EP2479767B1 - Contacteur et interrupteur - Google Patents

Contacteur et interrupteur Download PDF

Info

Publication number
EP2479767B1
EP2479767B1 EP12151370.9A EP12151370A EP2479767B1 EP 2479767 B1 EP2479767 B1 EP 2479767B1 EP 12151370 A EP12151370 A EP 12151370A EP 2479767 B1 EP2479767 B1 EP 2479767B1
Authority
EP
European Patent Office
Prior art keywords
contact
contactor
face
contact blocks
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12151370.9A
Other languages
German (de)
English (en)
Other versions
EP2479767A1 (fr
Inventor
Yannick Vuillermet
Henri Sibuet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP2479767A1 publication Critical patent/EP2479767A1/fr
Application granted granted Critical
Publication of EP2479767B1 publication Critical patent/EP2479767B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/40Multiple main contacts for the purpose of dividing the current through, or potential drop along, the arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding

Definitions

  • the invention relates to a contactor actuated by a magnetic field and a switch comprising this contactor.
  • the invention aims to reduce the resistance of this contactor in the closed position. It therefore relates to a contactor according to claim 1.
  • the above contactor has a smaller closed position resistance than that of an identical reference contactor but provided with a single pair of pads. Indeed, since the cross section of the bridges Pt ji is small in front of the surface S Zi of the overlap zone (that is to say that the surface S Ptji is less than 2/3 of the surface S Zi ) , the majority of the magnetic flux concentrated by the pad P 1i through the overlap region instead of the Pt bridge 1i. The pads of each pair of pads P 1i , P 2i are therefore attracted to each other under the effect of the magnetic field by a force close to that observed for the reference contactor. The resistance R i between the pads of each pair of pads P 1i , P 2i in the closed position is therefore as close to that observed for the reference contactor.
  • the contactor above has n pairs of pads P 1i , P 2i and therefore n resistors R i in parallel when the contactor is in the closed position.
  • the resistance in the closed position of the above contactor is therefore much smaller than that of the reference contactor because of this paralleling of several resistors R i .
  • the resistance in the closed position of the above contactor is close to that which would be obtained by connecting in parallel n reference contactors.
  • the above contactor has a much smaller footprint.
  • the bridges Pt ji mechanically and electrically connect the different pads together. It is therefore not necessary to provide specific electrical tracks to connect the pairs of pads in parallel as would be the case if n reference switches were connected in parallel.
  • the size of the contactor above is reduced. More precisely, the more the number n of pairs of studs increases, the more the first and second blades overlap.
  • the size of the contactor above is less than nS / 2, where S is the size of the reference contactor while the size of n reference contactors in parallel is substantially equal to nS.
  • the size of the contactor is represented by the surface it occupies in a plane parallel to the longitudinal and transverse directions.
  • Embodiments of this contactor may include one or more of the features of the dependent claims.
  • the invention also relates to a switch according to claim 8.
  • the source 3 generates when it is controlled a magnetic field or a magnetic induction B 0 parallel to a longitudinal direction X. In the absence of control, the source 3 generates no magnetic field.
  • the micro-contactor 2 is a contactor. However, it differs from macroscopic contactors inter alia by its manufacturing process.
  • the micro-contactors are made using the same collective manufacturing processes as those used to make the microelectronic chips. For example, the micro-contactors are made from monocrystalline silicon or machined glass chips by photolithography and etching and / or structured by epitaxial growth and deposition of metallic material.
  • the micro-contactor 2 is made in a plane substrate 4 which extends horizontally, that is to say here in parallel with the orthogonal directions X and Y. In the rest of this description, the vertical direction, orthogonal to the X and Y directions , is noted Z.
  • the substrate 4 is a rigid substrate.
  • its thickness, in the direction Z is greater than 200 and preferably greater than 500 microns. It is advantageously electrically insulating.
  • this substrate 4 is a silicon substrate that is to say having at least 10% and typically more than 50% by weight of silicon.
  • This substrate is inorganic and non-photosensitive.
  • the substrate 4 has a flat horizontal top face 6.
  • the micro-contactor 2 comprises electrodes 8 and 10 through which circulates the current flowing through this micro-contactor. These electrodes 8 and 10 are fixed without any degree of freedom to the substrate 4. Here, these electrodes 8 and 10 are parallelepipeds whose upper faces are located in the same plane as the upper face 6. The vertical faces of these electrodes s' extend in the interior of the substrate 4. The vertical faces are connected to each other inside the substrate by a lower face, for example, parallel to the upper face.
  • Each blade 12, 14 has a proximal end, respectively 16, 18, mechanically and electrically connected, respectively, to the electrodes 8 and 10.
  • the proximal ends 16 and 18 are connected without any degree of freedom to their respective electrodes.
  • these proximal ends 16, 18 are stationary.
  • the blades form a single block of material with the electrode to which they are mechanically connected.
  • Each blade 12, 14 also has a distal end, respectively 20, 22. These distal ends 20 and 22 are vis-à-vis and separated from each other by the air gap 15 in the open position. The thickness of the gap in the Y direction is noted d. Conversely, these distal ends are directly in contact with one another in the closed position.
  • the two distal ends 20, 22 are flexible to move between the open and closed positions.
  • the distal ends 20, 22 move only parallel to the horizontal plane X, Y. For this purpose, they are received inside a box 24 filled with a dielectric gas such as air or other. More specifically, each distal end 20, 22 flexes to reach the closed position from the open position. The deformations experienced by each distal end 20, 22 between the closed and open positions are all elastic to allow it to automatically return to the open position in the absence of external stress.
  • each distal end 20, 22 is much longer in the X direction than thick in the Y direction.
  • each distal end 20, 22 is five, ten, or fifty times longer than it is thick.
  • the thickness of the distal end 20 is less than 100 microns and preferably less than 50 or 30 microns.
  • each distal end 20, 22 in the direction Z is typically in this example of the order of 20 to 50 microns.
  • distal ends 20, 22 are shaped to limit the resistance of the microswitch in the closed position.
  • An example of such a conformation is described with reference to the figure 3 .
  • a soft magnetic material is a material having a relative permeability of which the real part at low frequency is greater than or equal to 1000. Such a material typically has a coercive excitation to demagnetize less than 100 Am -1 .
  • the soft magnetic material used here is an alloy of iron and nickel.
  • the vertical and lower faces of these blades are covered with a conductive coating 28. It is the same for the vertical and lower faces of the electrodes 8, 10.
  • this coating is made of rhodium (Ro) or ruthenium (Ru) or platinum (Pt).
  • the micro-contactor 2 may also comprise a cover 30 ( figure 2 ) which covers the box 24. To simplify the figure 1 , this cover has not been shown on it.
  • the figure 2 represents the micro-contactor 2 in vertical section along a sectional plane II shown in FIG. figure 1 .
  • a cover 30 which covers the housing 24 is shown. This cover 30 makes it possible to prevent impurities from penetrating inside the box 24 and impede the movement of the blades 12, 14. It also makes it possible to prevent the oxidation of the contact.
  • each end 20, 22 comprises several pads P ji arranged next to each other in the direction X, where the index j identifies the blade and the index i identifies the pad of this blade. More precisely, in the remainder of this description, the index j takes the value "1" to designate the blade 12 and the value "2" to designate the blade 14.
  • Each pad P ji has a flat face F ji turned towards the gap 15.
  • each pad P 1i is vis-à-vis a pad P 2i of the other blade.
  • Two pads P 1i and P 2i face each other if the intersection of the face F 2i and the projection, in the direction Y, of the face F 1i on the face F 2i forms a zone Z i of overlap whose surface S Zi is strictly greater than zero.
  • two pads P 1i and P 2i vis-à-vis have the same index i.
  • the surface S Ptji of the cross section of the bridge Pt ji is strictly smaller than the surface of the cross section of the pads P ji and P j, i + 1 that it connects.
  • surface of the cross section denotes the area of the section of the stud or of the bridge parallel to the plane defined by the directions YZ.
  • the conformation of the ends 20 and 22 is represented in the particular case where the number n of pairs of pads P 1i , P 2i vis-à-vis is equal to two.
  • ends 20 and 22 are identical except that they are facing each other. Indeed, the faces F 1i are turned towards the faces F 2i . Thus, subsequently, only the end 20 is described in detail.
  • the pad P 11 is directly connected to the end 16 by a parallelepipedal arm B 1 of length l in the direction X, of thickness e in the direction Y and of height e c in the direction Z.
  • the pad P 11 is connected to the pad P 12 by the bridge Pt 11 .
  • the dimensions of the pads P 11 and P 12 are the same. Thus, only the dimensions of the pad P 11 are described in more detail.
  • the pad P 11 is a parallelepiped of length ⁇ x, thickness e p and height e c .
  • the face F 11 and the zone Z 1 covering are therefore rectangles.
  • the length of the overlap area Z 1 in the X direction is denoted by "x".
  • the length of the pad P 11 is taken proportional to the length x of the overlap zone Z 1 . It is therefore noted in the form of a product between a constant ⁇ and the length x.
  • the bridge Pt 11 is a parallelepiped of length e s , thickness e pt and height e c .
  • the bridge Pt 11 is dimensioned so that its transverse surface S Pt11 is at least less than two-thirds of the area S Z1 of the recovery zone Z 1 .
  • the magnetic flux concentrated by the pads P 11 or P 12 crosses mainly the gap 15 rather than the bridge Pt 11 . This therefore makes it possible to increase the amount of magnetic flux which passes through the gap 15 via the overlapping zones.
  • the contact force f contact between the pairs of studs vis-à-vis is proportional to the magnetic flux divided by the surface through which this flow.
  • minimizing the vertical section of the bridges Pt 1i makes it possible to increase the contact force between the studs in the closed position and thus to reduce the resistance of the contactor in closed position.
  • this Pt bridge 11 is at least less than one third of the thickness e p of P 11 and P 12 pads.
  • this bridge Pt 11 also corresponds to the bottom of a groove of depth t p which separates the faces F 11 and F 12 .
  • the width of this groove is here equal to the length e s of the bridge Pt 11 .
  • the thickness e p of the pad P 11 is equal to the sum of the depth t p and the thickness e pt of the bridge Pt 11 .
  • the total length of the end 20 is noted p .
  • the length l p is equal to 2 ⁇ x + e s .
  • the ends 20 and 22 are offset relative to each other, in the X direction, by a distance g to reduce the overlapping surfaces S Zi .
  • the distance g is chosen so that the following two relationships are verified: S Zi ⁇ S 1 i / 3 S Zi ⁇ S 2 i / 3 , where S 1i and S 2i are the surfaces, respectively, of the faces F 1i and F 2i .
  • the surface S Zi is less than one quarter to one eighth of the surfaces S 1i and S 2i .
  • Reduce the surface covering Zi S makes it possible to concentrate the magnetic flux on a smaller area than the area of F ji faces. This therefore makes it possible to increase the contact contact force between these pads and thus to reduce the resistance of the contactor in the closed position.
  • the contact force f contact is the force exerted by the pad P 1i on the pad P 2i in the closed position. The higher the contact force, the lower the resistance of the contact.
  • the restoring force f recall is the restoring force which is exerted on each stud and constantly urges them towards the open position.
