EP2483001B1 - Procédé de nettoyage d'un dispositif de pulvérisation - Google Patents

Procédé de nettoyage d'un dispositif de pulvérisation Download PDF

Info

Publication number
EP2483001B1
EP2483001B1 EP10778689.9A EP10778689A EP2483001B1 EP 2483001 B1 EP2483001 B1 EP 2483001B1 EP 10778689 A EP10778689 A EP 10778689A EP 2483001 B1 EP2483001 B1 EP 2483001B1
Authority
EP
European Patent Office
Prior art keywords
liquid
vessel
temperature
level
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10778689.9A
Other languages
German (de)
English (en)
Other versions
EP2483001A1 (fr
Inventor
Michel Gschwind
Fabien Guerrin
Frédéric Richard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areco Finances et Technologie ARFITEC SAS
Original Assignee
Areco Finances et Technologie ARFITEC SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areco Finances et Technologie ARFITEC SAS filed Critical Areco Finances et Technologie ARFITEC SAS
Publication of EP2483001A1 publication Critical patent/EP2483001A1/fr
Application granted granted Critical
Publication of EP2483001B1 publication Critical patent/EP2483001B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling

Definitions

  • the invention relates to liquid spraying devices.
  • Such devices are used in particular to hydrate consumables displayed on displays, especially in supermarkets. These products are for example fruits and vegetables.
  • These devices comprise a liquid tank and spray heads arranged in the tank, each head comprising a nozzle containing liquid from the tank and an ultrasonic transmitter capable of emitting ultrasonic waves into the liquid for spraying.
  • a liquid tank and spray heads arranged in the tank, each head comprising a nozzle containing liquid from the tank and an ultrasonic transmitter capable of emitting ultrasonic waves into the liquid for spraying.
  • an ultrasonic transmitter capable of emitting ultrasonic waves into the liquid for spraying.
  • the liquid to be sprayed is usually water from the running water system.
  • biofilms which are films formed by bacteria on the surface of the water, may appear in the tank. These films constitute pockets favoring the development of bacteria potentially harmful to humans when they are inhaled, for example Legionella.
  • the development of such bacteria must be controlled to prevent their projection into the ambient air.
  • the in-house development of the bacterial population is facilitated by some increases in water temperature (the ideal development temperature is between 25 and 45 ° C for legionella), the addition of a volume of contaminated water or the injection of contaminated air. More generally, the dirt that accumulates in the device can cause malfunctions.
  • the document FR-2,875,718 discloses a thermal shock step in a device carrying a liquid to misting nozzles.
  • An object of the invention is to allow the device to be cleaned efficiently, by eliminating biofilms and most microorganisms, avoiding too heavy operations.
  • the subject of the invention is a method according to claim 1.
  • the cleaning implements a thermal action in the form of a thermal shock to obtain a decontamination of the device.
  • biofilms are eliminated, the growth of bacteria is slowed down or prevented.
  • these are eliminated, at least in part, or in whole, during the thermal cleaning process.
  • the process involves pasteurization. A temperature above 60 ° C makes it possible to easily eliminate bacteria, especially by pasteurization, without the need to heat too long.
  • the method of the invention is very advantageous since it makes it possible to avoid fouling of the device. In addition, it eliminates bacteria, such as legionella, which prevents contamination of consumers by such bacteria.
  • the method being executed when the device does not diffuse liquid on the reception zone, no interference is to be feared with the latter or with articles receiving in normal operation the sprayed liquid. It follows that the process parameters such as the heating temperature, the duration of the heating, the number of heaters, etc. can be freely selected. It also limits the power required for heating the liquid.
  • the method can further be automated so that it is implemented without human intervention.
  • the conduit communicates directly with the tank.
  • the invention also relates to a device according to claim 9.
  • the diffuser comprises an ultrasonic emitter, preferably having an inner face narrowing as one approaches a mouth of the diffuser.
  • Such a heater may comprise at least one heating resistor, of simple design and allowing efficient heating, the actuation of such a resistor being furthermore easy to control.
  • the device furthermore comprises at least one sensor capable of measuring the temperature of the liquid and / or of determining whether the temperature of the liquid contained in the tank is greater than a determined temperature and / or at least one level sensor making it possible to determine if the liquid in the tank reaches a predetermined level, preferably the control means being adapted to control the heater according to at least one data provided by the level sensor and / or the temperature sensor.
  • the device according to the invention may furthermore comprise at least one temperature sensor provided in the device so as to be able to measure the temperature of the liquid and / or to determine if the temperature of the liquid contained in the tank is greater than a certain temperature.
  • It may comprise two temperature sensors, one of the sensors being intended to measure the temperature of the liquid and the other being a safety sensor to ensure that the liquid does not exceed a critical temperature.
  • the heating resistor is of type CTP (positive temperature coefficient, in English PTC for Positive Temperature Coefficient ). It is a thermistor whose resistance increases strongly with temperature in a limited temperature range but decreases outside. It has the advantage of not requiring a temperature sensor.
  • the device also comprises at least one level sensor for determining that the liquid contained in the tank reaches a predetermined level.
  • Such a device may include in particular two level sensors, one of the sensors determining a maximum level of liquid and another of the sensors determining a minimum level of liquid.
  • the control means may be able to control the heating device according to the data provided by the level sensor and / or temperature, which allows better control of the process.
  • the device may also include a clock, which may also include a means for controlling the heating device according to the data provided by the clock.
  • a device according to a first embodiment of the invention and an associated method will be described.
  • a method according to another embodiment of the invention will then be described, which may be associated with a simpler device, such a device having no pump for the circulation of the liquid in the tank.
  • a display 10 comprising a spraying device 12 according to one embodiment of the invention as well as a cabinet 14 for storing temperature-sensitive articles, for example consumable food products such as fruits and vegetables, products of the invention, the sea, etc.
  • This piece of furniture includes a plate 16 carrying the articles.
  • the device is for spraying water droplets into a receiving area including this display so that the droplets are received by the items.
  • the device 12 comprises in particular a generator 18 adapted to nebulize the spraying liquid, constituted by water, on the consumables, and conduits 20 receiving the nebulized liquid and directing it to the vicinity of the consumable products.
  • the ducts 20 then comprise orifices to allow the diffusion of the liquid on the consumable products. This is the water spray circuit on the items.
  • each head 24 comprises a nozzle containing liquid to be sprayed and in fluid communication with the tank and an ultrasonic transmitter 25 for nebulizing the liquid contained in the nozzle.
  • This emitter here comprises a piezoelectric ceramic.
  • the nozzle has orifices 27 for the arrival of water in the nozzle.
  • the formed droplets escape through the outlet mouth 29 of the nozzle. It can be provided that the heads are immersed in the liquid of the tank or on the contrary extend above the level of the liquid.
  • the inner face 31 of the nozzle has a shape which narrows as one approaches a mouth of the diffuser, for example a shape with a parabola profile and symmetry of revolution about the longitudinal axis of the nozzle. the nozzle. This shape thus constitutes an acoustic concentrator. More details on this subject can be found in the application FR-2 788 706 .
  • the generator comprises means for filling the tank, comprising for example a valve connected to a filtration device connected to the network of running water.
  • the generator also includes, as seen on the figure 2 a heating device 26 constituted by a heating resistor.
  • a heating device 26 constituted by a heating resistor. This has for example as in the figures a shape of "U" and extends over most of the large size of the tank for more efficient heating. In this case, it provides a power of 200 W.
  • the generator also comprises two level sensors arranged in the tank, these sensors not being shown in the figure. They are located at two levels of the tank, designated as the minimum and maximum levels of liquid in the tank.
  • the minimum level generally corresponds to the level in which the ultrasonic transmitter is just covered with water, the heating resistance being then also covered with water.
  • the maximum level is a level above which the tank may overflow through an overflow pipe, for example a level corresponding to 80% of the total capacity of the tank. Filling the tank to this level, as will be seen later, also cleans the overflow area.
  • the generator also includes two temperature sensors.
  • the first temperature sensor is constituted by a temperature probe for measuring the temperature of the liquid in the tank 22. This probe is arranged in the tank and is not shown in the figures.
  • the second temperature sensor 28 forms a safety sensor, such a sensor being here a bimetal comprising two metal blades of different thermal coefficients welded together. Such a sensor makes it possible to send an electrical signal when the temperature exceeds a threshold temperature.
  • the generator also comprises a pump intended to circulate the liquid in the tank 22.
  • a pump intended to circulate the liquid in the tank 22.
  • the temperature of the liquid is more homogeneous since all the liquid passes close to the heating resistor 26.
  • the use of the pump makes it possible to clean all the parts of the device in contact with the water.
  • the generator also comprises a heating resistor control circuit 26 comprising means for supplying electrical power to the latter and means for controlling the supply of the heating resistor, for example using one or more switches. , the one or more switches being controlled according to the data from the level and / or temperature sensors.
  • the resistance control circuit also includes a clock, the operation of the switch or switches can also be performed according to the data received from the clock.
  • the process begins in a step 100 when the clock indicates a predetermined time, this time being one hour during which the device does not work by spraying the liquid on the consumables, for example at night at 2 o'clock in the morning.
  • the method is indeed implemented when the spray heads are deactivated and do not work. Products can be absent.
  • the supply means of the liquid tank are actuated during a step 102 of filling the tank.
  • the data provided by the high level sensor is then determined based on whether the level of the tank is above a predetermined level during a step 104.
  • step 104 using the high level sensor As long as the level determined in step 104 using the high level sensor is below the predetermined level, the process is returned to step 102 and filling of the vessel is continued.
  • the filling is stopped and the heating resistor 26 is supplied to start a step 106 for heating the liquid contained in the tank.
  • a step 108 of actuating the generator pump is also triggered to allow the cleaning liquid to circulate in all the elements of the tank. Circulating the liquid in the tank makes it possible to heat the tank more evenly.
