Publication number
EP1485216B1
EP1485216B1 EP03722208A EP03722208A EP1485216B1 EP 1485216 B1 EP1485216 B1 EP 1485216B1 EP 03722208 A EP03722208 A EP 03722208A EP 03722208 A EP03722208 A EP 03722208A EP 1485216 B1 EP1485216 B1 EP 1485216B1
Authority
EP
European Patent Office
Prior art keywords
rolling
determining method
course
band
material flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03722208A
Other languages
German (de)
English (en)
Other versions
EP1485216A1 (fr
Inventor
Johannes Reinschke
Friedemann Schmid
Marco Miele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2002111623 external-priority patent/DE10211623A1/de
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1485216A1 publication Critical patent/EP1485216A1/fr
Application granted granted Critical
Publication of EP1485216B1 publication Critical patent/EP1485216B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length

Definitions

  • the present invention relates to a computer-aided determination method for nominal values for profile and flatness actuators a rolling mill with at least work rolls for rolling metal strip extending in a band width direction extends (DE-A 198 51 554).
  • the metal strip can, for example, a Steel strip, an aluminum strip or a non-ferrous metal strip, in particular a copper band, his.
  • the rolled strip has a desired final rolling temperature and a desired final roll thickness.
  • the quality of the rolled strip is not exclusive determined by these sizes. Further, the quality of the For example, rolled-metal strip defining quantities are the profile, the contour and the flatness of the metal strip.
  • contour partly becomes the absolute band thickness curve, partly the absolute strip thickness minus the tape thickness in the middle of the tape used. following the term contour curve for the strip thickness gradient is reduced used the tape thickness in the middle of the tape.
  • flatness comprises first of its literal meaning only visible distortions of the metal strip. He is in the state the technique - and also in the context of the present invention - but as a synonym for the inner tensions prevailing in the band used, regardless of whether this inner Stress leads to visible distortions of the metal strip or not.
  • the object of the present invention is a computer-controlled determination method for setpoint values for To create profile and flatness actuators, by means of which predetermined profile values, contour profiles and / or flatness gradients achieved and maintained better than in the prior art can be.
  • the material flow model determines a two-dimensional distribution the rolling force, with one direction in the rolling direction and one direction extending in the bandwidth direction.
  • the input variables therefore preferably comprise at least one Initial contour course, a final contour profile and a
  • the rolling force curve in the bandwidth direction based on at least one mathematical-physical Differential equation determines which the flow behavior describes the metal strip in the nip works the material flow model particularly accurate. Because then it happens the determination of the rolling force curve on the basis of between the
  • the metal strip is in the rolling stand in the rolling direction of a Walzspaltbeginn rolled over an effective nip length.
  • a roll gap ratio is considerably smaller than One is where the roll gap ratio is the quotient of Half of incoming strip thickness and effective nip length is, is that at least one differential equation Approximately solvable with less computational effort.
  • the roll gap ratio should therefore be below 0.4, preferably below 0.3, z. B. below 0.2 or 0.1.
  • the computational effort can with the same accuracy achieved be further reduced if the at least one differential equation in the rolling direction and in the bandwidth direction is defined at interpolation points and the interpolation points unevenly are distributed.
  • a reduction in the computational effort an increase in the achieved Accuracy done.
  • the support points in the rolling direction evenly and in the bandwidth direction arranged closer to the band edges closer together be as in the middle of the band.
  • the friction coefficient in Rolling direction is constant and the coefficient of friction in Bandwidth direction is a non-constant function results a much higher accuracy than when the friction coefficient is constant in the bandwidth direction.
  • the metal strip has different material properties, including a yield stress. There are only a few worse calculation results at significantly reduced Computational effort when the yield stress in the context of the material flow model is assumed to be constant and / or of the material flow model only plastic transformations of the metal strip be taken into account.
  • the material flow model also has an expected exit side Flatness of the metal strip in the bandwidth direction It provides an even more comprehensive information content.
  • the roll forming model is a work roll flattening model and has a roll rest deformation model
  • a flattening process by means of the work roll flattening model the work rolls to the metal band and by means of Roll rest deformation model the remaining deformations of Rolling of the rolling stand can be determined and the rolling force curve fed exclusively to the work roll flattening model this is for determining the setpoints in the Usually sufficient. More accurate results are - at increased Calculation cost - of course achievable when the rolling force also supplied to the roll residual deformation model.
  • the material flow model is preferably based on the rolled Metal band adapted.
  • at least one of the coefficients of friction as a function of the actual contour profile determined by measurement and / or planarity course and due to the material flow model expected contour shape and / or flatness profile be varied.