  • the polarization J s is the polarization of the magnetic material observed when it is saturated.
  • the polarization is the ratio between the intensity of the magnetic field B 0 and the demagnetizing factor Nd.
  • the distance d of the air gap in the open position is chosen. This distance d must be large enough to electrically isolate the pads P 1i pads P 2i in the open position. It therefore depends in particular on the voltage present between the terminals 8 and 10 of the microswitch 2 in the open position.
  • this distance d is chosen to be greater than 5 ⁇ m so as to electrically isolate the pads P 1i from the pads P 2i even in the presence of a voltage of 220 volts between the terminals 8 and 10.
  • This value of 5 ⁇ m is given in FIG. particular case where the gap 15 is filled with air.
  • the disruptive field of the air is of the order of 50V / ⁇ m for dimensions as small as those of the ends 20 and 22.
  • the distance d is chosen to be small enough to remain in the zone of elastic deformation of the blades 12 and 14.
  • the maximum limit for the distance d therefore depends on the characteristics of the magnetic material chosen, such as its Young's E modulus. remain in this zone of elastic deformation, d is chosen less than 15 .mu.m.
  • the distance d is set equal to 5 ⁇ m to minimize the size of the micro-contactor 2.
  • the height e c is fixed.
  • the higher this height e c the more the resistance of the micro-contactor 2 in the closed position decreases.
  • manufacturing technological constraints impose an upper limit on the height e c .
  • the height e c is chosen at most equal to 30 ⁇ m and at least greater than 10 ⁇ m.
  • the height e c is chosen to be equal to 20 ⁇ m.
  • the thickness e p of the pads is calculated to obtain a magnetic force f f which attracts the pad P 1i to the pad P 2i in the presence of the magnetic field B 0 equal to 170 ⁇ N.
  • the force f f is taken here equal to 170 ⁇ N.
  • the thickness e p , the height e c are expressed in ⁇ m and the force f f is expressed in ⁇ N.
  • the length x is calculated using the relation (2).
  • the length x is here equal to 20 microns.
  • the length ⁇ x of the pads P ji is calculated. This length ⁇ x is determined so that each pad P ji is completely magnetically saturated when the field B 0 is present.
  • the length ⁇ x is calculated so that each pad P ji is just saturated.
  • just saturated denotes the fact that each pad is saturated by the field B 0 and is not saturated by a field B 1 identical to the field B 0 except that intensity is equal to 80% and, preferably 90%, the intensity of the field B 0 .
  • different relations obtained by modeling the pad P ji using the laws of electromagnetism are used.
  • J s B 0 1 ⁇ r - 1 + nd ⁇ B 0 nd
  • Nd is the demagnetizing factor of the pad P ji .
  • This factor Nd is based on the dimensions of the pad P ji.
  • a step 34 the length l, the thickness e, the width es and the depth t p are determined to obtain a restoring force u reminder equal to 20 ⁇ N and a f amin force equal to 20 ⁇ N.
  • e is fixed to minimize the size of the micro-contactor 2. For example, e is chosen equal to 5 microns.
  • the distance g in this particular case, is also fixed so that the pad P 1i is only opposite the single pad P 2i .
  • g is chosen equal to 50 microns.
  • f amin 2 ⁇ amin e s + ⁇ x
  • ⁇ amin is the mechanical restoring torque exerted by the bridge Pt 11 on the pad P 12 .
  • ⁇ amin S amin d 2 e s + ⁇ x
  • S amin E e s 3 3 I 3 + ⁇ x 3 3 I 4 + 1 I 3 ⁇ x 2 e s + ⁇ x e s 2
  • the length l is calculated to verify the stress according to which the return force f is equal to 20 ⁇ N.
  • ⁇ r is the torque of the restoring force. This torque is equal to twice the return torque ⁇ meca exerted by each of the blades 12 and 14.
  • ⁇ Mecca S . f 0 . I + I p
  • f 0 is the maximum deflection of the blade 12.
  • this arrow f 0 is approximated using the following relation: f 0 ⁇ - d - l + 1 - ⁇ x l + l p - 1
  • step 36 If the torque ⁇ 0 is not greater than the torque F r , then, proceed to a step 36 in which the thickness e p is increased or the thickness e is decreased. At the end of step 36, we return to step 34 to again calculate the length l and the depth t p .
  • step 37 it is verified in a step 37 if the f amin force is much greater than or equal to 20 ⁇ N. If not, a step 38 is carried out, during which the distance g is modified. For example, the distance g is decreased. At the end of step 38, the process returns to step 34.
  • a step 39 is performed in which the micro-contactor 2 having the determined dimensions is manufactured.
  • the described manufacturing method is a collective manufacturing process using microelectronics manufacturing process technologies. It begins with the supply of a silicon wafer better known as the "Wafer” on which will be simultaneously manufactured several micro-contactors 2 using the same operations. To simplify the description which follows, the various manufacturing steps are described only in the case of a single micro-contactor. Different states of manufacture obtained during the process of the figure 3 are shown in vertical section on the Figures 6 to 10 .
  • a layer 41 ( figure 6 ) of photosensitive resin is deposited on the upper face 6 of the substrate 4. Then the areas where the cavities must be hollowed in the substrate 4 are defined by insolation of the resin. These areas correspond to the location of the electrodes and blades. This is a classic step of photolithography.
  • anisotropic etching of the zones defined for engraving cavities 44, 46 in the substrate (FIG. figure 6 ) forming a hollow pattern of the blades 12 and 14 and the electrodes 8 and 10.
  • anisotropic etching is meant here an etching whose burning speed in the Z direction is at least ten times and Preferably fifty or one hundred times faster than the engraving speed in the horizontal directions X and Y.
  • the horizontal etching rate is negligible compared to the etching speed in the vertical direction. This makes it possible to obtain more vertical flanks than if the etching was carried out using other etching processes.
  • the sides of the cavities 44, 46 thus dug are more vertical than if they had been dug in a photoresist or using another etching process.
  • plasma etching or deep silicon chemical etching is used here.
  • a step 48 the photoresist layer 41 is removed and the conductive coating 28 is deposited on the whole of the upper face.
  • this conductive coating covers not only the vertical flanks of the cavities but also the bottom of the cavities and the upper face 6 of the substrate.
  • the cavities are filled with a soft magnetic material 52 ( figure 5 ).
  • the filling is carried out by electrolytic deposition using the coating 28 as the conductive electrode.
  • this coating 28 also fulfills the function of a seed layer. Since the coating 28 extends over the entire upper face of the substrate 4, the material 52 is also deposited on the entire upper face of the substrate 4 as well as inside the cavities 44 and 46. The state shown in FIG. on the figure 7 .
  • a step 54 the chemical-mechanical planarization of the substrate 4 is carried out to restore the upper planar face 6 of the substrate 4.
  • the chemical mechanical planarization is better known by the acronym CMP ("Chemical mechanical planarization").
  • CMP Chemical mechanical planarization
  • This planarization step is here used to remove the material 52 and the coating 58 situated outside the cavities 44 and 46. At the end of this step, the state represented on the figure 8 .
  • the cover 30 is deposited at the location where the housing 24 is to be dug.
  • an excess thickness 58 is deposited ( figure 9 )
  • the material used to create this extra thickness 58 is capable of being etched by the same isotropic etching agent as the substrate 4.
  • it is is silicon.
  • This excess thickness 58 makes it possible to isolate the cap 30 from the upper face of the distal ends 20 and 22.
  • a thin layer 59 is deposited on the whole of the upper face of the substrate 4. This layer thin 59 is made of a material resistant to the isotropic etching agent.
  • inlet orifices 60 for the isotropic etching agent. To simplify the figure 9 only one of the orifices 60 has been shown. These orifices are disposed above the location where the box 24 is to be dug.
  • the substrate 4 is etched to produce the box 24.
  • the etching is isotropic. Isotropic etching is an etching step in which the etching rates in the X, Y directions are equal to the etching rate in the Z direction to within plus or minus 50%, and preferably to plus or minus 20 or so. 10% close.
  • the isotropic etching agent is contacted with the silicon to be etched via the inlet ports 60.
  • the etching agent used is chosen not to react with the soft magnetic material. 52 and the coating 28.
  • the etching agent is an XeF 2 gas.
  • the etching agent is an isotropic etching agent, it releases the vertical faces of the ends 20 and 22 and, at the same time, the underside, i.e., the underside, of the distal end 20 ( figure 10 ).
  • the inlet orifices 60 are optionally closed and the slab on which the different microswitches have been collectively made is cut out to mechanically isolate them from each other.
  • the figure 11 represents a micro-contactor 80.
  • This micro-contactor 80 is identical to the micro-contactor 2 except that the end 20 is replaced by a fixed end 82.
  • the end 82 is here identical to the end 20 except that it is fixed without any degree of freedom to the substrate 4.
  • the arm B 1 is omitted.
  • the pads P 11 and P 22 and the bridge Pt 11 are identical, respectively, to the pads P 21 and P 22 and the bridge Pt 21 .
  • the figure 12 represents a microswitch 90 identical to the microswitch 2 except that the end 20 is replaced by an end 92. To simplify this figure, only the ends 92 and 22 are shown in detail.
  • the end 92 is identical to the end 20 except that the distance g is chosen in this embodiment equal to -x to create a new additional zone of overlap Z ' 1 between the pad P 12 and the pad P 21 .
  • g is chosen so that the dimensions of this zone Z ' 1 of overlap are identical to those of the zones Z 1 and Z 2 so as to evenly distribute the contact force between the different points of contact between the studs.
  • the increase in the number of contact points makes it possible to reduce the resistance of the microswitch in the closed position since, as will now be described with reference to FIG. figure 13 , the ends 22 and 92 are dimensioned so that the contact forces exerted at each point of contact are identical to those that would be obtained if a single point of contact existed.
  • step 34 is replaced by step 100 and steps 37 and 38 are omitted.
  • the thickness e is chosen to limit the size of the micro-contactor 90.
  • e is chosen equal to 5 microns.
  • the thickness t p is determined from the stress imposed on the f amin force using the following relationships in a manner similar to that previously described with respect to step 34.
  • f amin 2 ⁇ amin 2 e s + ⁇ x
  • ⁇ amin is the mechanical return torque exerted by the Pt bridge 11 of the pad P 12. It is given by the preceding relation (9).
  • the stress fixed on the f amin force makes it possible to calculate the depth t p from the previous relations.
  • the length l is determined from the stress imposed on the force reminder .
  • ⁇ meca S . f 0 . I + I p
  • the factor S of the relation (30) is determined from the same relation (17) as that given with respect to the step 34.
  • the length l is equal to 35 ⁇ m
  • the thickness e is equal to 5 ⁇ m
  • the depth t p is equal to 35 ⁇ m.
  • the total space excluding contact pads of the micro-contactor 90 is given by the product of the total length L t by the total thickness and.
  • the silicon surface occupied by the blades is here 570 ⁇ 85 ⁇ m 2 .
  • the micro-contactor 90 is therefore slightly less bulky than the micro-contactor 2 and its resistance in the closed position is lower.
  • the figure 14 represents a micro-contactor 110 identical to the micro-contactor 90 but in which the end 92 is replaced by a fixed end 112.
  • the end 112 is fixed without degree of freedom to the substrate 4.
  • the arm B 1 is omitted.
  • the length x is chosen to be between e p / 3 and e p / 1.5.
  • the length x is chosen equal to e p / 2 to plus or minus 30%.
  • the stress force f on the amino may be omitted.
  • the different contact forces at the different points of contact are all identical to each other.
  • at least one of the pads can be sized to produce a contact force greater than that produced by other pads. For example, this can also be achieved by choosing different lengths for the different overlapping areas.
  • each of the pads it is not necessary to magnetically saturate each of the pads. For example, only a few pads are sized to be saturated by the field B 0 . As a variant, none of the pads is saturated.