  • the tank level is determined if the level of the tank is below a predetermined level corresponding to the low level thereof, in a step 110.
  • step 110 If the level determined in step 110 is lower than the predetermined level, the heating and circulation of the liquid in the tank is stopped and the process is restarted at step 102 for filling the tank.
  • the temperature of the liquid in the tank is measured using the temperature probe during a step 112 and it is determined whether it is greater than a temperature. predetermined.
  • the predetermined temperature is 70 ° C., which is an optimum temperature for cleaning, in particular pasteurization, of the tank if it is maintained in the liquid for a short period of time, for example 2 minutes, such as Annex 1 to the Decree of 30 November 2005 on fixed installations for heating and hot water supply of residential buildings, work premises or public accommodation (No. SANP0524385A) ) within the framework of French regulations.
  • step 112 If the temperature measured in step 112 is greater than the predetermined temperature, the heating resistor is stopped during a step 118. This makes it possible to save energy, the heating resistor then not heating up. not continuously throughout the duration of the process. This also prevents the device from overheating.
  • the temperature of the liquid is measured again, using the probe, during a step 120.
  • the temperature is higher than the predetermined temperature, namely 70 ° C, a few seconds are waited and the measurement step 120 is carried out again.
  • the process is returned to step 106 to operate the heating step again.
  • the heating of the liquid is thus enslaved to maintain the liquid at a temperature of about 70 ° C. while avoiding any unnecessary energy expenditure.
  • the temperature of the liquid is maintained in a predetermined range around 70 ° C, for example the range of 68 ° C to 72 ° C.
  • step 112 if the temperature is lower, however, than predetermined temperature, it is verified in a step 114 that a predetermined time is not exceeded using the clock.
  • the predetermined time is, for example, 2:45 because it has been determined that operation of the cleaning process during a 45 minute cycle may be sufficient to eliminate biofilms and bacteria, when the predetermined temperature is a temperature of 70 ° C.
  • the process is returned to steps 106 and 108 and the pump and heating resistor continue to be operated.
  • the process is terminated during a step 116, and all the members of the tank such as the heating resistor or the pump are stopped.
  • the liquid used to clean the generator is also removed.
  • This emptying can be done using a gravity drain valve connected to the sewer, for example. The emptying takes place via a conduit which is not part of the droplet diffusion circuit in the receiving zone and which communicates directly with the tank
  • the execution of the end step 116 could also be controlled by detection by the bimetallic safety sensor of a temperature greater than its threshold temperature.
  • the sensor threshold temperature is chosen higher than the predetermined temperature so that it does not trigger the end step of the process if the probe operates correctly. However, it allows to stop the process in the case where the probe is defective and where the temperature of the liquid is too high. Its threshold temperature may in particular be 85 ° C., and is determined by the holding temperature of the ceramics and other components of the circuit in contact with the superheated liquid.
  • the device can resume normal operation.
  • liquid is diffused into the reception zone. This diffusion takes place without this liquid having been previously heated in the tank until reaching the predetermined temperature, and even without this liquid having been heated beforehand in the tank.
  • the liquid remains cold, at ambient temperature and / or at its temperature at the outlet of the water supply network, the latter being able to be higher or lower than the ambient temperature.
  • the device has had time to cool completely since cleaning before resume operation as a diffuser in the reception area.
  • the device comprises a temperature probe and that after cleaning, the tank is filled with cold water. If the temperature of the water is below a predetermined threshold, for example at 25 ° C, the nebulization resumes on the receiving zone, otherwise it may be necessary to redo the drain and at least one other filling cold water . It is this cold water that cools the system. This characteristic also makes it possible to control that the temperature of the water does not exceed the threshold in normal operation also.
  • a predetermined threshold for example at 25 ° C
  • FIG. figure 4 Another method will now be described according to another embodiment of the invention, shown in FIG. figure 4 .
  • Such a method can be implemented in a device whose generator is less complex and does not include a pump for example.
  • This process begins at an initial step 200 during which the start of the process is operated by an operator from the outside, for example in the morning before the opening of the store.
  • the tank is filled with liquid during a step 202, similar to step 102, and then the level of the water is determined in a step 204, similar to step 104.
  • step 202 of filling the tank is continued.
  • the filling is stopped and the heating resistor is electrically powered to perform a step 206 for heating the liquid contained in the tank.
  • a step 208 the temperature is then measured using a temperature probe and it is determined whether the temperature is above a predetermined temperature, that is 70 ° C in the present case.
  • a timer is triggered during a step 210. During this time, the liquid is heated. It may be possible to reduce the power of the heating resistor once the timer has been triggered.
  • a step 212 it is measured whether the time from which the stopwatch is switched is greater than a predetermined period, for example 5 minutes, which is a sufficient time to eliminate the bacteria by pasteurization when the liquid is raised to 70 ° C.
  • step 212 If the measured time is less than 5 minutes, return to step 212 and measure the elapsed time again.
  • the tank is emptied by means of an evacuation means thereof such as a pipe connected to a drain valve giving onto the all-to-one in a step 214. It also controls the shutdown of the heating resistor.
  • a step 216 it is determined whether it is the first emptying performed.
  • the method is returned to the filling step 202 and steps 202 to 216 are performed again.
  • the time interval between two cleaning cycles can advantageously be evaluated according to the actual operation of the machine. It has been verified that the ultrasound system with acoustic concentrator was effective in destroying bacteria. On the other hand, a long period of non-operation or partial power operation favors the development of biofilms. The cycle will be more frequent when the device will be used at reduced power. Moreover, during a restart after a long period of shutdown, the water of the filters may be more or less contaminated, it is then necessary to rinse the filtration and proceed with an initial heat shock to ensure the quality of the water. 'water.
  • the pump has a high water flow rate in comparison with the flow of the diffusers 24.
  • the pump has a flow rate of 2 liters per minute and the broadcasters collectively have a flow rate of 1.6 liters per hour, these values not being limiting.
  • the ratio between these flows, namely that of the pump on that of the diffusers, is 75. This means that the pump constantly brews the water much faster than the water is nebulized. This results in a dilution effect of the bacteria in the bath.
  • the bacteria content is therefore low at each moment in the diffusers so that the nebulizing action effectively ensures their destruction, from the beginning of operation, thanks to the bactericidal effect of ultrasound. This content will of course be reduced as cleaning progresses.
  • the ratio above is greater than or equal to 50, and preferably it is at least 60.
  • the device includes a fan for the diffusion of the air carrying the droplets of nebulized water, it will be preferable to keep it stopped during the cleaning so as not to dissipate the heat produced by the resistance.
  • the device and method are not limited to what has been described above.
  • It can thus comprise a single level sensor, that of high level, or no level sensor at all, the end of the filling can then correspond to the end of a predetermined time.
  • a device according to the invention may not include a pump or may comprise a number of spray heads different from that described.
  • the process may also be different from what has been described.
  • the method according to a first embodiment can be triggered manually, and not automatically using a clock.
  • steps 104, 108, 110 are optional. It is also not necessary to empty the tank of the liquid once it has been cleaned even if it is more hygienic.
  • the method may include a waiting step for a suitably selected predetermined period of time before stopping the filling and starting the heating of the liquid, the duration being preferably chosen so that the cleaning liquid does not overflow the tank.
  • a suitably selected predetermined period of time before stopping the filling and starting the heating of the liquid, the duration being preferably chosen so that the cleaning liquid does not overflow the tank.
  • the method according to the second embodiment may also be different from what has been described above. It can for example be performed once and not twice, even if the cleaning is then less good. It can also be done more than twice, if the cleaning needs to be even more efficient.
  • the method according to the second embodiment can be controlled by a clock as in the method according to the first embodiment of the invention and be triggered at a given time. Steps 204, 208 and 216 are also optional. The method according to the second embodiment of the invention can also be performed entirely automatically.
  • the method comprises a servocontrol of the heating device in temperature, as is the case in the first embodiment of the method.
  • temperatures, levels, durations or periodicities indicated are not limited to those described above.
  • the process of the invention can be carried out by selecting a relatively high predetermined temperature, for example greater than 80 ° C or 90 ° C, such as 100 ° C.
  • a relatively high predetermined temperature for example greater than 80 ° C or 90 ° C, such as 100 ° C.
  • the device and method according to the invention can also be used for cleaning ducts for spraying consumables.
  • the orifices of these conduits can be plugged and the filling can be controlled so that the cleaning liquid also fills them.
  • the device comprises a pump that can circulate the liquid in a closed circuit in the tank and the conduits.
  • the invention can be used for devices diffusing sprayed liquid in refrigerated display cases containing, for example, traditional meat products (meat, etc.), cold cuts or cheeses, for example served for cutting.
  • the invention is also applicable to devices diffusing sprayed liquid in cellars for aging wine and cheese refining, these devices working in harsh environments that include bacteria or yeasts in the air.
  • nebulize hot water on the receiving zone with the device for example water having a temperature of up to 60 ° C.
  • this temperature level may damage the nozzles so that it is preferable, in such a case, to limit the duration of nebulization of the hot water to 10% of the total operating time in nebulization on the zone of reception.
  • the tank is filled with cold (clean) water at room temperature and / or at the temperature of the network. feed it comes from, water that is immediately flushed through the dedicated conduit to properly rinse the device and that there is no residue of biofilm, bacteria, etc.
  • This filling and emptying is carried out at least once. Then, the following filling is used for normal operation for nebulization on the reception area. This rinsing also has the effect, if necessary, to cool the tank and the device before the resumption of nebulization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Description