  • the measurement can be done with a multi-stand Walz Given be done behind any scaffolding.
  • any metal strip to be rolled By means of the roll stand, in principle, any metal strip to be rolled. But preferably, a steel strip or an aluminum strip hot rolled.
  • FIG 1 is a rolling mill for rolling a metal strip 1 controlled by a control computer 2.
  • the mode of operation of the control computer 2 is thereby of a computer program product 2 'set, programmed with the control computer 2 is.
  • the rolling train has according to FIG 1 seven rolling stands 3, ie in particular at least three rolling stands 3, on.
  • the metal strip 1 is in the rolling mill in a rolling direction rolled x.
  • the rolling train of FIG. 1 is a finishing train for hot rolling formed by steel band.
  • the present invention is not for use on a multi-stand finishing train limited to hot rolling of steel strip. Rather, the
  • Walz also designed as a cold rolling mill (tandem mill) his and / or only a rolling stand (eg a reversing stand) and / or for rolling a non-ferrous metal (eg. Aluminum, copper or other non-ferrous metal) be.
  • a cold rolling mill tandem mill
  • a rolling stand eg a reversing stand
  • a non-ferrous metal eg. Aluminum, copper or other non-ferrous metal
  • the rolling stands 3 have at least work rolls 4 and, as in Figure 1 for one of the rolling stands 3 indicated, as a rule also support rollers 5. You could also do more reels have, for example, axially displaceable intermediate rollers.
  • scaffold controllers 6 setpoints for Profile and flatness actuators not shown specified.
  • the frame controller 6 then regulate the actuators accordingly the predetermined setpoints.
  • outlet side Roll gap influenced Due to the nominal values per roll stand 3 is an outlet side Roll gap influenced, which is between the work rolls 4 sets.
  • the outlet-side roll gap course corresponds with an outlet-side contour profile ⁇ of the Metal strip 1.
  • the setpoints for the actuators must therefore be determined so that this nip course results.
  • the input variables supplied to the control computer 2 include, for example, schedule data such as an input thickness h 0 of the metal strip 1 and for each rolling stand 3 a total rolling force (hereinafter referred to as rolling force) FW and a stitch reduction r. As a rule, they also include a final thickness h n , a nominal profile value, a desired final contour profile ⁇ T and a desired flatness profile s T. Most of the rolled metal strip 1 should be as flat as possible.
  • the control computer 2 thus determines the setpoint values from input variables which are supplied to it and which describe the metal strip 1 on the inlet and outlet side.
  • the metal strip 1 generally has a not completely uniform band thickness h 0 in the band width direction z.
  • the contour curve ⁇ in the band width direction z is usually defined by the fact that from the current, in the respective places in the
  • the metal band 1 should usually after the Ideally, rolls should be absolutely flat, as shown schematically in FIG. 3a is shown. Often, the metal band 1, however, As shown in Figures 3b and 3c, distortions. The The cause of such distortions are internal stress differences in the bandwidth direction z, passing through over the bandwidth uneven rolling caused.
  • the Sollwalzspaltverstructure should in the rolling stands 3 so possibly be determined so that the metal strip 1 the desired final roll sizes achieved.
  • the control computer 2 implemented according to the computer program product 2 'therefore several interacting blocks. This will be discussed below with 4 received in more detail.
  • FIG 4 are in the control computer 2 by the computer program product 2 'a work roll flattening model 8, a Roll Bend Model 9, a roll temperature and wear model 10 and a setpoint determiner 11 implemented.
  • the computer program product 2 'a contour determiner 12 and a band deformation model 13 are implemented.
  • the flatness estimators 14 determine an estimate online the expected flatness curve s in the bandwidth direction z at the outlet of the respective roll stand 3.
  • the planarity course s for the rolling stands 3 behind the foremost roll stand 3 can therefore always be determined only when the upstream Flatness estimator 14 already estimates the Planarity gradients s at the output of their associated mill stand 3 have determined. On the internal structure and the design the flatness estimator 14 will become even closer To be received.
  • test block 15 it is checked whether the ascertained flatness courses s are correct. In particular, it is checked whether the ascertained planarity curves s lie between upper and lower bounds so. The lower and the upper barrier su, so for the last roll stand 3 frames the desired flatness profile s T.
  • the contour curves ⁇ are varied in a modification block 16.
  • the contour curve ⁇ 0 in front of the first roll stand 3 and the contour curve ⁇ T , which is to be reached behind the last roll stand 3, are not changed.
  • the varied contour curves ⁇ are again fed to the flatness estimators 14, which then carry out a new calculation of the flatness profiles s behind the rolling stands 3. If, however, the flatness curves s are correct, the now fixed contour curves ⁇ according to FIG. 4 are fed to the band deformation model 13.
  • the flatness estimators 14 are therefore called repeatedly. This is possible because the flatness estimators 14 their estimation determine the gradients s fast enough to to perform this iteration online.
  • the contour profile ⁇ 0 at the entrance of the first rolling stand 3 and the corresponding flatness course s 0 are predetermined by a function generator 17.
  • the corresponding curves ⁇ 0 , s 0 are thus predetermined independently of the corresponding actual initial progressions of the metal strip 1. This is possible because in the case of finishing mills for steel with at least five rolling stands 3, both courses ⁇ 0 , s 0 are not critical.