Landscapes

  • Micromachines (AREA)
  • Measuring Leads Or Probes (AREA)

Description

  • L'invention concerne un contacteur actionnable par un champ magnétique ainsi qu'un interrupteur comportant ce contacteur.
  • Les contacteurs actionnables par un champ magnétique sont également connus sous le terme de "reed".
  • Des contacteurs connus comportent au moins une première et une seconde lames en matériau magnétique s'étendant le long d'une direction longitudinale :
    • la première lame comportant au moins un plot P1i présentant une face de contact F1i,
    • la seconde lame comportant au moins un plot P2i en vis-à-vis du plot P1i et présentant une face de contact F2i, les plots P1i et P2i étant en vis-à-vis lorsque l'intersection de la projection selon une direction transversale, perpendiculaire à la direction longitudinale, de la face F1i sur la face F2i et la face F2i forme une zone Zi de recouvrement dont la surface Szi et strictement supérieure à zéro,
    • au moins un plot de chaque paire de plots P1i, P2i en vis-à-vis étant déplaçable le long de la direction transversale, sous l'effet du champ magnétique, entre :
      • une position fermée dans laquelle les faces F1i et F2i sont directement en contact mécanique l'une avec l'autre pour permettre le passage d'un courant, et
      • une position ouverte dans laquelle les faces F1i et F2i sont séparées l'une de l'autre par un entrefer pour les isoler électriquement l'une de l'autre.
  • Lorsque au moins l'un des plots est en position fermée, on dit que le contacteur est en position fermée. Le contacteur est en position ouverte lorsque tous les plots sont en position ouverte. Le document WO 02/39472 A1 décrit un contacteur actionnable par un champ magnétique selon le préambule de la revendication 1.
  • L'invention vise à diminuer la résistance de ce contacteur en position fermée. Elle a donc pour objet un contacteur conforme à la revendication 1.
  • Le contacteur ci-dessus présente une résistance en position fermée plus petite que celle d'un contacteur de référence identique mais pourvu d'une seule paire de plots. En effet, étant donné que la section transversale des ponts Ptji est petite devant la surface SZi de la zone de recouvrement (c'est-à-dire que la surface SPtji est inférieure au 2/3 de la surface SZi), la majorité du flux magnétique concentré par le plot P1i traverse la zone de recouvrement plutôt que le pont Pt1i. Les plots de chaque paire de plots P1i, P2i sont donc attirés l'un vers l'autre sous l'effet du champ magnétique par une force proche de celle qui est observée pour le contacteur de référence. La résistance Ri entre les plots de chaque paire de plots P1i, P2i en position fermée est donc aussi proche de celle qui est observée pour le contacteur de référence. Toutefois, le contacteur ci-dessus présente n paires de plots P1i, P2i et donc n résistances Ri en parallèle lorsque le contacteur est en position fermée. La résistance en position fermée du contacteur ci-dessus est donc bien plus petite que celle du contacteur de référence à cause de cette mise en parallèle de plusieurs résistances Ri.
  • En fait, la résistance en position fermée du contacteur ci-dessus est proche de celle qui serait obtenue en raccordant en parallèle n contacteurs de référence. Toutefois, par rapport à cette mise en parallèle de n contacteurs de référence, le contacteur ci-dessus présente un encombrement beaucoup plus réduit. En effet, les ponts Ptji raccordent mécaniquement et électriquement les différents plots entre eux. Il n'est donc pas nécessaire de prévoir des pistes électriques spécifiques pour raccorder en parallèle les paires de plots comme cela serait le cas si n contacteurs de référence étaient raccordés en parallèle. De plus, l'encombrement du contacteur ci-dessus est réduit. Plus précisément, plus le nombre n de paires de plots augmente, plus les première et seconde lames se chevauchent. Ainsi, il a été estimé que l'encombrement du contacteur ci-dessus est inférieur à nS/2, où S est l'encombrement du contacteur de référence alors que l'encombrement de n contacteurs de référence en parallèle est sensiblement égal à nS. L'encombrement du contacteur est représenté par la surface qu'il occupe dans un plan parallèle aux directions longitudinale et transversale.
  • Les modes de réalisation de ce contacteur peuvent comporter une ou plusieurs des caractéristiques des revendications dépendantes.
  • Ces modes de réalisation du contacteur présente en outre les avantages suivants :
    • avoir une zone de recouvrement beaucoup plus petite que la surface S1i ou S2i du plot concentre le flux magnétique dans cette zone de recouvrement, ce qui augmente la force de contact en position fermée et diminue par conséquent la résistance du contacteur en position fermée ;
    • choisir une longueur x pour la zone de recouvrement proche de la moitié de l'épaisseur epji permet de maximiser la force de contact tout en minimisant l'encombrement du contacteur ;
    • avoir un plot P1i en vis-à-vis du plots P2i et du plot P2,i+1 permet d'augmenter le nombre de contacts en position fermée et donc de diminuer encore plus la résistance du contacteur en position fermée ;
    • dimensionner les différents plots et leur positionnement pour obtenir des forces de contact entre chaque paire de plots sensiblement égales permet de diminuer la résistance du contacteur en position fermée tout en limitant l'augmentation de son encombrement ;
    • loger les lames entièrement à l'intérieur d'un caisson facilite la réalisation d'un capot isolant ce caisson de l'environnement extérieur.
  • L'invention a également pour objet un interrupteur conforme à la revendication 8.
  • Dimensionner les plots Pji pour qu'ils soient juste saturés par le champ B0 permet de limiter au maximum l'encombrement du contacteur et donc de l'interrupteur.
  • L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif et faite en se référant aux dessins sur lesquels :
    • la figure 1 est une illustration schématique d'un interrupteur équipé d'un contacteur actionnable par un champ magnétique,
    • la figure 2 est une illustration schématique en coupe partielle du contacteur de la figure 1,
    • la figure 3 est une illustration schématique de la conformation des extrémités de lames du contacteur de la figure 1,
    • la figure 4 est un organigramme d'un procédé de dimensionnement des extrémités du contacteur de la figure 1,
    • la figure 5 est un organigramme d'un procédé de fabrication du contacteur de la figure 1,
    • les figures 6 à 10 sont des illustrations schématiques et en coupe verticale du contacteur de la figure 1 dans différents états de fabrication,
    • les figures 11 et 12 sont des illustrations schématiques en vue de dessus de deux autres modes de réalisation possibles pour les extrémités du contacteur de la figure 1,
    • la figure 13 est un organigramme d'un procédé de dimensionnement des extrémités du mode de réalisation de la figure 12, et
    • la figure 14 est une illustration schématique et en vue de dessus d'un autre mode de réalisation possible des extrémités du contacteur de la figure 1.
  • Dans ces figures, les mêmes références sont utilisées pour désigner les mêmes éléments.
  • Dans la suite de cette description, les caractéristiques et fonctions bien connues de l'homme du métier ne sont pas décrites en détail.
  • La figure 1 représente un interrupteur 1 équipé :
    • d'un micro-contacteur 2 actionnable par un champ magnétique, et
    • d'une source 3 commandable de champ magnétique.
  • La source 3 génère lorsqu'elle est commandée un champ ou une induction magnétique B0 parallèle à une direction longitudinale X. En absence de commande, la source 3 ne génère aucun champ magnétique.
  • Le micro-contacteur 2 est un contacteur. Toutefois, il diffère des contacteurs macroscopiques entre autres par son procédé de fabrication. Les micro-contacteurs sont réalisés en utilisant les mêmes procédés de fabrication collectifs que ceux utilisés pour réaliser les puces microélectroniques. Par exemple, les micro-contacteurs sont réalisés à partir de plaquettes en silicium monocristallin ou en verre usiné par photolithographie et gravure et/ou structuré par croissance épitaxiale et dépôt de matériau métallique.
  • Le micro-contacteur 2 est réalisé dans un substrat plan 4 qui s'étend horizontalement c'est-à-dire ici parallèlement aux directions orthogonales X et Y. Dans la suite de cette description, la direction verticale, orthogonale aux directions X et Y, est notée Z.
  • Le substrat 4 est un substrat rigide. Par exemple, à cet effet, son épaisseur, dans la direction Z est supérieure à 200 et de préférence supérieure à 500 µm. Il est avantageusement électriquement isolant.
  • Par exemple, ici, ce substrat 4 est un substrat en silicium c'est-à-dire comportant au moins 10 % et typiquement plus de 50 % en masse de silicium. Ce substrat est inorganique et non photosensible. Le substrat 4 présente une face supérieure plane 6 horizontale.
  • Le micro-contacteur 2 comprend des électrodes 8 et 10 par l'intermédiaire desquelles circule le courant qui traverse ce micro-contacteur. Ces électrodes 8 et 10 sont fixées sans aucun degré de liberté au substrat 4. Ici, ces électrodes 8 et 10 sont des parallélépipèdes dont les faces supérieures sont situées dans le même plan que la face supérieure 6. Les faces verticales de ces électrodes s'étendent à l'intérieur du substrat 4. Les faces verticales sont reliées les unes aux autres à l'intérieur du substrat par une face inférieure, par exemple, parallèle à la face supérieure.
  • Des lames 12, 14 s'étendent parallèlement à la direction X à partir des électrodes, respectivement, 8 et 10. Les lames 12, 14 sont déplaçables l'une par rapport à l'autre sous l'effet d'un champ magnétique parallèle à cette direction X entre :
    • une position ouverte (représentée sur la figure 1) dans laquelle les lames sont isolées électriquement l'une de l'autre par un entrefer 15 rempli d'un gaz diélectrique, et
    • une position fermée dans laquelle les lames sont directement mécaniquement en contact l'une avec l'autre pour permettre le passage du courant entre les électrodes 8 et 10.
  • Ici, chaque lame a principalement la forme d'un parallélépipède qui s'étend parallèlement à la direction X. Ainsi, comme les électrodes, chaque lame présente :
    • une face supérieure située dans le même plan que la face supérieure 6 du substrat 4,
    • des faces verticales qui s'enfoncent vers l'intérieur du substrat 4, et
    • une face inférieure située en dessous de la face 6 du substrat 4 et, par exemple, parallèle à la face supérieure de cette lame.
  • Chaque lame 12, 14 présente une extrémité proximale, respectivement 16, 18, mécaniquement et électriquement raccordées, respectivement, aux électrodes 8 et 10. Ici, les extrémités proximales 16 et 18 sont raccordées sans aucun degré de liberté à leurs électrodes respectives. Ainsi, ces extrémités proximales 16, 18 sont immobiles.
  • Dans ce mode de réalisation, les lames ne forment qu'un seul et même bloc de matière avec l'électrode à laquelle elles sont mécaniquement raccordées.
  • Chaque lame 12, 14 présente également une extrémité distale, respectivement 20, 22. Ces extrémités distales 20 et 22 sont en vis-à-vis et séparées l'une de l'autre par l'entrefer 15 en position ouverte. L'épaisseur de l'entrefer dans la direction Y est notée d. A l'inverse, ces extrémités distales sont directement en appui l'une sur l'autre en position fermée.