  • L'invention concerne les dispositifs de pulvérisation de liquide.
  • De tels dispositifs sont notamment utilisés pour hydrater des produits consommables exposés sur des étalages, notamment dans les supermarchés. Ces produits sont par exemple des fruits et des légumes.
  • Ces dispositifs comprennent une cuve de liquide et des têtes de pulvérisation agencées dans la cuve, chaque tête comprenant une buse contenant du liquide provenant de la cuve et un émetteur à ultrasons apte à émettre des ondes ultrasonores dans le liquide pour le pulvériser. Un tel dispositif est décrit dans le document FR-2788706 .
  • Le liquide à pulvériser est généralement de l'eau provenant du réseau d'eau courante.
  • Or, en fonction de la qualité de l'eau et aussi de la qualité de l'air environnant, le dispositif est susceptible de se salir de façon récurrente. Notamment, des biofilms, qui sont des films formés par des bactéries à la surface de l'eau, peuvent apparaître dans la cuve. Ces films constituent des poches favorisant le développement de bactéries potentiellement nuisibles pour l'homme lorsqu'elles sont inhalées, par exemple la légionelle. Le développement de telles bactéries doit être contrôlé pour éviter leur projection dans l'air ambiant. De plus, le développement en interne de la population de bactéries est facilité par certaines élévations de la température de l'eau (la température idéale de développement se situe entre 25 et 45°C pour la légionelle), l'ajout d'un volume d'eau contaminé ou encore l'injection d'air contaminé. Plus généralement, la saleté qui s'accumule dans le dispositif peut entrainer des dysfonctionnements.
  • Pour nettoyer le dispositif, les opérations sont relativement lourdes et peuvent nécessiter le démontage au moins partiel de la machine. C'est aussi le cas lorsqu'on souhaite nettoyer la machine à l'issue d'une période d'arrêt prolongée.
    Le document FR-2 875 718 divulgue une étape de choc thermique dans un dispositif transportant un liquide jusqu' à des buses de brumisation.
  • Un but de l'invention est de permettre de nettoyer le dispositif efficacement, en éliminant les biofilms et la plupart des microorganismes, en évitant des opérations trop lourdes.
  • A cet effet, l'invention a pour objet un procédé selon la revendication 1.
  • Ainsi, le nettoyage met en oeuvre une action thermique sous la forme d'un choc thermique permettant d'obtenir une décontamination du dispositif.
  • Il ne nécessite pas d'intervention lourde ou fastidieuse, telle qu'une étape de nettoyage mécanique par frottement à l'aide d'une brosse. Il n'est pas nécessaire de procéder à un démontage même partiel du dispositif, ni même de l'ouvrir. Un tel procédé peut donc être mis en oeuvre plus fréquemment qu'un procédé de nettoyage classique.
  • Il peut être mis en oeuvre uniquement grâce à des éléments intégrés au dispositif, notamment un dispositif de chauffage.
  • A l'aide d'un tel procédé, il est possible d'éliminer facilement les biofilms. En effet, les biofilms de fine épaisseur sont détruits lorsqu'ils sont soumis à un traitement thermique. Or, comme le procédé selon l'invention peut être répété fréquemment, par exemple tous les jours, sans augmenter les coûts de maintenance de façon significative, des biofilms d'épaisseur importante n'ont pas le temps de se former. Un tel procédé permet donc de les éliminer et de prévenir leur développement de façon simple et efficace.
  • Les biofilms étant éliminés, le développement des bactéries est ralenti, voire empêché. En outre, celles-ci sont éliminées, au moins en partie, voire en totalité, durant le procédé de nettoyage thermique. On peut prévoir par exemple que le procédé met en oeuvre une pasteurisation. Une température supérieure à 60°C permet en effet d'éliminer facilement les bactéries, notamment par pasteurisation, sans qu'il soit besoin de chauffer trop longtemps.
  • En outre, puisqu'on vide le liquide de la cuve suite à l'étape de chauffage de celui-ci, les résidus des biofilms qui pourraient subsister dans l'eau ayant servi au nettoyage sont évacués du dispositif pour une meilleure hygiène de l'étalage. La vidange du liquide hors du circuit de pulvérisation vers la zone de réception évite tout risque de contaminer ce dernier.
  • Le procédé de l'invention est très avantageux puisqu'il permet d'éviter l'encrassement du dispositif. En outre, il permet d'éliminer les bactéries, telles que la légionelle, ce qui permet d'éviter la contamination des consommateurs par de telles bactéries.
  • Le procédé étant exécuté lorsque le dispositif ne diffuse pas de liquide sur la zone de réception, aucune interférence n'est à craindre avec cette dernière ni avec les articles recevant en fonctionnement normal le liquide pulvérisé. Il s'ensuit qu'on peut choisir sans contrainte les paramètres de mise en oeuvre du procédé tels que la température de chauffage, la durée du chauffage, le nombre de chauffes, etc. On limite également la puissance nécessaire pour le chauffage du liquide.
  • Le procédé peut en outre être automatisé de sorte qu'il est mis en oeuvre sans intervention humaine.
  • De préférence, le conduit communique directement avec la cuve.
  • Le procédé selon l'invention peut comprendre également une ou plusieurs des caractéristiques suivantes:
    • on détermine à l'aide d'un capteur si la température du liquide est supérieure à la température prédéterminée, et on commande le chauffage en fonction de cette détermination, notamment on commande l'arrêt du chauffage lorsque la température est supérieure à la température prédéterminée. De cette façon, on contrôle mieux la dépense d'énergie nécessaire au nettoyage du dispositif. De préférence, on veille à ce que le dispositif ne dépasse pas une température maximale que peuvent supporter ses composants, notamment la pompe et les céramiques des diffuseurs le cas échéant.
    • on maintient la température du liquide dans une plage prédéterminée pendant une durée prédéterminée, de préférence supérieure ou égale à 2 minutes, notamment comprise entre 5 et 60 minutes. Cela permet d'assurer une bonne élimination de toutes les bactéries.
    • on mesure un niveau du liquide dans la cuve à l'aide d'au moins un capteur de niveau, et on commande le chauffage en fonction du niveau mesuré. On nettoie ainsi le dispositif une fois que la cuve est convenablement remplie pour éliminer un maximum de biofilms, quelle que soit leur localisation. En effet, le biofilm se forme dans la zone limitrophe air/eau et donc plus fréquemment en partie haute de la cuve.
    • on fait circuler le liquide dans la cuve, par exemple à l'aide d'une pompe située dans celle-ci, notamment une fois atteint un niveau prédéterminé de liquide dans la cuve. Pour certains types d'installations complexes, cela permet s'assurer que le liquide servant au nettoyage circule dans tous les éléments de la cuve et de garantir un nettoyage intégral du dispositif. Le dispositif ne comprendra pas nécessairement une pompe de circulation.
    • au cours d'une autre phase de fonctionnement du dispositif durant laquelle le dispositif diffuse du liquide dans la zone de réception, on fait circuler le liquide dans la cuve avec un débit tel que le ratio de ce débit sur un débit du ou des diffuseurs est supérieur ou égal à 50. Le premier débit est par exemple le débit de la pompe précitée. Ainsi, la teneur en bactéries est faible à chaque instant dans les diffuseurs si bien que l'action de nébulisation assure efficacement leur destruction, dès le début du fonctionnement.
    • au cours d'une autre phase de fonctionnement, on diffuse du liquide dans la zone de réception sans que ce liquide ait été préalablement chauffé dans la cuve jusqu'à atteindre la température prédéterminée, de préférence sans que ce liquide ait été préalablement chauffé dans la cuve. Il s'agit du fonctionnement normal ou nominal du dispositif. On voit donc que le procédé de nettoyage n'interfère en rien avec ce dernier.
    • on répète périodiquement le procédé, par exemple toutes les 24 heures.
    • la zone de réception comprend des articles sensibles à la température, tels que des denrées alimentaires.
  • L'invention a également pour objet un dispositif selon la revendication 9.
  • Il est en effet plus facile de chauffer le liquide si le dispositif de chauffage est placé au voisinage du fond de la cuve du fait de la densité légèrement plus faible du liquide chaud.
  • De préférence, le diffuseur comprend un émetteur à ultrasons, de préférence présentant une face interne allant en se rétrécissant à mesure qu'on s'approche d'une embouchure du diffuseur.
  • La demanderesse a en effet constaté avec surprise qu'une telle face, formant un concentrateur acoustique qui améliore l'efficacité de la pulvérisation, accroit aussi l'élimination des germes et des bactéries telles que la légionelle. Ce concentrateur, combiné à l'action thermique du procédé, améliore encore l'effet bactéricide de ce dernier. La sécurité du dispositif s'en trouve considérablement accrue.