  • the initial contour curve ⁇ 0 can be specified as a quadratic function of the band width direction z, so that the band thickness d at the band edges is 1% less than in the band center.
  • the flatness course s 0 at the inlet of the first roll stand 3 can be assumed to be identical 0.
  • the two curves ⁇ 0 , s 0 can be uncritical even with three roll stands 3.
  • the actual contour and planarity curves ⁇ 0 , s 0 at the input of the rolling train can be detected by means of a measuring device and fed to the contour detector 12 and the belt deformation model 13.
  • the determined contour curves ⁇ are fed to the band deformation model 13 in accordance with FIG. 4 in order to determine the rolling force curves f R (z) in the band width direction z for the individual rolling stands 3.
  • the belt deformation model 13 is road-related. It is subdivided according to FIG. 6 into material flow models 18, wherein each material flow model 18 is assigned to a rolling stand 3. Each material flow model 18 is supplied with the same quantities as the corresponding flatness estimator 14.
  • the material flow models 18 model the physical online Behavior of the metal strip 1 in the nip. This will explained in more detail below in connection with FIGS. 7 to 11.
  • the metal strip 1 in the rolling stand 3 is rolled in the rolling direction x from a nip entry over an effective nip length l p .
  • the origin of a coordinate system is placed in a band center plane 19 according to FIG.
  • the band center plane 19 runs parallel to the rolling direction x and parallel to the band width direction z.
  • the behavior of the metal strip 1 in the nip can be described by a system of differential equations and algebraic equations.
  • the equation system describes the flow behavior of the metal strip 1 in the nip.
  • the behavior of the metal strip 1 can be described by the equations described in the technical article Shape Forming and Lateral Spread in Sheet Rolling, Int.J. Mech. Sci. 33 (1991), pages 449-469 described by RE Johnson.
  • z For example, assume that the metal strip 1 and the input variables (in particular the input contour profile ⁇ 0 and the input planarity profile s 0 ) are symmetrical in the bandwidth direction z. However, it is also readily possible to design the material flow model 18 in such a way that it also includes the asymmetrical case.
  • the equation system can then be reformulated. Especially is it possible to reshape the equations in such a way that all variables and parameters are dimensionless. This is also already from the above-mentioned technical essay known by Johnson.
  • the roll gap ratio ⁇ is thus considerably smaller than One. This allows the equations (or their dimensionless modified counterparts) with respect to the roll gap ratio ⁇ are developed, with only leading terms in the roll gap ratio ⁇ be taken into account.
  • this differential equation becomes discretized.
  • the differential equation is So defined only at nodes 20.
  • the support points 20 are shown schematically in FIG. Also two of the finite ones Volumes are shown by way of example in FIG.
  • the support points 20 are uneven distributed. Because the support points 20 are indeed in Rolling direction x evenly distributed, in the band width direction z but closer to each other than the band edges in the middle of the band.
  • the finite volume discretization of the partial differential equation converts it into a so-called sparse system of linear, algebraic equations whose solutions can be numerically calculated in a known manner by means of a biconjugated gradient method.
  • the numerical solution of such equations is for example described in Y. Saab: Iterative Methods for Sparse Linear Systems, PWS Publishing Company (1996) or R. Barrett, M. Berry, TF Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. van der Vorst: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, Software Environments Tools, SIAM (1994).
  • the rolling force curve f R (z) in the bandwidth direction z can be determined by integration in the rolling direction x.
  • An example of such a rolling force curve f R is shown in FIG.
  • the flattening of the work rolls 4 to the metal strip 1 depends decisively on the rolling force curve f R (z) in the strip width direction z.
  • the determined rolling force curve f R (z) is therefore fed to the work roll flattening model 8 according to FIG.
  • the work roll flattening model 8 is further shown in FIG 12 supplied a number of scalar parameters.
  • the scalar parameters In particular, the bandwidth, the tape inlet thickness, the stitch loss, the rolling force FW, the working roll radius and the elastic modulus of the surface of the work rolls 4th
  • the work roll flattening model 8 is - e.g. B. from the textbook "Contact Mechanics" by K. L. Johnson, Cambridge University Press, 1995 - known. From him will be in a flattening course of the work rolls known per se 4 to the metal strip 1 out in the band width direction z determined. The flattening process is sent to the setpoint determiner 11 passed.
  • roller temperature and wear model 10 is -. B. from the textbook “High Quality Steel Rolling - Theory and Practice "by Vladimir B. Ginzburg, Marcel Dekker Inc., New York, Basel, Hong Kong, 1993 - known. He will be known in Way data of metal strip 1, rolling data, roll cooling data, the rolling force FW and the rolling speed v specified.
  • the data of the metal strip 1 include, for example the bandwidth, the input thickness, the stitch loss, the temperature and the thermal properties of the metal strip 1.
  • the roll data include, for example, the geometry the roll bale and the roll neck and the thermal Characteristics and information about the bearings of the rollers.