  • Ici, dans ce mode de réalisation, les deux extrémités distales 20, 22 sont flexibles pour se déplacer entre les positions ouverte et fermée.
  • Les extrémités distales 20, 22 se déplacent uniquement parallèlement au plan horizontal X, Y. A cet effet, elles sont reçues à l'intérieur d'un caisson 24 rempli d'un gaz diélectrique tel que de l'air ou autre. Plus précisément, chaque extrémité distale 20, 22 fléchit pour atteindre la position fermée à partir de la position ouverte. Les déformations subies par chaque extrémité distale 20, 22 entre les positions fermée et ouverte sont toutes élastiques pour lui permettre de revenir automatiquement à la position ouverte en absence de sollicitation extérieure.
  • Pour être flexible, chaque extrémité distale 20, 22 est beaucoup plus longue dans la direction X qu'épaisse dans la direction Y. Par exemple, chaque extrémité distale 20, 22 est cinq, dix ou cinquante fois plus longue qu'épaisse. Ici, l'épaisseur de l'extrémité distale 20 est inférieure à 100 µm et de préférence inférieure à 50 ou 30 µm.
  • La hauteur ec de chaque extrémité distale 20, 22 dans la direction Z est typiquement dans, cet exemple, de l'ordre de 20 à 50 µm.
  • Ici les extrémités distales 20, 22 sont conformées pour limiter la résistance du micro-contacteur en position fermée. Un exemple d'une telle conformation est décrit en référence à la figure 3.
  • L'essentiel des lames 12, 14 et des électrodes 8, 10 est réalisé en matériau magnétique doux. Un matériau magnétique doux est un matériau présentant une perméabilité relative dont la partie réelle à basse fréquence est supérieure ou égale à 1 000. Un tel matériau présente typiquement une excitation coercitive pour le démagnétiser inférieure à 100 A.m-1. Par exemple, le matériau magnétique doux utilisé ici est un alliage de fer et de nickel.
  • Pour accroître la conductivité électrique des lames, les faces verticales et inférieures de ces lames sont recouvertes d'un revêtement 28 conducteur. Il en est de même pour les faces verticales et inférieures des électrodes 8, 10. Par exemple, ce revêtement est réalisé en rhodium (Ro) ou en ruthénium (Ru) ou en platine (Pt). Le micro-contacteur 2 peut comporter également un capot 30 (figure 2) qui recouvre le caisson 24. Pour simplifier la figure 1, ce capot n'a pas été représenté sur celle-ci.
  • La figure 2 représente le micro-contacteur 2 en coupe verticale selon un plan de coupe I-I représenté sur la figure 1. Sur cette figure, un capot 30 qui recouvre le caisson 24 est représenté. Ce capot 30 permet d'éviter que des impuretés pénètrent à l'intérieur du caisson 24 et viennent gêner le déplacement des lames 12, 14. Il permet également d'éviter l'oxydation du contact.
  • Lorsqu'un champ magnétique extérieur est appliqué parallèlement à la direction X, celui-ci est concentré et guidé par les lames 12 et 14. Les lignes de champs de ce champ magnétique sont symbolisées par une flèche F sur la figure 1. Cela crée des forces dans l'entrefer 15 qui tendent à réduire cet entrefer. Ces forces font fléchir chaque extrémité distale 20, 22 jusqu'à ce que celles-ci viennent en contact l'une avec l'autre. Ainsi, un champ magnétique extérieur permet de déplacer les lames 12, 14 entre la position ouverte et la position fermée. Lorsque le champ magnétique extérieur disparaît, les extrémités distales 20, 22 reviennent vers la position ouverte à la manière d'une lame ressort c'est-à-dire par déformation élastique.
  • La figure 3 représente plus en détail la conformation des extrémités 20 et 22 mise en oeuvre pour diminuer la résistance du micro-contacteur 2 en position fermée. Ici, chaque extrémité 20, 22 comporte plusieurs plots Pji disposés les uns à côté des autres dans la direction X, où l'indice j identifie la lame et l'indice i identifie le plot de cette lame. Plus précisément, dans la suite de cette description, l'indice j prend la valeur « 1 » pour désigner la lame 12 et la valeur « 2 » pour désigner la lame 14.
  • Deux plots Pji et Pj,i+1 immédiatement consécutifs dans la direction X sont reliés mécaniquement l'un à l'autre par l'intermédiaire d'un pont Ptji.
  • Chaque plot Pji présente une face plane Fji tournée vers l'entrefer 15. Ici, chaque plot P1i est en vis-à-vis d'un plot P2i de l'autre lame. Deux plots P1i et P2i sont en vis-à-vis si l'intersection de la face F2i et de la projection, selon la direction Y, de la face F1i sur la face F2i forme une zone Zi de recouvrement dont la surface SZi est strictement supérieure à zéro. Dans la suite de cette description, deux plots P1i et P2i en vis-à-vis portent le même indice i.
  • La surface SPtji de la section transversale du pont Ptji est strictement inférieure à la surface de la section transversale des plots Pji et Pj,i+1 qu'il relie. Ici par surface de la section transversale, on désigne la surface de la section du plot ou du pont parallèle au plan défini par les directions YZ.
  • Ici, la conformation des extrémités 20 et 22 est représentée dans le cas particulier où le nombre n de paires de plots P1i, P2i en vis-à-vis est égal à deux.
  • De plus, ici, les extrémités 20 et 22 sont identiques sauf qu'elles sont tournées l'une vers l'autre. En effet, les faces F1i sont tournées vers les faces F2i. Ainsi, par la suite, seule l'extrémité 20 est décrite en détail.
  • Le plot P11 est directement relié à l'extrémité 16 par un bras B1 parallélépipédique de longueur l dans la direction X, d'épaisseur e dans la direction Y et de hauteur ec dans la direction Z. Le plot P11 est relié au plot P12 par le pont Pt11. Dans ce mode de réalisation particulier, les dimensions des plots P11 et P12 sont identiques. Ainsi, seuls les dimensions du plot P11 sont décrites plus en détail.
  • Le plot P11 est un parallélépipède de longueur βx, d'épaisseur ep et de hauteur ec. La face F11 et la zone Z1 de recouvrement sont donc des rectangles. La longueur de la zone Z1 de recouvrement dans la direction X est notée « x ». Ici, la longueur du plot P11 est prise proportionnelle à la longueur x de la zone de recouvrement Z1. Elle est donc notée sous la forme d'un produit entre une constante β et la longueur x.
  • Le pont Pt11 est un parallélépipède de longueur es, d'épaisseur ept et de hauteur ec. Le pont Pt11 est dimensionné de manière à ce que sa surface transversale SPt11 soit au moins inférieure au deux-tiers de la surface SZ1 de la zone de recouvrement Z1. Lorsque la surface SPt11 est inférieure au deux-tiers de la surface SZ1 ou SZ2, le flux magnétique concentré par les plots P11 ou P12 traverse majoritairement l'entrefer 15 plutôt que le pont Pt11. Ceci permet donc d'augmenter la quantité de flux magnétique qui traverse l'entrefer 15 par l'intermédiaire des zones de recouvrement. Or, la force de contact fcontact entre les paires de plots en vis-à-vis est proportionnelle au flux magnétique divisé par la surface traversée par ce flux. Ainsi, minimiser la section verticale des ponts Pt1i permet d'augmenter la force de contact entre les plots en position fermée et donc de diminuer la résistance du contacteur en positon fermée.
  • Ici, l'épaisseur ept de ce pont Pt11 est au moins inférieure au tiers de l'épaisseur ep des plots P11 et P12. Ainsi, ce pont Pt11 correspond également au fond d'une rainure de profondeur tp qui sépare les faces F11 et F12. La largeur de cette rainure est ici égale à la longueur es du pont Pt11.
  • On notera que l'épaisseur ep du plot P11 est égale à la somme de la profondeur tp et de l'épaisseur ept du pont Pt11.
  • La longueur totale de l'extrémité 20 est notée lp. Ici, la longueur lp est égale à 2βx+es.
  • Les extrémités 20 et 22 sont décalées l'une par rapport à l'autre, dans la direction X, d'une distance g pour diminuer les surfaces SZi de recouvrement. Dans ce mode de réalisation, la distance g est choisie de manière à ce que les deux relations suivantes soient vérifiées : S Zi S 1 i / 3
    Figure imgb0001
    S Zi S 2 i / 3 ,
    Figure imgb0002
    où S1i et S2i sont les surfaces, respectivement, des faces F1i et F2i.
  • Pour simplifier les figures, les représentations des extrémités 20, 22 ne sont pas à l'échelle et ces deux relations ne sont pas représentées.
  • De préférence, la surface SZi est inférieure au quart ou au huitième des surfaces S1i et S2i.
  • Diminuer la surface SZi de recouvrement permet de concentrer le flux magnétique sur une surface plus petite que la surface des faces Fji. Cela permet donc d'augmenter la force de contact fcontact entre ces plots et de diminuer ainsi la résistance du contacteur en position fermée.
  • Le dimensionnement des extrémités 20 et 22 va maintenant être décrit en référence au procédé de la figure 4.
  • Ici, le dimensionnement des extrémités 20 et 22 est illustré par des exemples numériques donnés pour la situation suivante :
    • l'intensité du champ magnétique B0 produit par la source 3 pour déplacer le micro-contacteur 2 vers sa position fermée est de 50mT,
    • la tension qui doit être commutée par le micro-contacteur 2 est au maximum de 50 volts,
    • la force de contact fcontact qui s'exerce entre chaque paire de plots en position fermée est de 150µN,
    • la force de rappel frappel qui ramène les plots vers leur position ouverte est de 20µN par contact,
    • la force de rappel famin exercée par le pont Pt11 pour ramener le plot P12 vers sa position ouverte est de 20µN,
    • la perméabilité relative du matériau magnétique utilisé pour réaliser les lames 20 et 22 est de 1000,
    • le module de Young E du matériau magnétique est égal à 1,85.1011Pa, et
    • la polarisation Js du matériau magnétique à saturation est égale à 1 T.
  • La force de contact fcontact est la force qu'exerce le plot P1i sur le plot P2i en position fermée. Plus cette force de contact est élevée, plus la résistance du contact diminue.
  • La force de rappel frappel est la force de rappel qui s'exerce sur chaque plot et les sollicite en permanence vers la position ouverte.
  • La polarisation Js est la polarisation du matériau magnétique observée lorsque celui-ci est saturé. En première approximation, la polarisation est le rapport entre l'intensité du champ magnétique B0 et le facteur Nd de démagnétisation.
  • Lors d'une étape 27, la distance d de l'entrefer en position ouverte est choisie. Cette distance d doit être suffisamment importante pour permettre d'isoler électriquement les plots P1i des plots P2i en position ouverte. Elle dépend donc notamment de la tension présente entre les bornes 8 et 10 du micro-contacteur 2 en position ouverte. Ici, cette distance d est choisie supérieure à 5 µm de manière à isoler électriquement les plots P1i des plots P2i même en présence d'une tension de 220 volts entre les bornes 8 et 10. Cette valeur de 5 µm est donnée dans le cas particulier où l'entrefer 15 est rempli d'air. En effet, le champ disruptif de l'air est de l'ordre de 50V/µm pour des dimensions aussi petites que celles des extrémités 20 et 22.
  • Par ailleurs, la distance d est choisie suffisamment petite pour rester dans la zone de déformation élastique des lames 12 et 14. La borne maximale pour la distance d dépend donc des caractéristiques du matériau magnétique choisi telles que son module de Young E. Ici, pour rester dans cette zone de déformation élastique, d est choisie inférieure à 15µm.
  • Dans cet exemple, la distance d est fixée égale à 5 µm pour minimiser l'encombrement du micro-contacteur 2.