  • Un tel dispositif de chauffage peut comprendre au moins une résistance chauffante, de conception simple et permettant un chauffage efficace, l'actionnement d'une telle résistance étant en outre facile à commander.
  • Avantageusement, le dispositif comprend en outre au moins un capteur apte à mesurer la température du liquide et/ou à déterminer si la température du liquide contenu dans la cuve est supérieure à une température déterminée et/ou au moins un capteur de niveau permettant de déterminer si le liquide contenu dans la cuve atteint un niveau prédéterminé, de préférence les moyens de commande étant aptes à commander le dispositif de chauffage en fonction d'au moins une donnée fournie par le capteur de niveau et/ou le capteur de température.
  • Ainsi, le dispositif selon l'invention peut comprendre en outre au moins un capteur de température ménagé dans le dispositif de façon à être apte à mesurer la température du liquide et/ou à déterminer si la température du liquide contenu dans la cuve est supérieure à une température déterminée.
  • Il peut comprendre deux capteurs de température, un des capteurs étant destiné à mesurer la température du liquide et l'autre étant un capteur de sécurité permettant de s'assurer que le liquide ne dépasse pas une température critique.
  • On pourra prévoir que la résistance chauffante est de type CTP (coefficient de température positif, en anglais PTC pour Positive Temperature Coefficient). Il s'agit d'une thermistance dont la résistance augmente fortement avec la température dans une plage de température limitée mais diminue en dehors. Elle a pour avantage de ne pas nécessiter de capteur de température.
  • Le dispositif selon un mode de réalisation de l'invention comprend également au moins un capteur de niveau permettant de déterminer que le liquide contenu dans la cuve atteint un niveau prédéterminé.
  • Un tel dispositif peut notamment comprendre deux capteurs de niveau, un des capteurs déterminant un niveau maximum de liquide et un autre des capteurs déterminant un niveau minimum de liquide.
  • Les moyens de commande peuvent être aptes à commander le dispositif de chauffage en fonction des données fournies par le capteur de niveau et/ou de température, ce qui permet de mieux réguler le procédé.
  • Le dispositif peut également comprendre une horloge, celui-ci étant alors également susceptible de comprendre un moyen de commande du dispositif de chauffage en fonction des données fournies par l'horloge.
  • L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins dans lesquels :
    • la figure 1 représente une vue en perspective d'un étalage comprenant un dispositif de pulvérisation selon un mode de réalisation de l'invention,
    • la figure 2 représente une vue en perspective d'une cuve d'un dispositif de diffusion de la figure 1,
    • la figure 3 est un diagramme d'un procédé selon un premier mode de réalisation de l'invention, réalisé à l'aide d'un dispositif tel que celui de la figure 2,
    • la figure 4 est un diagramme d'un procédé selon un autre mode de réalisation de l'invention, le procédé étant mis en oeuvre dans un dispositif de type distinct de celui des figures 1 et 2,
    • la figure 5 est une vue en coupe axiale d'une tête de diffusion du dispositif de la figure 1.
  • On va tout d'abord décrire un dispositif selon un premier mode de réalisation de l'invention et un procédé associé. On décrira ensuite un procédé selon un autre mode de réalisation de l'invention, pouvant être associé à un dispositif plus simple, un tel dispositif ne comportant pas de pompe pour la circulation du liquide dans la cuve.
  • On a tout d'abord représenté sur la figure 1 un étalage 10 comprenant un dispositif de pulvérisation 12 selon un mode de réalisation de l'invention ainsi qu'un meuble 14 pour entreposer des articles sensibles à la température, par exemple des produits alimentaires consommables tel que des fruits et des légumes, des produits de la mer, etc. Ce meuble comprend notamment une plaque 16 portant les articles.
  • Le dispositif est destiné à pulvériser des gouttelettes d'eau dans une zone de réception comprenant cet étalage afin que les gouttelettes soient reçues par les articles. Le dispositif 12 comprend notamment un générateur 18 apte à nébuliser le liquide à pulvériser, constitué par de l'eau, sur les produits consommables, et des conduits 20 recevant le liquide nébulisé et le dirigeant jusqu'au voisinage des produits consommables. Les conduits 20 comprennent alors des orifices pour permettre la diffusion du liquide sur les produits consommables. Il s'agit du circuit de pulvérisation de l'eau sur les articles.
  • On va maintenant décrire plus en détails le générateur 18. Comme on le voit sur la figure 2, celui-ci comprend une cuve 22 destinée à recevoir du liquide à projeter sur les produits consommables et, agencées dans la cuve 22, des têtes de pulvérisation 24. Comme illustré aux figures 2 et 5, chaque tête 24 comprend une buse contenant du liquide à pulvériser et en communication de fluide avec la cuve et un émetteur à ultrasons 25 pour nébuliser le liquide contenu dans la buse. Cet émetteur comprend ici une céramique piézoélectrique. La buse présente des orifices 27 pour l'arrivée de l'eau dans la buse. Les gouttelettes formées s'échappent par l'embouchure de sortie 29 de la buse. On pourra prévoir que les têtes baignent dans le liquide de la cuve ou au contraire s'étendent au-dessus du niveau du liquide.
  • La face interne 31 de la buse a une forme qui va en se rétrécissant à mesure qu'on s'approche d'une embouchure du diffuseur, par exemple une forme à profil en parabole et à symétrie de révolution autour de l'axe longitudinal de la buse. Cette forme constitue ainsi un concentrateur acoustique. On trouvera plus de détails à ce sujet dans la demande FR-2 788 706 .
  • Le générateur comprend des moyens de remplissage de la cuve, comprenant par exemple une valve branchée sur un dispositif de filtration raccordé au réseau d'eau courante.
  • Le générateur comprend également, comme on le voit sur la figure 2, un dispositif de chauffage 26 constitué par une résistance chauffante. Celle-ci a par exemple comme sur les figures une forme en « U » et s'étend sur la plus grande partie de la grande dimension de la cuve pour un chauffage plus efficace. En l'espèce, elle fournit une puissance de 200 W.
  • Le générateur comprend également deux capteurs de niveau agencés dans la cuve, ces capteurs n'étant pas représentés sur la figure. Ils sont situés à deux niveaux de la cuve, désignés comme les niveaux minimum et maximum de liquide dans la cuve. Le niveau minimum correspond généralement au niveau dans lequel l'émetteur à ultrasons est tout juste recouvert d'eau, la résistance chauffante étant alors également recouverte d'eau. Le niveau maximum est un niveau au-dessus duquel la cuve risque de déborder par un conduit de trop plein, par exemple un niveau correspondant à 80% de la capacité totale de la cuve. Remplir la cuve jusqu'à ce niveau, comme on le verra dans la suite, permet de nettoyer aussi la zone de trop plein.
  • Le générateur comprend également deux capteurs de température. Le premier capteur de température est constitué par une sonde de température destinée à mesurer la température du liquide se trouvant dans la cuve 22. Cette sonde est agencée dans la cuve et n'est pas représentée sur les figures.
  • Le deuxième capteur de température 28 forme un capteur de sécurité, un tel capteur étant ici un bilame comprenant de deux lames de métaux de coefficients thermiques différents soudées entre elles. Un tel capteur permet d'envoyer un signal électrique lorsque la température dépasse une température de seuil.
  • Le générateur comprend également une pompe destinée à faire circuler le liquide dans la cuve 22. Ainsi, la température du liquide est plus homogène puisque tout le liquide passe à proximité de la résistance chauffante 26. De plus, l'utilisation de la pompe permet de nettoyer toutes les parties du dispositif en contact avec l'eau.
  • Le générateur comprend également un circuit de commande de la résistance chauffante 26 comprenant des moyens d'alimentation électrique de celle-ci et des moyens de commande de l'alimentation de la résistance chauffante, par exemple à l'aide d'un ou plusieurs interrupteurs, le ou les différents interrupteurs étant commandés en fonction des données en provenance des capteurs de niveau et/ou de température. Le circuit de commande de la résistance comprend également une horloge, l'actionnement de l'interrupteur ou des interrupteurs pouvant également être effectués en fonction des données reçues de l'horloge. Ces moyens de commande seront par exemple des moyens de commande électronique ou informatique obéissant à un programme d'ordinateur ad hoc apte à commander la mise en oeuvre du procédé.