  • roller temperature and wear model 10 By means of the roller temperature and wear model 10 a temperature contour (thermal crown, thermal crown) and a wear contour for all rollers 4, 5 of the respective Roll stand 3 determined. As the temperature and the wear of the rollers 4, 5 must change over time the roller temperature and wear model 10 over and over again, especially at regular intervals, called become. The distance between two calls is usually on the order of one to ten seconds, z. At three seconds.
  • roller temperature and wear depend inter alia also on the rolling force curve f R. Nevertheless, according to FIGS. 4 and 13, the rolling force curve f R determined by the material flow model 18 is not fed to the roller temperature and wear model 10, since the influence of the rolling force curve f R is present but relatively small. In principle, it would of course also be possible to supply the rolling force curve f R to the roller temperature and wear model 10 as well.
  • the determined by roller temperature and wear model 10 Temperature and wear contours are shown in FIG 4 and 14 fed to the roll bending model 9.
  • the roll bending model 9 are also geometric data of the rollers 4, 5, the Rolling force FW, a rebound force and optionally a Roll shift supplied.
  • the rolling data include in particular the geometric data of the rollers 4, 5 inclusive of any ground section, the moduli of elasticity the roll cores and the roll shells, for all rolls 4, 5 of the rolling stands 3.
  • the roll bending model 9 as such is also known see, for example, the already mentioned textbook of Vladimir B. Ginzburg.
  • the roll bending model 9 determined in known manner - with the exception of elastic flattening the work rolls 4 to the metal strip 1 out - all elastic
  • the work roll bending contour thus determined also depends on the rolling force curve f R in the strip width direction z. Nevertheless, according to FIGS. 4 and 14, the rolling force curve f R is not fed to the roll bending model 9. This is possible because it is usually accurate enough to assume the rolling force f R in the strip width direction z in the context of the roll bending model 9 as evenly or at least in the middle evenly and sloping towards the edges to zero. Again, however, it would be possible in principle again to feed the rolling force curve f R calculated by the material flow model 18 to the roll bending model 9.
  • the setpoint determiner 11 From the roll bending model 9 and the roll temperature and wear model 10 determined contours are shown in FIG. 4 supplied to the setpoint determiner 11. The setpoint determiner 11 Finally, the band thickness curves ⁇ are fed. The setpoint determiner 11 can thus be used for each roll stand 3 by subtraction between the outlet side contour ⁇ on the one hand and the determined flattenings and Deformations of the rollers 4,5 on the other hand determine which Restwalzenkontur by the profile and flatness actuators still needs to be realized. The setpoint determiner 11 can thus in a known manner, for. By quadratic error minimization, the nominal values for the profile and flatness actuators determine and transmit to the frame controller 6.
  • the outlet-side roll gap contour of the rolling stands 3 can influenced by different actuators or actuators become.
  • actuators or actuators By way of example, the roll back bending, an axial Roller displacement in CVC rollers and one longitudinal twist the work rolls 4 (ie, a place of the work rolls 4th such that they are no longer aligned exactly parallel are called - so-called pair crossing). Also a local only acting roll heating or cooling is conceivable.
  • the Setpoint determiner 11 can setpoint values for all these actuators determine.
  • the belt deformation model 13 is only online-enabled to a limited extent.
  • the contour determiner 12 is required.
  • the flatness estimator 14 must be able to be called several times per rolling stand 3 in order to determine the correct contour curves ⁇ . If, on the other hand, the material flow model 18 is capable of iteration, the determination of the contour curves ⁇ and of the rolling force curves f R (z) and also of the profile profiles s can take place jointly and simultaneously through the material flow model 18.
  • the flatness estimators 14 are considered Approximators formed from the material flow models 18 by simplifying assumptions concerning the locally distributed Input and output variables are derived. For example become the contour and planarity curves ⁇ , s in the frame the flatness estimator 14 by low-order polynomials described in bandwidth direction z. This leads to a reduction the number of scalar inputs and outputs of the approximators to the necessary minimum at one - in the frame the flatness estimator 14 - sufficient degree of accuracy.
  • the polynomials are preferably symmetrical polynomials fourth or sixth order.
  • the flatness estimators 14 are in this case - in contrast to the material flow models 18 - no physical Models. You can instead z. B. learning tools be trained before the use in the control computer 2 were. The training can be done offline or online.
  • the flatness estimators 14 may be considered Neural networks or be designed as a support vector models.
  • the material flow models 18 are preferably based on the rolled metal strip 1 and its actual (measured) Contour curve ⁇ 'and its actual flatness profile s' adapted. In particular, it is possible to do so accordingly FIG. 15 shows the expected value determined by the material flow model 7 Contour curve ⁇ and the actual contour ⁇ 'of the Metal band 1 a correction value determiners 21 supply.
  • the correction value determiner 21 can, for example, vary one or both of the friction coefficients ⁇ x , ⁇ z -the latter by varying the parameters which determine the functional profile of the friction coefficient ⁇ z- based on the difference between the expected and the actual contour progression ⁇ , ⁇ '. Alternatively or additionally, a variation can also take place by a comparison of expected flatness profile s and actual flatness profile s'.