  • Lors d'une étape 29, la hauteur ec est fixée. Plus cette hauteur ec est grande, plus la résistance du micro-contacteur 2 en position fermée décroît. Toutefois, des contraintes technologiques de fabrication imposent une limite supérieure à la hauteur ec. Ainsi, ici, la hauteur ec est choisie au maximum égale à 30 µm et au minimum supérieure à 10 µm. Pour les applications numériques, la hauteur ec est choisie égale à 20 µm.
  • Lors d'une étape 31, l'épaisseur ep des plots est calculée pour obtenir une force magnétique ff qui attire le plot P1i vers le plot P2i en présence du champ magnétique B0 égale à 170 µN. Cette force ff s'oppose à la force de rappel frappel et à la force famin qui sont prises ici égales à 20 µN. Plus précisément, les forces fcontact, ff et frappel sont reliées les unes aux autres par la relation suivante : fcontact=ff - frappel.
  • Ainsi, pour obtenir une force de contact fcontact de 150 µN, la force ff est prise ici égale à 170 µN.
  • Pour calculer l'épaisseur ep, différentes simulations numériques à l'aide de logiciels ont été réalisées pour établir de façon expérimentale une relation reliant la force ff à l'épaisseur ep. La relation établie est la suivante : f f = 3 , 4 e p + 25 e c 20
    Figure imgb0003
  • Dans cette relation (1), l'épaisseur ep, la hauteur ec sont exprimées en µm et la force ff est exprimée en µN.
  • Cette relation (1) a été établie avec les hypothèses :
    • les plots Pji sont saturés par le champ magnétique B0,
    • la présence des ponts Ptij, et des bras Bj a été négligée, et
    • l'épaisseur ep est supposée comprise entre 10 et 100 µm.
  • De plus la relation (1) est établie dans l'hypothèse où la longueur x de la zone Zi de recouvrement est égal à la moitié de l'épaisseur ep. Autrement dit, la relation suivante est vérifiée : x = e p / 2
    Figure imgb0004
  • A l'aide cette relation (1), on obtient ici la valeur de 40 µm pour l'épaisseur ep.
  • Lors d'une étape 32, la longueur x est calculée à l'aide de la relation (2). La longueur x est donc égale ici à 20 µm.
  • Lors d'une étape 33, la longueur βx des plots Pji est calculée. Cette longueur βx est déterminée pour que chaque plot Pji soit complètement saturé magnétiquement quand le champ B0 est présent. Ici, la longueur βx est calculée pour que chaque plot Pji soit juste saturé. Par juste saturé, on désigne le fait que chaque plot est saturé par le champ B0 et n'est pas saturé par un champ B1 identique au champ B0 sauf que sont intensité est égale à 80% et, de préférence 90%, de l'intensité du champ B0. A cet effet, différentes relations obtenues en modélisant le plot Pji à l'aide des lois de l'électromagnétisme sont utilisées.
  • Plus précisément, la relation suivante reliant la polarisation Js du matériau à la saturation au champ B0 est utilisée : J s = B 0 1 μ r 1 + Nd B 0 Nd
    Figure imgb0005
  • Dans cette relation (3), Nd est le facteur de démagnétisation du plot Pji. Ce facteur Nd est fonction des dimensions du plot Pji. La relation suivante qui relie le facteur Nd aux dimensions du plot est utilisée : Nd = e c e p βx 2 ln 4 βx e c + e p 1
    Figure imgb0006
  • Cette relation a été obtenue en considérant que la relation qui relie le facteur Nd de démagnétisation aux dimensions, établie dans le cas d'une ellipsoïde, s'applique aussi au cas d'un parallélépipède.
  • Ainsi, pour obtenir la valeur de la constante β, l'équation suivante doit être résolue : B 0 J s = e c e p βx 2 ln 4 βx e c + c p 1
    Figure imgb0007
  • La résolution de cette équation donne la valeur « 7 » pour la constante β. Ainsi la longueur du plot Pji est ici de 140µm.
  • Ensuite, lors d'une étape 34, la longueur l, l'épaisseur e, la largeur es et la profondeur tp sont déterminées pour obtenir une force de rappel frappel égale à 20µN et une force famin égale à 20 µN. Ici, pour cela, on fixe e pour minimiser l'encombrement du micro-contacteur 2. Par exemple, e est choisie égale à 5 µm.
  • On fixe également la distance g, dans ce cas particulier, pour que le plot P1i soit uniquement en vis-à-vis du seul plot P2i. Par exemple, g est choisie égale à 50 µm. Une fois la distance g fixée, la largeur es et la longueur totale lp de l'extrémité 20 sont données par les relations suivantes : e s = g + βx x ,
    Figure imgb0008
    I p = 2 βx + e s
    Figure imgb0009
  • La force famin est donnée par la relation suivante : f amin = 2 Γ amin e s + βx
    Figure imgb0010
  • Γamin est le couple mécanique de rappel exercé par le pont Pt11 sur le plot P12.
  • Le couple Γamin est donné par la relation suivante : Γ amin = S amin d 2 e s + βx
    Figure imgb0011
  • La grandeur Samin est elle-même donnée par la relation suivante : S amin = E e s 3 3 I 3 + βx 3 3 I 4 + 1 I 3 βx 2 e s + βx e s 2
    Figure imgb0012
  • Les coefficients I3 et I4 sont donnés par les relations suivantes : I 3 = e c e p t p 3 12
    Figure imgb0013
    I 4 = e c e p 3 12
    Figure imgb0014
  • Ainsi, la contrainte fixée sur la force famin permet de calculer la profondeur tp à partir des relations précédentes.
  • Imposer la force famin ≥ 20 µN permet de garantir que si le plot P11 revient dans sa position ouverte sous l'action de la force de rappel frappel, le plot P12 fera de même car le pont Pt11 est suffisamment rigide pour cela.
  • Une fois la profondeur tp calculée, on calcule la longueur l permettant de vérifier la contrainte selon laquelle la force frappel est égale à 20 µN. La force frappel est donnée par la relation suivante : f rappel = Γ r 21 + l p + β 1 x
    Figure imgb0015
  • Γr est le couple de la force de rappel. Ce couple est égal à deux fois le couple de rappel Γmeca exercé par chacune des lames 12 et 14. Ainsi, le couple de rappel Γr est défini par la relation suivante : 2 Γ meca = Γ r
    Figure imgb0016
  • Le couple Γmeca d'une seule lame est défini par la relation suivante : Γ meca = S . f 0 . I + I p
    Figure imgb0017
    où f0 est la flèche maximale de la lame 12.
  • Ici, cette flèche f0 est approximée à l'aide de la relation suivante : f 0 d l + 1 β x l + l p 1
    Figure imgb0018
  • Le facteur S de la relation (15) est donné par la relation suivante : S = E l 3 3 I 1 + βx 3 3 I 2 + e s 3 3 I 3 + βx 3 3 I 4 + 1 I 1 l 2 l p + l l p 2 + 1 I 3 βx 2 e s + βx e s 2
    Figure imgb0019
    où les coefficients I1 et I2 sont donnés par les relations suivantes : I 1 = e c e 3 12
    Figure imgb0020
    I 2 = e c e p 3 12
    Figure imgb0021
  • Les coefficients I3 et I4 ont déjà été précédemment définies. A partir des relations précédentes, la longueur l est calculée.
  • Avec les données numériques prises en compte ici, les résultats obtenus sont les suivants : I = 40 µm, e = 5 µm, tp = 30 µm et g = 50 µm.
  • Lors d'une étape 35, on vérifie que le couple Γ0 exercé par les forces magnétiques en position ouverte lorsque le champ B0 est présent est strictement supérieur au couple Γr de rappel des forces mécaniques. Si cela est exact, cela garantit que le micro-contacteur 2 se déplace vers sa position fermée lorsque le champ magnétique B0 est présent. Différentes simulations numériques réalisées par le déposant ont permis d'établir une relation approximant la force F0 qu'exercent les forces magnétiques sur la lame 12 en position ouverte. Cette relation est la suivante : F 0 = 36.790 + 2.310. e p 10.465. d + 0.54 d 2 0.116. e p . d . e c 20
    Figure imgb0022
  • A partir de la force F0, il est également possible de déduire le couple des forces magnétiques qui s'exerce sur l'extrémité 20. Ce couple est ici donné par la relation suivante : Γ 0 = 36 , 790 + 2 , 310 e p 10 , 465 d + 0 , 54 d 2 0 , 116 e p d e c 20 21 + l p + β 1 x 10 12
    Figure imgb0023
  • Les deux relations précédentes (20) et (21), ont été établies en utilisant les mêmes hypothèses que pour la relation (1). De plus, dans ces deux relations, l'épaisseur ep, la distance d, la hauteur ec sont exprimées en µm, le couple Γ0 en N.m, la force F0 est exprimée en µN et l'épaisseur ep est comprise entre 10 et 100µm.
  • Si le couple Γ0 n'est pas supérieur au couple Fr, alors, on procède à une étape 36 lors de laquelle on incrémente l'épaisseur ep ou on diminue l'épaisseur e. A l'issue de l'étape 36, on retourne à l'étape 34 pour de nouveau calculer la longueur l et la profondeur tp.
  • Dans le cas où le couple Γ0 est supérieur au couple Γr, alors, on vérifie, lors d'une étape 37 si la force famin est bien supérieure ou égale à 20 µN. Dans la négative, on procède à une étape 38, lors de laquelle la distance g est modifiée. Par exemple, la distance g est diminuée. A l'issue de l'étape 38, le procédé retourne à l'étape 34.
  • Dans le cas contraire, on procède à une étape 39 lors de laquelle le micro-contacteur 2 ayant les dimensions déterminées est fabriqué.
  • Le micro-contacteur ayant les dimensions données ci-dessus occupe environ une surface de silicium de 650µm (=2l+lp+βx-x) par 85µm (=2ep+d) hors plot de contact dans le plan XY.
  • Un exemple de procédé de fabrication du micro-contacteur 2 va maintenant être décrite plus en détail à l'aide du procédé de la figure 5.
  • Le procédé de fabrication décrit est un procédé de fabrication collectif utilisant les technologies des procédés de fabrication de la microélectronique. Il débute donc par la fourniture d'une galette de silicium plus connue sous le terme de « Wafer » sur laquelle vont être simultanément fabriqués plusieurs micro-contacteurs 2 à l'aide des mêmes opérations. Pour simplifier la description qui suit, les différentes étapes de fabrication sont décrites uniquement dans le cas d'un seul micro-contacteur. Différents états de fabrication obtenus lors du procédé de la figure 3 sont représentés en coupe verticale sur les figures 6 à 10.
  • Lors d'une étape 40, une couche 41 (figure 6) de résine photosensible est déposée sur la face supérieure 6 du substrat 4. Puis les zones où doivent être creusées les cavités dans le substrat 4 sont définies par insolation de la résine. Ces zones correspondent à l'emplacement des électrodes et des lames. Il s'agit ici d'une étape classique de photolithographie.
  • Lors d'une étape 42, on procède à une gravure anisotrope des zones définies pour graver dans le substrat des cavités 44, 46 (figure 6) formant un modèle en creux des lames 12 et 14 et des électrodes 8 et 10. Par gravure anisotrope on désigne ici une gravure dont la vitesse de gravure dans la direction Z est au moins dix fois et de préférence cinquante ou cent fois supérieure à la vitesse de gravure dans les directions horizontales X et Y. Autrement dit, la vitesse de gravure horizontale est négligeable par rapport à la vitesse de gravure dans la direction verticale. Cela permet d'obtenir des flancs plus verticaux que si la gravure était réalisée à l'aide d'autres procédés de gravure. Notamment, les flancs des cavités 44, 46 ainsi creusées sont plus verticaux que si elles avaient été creusées dans une résine photosensible ou à l'aide d'un autre procédé de gravure. Par exemple, on utilise ici une gravure par plasma ou une gravure chimique profonde du silicium (« deep silicon chemical etching »).
  • Lors d'une étape 48, la couche 41 de résine photosensible est retirée et l'on dépose le revêtement conducteur 28 sur l'ensemble de la face supérieure. Ainsi, ce revêtement conducteur recouvre non seulement les flancs verticaux des cavités mais également le fond des cavités ainsi que la face supérieure 6 du substrat.