  • On va maintenant décrire un procédé de nettoyage d'un dispositif de pulvérisation tel que décrit.
  • Le procédé commence lors d'une étape 100 lorsque l'horloge indique une heure prédéterminée, cette heure étant une heure durant laquelle le dispositif ne fonctionne pas en projetant le liquide sur les produits consommables, par exemple la nuit à 2 heures du matin. Le procédé est en effet mis en oeuvre lorsque les têtes de pulvérisation sont désactivées et ne fonctionnent pas. Les produits peuvent d'ailleurs être absents.
  • Lorsque l'horloge affiche l'heure prédéterminée, les moyens d'alimentation de la cuve en liquide sont actionnés lors d'une étape 102 de remplissage de la cuve.
  • On détermine ensuite en fonction des données fournies par le capteur de niveau haut si le niveau de la cuve est supérieur à un niveau prédéterminé, lors d'une étape 104.
  • Tant que le niveau déterminé à l'étape 104 à l'aide du capteur de niveau haut est inférieur au niveau prédéterminé, on renvoie le procédé à l'étape 102 et on continue le remplissage de la cuve.
  • Si en revanche le niveau est supérieur au niveau prédéterminé, on arrête le remplissage et on alimente la résistance chauffante 26 pour débuter une étape 106 de chauffage du liquide contenu dans la cuve. On déclenche également une étape 108 d'actionnement de la pompe du générateur, pour permettre au liquide de nettoyage de circuler dans tous les éléments de la cuve. Faire circuler le liquide dans la cuve permet de chauffer plus uniformément celui-ci.
  • Une fois les étapes 106 et 108 de chauffage et de circulation du liquide dans la cuve amorcées, on détermine en fonction des données fournies par le capteur de niveau bas si le niveau de la cuve est inférieur à un niveau prédéterminé correspondant au niveau bas de celle-ci, lors d'une étape 110.
  • Si le niveau déterminé à l'étape 110 est inférieur au niveau prédéterminé, on arrête le chauffage et la circulation du liquide dans la cuve et on recommence le procédé à l'étape 102 de remplissage de la cuve.
  • Si en revanche le niveau est supérieur au niveau bas, on mesure la température du liquide se trouvant dans la cuve à l'aide de la sonde de température, lors d'une étape 112 et on détermine si celle-ci est supérieure à une température prédéterminée.
  • Dans le cas présent, la température prédéterminée est de 70°C, qui est une température optimale permettant le nettoyage, notamment la pasteurisation, de la cuve si elle est maintenue dans le liquide pendant une durée peu importante, par exemple 2 minutes, comme l'indique l'annexe 1 de l'arrêté du 30 novembre 2005 relatif aux installations fixes destinées au chauffage et à l'alimentation en eau chaude sanitaire des bâtiments d'habitation, des locaux de travail ou des locaux recevant du public (n° SANP0524385A) dans le cadre de la réglementation française.
  • Si la température mesurée à l'étape 112 est supérieure à la température prédéterminée, on commande l'arrêt de la résistance chauffante, lors d'une étape 118. Cela permet d'effectuer une économie d'énergie, la résistance chauffante ne chauffant alors pas continument durant toute la durée du procédé. Cela permet également d'éviter la surchauffe du dispositif.
  • Une fois la résistance arrêtée, on mesure à nouveau la température du liquide, à l'aide de la sonde, lors d'une étape 120.
  • Si la température est supérieure à la température prédéterminée, à savoir 70°C, on attend quelques secondes et on effectue à nouveau l'étape 120 de mesure.
  • Une fois que la température est devenue inférieure à la température prédéterminée, on renvoie le procédé à l'étape 106 pour actionner à nouveau l'étape de chauffage. On asservit ainsi le chauffage du liquide pour maintenir le liquide à une température voisine de 70°C tout en évitant toute dépense d'énergie inutile. Plus précisément, on maintient la température du liquide dans une plage prédéterminée autour de 70°C, par exemple la plage allant de 68°C à 72°C.
  • On le fait pendant une durée prédéterminée, de préférence supérieure ou égale à 2 minutes, notamment comprise entre 5 et 60 minutes.
  • En effet, à l'étape 112, si la température est en revanche inférieure à la température prédéterminée, on vérifie lors d'une étape 114 qu'une heure prédéterminée n'est pas dépassée à l'aide de l'horloge.
  • Dans ce cas, l'heure prédéterminée est par exemple 2 h 45, car il a été déterminé qu'un fonctionnement du procédé de nettoyage pendant un cycle de 45 minutes peut être suffisant pour éliminer les biofilms et les bactéries, lorsque la température prédéterminée est une température de 70° C.
  • Si l'horaire prédéterminé n'est pas dépassée, le procédé est renvoyé aux étapes 106 et 108 et la pompe et la résistance chauffante continuent d'être actionnées.
  • Lorsque l'horaire prédéterminé est dépassée, on termine le procédé lors d'une étape 116, et on arrête tous les organes de la cuve tel que la résistance chauffante ou la pompe. On évacue également le liquide ayant servi à nettoyer le générateur. Cette vidange peut être effectué à l'aide d'une vanne de vidage par gravité connectée au tout-à-l'égout, par exemple. La vidange a lieu via un conduit qui ne fait pas partie du circuit de diffusion des gouttelettes dans la zone de réception et qui communique directement avec la cuve
  • On réalise aussi de cette façon un nettoyage du circuit de vidange, qu'il est important d'accomplir car ce circuit peut être le siège de développements et/ou de remontées de bactéries.
  • On notera que l'exécution de l'étape 116 de fin pourrait également être commandée par une détection par le capteur bilame de sécurité d'une température supérieure à sa température de seuil. La température de seuil du capteur est choisie supérieure à la température prédéterminée pour que celui-ci ne déclenche pas l'étape de fin du procédé si la sonde fonctionne correctement. Toutefois, il permet d'arrêter le procédé dans le cas où la sonde est défectueuse et où la température du liquide est trop élevée. Sa température de seuil peut notamment être de 85 °C, et est déterminée par la température de tenue des céramiques et des autres composants du circuit en contact avec le liquide surchauffé.
  • Après ce nettoyage, de préférence quelques heures après, le dispositif peut reprendre son fonctionnement normal. Ainsi, au cours d'une autre phase de fonctionnement, on diffuse du liquide dans la zone de réception. Cette diffusion a lieu sans que ce liquide ait été préalablement chauffé dans la cuve jusqu'à atteindre la température prédéterminée, et même sans que ce liquide ait été préalablement chauffé dans la cuve. Le liquide demeure froid, à température ambiante et/ou à sa température à la sortie du réseau d'alimentation en eau, cette dernière pouvant être supérieure ou inférieure à la température ambiante. Le dispositif a eu le temps de refroidir complétement depuis le nettoyage avant de reprendre son fonctionnement en diffuseur dans la zone de réception.
  • Mais il n'est pas nécessaire que le redémarrage ait lieu quelques heures après. On peut prévoir en effet que le dispositif comprend une sonde de température et que, après nettoyage, on remplit la cuve avec de l'eau froide. Si la température de l'eau est inférieure à un seuil prédéterminé, par exemple à 25°C, la nébulisation reprend sur la zone de réception, sinon on peut être amené à refaire une vidange et au moins un autre remplissage à l'eau froide. C'est cette eau froide qui refroidit le système. Cette caractéristique permet aussi de contrôler que la température de l'eau ne dépasse pas le seuil en fonctionnement normal également.
  • On va maintenant décrire un autre procédé selon un autre mode de réalisation de l'invention, représenté à la figure 4. Un tel procédé peut être mis en oeuvre dans un dispositif dont le générateur est moins complexe et ne comprend pas de pompe par exemple.
  • Ce procédé commence à une étape initiale 200 lors de laquelle le départ du procédé est actionné par un opérateur depuis l'extérieur, par exemple le matin avant l'ouverture du magasin.
  • Une fois le procédé amorcé, on remplit la cuve de liquide lors d'une étape 202, similaire à l'étape 102 puis on détermine le niveau de l'eau lors d'une étape 204, similaire à l'étape 104.
  • Tant que le niveau déterminé à l'étape 204 à l'aide du capteur de niveau haut est inférieur au niveau prédéterminé, on continue l'étape 202 de remplissage de la cuve.
  • Quand le niveau devient supérieur au niveau prédéterminé, on arrête le remplissage et on alimente électriquement la résistance chauffante pour effectuer une étape 206 de chauffage du liquide contenu dans la cuve.
  • Lors d'une étape 208, on mesure ensuite la température à l'aide d'une sonde de température et on détermine si la température est supérieure à une température prédéterminée, soit 70°C dans le cas présent.
  • Si ce n'est le cas, on continue de chauffer le liquide et on renvoie le procédé à l'étape 206 précédente.