Claims (31)

  1. Procédé assisté par ordinateur de détermination de valeurs de consigne pour des éléments de commande de profil et de planéité d'une cage de laminoir (3) comportant au moins des cylindres de travail (4), pour laminer une bande métallique (1) qui s'étend dans une direction transversale (z), caractérisé en ce que
    des grandeurs d'entrée (δ, s), qui décrivent la bande métallique (1) avant et après passage dans la cage de laminoir (3), sont envoyées à un modèle de fluage de matériau (18),
    le modèle de fluage de matériau (18) détermine en ligne au moins une fonction de variation (fR(z)) de l'effort de laminage au moins dans la direction transversale (z), et l'envoie à un modèle (7) de déformation des cylindres,
    le modèle (7) de déformation des cylindres détermine, en faisant appel à la' fonction de variation (fR(z)) de l'effort de laminage, les déformations des cylindres qui en découlent, et les envoie à un système (11) de détermination des valeurs de consigne, et
    le système (11) de détermination des valeurs de consigne détermine, à l'aide des déformations déterminées des cylindres, et à l'aide d'une fonction de variation du contour (δ) côté sortie, les valeurs de consigne pour les éléments de commande du profil et de la planéité.
  2. Procédé de détermination selon la revendication 1, caractérisé en ce que le modèle de fluage de matériau (18) détermine une distribution bidimensionnelle (p(x,z)) de l'effort de laminage (FW), une direction s'étendant dans la direction longitudinale (x) et une direction s'étendant dans la direction transversale (z), et en ce que le modèle de fluage de matériau (18) détermine la fonction de variation (fR) de l'effort de laminage dans la direction transversale (z) par intégration de la distribution (p(x,z)) de l'effort de laminage (FW) dans la direction longitudinale (x).
  3. Procédé de détermination selon la revendication 1 ou 2, caractérisé en ce que la bande métallique (1) et les grandeurs d'entrée (δ, s) sont symétriques dans la direction transversale (z).
  4. Procédé de détermination selon la revendication 1, 2 ou 3, caractérisé en ce que les grandeurs d'entrée (δ, s) comprennent une fonction de variation (δ) du contour initial, une fonction de variation (δ) du contour final et une fonction de variation (s) de la planéité initiale.
  5. Procédé de détermination selon l'une des revendications ci-dessus, caractérisé en ce que le modèle de fluage de matériau (18) détermine la fonction de variation (fR) de l'effort de laminage dans la direction transversale (z) à l'aide d'au moins une équation différentielle mathématique-physique, qui décrit le comportement en fluage de la bande métallique dans l'emprise.
  6. Procédé de détermination selon la revendication 5, caractérisé en ce que la bande métallique (1) subit, dans la cage de laminoir (3), un laminage dans la direction longitudinale (x), à partir d'un début d'emprise, et sur une longueur utile d'emprise (lp), et en ce que le rapport d'emprise (δ) est nettement plus petit que un, le rapport d'emprise (δ) étant le rapport entre la moitié de l'épaisseur de bande d'entrée (h0) et la longueur utile (lp) de l'emprise.
  7. Procédé de détermination selon la revendication 5 ou 6, caractérisé en ce que la ou les équations différentielles ne prennent en compte que les termes principaux du rapport d'emprise (δ).
  8. Procédé de détermination selon la revendication 5, 6 ou 7, caractérisé en ce que la ou les équations différentielles sont configurées de façon que toutes les variables et tous les paramètres soient sans dimension.
  9. Procédé de détermination selon l'une des revendications 5 à 8, caractérisé en ce que la ou les équations différentielles sont définies en des points d'appui (20) dans la direction longitudinale (x) et dans la direction transversale (z), et que les points d'appui sont distribués d'une manière irrégulière.
  10. Procédé de détermination selon la revendication 9, caractérisé en ce que les points d'appui (20) sont répartis d'une manière uniforme dans la direction longitudinale (x).
  11. Procédé de détermination selon la revendication 9 ou 10, caractérisé en ce que les points d'appui (20) sont, dans la direction transversale (z), disposés au niveau des bords de la bande plus près les uns des autres que dans la zone centrale de la bande.
  12. Procédé de détermination selon l'une des revendications 5 à 11, caractérisé en ce que la ou les équations différentielles comprennent un coefficient de frottement (κx) dans la direction longitudinale x) et un coefficient de frottement (κz) dans la direction transversale (z) ; en ce que le coefficient de frottement (κx) dans la direction longitudinale (x) est constant ; et en ce que le coefficient de frottement (κz) dans la direction transversale (z) est une fonction non constante.
  13. Procédé de détermination selon l'une des revendications ci-dessus, caractérisé en ce que la bande métallique (1) présente une contrainte de fluage, et que la contrainte de fluage est supposée constante dans le cadre du modèle de fluage de matériau (18).
  14. Procédé de détermination selon l'une des revendications ci-dessus, caractérisé en ce que le modèle de fluage de matériau (18) ne prend en compte que les déformations plastiques de la bande métallique (1).
  15. Procédé de détermination selon l'une des revendications ci-dessus, caractérisé en ce que le modèle de fluage de matériau (18) détermine aussi une fonction de variation (s) prévue, côté sortie, de la planéité de la bande métallique (1) dans la direction transversale (z).