  • Lors d'une étape 50, les cavités sont remplies par un matériau magnétique doux 52 (figure 5). Ici, le remplissage est réalisé par dépôt électrolytique en utilisant comme électrode conductrice le revêtement 28. Ainsi, ce revêtement 28 remplit également la fonction de couche de germination (« seed layer »). Puisque le revêtement 28 s'étend sur toute la face supérieure du substrat 4, le matériau 52 est également déposé sur toute la face supérieure du substrat 4 ainsi qu'à l'intérieur des cavités 44 et 46. On obtient alors l'état représenté sur la figure 7.
  • Lors d'une étape 54, on procède à la planarisation mécano-chimique du substrat 4 pour rétablir la face supérieure 6 plane du substrat 4. La planarisation mécano-chimique est plus connue sous l'acronyme CMP (« Chemical mechanical planarization »). Cette étape de planarisation est ici utilisée pour éliminer le matériau 52 et le revêtement 58 situé en dehors des cavités 44 et 46. A l'issue de cette étape on obtient l'état représenté sur la figure 8.
  • Lors d'une étape 56, le capot 30 est déposé à l'emplacement où doit être creusé le caisson 24. Pour cela, ici, on procède au dépôt d'une surépaisseur 58 (figure 9) de matériau au-dessus de la zone où doit être creusé le caisson 24. Le matériau utilisé pour créer cette surépaisseur 58 est susceptible d'être gravé par le même agent de gravure isotrope que le substrat 4. Par exemple, ici, il s'agit de silicium. Cette surépaisseur 58 permet d'isoler le capot 30 de la face supérieure des extrémités distales 20 et 22. Ensuite, toujours lors de cette étape 56, une couche mince 59 est déposée sur l'ensemble de la face supérieure du substrat 4. Cette couche mince 59 est réalisée dans un matériau résistant à l'agent de gravure isotrope. Enfin, on réalise dans cette couche mince 59 formant le capot 30 des orifices d'admission 60 de l'agent de gravure isotrope. Pour simplifier la figure 9, un seul des orifices 60 a été représenté. Ces orifices sont disposés au-dessus de l'emplacement où doit être creusé le caisson 24.
  • Lors d'une étape 62, on procède à la gravure du substrat 4 pour réaliser le caisson 24. Lors de cette étape la gravure réalisée est isotrope. Une gravure isotrope est une étape de gravure lors de laquelle les vitesses de gravure dans les directions X, Y sont égales à la vitesse de gravure dans la direction Z à plus ou moins 50 % près et, de préférence, à plus ou moins 20 ou 10 % près.
  • Lors de l'étape 62, l'agent de gravure isotrope est mis en contact avec le silicium à graver par l'intermédiaire des orifices d'admission 60. L'agent de gravure utilisé est choisi pour ne pas réagir avec le matériau magnétique doux 52 et le revêtement 28. Par exemple, l'agent de gravure est un gaz XeF2.
  • Puisque l'agent de gravure est un agent de gravure isotrope, il dégage les faces verticales des extrémités 20 et 22 et, en même temps, le dessous, c'est-à-dire la face inférieure, de l'extrémité distale 20 (figure 10).
  • Ainsi, à l'issue de cette étape de gravure isotrope, le caisson 24 est réalisé.
  • Enfin, lors d'une étape 66, les orifices d'admission 60 sont éventuellement refermés et la galette sur laquelle ont été collectivement réalisés les différents micro-contacteurs est découpée pour les isoler mécaniquement les uns des autres.
  • La figure 11 représente un micro-contacteur 80. Ce micro-contacteur 80 est identique au micro-contacteur 2 à l'exception du fait que l'extrémité 20 est remplacée par une extrémité fixe 82. L'extrémité 82 est ici identique à l'extrémité 20 sauf que celle-ci est fixée sans aucun degré de liberté au substrat 4. Le bras B1 est donc omis.
  • Le dimensionnement des plots P21 et P22 est identique à ce qui a été décrit au regard de la figure 4 sauf que la flèche f0, le couple Γmeca, la force Famin et le couple Γamin sont définis par les relations suivantes : f 0 = d
    Figure imgb0024
    Γ meca = Γ r
    Figure imgb0025
    f a min = Γ a min e s + βx
    Figure imgb0026
    Γ amin = S amin . d . e s + βx
    Figure imgb0027
  • Comme dans le mode de réalisation précédent, les plots P11 et P22 ainsi que le pont Pt11 sont identiques, respectivement, aux plots P21 et P22 et au pont Pt21.
  • La figure 12 représente un micro-contacteur 90 identique au micro-contacteur 2 sauf que l'extrémité 20 est remplacée par une extrémité 92. Pour simplifier cette figure, seules les extrémités 92 et 22 sont représentées en détail.
  • L'extrémité 92 est identique à l'extrémité 20 sauf que la distance g est choisie dans ce mode de réalisation égale à -x pour créer une nouvelle zone de recouvrement Z'1 supplémentaire entre le plot P12 et le plot P21. De plus, g est choisie de manière à ce que les dimensions de cette zone Z'1 de recouvrement soient identiques à celles des zones Z1 et Z2 de manière à répartir de façon uniforme la force de contact entre les différents points de contact entre les plots. Ainsi, dans ce mode de réalisation, il existe trois points de contact obtenus avec seulement deux paires de plots au lieu de deux points de contact comme dans le précédent mode de réalisation. L'augmentation du nombre de points de contact permet de diminuer la résistance du micro-contacteur en position fermée puisque, comme cela va maintenant être décrit en référence à la figure 13, les extrémités 22 et 92 sont dimensionnées pour que les forces de contact qui s'exercent au niveau de chaque point de contact soient identiques à celles qui seraient obtenues si un seul point de contact existait.
  • Le procédé de dimensionnement du micro-contacteur 90 représenté sur la figure 13 est identique à celui représenté sur la figure 4 à l'exception du fait que l'étape 34 est remplacée par une étape 100 et les étapes 37 et 38 sont omises.
  • Plus précisément, lors de l'étape 100, la largeur es de la rainure est fixée par la relation suivante : e s = βx 2 x
    Figure imgb0028
  • Ainsi, seule la longueur l, l'épaisseur e et la profondeur tp sont à déterminer pour obtenir une force de rappel frappel et une force famin égale à 20 µN.
  • Comme précédemment, ici, on choisit l'épaisseur e pour limiter l'encombrement du micro-contacteur 90. Ici, e est choisie égale à 5 µm.
  • L'épaisseur tp est déterminée à partir de la contrainte imposée sur la force famin en utilisant les relations suivantes de façon similaire à ce qui a été précédemment décrit en regard de l'étape 34.
  • La force famin est donnée par la relation suivante : f amin = 2 Γ amin 2 e s + βx
    Figure imgb0029
  • Γamin est le couple mécanique de rappel exercé par le pont Pt11 sur le plot P12. Il est donné par la relation (9) précédente. Ainsi, la contrainte fixée sur la force famin permet de calculer la profondeur tp à partir des relations précédentes.
  • Ensuite, la longueur l est déterminée à partir de la contrainte imposée sur la force frappel. Toutefois, contrairement à ce qui a été décrit dans l'étape 34, la force de rappel est cette fois-ci donnée par la relation suivante : F rappel = Γr 3 l + 6 β / 2 7 x
    Figure imgb0030
  • Comme précédemment, le couple de rappel Γr est donné par la relation suivante : 2 Γ meca = Γ r
    Figure imgb0031
  • Le couple Γmeca est donné par la relation suivante : Γ meca = S . f 0 . I + I p
    Figure imgb0032
  • Dans la relation précédente, la longueur lp de l'extrémité 92 est donnée par la relation suivante : I p = 2 βx + e s
    Figure imgb0033
  • Le facteur S de la relation (30) est déterminé à partir de la même relation (17) que celle donnée en regard de l'étape 34.
  • Avec les mêmes hypothèses numériques que précédemment, on obtient les valeurs suivantes : la longueur l est égale à 35 µm, l'épaisseur e est égale à 5 µm et la profondeur tp est égale à 35 µm.
  • L'encombrement total hors plots de contact du micro-contacteur 90 est donné par le produit de la longueur totale Lt par l'épaisseur total et. La longueur totale Lt est donnée par la relation suivante : L t = 2 I + I p + β 1 x
    Figure imgb0034
  • L'épaisseur et est donnée par la relation suivante : E t = 2 e p + d
    Figure imgb0035
  • Ainsi, la surface de silicium occupée par les lames est ici de 570 x 85 µm2. Le micro-contacteur 90 est donc légèrement moins encombrant que le micro-contacteur 2 et sa résistance en position fermée est plus faible.
  • La figure 14 représente un micro-contacteur 110 identique au micro-contacteur 90 mais dans lequel l'extrémité 92 est remplacée par une extrémité fixe 112.
  • L'extrémité 112 est fixée sans degré de liberté au substrat 4. Le bras B1 est omis.
  • Le dimensionnement du micro-contacteur 110 se déduit de ce qui avait été décrit en regard de la figure 13. Toutefois, les relations suivantes sont utilisées en lieu et place des relations correspondantes dans la figure 13 : f 0 = d
    Figure imgb0036
    Γ meca = Γ r
    Figure imgb0037
    Γ meca = S . d . I + I p
    Figure imgb0038
    F amin = Γ amin 2 e s + βx
    Figure imgb0039
    Γ amin = S amin . d . e s + βx
    Figure imgb0040
  • De nombreux autres modes de réalisation sont possibles. Par exemple, il n'est pas nécessaire d'imposer que la longueur x soit égale à la moitié l'épaisseur ep bien que ceci semble permettre d'atteindre un optimum entre d'une part la diminution de la résistance et d'autre part un encombrement limité. Par exemple, en variante, x est choisi comme étant compris entre ep/3 et ep/1,5. De préférence, la longueur x est choisie égale à ep/2 à plus ou moins 30 % près.
  • D'autres méthodes de dimensionnement des extrémités des lames sont possibles. En particulier, il est possible de simuler, pour un jeu de dimensions, à l'aide d'un logiciel de simulation, le fonctionnement du micro-contacteur. Si les contraintes imposées sur le fonctionnement du micro-contacteur simulé ne sont pas satisfaites, les dimensions sont modifiées et l'on procède alors à une nouvelle simulation. Ainsi, par essais successifs, on arrive à déterminer les dimensions des extrémités satisfaisant les contraintes imposées.
  • Lors du dimensionnement des extrémités des lames, la contrainte sur la force famin peut être omise.
  • Pour limiter la surface transversale du pont Pij, il est également possible de limiter sa hauteur dans la direction verticale. Dans un cas très particulier, seule la hauteur du pont Pij dans la direction verticale est limitée pour satisfaire la relation SPtij ≤ 2/3SZi.
  • Ce qui a été décrit précédemment pour la conformation des extrémités s'applique également au micro-contacteur dans lequel les lames se déplacent perpendiculairement au plan du substrat.
  • Il n'est pas nécessaire que les différentes forces de contact au niveau des différents points de contact soient toutes identiques les unes aux autres. Par exemple, au moins l'un des plots peut être dimensionné pour produire une force de contact supérieure à celle produite par d'autres plots. Par exemple, cela peut aussi être obtenu en choisissant des longueurs différentes pour les différentes zones de recouvrement.
  • Pour que le micro-contacteur fonctionne correctement, il n'est pas nécessaire de saturer magnétiquement chacun des plots. Par exemple, seuls quelques plots sont dimensionnés pour être saturés par le champ B0. En variante, aucun des plots n'est saturé.
  • Ce qui a été décrit ici dans le cas particulier des micro-contacteurs s'applique également au cas des contacteurs ayant des dimensions macroscopiques. Ces contacteurs ayant des dimensions macroscopiques ne sont pas fabriqués par les mêmes procédés de fabrication que ceux de la microelectronique. De plus, leurs dimensions sont généralement beaucoup plus importantes. Par exemple, la longueur des lames dépasse souvent 1 ou 3 mm.