  • Si en revanche la température est supérieure à la température prédéterminée, on déclenche un chronomètre lors d'une étape 210. On continue pendant ce temps de chauffer le liquide. On peut envisager de réduire la puissance de la résistance chauffante une fois le chronomètre déclenché.
  • Ensuite, lors d'une étape 212, on mesure si le temps depuis lequel le chronomètre est enclenché est supérieure à une durée déterminée, par exemple 5 minutes, qui est une durée suffisante pour éliminer les bactéries par pasteurisation lorsque le liquide est porté à 70° C.
  • Si le temps mesuré est inférieur à 5 minutes, on retourne à l'étape 212 et on mesure à nouveau le temps écoulé.
  • Si en revanche le temps mesuré est supérieur à 5 minutes, on vidange la cuve à l'aide d'un moyen d'évacuation de celle-ci tel qu'un tuyau relié à une vanne de vidange donnant sur le tout-à-l'égout, lors d'une étape 214. On commande également l'arrêt de la résistance chauffante.
  • Puis, lors d'une étape 216, on détermine s'il s'agit de la première vidange effectuée.
  • Si cela est le cas, le procédé est renvoyé à l'étape de remplissage 202 et les étapes 202 à 216 sont effectuées à nouveau.
  • Si cela n'est pas le cas, on considère le procédé de nettoyage comme terminé.
  • L'intervalle de temps entre deux cycles de nettoyage peut avantageusement être évalué en fonction du fonctionnement réel de la machine. On a pu vérifier que le système à ultrason avec concentrateur acoustique était efficace pour détruire les bactéries. Par contre, une longue période de non fonctionnement ou un fonctionnement à puissance partielle favorise le développement des biofilms. Le cycle sera plus fréquent quand l'appareil sera utilisé à puissance réduite. Par ailleurs lors d'un redémarrage après une longue période d'arrêt, l'eau des filtres peut être plus ou moins contaminée, il convient alors de rincer la filtration et de procéder à un choc thermique initial pour s'assurer la qualité de l'eau.
  • En présence de la pompe et lors du fonctionnement avec nébulisation sur la zone de réception, il est intéressant que la pompe présente un débit d'eau élevé en comparaison avec le débit des diffuseurs 24. A cet égard, on prévoit de préférence que la pompe a un débit de 2 litres par minutes et que les diffuseurs ont collectivement un débit de 1,6 litre par heure, ces valeurs n'étant pas limitatives. Le ratio entre ces débits, à savoir celui de la pompe sur celui des diffuseurs, est de 75. Cela signifie que la pompe brasse l'eau constamment beaucoup plus vite que l'eau est nébulisée. Il s'ensuit un effet de dilution des bactéries dans le bain. La teneur en bactéries est donc faible à chaque instant dans les diffuseurs si bien que l'action de nébulisation assure efficacement leur destruction, dès le début du fonctionnement, grâce à l'effet bactéricide des ultrasons. Cette teneur va bien-sûr en se réduisant à mesure que le nettoyage progresse. A cet égard, il est avantageux que le ratio précité soit supérieur ou égal à 50, et préférable qu'il soit au moins de 60. Ces aspects sont par ailleurs indépendants du volume du bac.
  • Si le dispositif comprend un ventilateur pour la diffusion de l'air portant les gouttelettes d'eau nébulisée, il sera préférable de le maintenir à l'arrêt pendant le nettoyage pour ne pas dissiper la chaleur produite par la résistance.
  • Le dispositif et le procédé ne sont pas limités à ce qui a été décrit ci-dessus.
  • Il peut ainsi comprendre un seul capteur de niveau, celui de niveau haut, ou pas de capteur de niveau du tout, la fin du remplissage pouvant alors correspondre à la fin d'une durée prédéterminée.
  • En outre, un dispositif selon l'invention peut ne pas comprendre une pompe ou peut comprendre un nombre de têtes de pulvérisation distinct de celui décrit.
  • Le procédé peut également être différent de ce qui a été décrit. Le procédé selon un premier mode de réalisation peut être déclenché manuellement, et non automatiquement à l'aide d'une horloge. En outre, les étapes 104, 108, 110 sont optionnelles. Il n'est pas non plus obligatoire de vider la cuve du liquide une fois celle-ci nettoyée même si cela est plus hygiénique.
  • En outre, après l'étape de détection indiquant que le niveau haut de la cuve a été atteint par le liquide de nettoyage, le procédé peut comprendre une étape d'attente durant une durée prédéterminée convenablement choisie avant d'arrêter le remplissage et de commencer le chauffage du liquide, la durée étant de préférence choisie pour que le liquide de nettoyage ne déborde pas de la cuve. Cela permet au niveau de liquide de dépasser la zone limitrophe air/eau où se forment les biofilms et qui correspond à ce niveau haut du liquide dans la cuve. Une meilleure désinfection de ces zones est ainsi garantie. Dans ce cas, la buse du diffuseur de liquide peut contribuer à diffuser du liquide sur l'ensemble des surfaces internes de la cuve, notamment dans la partie supérieure de celle-ci.
  • Le procédé selon le deuxième mode de réalisation peut également être différent de ce qui a été décrit plus haut. Il peut par exemple être effectué une seule fois et non deux fois, même si le nettoyage est alors moins bon. Il peut également être effectué plus de deux fois, si le nettoyage doit être encore plus performant.
  • En outre, le procédé selon le second mode de réalisation peut être commandé par une horloge comme dans le procédé selon le premier mode de réalisation de l'invention et être déclenché à une heure donnée. Les étapes 204, 208 et 216 sont également optionnelles. Le procédé selon le deuxième mode de réalisation de l'invention peut également être effectué entièrement de façon automatique.
  • Lorsqu'on atteint la température prédéterminée dans ce procédé, on peut également mettre en oeuvre le procédé de telle sorte que celui-ci comprenne un asservissement du dispositif de chauffage en température, comme cela est le cas dans le premier mode de réalisation du procédé.
  • On notera également que les températures, niveaux, durées ou périodicités indiquées ne sont pas limitées à celles décrites ci-dessus.
  • On peut mettre en oeuvre le procédé de l'invention en choisissant une température prédéterminée relativement élevée, par exemple supérieure à 80°C ou 90°C, telle que 100°C. Ainsi, on pourra générer de la vapeur d'eau afin de désinfecter aussi les canalisations du dispositif parcourues par de l'air. Mais il faut alors prévoir des moyens, comme un circuit de refroidissement spécifique, pour refroidir certains composants du dispositif tels que les céramiques piézoélectriques qui ne peuvent supporter une telle température. Un tel mode de réalisation est donc plus onéreux à mettre en oeuvre.
  • Le dispositif et le procédé selon l'invention peuvent également être utilisés pour le nettoyage des conduits permettant la pulvérisation sur les produits consommables. Par exemple, les orifices de ces conduits peuvent être bouchés et le remplissage peut être commandé de sorte que le liquide de nettoyage remplisse également ceux-ci. Cela est particulièrement indiqué dans le cas où le dispositif comprend une pompe pouvant faire circuler le liquide en circuit fermé dans la cuve et les conduits.
  • L'invention est utilisable pour des dispositifs diffusant du liquide pulvérisé dans des vitrines réfrigérées contenant par exemple des produits de boucherie traditionnelle (viande, etc), de la charcuterie ou des fromages, par exemple servis à la coupe.
  • L'invention est utilisable aussi pour des dispositifs diffusant du liquide pulvérisé dans des caves pour le vieillissement du vin et l'affinage du fromage, ces dispositifs travaillant dans des environnements difficiles qui comprennent des bactéries ou des levures dans l'air.
  • On peut prévoir de nébuliser de l'eau chaude sur la zone de réception avec le dispositif (hors des périodes de nettoyage par choc thermique), par exemple de l'eau ayant une température pouvant aller jusqu'à 60°C. Toutefois, ce niveau de température risque d'endommager les buses de sorte qu'il est préférable, dans une telle hypothèse, de limiter la durée de nébulisation de l'eau chaude à 10% du temps de fonctionnement total en nébulisation sur la zone de réception.
  • On peut aussi prévoir que, après avoir vidé le dispositif avec l'eau qui a été chauffée pour le choc thermique, on remplit la cuve avec de l'eau (propre) froide, à température ambiante et/ou à la température du réseau d'alimentation dont elle provient, eau que l'on vidange immédiatement par le conduit dédié afin de convenablement rincer le dispositif et qu'il n'y subsiste pas de résidu de biofilm, de bactéries, etc. On effectue ce remplissage et cette vidange au moins une fois. Ensuite, le remplissage suivant sert au fonctionnement normal pour la nébulisation sur la zone de réception. Ce rinçage a aussi pour effet, si besoin, de refroidir la cuve et le dispositif avant la reprise de la nébulisation.