  16. Procédé de détermination selon l'une des revendications ci-dessus, caractérisé en ce que le modèle de déformation des cylindres (7) comprend un modèle d'aplatissement des cylindres de travail (8) et un modèle de déformation résiduelle des cylindres ; en ce que, au moyen du modèle d'aplatissement des cylindres de travail (8), on détermine une fonction de variation de l'aplatissement des cylindres de travail (4) vers la bande métallique (1) ; en ce que, au moyen du modèle de déformation résiduelle des cylindres, on détermine les déformations résiduelles des cylindres (4, 5) de la cage de laminoir (3) ; et en ce que la fonction de variation (fR(z)) de l'effort de laminage est envoyée exclusivement au modèle d'aplatissement des cylindres de travail (8).
  17. Procédé de détermination selon l'une des revendications ci-dessus, caractérisé en ce que le modèle de fluage de matériau (7) est adapté à l'aide de la bande métallique (1) laminée.
  18. Procédé de détermination selon la revendication 17, caractérisé en ce qu'on fait varier l'un des coefficients de frottement (κx, κz) en fonction de la fonction de variation effective (δ') du contour et de la fonction dé variation (δ) du contour telle que prévue sur la base du modèle de fluage de matériau (7), et/ou en fonction de la fonction de variation effective (s') de la planéité et de la fonction de variation (s) de la planéité de la bande métallique (1), telle que prévue sur la base du modèle de fluage du matériau (7).
  19. Procédé de détermination assistée par ordinateur pour des grandeurs intermédiaires (δ, s) d'une bande métallique (1), entre une première et une dernière opérations de laminage,
    dans lequel un ordinateur de commande (2) reçoit des grandeurs d'entrée (δ0, s0, δT), qui décrivent la bande métallique avant la première opération de laminage et après la dernière opération de laminage,
    l'ordinateur de commande (2) détermine les grandeurs intermédiaires (δ, s),
    chaque opération de laminage est réalisée dans une cage de laminoir (3), et les grandeurs intermédiaires (δ, s) sont utilisées au moins en partie, pour chaque opération de laminage, pour mettre en oeuvre un procédé de détermination selon l'une des revendications ci-dessus.
  20. Procédé de détermination selon la revendication 19, caractérisé en ce que les grandeurs intermédiaires (δ, s) comprennent les fonctions de variation du contour (δ) et les fonctions de variation de la planéité (s).
  21. Procédé de détermination selon la revendication 20, caractérisé en ce que les fonctions de variation (s) de la planéité sont déterminées entre deux opérations de laminage immédiatement successives dans le temps, en même temps que la fonction de variation (fR(z)) de l'effort de laminage de l'opération de laminage exécutée en premier.
  22. Procédé de détermination selon la revendication 20 ou 21, caractérisé en ce que les fonctions de variation (δ) du contour sont déterminées entre deux opérations de laminage immédiatement successives dans le temps, en même temps que la fonction de variation (fR(z)) de l'effort de laminage de l'opération de laminage exécutée en premier.
  23. Procédé de détermination selon la revendication 20 ou 21; caractérisé en ce que les fonctions de variation (δ) du contour sont déterminées entre deux opérations de laminage immédiatement successives dans le temps avant la fonction de variation (fR(z)) de l'effort de laminage de l'opération de laminage exécutée en premier.
  24. Procédé de détermination selon la revendication 23, caractérisé en ce que la détermination des fonctions de variation du contour (δ) est réalisée dans un système de détermination du contour qui comprend, pour chaque fonction de variation du contour (δ) devant être déterminée, un système (14) d'évaluation de la planéité, dont les grandeurs d'entrée correspondent à celles du modèle de fluage de matériau (18) correspondant, et dont la grandeur de sortie est une évaluation de la fonction de variation (s) de la planéité entre les opérations de laminage.
  25. Procédé de détermination selon la revendication 24, caractérisé en ce que les grandeurs d'entrée et de sortie (δ, s) du système (14) d'évaluation de la planéité sont décrites par des polynômes d'ordre inférieur dans la direction transversale (z), ou par des splines dans la direction transversale (z).
  26. Produit-programme informatique, comprenant des moyens de code de programme, convenant à la mise en oeuvre de toutes les étapes d'un procédé de détermination selon l'une des revendications ci-dessus, quand le produit-programme informatique est exécuté sur un système de traitement des données.
  27. Ordinateur de commande programmé avec un produit-programme informatique (2') selon la revendication 26, pour un train de laminoir comportant au moins une cage de laminoir (3).
  28. Train de laminoir commandé par un ordinateur de commande selon la revendication 27.
  29. Train de laminoir selon la revendication 28, caractérisé en ce qu'il est configuré comme un train de laminage à chaud pour une bande d'acier ou une bande d'aluminium.
  30. Train de laminoir selon la revendication 28 ou 29, caractérisé en ce qu'il est configuré comme un train de laminoir à plusieurs cages.
  31. Train de laminoir selon la revendication 30, caractérisé en ce qu'il comprend au moins trois cages de laminoir (3), et en ce que l'ordinateur de commande (2) est programmé de façon que, pour chacune des cages (3) du train de laminoir, il utilise un procédé de détermination selon l'une des revendications 1 à 18.
EP03722208A 2002-03-15 2003-03-03 Procede de determination assiste par ordinateur pour des valeurs de consigne destinees a des actionneurs de profil et de planeite Expired - Lifetime EP1485216B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10211623 2002-03-15
DE2002111623 DE10211623A1 (de) 2002-03-15 2002-03-15 Rechnergestütztes Ermittlungverfahren für Sollwerte für Profil-und Planheitsstellglieder
PCT/DE2003/000716 WO2003078086A1 (fr) 2002-03-15 2003-03-03 Procede de determination assiste par ordinateur pour des valeurs de consigne destinees a des actionneurs de profil et de planeite