Claims (8)

  1. Contacteur actionnable par un champ magnétique, ce contacteur comportant au moins une première et une seconde lames (12, 14) s'étendant le long d'une direction longitudinale :
    - la première lame (12) comportant au moins un plot P1i présentant une face de contact F1i,
    - la seconde lame (14) comportant au moins un plot P2i en vis-à-vis du plot P1i et présentant une face de contact F2i, les plots P1i et P2i étant en vis-à-vis lorsque l'intersection de la face F2i et de la projection selon une direction transversale, perpendiculaire à la direction longitudinale, de la face F1i sur la face F2i forme une zone de recouvrement dont la surface Szi et strictement supérieure à zéro,
    - au moins un plot de chaque paire de plots P1i, P2i en vis-à-vis étant déplaçable le long de la direction transversale, sous l'effet du champ magnétique, entre :
    • une position fermée dans laquelle les faces F1i et F2i sont directement en contact mécanique l'une avec l'autre pour permettre le passage d'un courant, et
    • une position ouverte dans laquelle les faces F1i et F2i sont séparées l'une de l'autre par un entrefer (15) pour les isoler électriquement l'une de l'autre,
    - les première et seconde lames (12, 14) comportent des plots formant plusieurs paires de plots P1i, P2i en vis-à-vis, immédiatement consécutives le long de la direction longitudinale, et
    - chaque lame comprend au moins un pont Ptji, chaque pont reliant mécaniquement directement deux plots Pji, Pj,i+1 immédiatement consécutifs d'une même lame, la section transversale de ce pont Ptji étant réduite par rapport à la section transversale des plots Pji et Pj,i+1 caractérisé en ce que lesdites première et seconde lames (12, 14) sont en matériau magnétique; et la surface SPtji de la plus petite section transversale du pont Ptji vérifiant la relation suivante : 0 < SPtji < 2/3SZi, où j est un indice identifiant la lame et i est un indice identifiant le plot de cette lame.
  2. Contacteur selon la revendication 1, dans lequel la surface SZi de chaque zone de recouvrement vérifie les deux relations suivantes : 0 < Szi ≤ S1i/3 et 0 < Szi ≤ S2i/3, où Sij est la surface de la face de contact Fij.
  3. Contacteur selon l'une quelconque des revendications précédentes, dans lequel chaque plot Pji est un parallélépipède, s'étendant parallèlement à la direction longitudinale, d'épaisseur epji dans la direction transversale et la zone de recouvrement est un rectangle de longueur x dans la direction longitudinale, la longueur x étant égale à epji/2 à plus ou moins 30 % près.
  4. Contacteur selon l'une quelconque des revendications précédentes, dans lequel au moins l'un des plots Pji est en vis-à-vis du plots P2i et du plot P2,i+1.
  5. Contacteur selon l'une quelconque des revendications précédentes, dans lequel les surfaces SZi des zones de recouvrement sont toutes égales et les dimensions des plots Pij sont également toutes égales entre elles.
  6. Contacteur selon l'une quelconque des revendications précédentes, dans lequel le contacteur comporte un substrat plan (4) à l'intérieur duquel est creusé un caisson (24) et les lames (12, 14) sont entièrement reçues à l'intérieur de ce caisson.
  7. Contacteur selon l'une quelconque des revendications précédentes, dans lequel chaque pont Ptji correspond au fond d'une rainure dont l'ouverture est tournée vers l'entrefer (15).
  8. Interrupteur comportant :
    - un contacteur (2; 80; 90; 110) conforme à l'une quelconque des revendications précédentes, et
    - une source (3) d'induction B0 parallèle à la direction longitudinale sous l'effet de laquelle les plots se déplacent de leur position ouverte vers leur position fermée, caractérisé en ce que les dimensions des plots sont telles que l'intensité de l'induction magnétique B0 permet de saturer ces plots P1i et P2i tandis qu'une induction magnétique B1 identique à l'induction B0 sauf que son intensité est égale à 80% de l'intensité de l'induction B0 ne permet pas de saturer ces plots P1i et P2i.
EP12151370.9A 2011-01-19 2012-01-17 Contacteur et interrupteur Not-in-force EP2479767B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1150424A FR2970596B1 (fr) 2011-01-19 2011-01-19 Contacteur et interrupteur