Claims (11)

  1. Procédé de nettoyage d'un dispositif (12) de diffusion de liquide pulvérisé dans une zone de réception, le dispositif comprenant une cuve (22) apte à contenir un liquide à pulvériser, au moins un diffuseur (24) de liquide pulvérisé agencé dans la cuve et comprenant notamment un émetteur à ultrasons, et un circuit apte à diriger le liquide pulvérisé jusqu'au voisinage de la zone de réception,
    le procédé étant caractérisé en ce que, au cours d'une phase de fonctionnement du dispositif durant laquelle le dispositif ne diffuse pas de liquide dans la zone de réception, on met en oeuvre les étapes suivantes:
    - on chauffe (106; 206) un liquide dans la cuve jusqu'à une température prédéterminée, de préférence supérieure à 60°C, notamment comprise entre 65°C et 80°C ; et
    - on vidange (116; 214) le liquide de la cuve par un conduit du dispositif situé hors du circuit et communiquant de préférence directement avec la cuve.
  2. Procédé selon la revendication précédente, dans lequel on détermine (112; 208) à l'aide d'un capteur si la température du liquide est supérieure à la température prédéterminée, et on commande le chauffage (26) en fonction de cette détermination, notamment on commande l'arrêt du chauffage lorsque la température est supérieure à la température prédéterminée.
  3. Procédé selon au moins l'une quelconque des revendications précédentes, dans lequel on maintient la température du liquide dans une plage prédéterminée pendant une durée prédéterminée, de préférence supérieure ou égale à 2 minutes, notamment comprise entre 5 et 60 minutes.
  4. Procédé selon au moins l'une quelconque des revendications précédentes, dans lequel on mesure (104; 204) un niveau du liquide dans la cuve à l'aide d'au moins un capteur de niveau, et on commande (106; 206) le chauffage (26) en fonction du niveau mesuré.
  5. Procédé selon au moins l'une quelconque des revendications précédentes, dans lequel on fait circuler (108) le liquide dans la cuve, par exemple à l'aide d'une pompe située dans celle-ci, notamment une fois atteint un niveau prédéterminé de liquide dans la cuve.
  6. Procédé selon au moins l'une quelconque des revendications précédentes, dans lequel, au cours d'une autre phase de fonctionnement du dispositif durant laquelle le dispositif diffuse du liquide pulvérisé dans la zone de réception, on fait circuler (108) le liquide dans la cuve avec un débit tel que le ratio de ce débit sur un débit du ou des diffuseurs (24) est supérieur ou égal à 50
  7. Procédé selon l'une quelconque des revendications précédentes, dans lequel, au cours d'une autre phase de fonctionnement, on diffuse du liquide dans la zone de réception sans que ce liquide ait été préalablement chauffé dans la cuve jusqu'à atteindre la température prédéterminée, de préférence sans que ce liquide ait été préalablement chauffé dans la cuve.
  8. Procédé selon l'une quelconque des revendications précédentes, dans lequel la zone de réception comprend des articles sensibles à la température, tels que des denrées alimentaires.
  9. Dispositif (12) de diffusion de liquide pulvérisé dans une zone de réception, qui comprend :
    - une cuve (22) apte à contenir un liquide à pulvériser ;
    - au moins un diffuseur (24) de liquide pulvérisé agencé dans la cuve, et
    un circuit apte à diriger le liquide pulvérisé jusqu'au voisinage de la zone de réception le dispositif étant caractérisé en ce qu'il comprend :
    - des moyens de chauffage (26), tels qu'une résistance chauffante, agencés dans la cuve, de préférence plus près d'un fond de la cuve que d'un sommet de la cuve ;
    - un conduit situé hors du circuit et communiquant de préférence directement avec la cuve, et
    - des moyens pour commander, au cours d'une phase de fonctionnement du dispositif durant laquelle le dispositif ne diffuse pas de liquide dans la zone de réception, un chauffage (106; 206) du liquide contenu dans la cuve jusqu'à une température prédéterminée, de préférence supérieure à 60°C, notamment comprise entre 65°C et 80°C, puis une vidange du liquide de la cuve par le conduit.
  10. Dispositif selon la revendication precédente dans lequel le diffuseur comprend un émetteur à ultrasons, de préférence présentant une face interne allant en se rétrécissant à mesure qu'on s'approche d'une embouchure du diffuseur.
  11. Dispositif selon au moins l'une quelconque des revendications 9 et 10, comprenant en outre au moins un capteur (28) apte à mesurer la température du liquide et/ou à déterminer si la température du liquide contenu dans la cuve est supérieure à une température déterminée et/ou au moins un capteur de niveau permettant de déterminer si le liquide contenu dans la cuve atteint un niveau prédéterminé, de préférence les moyens de commande étant aptes à commander le dispositif de chauffage (26) en fonction d'au moins une donnée fournie par le capteur de niveau et/ou le capteur de température.
EP10778689.9A 2009-09-30 2010-09-30 Procédé de nettoyage d'un dispositif de pulvérisation Active EP2483001B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0956815A FR2950546B1 (fr) 2009-09-30 2009-09-30 Procede de nettoyage d'un dispositif de pulverisation
PCT/FR2010/052072 WO2011039487A1 (fr) 2009-09-30 2010-09-30 Procédé de nettoyage d'un disupositif de pulvérisation