Publications (2)

Publication Number Publication Date
EP1485216A1 EP1485216A1 (fr) 2004-12-15
EP1485216B1 true EP1485216B1 (fr) 2005-10-26

Family

ID=27815681

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03722208A Expired - Lifetime EP1485216B1 (fr) 2002-03-15 2003-03-03 Procede de determination assiste par ordinateur pour des valeurs de consigne destinees a des actionneurs de profil et de planeite

Country Status (7)

Country Link
US (1) US7031797B2 (fr)
EP (1) EP1485216B1 (fr)
JP (1) JP2005527378A (fr)
CN (1) CN1311922C (fr)
AT (1) ATE307689T1 (fr)
DE (1) DE50301499D1 (fr)
WO (1) WO2003078086A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005060046A1 (de) * 2005-12-15 2007-06-21 Siemens Ag Walzstrasse mit mindestens zwei Bandbeeinflussungseinrichtungen

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10256750A1 (de) * 2002-12-05 2004-06-17 Sms Demag Ag Verfahren zur Prozesssteuerung oder Prozessregelung einer Anlage zur Umformung, Kühlung und/oder Wärmebehandlung von Metall
DE10310357A1 (de) * 2003-03-10 2004-09-30 Siemens Ag Gießwalzanlage zur Erzeugen eines Stahlbandes
EP1481742B1 (fr) * 2003-05-30 2007-07-18 Siemens Aktiengesellschaft Ordinateur de commande et procédé de détermination assistée par ordinateur pour le control de la planéité et du profile pour une cage de laminoir
AT500764A1 (de) * 2004-05-19 2006-03-15 Voest Alpine Ind Anlagen Verfahren zur berechnung der geometrischen form von walzgut
FR2879486B1 (fr) * 2004-12-22 2007-04-13 Vai Clecim Sa Regulation de la planeite d'une bande metallique a la sortie d'une cage de laminoir
SE529074C2 (sv) * 2005-06-08 2007-04-24 Abb Ab Förfarande och anordning för optimering av planhetsstyrning vid valsning av ett band
DE102006027066A1 (de) * 2006-06-10 2007-12-13 Sms Demag Ag Vorrichtung und Verfahren zum Führen eines Bandes
DE102006059709A1 (de) * 2006-12-18 2008-06-19 Siemens Ag Walzverfahren für ein Band
DE102007001539A1 (de) * 2007-01-10 2008-07-17 Siemens Ag Steuerverfahren für ein Walzgerüst zum Walzen eines Bandes
DE102007031333A1 (de) * 2007-07-05 2009-01-15 Siemens Ag Walzen eines Bandes in einer Walzstraße unter Nutzung des letzen Gerüsts der Walzstraße als Zugverringerer
CN101678417B (zh) * 2008-03-14 2013-11-20 新日铁住金株式会社 在热态下的板轧制中的轧制负荷预测的学习方法
CN101670371B (zh) * 2008-09-09 2011-11-23 宝山钢铁股份有限公司 中间板坯边部质量的控制方法
WO2010049338A2 (fr) * 2008-10-30 2010-05-06 Siemens Aktiengesellschaft Dispositif de réglage d'une charge d'entraînement pour une pluralité de dispositifs d'entraînement d'un train de laminage destiné au laminage d'un matériau à laminer, dispositif de commande et/ou de réglage, support de stockage, code programme et installation de laminage
JP4801782B1 (ja) * 2010-04-06 2011-10-26 住友金属工業株式会社 タンデム圧延機の動作制御方法及びこれを用いた熱延鋼板の製造方法
EP2460597A1 (fr) * 2010-12-01 2012-06-06 Siemens Aktiengesellschaft Procédé de commande d'une voie de laminage en tandem, dispositif de commande et/ou de réglage pour une voie de laminage en tandem, code de programme lisible par machine, support de stockage et voie de laminage en tandem
EP2527053A1 (fr) * 2011-05-24 2012-11-28 Siemens Aktiengesellschaft Procédé de commande pour une voie de laminage
EP2527054A1 (fr) * 2011-05-24 2012-11-28 Siemens Aktiengesellschaft Procédé de commande pour une voie de laminage
US8573012B1 (en) * 2011-08-18 2013-11-05 Wallace S. Paulson Indexing system for corrugated metal forming
JP5856535B2 (ja) * 2012-04-26 2016-02-09 スチールプランテック株式会社 ローラレベラおよびそれを用いた板材の矯正方法
DE102014220659A1 (de) 2014-10-13 2016-04-14 Primetals Technologies Germany Gmbh Modellierung von Metallband in einer Walzstraße
CN107530748B (zh) 2015-03-16 2019-11-05 西马克集团有限公司 用于制造金属带材的方法
JP6074096B1 (ja) * 2016-06-02 2017-02-01 Primetals Technologies Japan株式会社 熱間仕上タンデム圧延機の板プロフィル制御方法および熱間仕上タンデム圧延機
EP3479916A1 (fr) 2017-11-06 2019-05-08 Primetals Technologies Germany GmbH Réglage ciblé de contour à l'aide de spécifications correspondantes
DE102018212074A1 (de) * 2018-07-19 2020-01-23 Sms Group Gmbh Verfahren zum Ermitteln von Stellgrößen für aktive Profil- und Planheitsstellglieder für ein Walzgerüst und von Profil- und Mittenplanheitswerten für warmgewalztes Metallband
EP3632583A1 (fr) * 2018-10-03 2020-04-08 Primetals Technologies Germany GmbH Réglage découplé du contour et planéité d'une bande métallique
EP4130895A1 (fr) 2021-08-05 2023-02-08 Primetals Technologies Germany GmbH Procédé de détermination d'un paramètre de commande permettant de commander un laminoir