Publications (2)

Publication Number Publication Date
EP2479767A1 EP2479767A1 (fr) 2012-07-25
EP2479767B1 true EP2479767B1 (fr) 2017-09-20

Family

ID=45445971

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12151370.9A Not-in-force EP2479767B1 (fr) 2011-01-19 2012-01-17 Contacteur et interrupteur

Country Status (4)

Country Link
US (1) US8531257B2 (fr)
EP (1) EP2479767B1 (fr)
CN (1) CN102610437B (fr)
FR (1) FR2970596B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11309140B2 (en) * 2019-01-04 2022-04-19 Littelfuse, Inc. Contact switch coating

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072288A (en) * 1989-02-21 1991-12-10 Cornell Research Foundation, Inc. Microdynamic release structure
JPH03241620A (ja) 1990-02-19 1991-10-28 Fujitsu Ltd リードスイッチ
JP3241620B2 (ja) 1996-12-17 2001-12-25 パロマ工業株式会社 加熱庫の扉脱着装置
CH691559A5 (fr) 1997-04-21 2001-08-15 Asulab Sa Micro-contacteur magnétique et son procédé de fabrication.
US5883556A (en) 1997-12-15 1999-03-16 C.P. Clare Corporation Reed switch
US6211598B1 (en) * 1999-09-13 2001-04-03 Jds Uniphase Inc. In-plane MEMS thermal actuator and associated fabrication methods
US6836394B2 (en) * 2000-03-09 2004-12-28 Northeastern University Electrostatic discharge protection for eletrostatically actuated microrelays
US6624730B2 (en) * 2000-03-28 2003-09-23 Tini Alloy Company Thin film shape memory alloy actuated microrelay
US6587021B1 (en) * 2000-11-09 2003-07-01 Raytheon Company Micro-relay contact structure for RF applications
US6621390B2 (en) * 2001-02-28 2003-09-16 Samsung Electronics Co., Ltd. Electrostatically-actuated capacitive MEMS (micro electro mechanical system) switch
JP2003031094A (ja) 2001-07-16 2003-01-31 Nec Tokin Ceramics Corp リードスイッチ
DE60312476T2 (de) * 2002-01-16 2007-06-28 Matsushita Electric Industrial Co., Ltd., Kadoma Mikro-elektromechanische vorrichtung
US7215229B2 (en) * 2003-09-17 2007-05-08 Schneider Electric Industries Sas Laminated relays with multiple flexible contacts
JP2008243450A (ja) * 2007-03-26 2008-10-09 Oki Sensor Device Corp 接点機構デバイス、接点機構デバイスの製造方法
FR2926922B1 (fr) 2008-01-30 2010-02-19 Schneider Electric Ind Sas Dispositif de commande a double mode d'actionnement
CN102067262B (zh) 2008-03-20 2013-11-27 Ht微量分析有限公司 集成簧片开关
US8174342B2 (en) * 2009-01-05 2012-05-08 Stmicroelectronics Nv Microelectromechanical system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN102610437A (zh) 2012-07-25
EP2479767A1 (fr) 2012-07-25
US8531257B2 (en) 2013-09-10
FR2970596A1 (fr) 2012-07-20
FR2970596B1 (fr) 2013-02-08
US20120182100A1 (en) 2012-07-19
CN102610437B (zh) 2014-09-24

Similar Documents

Publication Publication Date Title
EP1993138B1 (fr) Dispositif à transistor à canal contraint
EP2018571B1 (fr) Dispositif sensible a un mouvement comportant au moins un transistor
EP1869712B1 (fr) Structure et procede de realisation d&#39;un dispositif microelectronique dote d&#39;un ou plusieurs fils quantiques aptes a former un canal ou plusieurs canaux de transistors
EP0780858B1 (fr) Dispositif miniature pour exécuter une fonction prédeterminée,notamment microrelais
FR3086456A1 (fr) Procede de realisation de transistors superposes
EP1905734B1 (fr) Procédé de réalisation d&#39;un composant éléctromécanique sur un substrat plan
EP1890958B1 (fr) Composant micromécanique avec des éléments actifs, et procédé de réalisation d&#39;un tel composant
WO2018142052A1 (fr) Structure pour application radiofréquence
FR2996057A1 (fr) Composant microelectronique et son procede de realisation
EP2154635A1 (fr) Dispositif de détection d&#39;une attaque d&#39;un circuit intégré
EP1705151A1 (fr) Microsystème électromécanique comprenant une poutre se déformant par flexion
FR3120622A1 (fr) Commutateur MEMS à commande électrique et son procédé de réalisation
WO1998053483A1 (fr) Procede de fabrication d&#39;un micro-capteur en silicium usine
EP2014611B1 (fr) Transistor MOS à grille suspendue et à fonctionnement non-volatile par actionnement piézoélectrique et son procédé de fabrication
EP1444779B1 (fr) Resonateur micro-electro-mecanique a entrefer lateral ajustable et procede de reglage du meme
EP2479767B1 (fr) Contacteur et interrupteur
EP2472624B1 (fr) Procédé de gravure d&#39;un dispositif microélectronique à mémoire programmable
EP2296157B1 (fr) Actionneur électromécanique à électrodes interdigitées
WO2003001548A1 (fr) Actionneur magnetique a temps de reponse reduit
WO2002001706A1 (fr) Microcomposant electronique, capteur et actionneur incorporant un tel microcomposant
EP2597655B1 (fr) Procédé de réalisation d&#39;un dispositif comportant plusieurs blocs magnétiques aimantés selon des directions différentes
EP2472542A1 (fr) Procédé de fabrication d&#39;un micro-contacteur actionnable par un champ magnétique
EP2673816B1 (fr) Dispositif microelectromecanique avec structure d&#39;actionnement piezoelectrique
WO2022175618A1 (fr) Dispositif pyroelectrique comprenant un substrat a couche superficielle pyroelectrique et procede de realisation
FR3018389A1 (fr) Procede de fabrication de lamelles bistables de courbures differentes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20121227

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170524

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 930770

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012037492

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 930770

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171221

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180111

Year of fee payment: 7

Ref country code: GB

Payment date: 20180117

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180120

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180131

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012037492

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

26N No opposition filed

Effective date: 20180621

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180117

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012037492

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120117

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170920

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170920