Publications (2)

Publication Number Publication Date
EP2483001A1 EP2483001A1 (fr) 2012-08-08
EP2483001B1 true EP2483001B1 (fr) 2013-12-25

Family

ID=42173510

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10778689.9A Active EP2483001B1 (fr) 2009-09-30 2010-09-30 Procédé de nettoyage d'un dispositif de pulvérisation

Country Status (6)

Country Link
US (1) US8925832B2 (fr)
EP (1) EP2483001B1 (fr)
BR (1) BR112012007388B1 (fr)
ES (1) ES2453476T3 (fr)
FR (1) FR2950546B1 (fr)
WO (1) WO2011039487A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004971B1 (fr) 2013-04-30 2015-04-03 Areco Finances Et Technologie Arfitec Systeme de nebulisation pour rafraichir l'air

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1185146A (en) * 1966-05-16 1970-03-18 Ici Ltd Agricultural Spraying Machines
US3591091A (en) * 1969-01-28 1971-07-06 Fmc Corp Deflector-type spray nozzle
DE3013919A1 (de) * 1979-04-18 1980-11-06 Asnets Sarl Vorrichtung zum beizen
FR2788706B1 (fr) 1999-01-27 2001-03-09 Air Refreshing Control Dispositif de pulverisation de gouttelettes d'eau et buse pour un tel dispositif
FR2866572A1 (fr) * 2004-02-25 2005-08-26 Christian Pierre Michel Systeme tal (traitement anti legionelles)
FR2875718B1 (fr) * 2004-09-28 2006-12-29 Lionel Marc Laurent Nicolai Dispositif de brumisation a decontamination maximale
EP1820910A3 (fr) * 2006-02-20 2014-11-05 Hendricus Markman Nettoyage des conduites d'eau

Also Published As

Publication number Publication date
EP2483001A1 (fr) 2012-08-08
US8925832B2 (en) 2015-01-06
BR112012007388B1 (pt) 2020-04-07
US20120234937A1 (en) 2012-09-20
ES2453476T3 (es) 2014-04-07
FR2950546B1 (fr) 2012-05-18
FR2950546A1 (fr) 2011-04-01
BR112012007388A2 (pt) 2016-12-06
WO2011039487A1 (fr) 2011-04-07

Similar Documents

Publication Publication Date Title
EP1215444B1 (fr) Dispositif de four et procédé de commande d'un four
CA2992535C (fr) Procede de cuisson pour appareil de cuisson avec moyen de remuage et appareil de cuisson correspondant
FR2662067A1 (fr) Appareil pour traiter et maintenir des aliments a une temperature et une humidite relative predeterminees pendant un temps fini et procede de reglage de la temperature et de l'humidite relative d'un espace d'emmagasinage.
EP0348298A1 (fr) Procédé de régulation thermique d'un appareil chauffant, dispositif pour sa mise en oeuvre et appareil chauffant comportant ce dispositif
FR2928254A1 (fr) Appareil universel de cuisson par chauffage d'un bain d'eau
US20140004234A1 (en) System and method to extend cooking oil life in fryers
EP2483001B1 (fr) Procédé de nettoyage d'un dispositif de pulvérisation
FR2945608A1 (fr) Procede et systeme de controle de la temperature d'une cuisson.
WO2003027023A1 (fr) Systeme de desinfection de fontaine a eau par chauffage integral, procede, dispositif et fontaines correspondants
EP3661396B1 (fr) Appareil pour la préparation d'aliments cuits en parties découpées et en présence de matière grasse
FR3056897A1 (fr) Dispositif et procede pour laver et pour desinfecter automatiquement des mains
JP2010115519A (ja) 冷凍麺解凍調理機
FR2934360A1 (fr) Four universel a cuisson rapide
FR2952796A1 (fr) Appareil electromenager de conservation et de service de fromages
EP3091305B1 (fr) Chauffe-eau thermodynamique
FR2526145A1 (fr) Echangeur tubulaire et installation de refroidissement de fluide comprenant un tel echangeur
JP4575943B2 (ja) 冷凍麺解凍調理機
JP5097225B2 (ja) 冷凍麺解凍調理機
FR2972902A1 (fr) Dispositif de pasteurisation de lait maternel
JP3396713B2 (ja) 気密式酒サーバー
JP2008272486A (ja) 液体または半液体の食品製品を加熱および計量供給する機械
BE1002297A6 (fr) Dispositif de cuisson.
CA2247518A1 (fr) Dispositif et procede de mise en hygiene par micronisation d'eau sous vide
CN116491824A (zh) 一种食品加工机的清洗控制方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120420

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130502

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130807

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 646304

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010012736

Country of ref document: DE

Effective date: 20140213

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ING. MARCO ZARDI C/O M. ZARDI AND CO. S.A., CH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2453476

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140325

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 646304

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131225

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140425

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140428

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010012736

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

26N No opposition filed

Effective date: 20140926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010012736

Country of ref document: DE

Effective date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100930

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230920

Year of fee payment: 14

Ref country code: GB

Payment date: 20230920

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230929

Year of fee payment: 14

Ref country code: DE

Payment date: 20230920

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231124

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 14