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19844305A1 (de) * 1998-09-17 2000-03-30 Mannesmann Ag Kombiniertes Regelungssystem zur Erzeugung bestimmter Produkteigenschaften beim Walzen von Stahlqualitäten im austenitischen, gemischt austenitisch-ferritischen und ferritischen Bereich
FR2783444B1 (fr) 1998-09-21 2000-12-15 Kvaerner Metals Clecim Procede de laminage d'un produit metallique
DE19851554C2 (de) 1998-11-09 2001-02-01 Siemens Ag Verfahren und Einrichtung zur Voreinstellung einer Walzstraße
KR20010010085A (ko) * 1999-07-15 2001-02-05 이구택 압연 스탠드간 열연판의 평탄도 검출장치
DE10041181A1 (de) * 2000-08-18 2002-05-16 Betr Forsch Inst Angew Forsch Mehrgrößen-Planheitsregelungssystem
DE10110323A1 (de) * 2001-03-03 2002-09-05 Sms Demag Ag Verfahren zur gezielten Einstellung der Oberflächenstruktur von Walzgut beim Kaltnachwalzen in Dressier-Walzgerüsten
DE10156008A1 (de) * 2001-11-15 2003-06-05 Siemens Ag Steuerverfahren für eine einer Kühlstrecke vorgeordnete Fertigstraße zum Walzen von Metall-Warmband

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005060046A1 (de) * 2005-12-15 2007-06-21 Siemens Ag Walzstrasse mit mindestens zwei Bandbeeinflussungseinrichtungen
DE102005060046B4 (de) * 2005-12-15 2008-08-14 Siemens Ag Walzstrasse mit mindestens zwei Bandbeeinflussungseinrichtungen und Verfahren zum Betrieb einer solchen Walzstrasse

Also Published As

Publication number Publication date
WO2003078086A1 (fr) 2003-09-25
CN1311922C (zh) 2007-04-25
CN1642667A (zh) 2005-07-20
JP2005527378A (ja) 2005-09-15
ATE307689T1 (de) 2005-11-15
US20050125091A1 (en) 2005-06-09
US7031797B2 (en) 2006-04-18
DE50301499D1 (de) 2005-12-01
EP1485216A1 (fr) 2004-12-15

Similar Documents

Publication Publication Date Title
EP1485216B1 (fr) Procede de determination assiste par ordinateur pour des valeurs de consigne destinees a des actionneurs de profil et de planeite
EP2548665B1 (fr) Procédé de détermination de l'usure dépendant du mouvement relatif d'un cylindre
EP2170535B1 (fr) Procédé de réglage d'un état d'un produit à laminer, en particulier d'un ruban de préparation
EP2691188B1 (fr) Procédé permettant de faire fonctionner un train de laminoir
EP3107666B1 (fr) Précommande simple du pas de filetage d'un ébaucheur
EP1675694B1 (fr) Procede et dispositif de commande pour faire fonctionner un train de laminoir pour bande metallique
DE112004002903B4 (de) Walzenkeilanstellungs-/Steuerverfahren zum Walzen von plattenförmigem Material
DE10211623A1 (de) Rechnergestütztes Ermittlungverfahren für Sollwerte für Profil-und Planheitsstellglieder
DE4136013C2 (de) Verfahren und Vorrichtung zum Steuern eines Walzwerks
DE19618712B4 (de) Regelverfahren für ein Walzgerüst zum Walzen eines Bandes
DE3515429C2 (de) Verfahren zur Steuerung des Warmwalzens von Flachmaterial
WO2011038965A1 (fr) Procédé de détermination, basée sur un modèle, de valeurs théoriques pour les actionneurs asymétriques des cages d'un laminoir à chaud à larges bandes
DE69913538T2 (de) Verfahren und Vorrichtung zur Planheitsregelung
EP1481742B1 (fr) Ordinateur de commande et procédé de détermination assistée par ordinateur pour le control de la planéité et du profile pour une cage de laminoir
DE3026229C2 (fr)
EP4061552B1 (fr) Procédé, dipositif de contrôle et laminoir pour le réglage d'une température de sortie d'une bande métallique quittant un train de laminage
DE102018200166A1 (de) Steuervorrichtung, Steuerverfahren und Steuerprogramm eines Walzwerks
EP2483004A1 (fr) Procédé de détermination, basée sur un modèle, de valeurs théoriques pour les actionneurs symétriques et asymétriques des cages d'un laminoir à chaud à larges bandes
DE19831480C1 (de) Verfahren zum Voreinstellen von Kaltverformungsanlagen
DE60113132T2 (de) Blechbreitenregelung beim warmbandwalzen
DE1527610A1 (de) Walzverfahren und Vorrichtung zur Durchfuehrung desselben
DE10159608B9 (de) Walzverfahren und Walzstraße für ein Band mit einer Schweißnaht
EP0994757B1 (fr) Procede et dispositif pour la commande et le prereglage d'une cage de laminoir
DE19500628B4 (de) Betriebsverfahren und Walzstraße zur Herstellung von optimal planen Metallbändern
WO2023088703A1 (fr) Dispositif et procédé de production d'une bande métallique laminée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50301499

Country of ref document: DE

Date of ref document: 20051201

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060126

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060206

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060427

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060727

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20120411

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130408

Year of fee payment: 11

Ref country code: FI

Payment date: 20130313

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20130212

Year of fee payment: 11

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140303

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 307689

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150305

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50301499

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160321

Year of fee payment: 14

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20160901 AND 20160907

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160304

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50301499

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: PRIMETALS TECHNOLOGIES GERMANY GMBH, 91052 ERLANGEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210329

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210319

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50301499

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220303