EP2479354B1 - Un module formant rupteur de pont thermique équipé avec un profilé d'une forme de Z - Google Patents
Un module formant rupteur de pont thermique équipé avec un profilé d'une forme de Z Download PDFInfo
- Publication number
- EP2479354B1 EP2479354B1 EP12151948.2A EP12151948A EP2479354B1 EP 2479354 B1 EP2479354 B1 EP 2479354B1 EP 12151948 A EP12151948 A EP 12151948A EP 2479354 B1 EP2479354 B1 EP 2479354B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wall
- module
- module according
- front wall
- profile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010276 construction Methods 0.000 claims description 26
- 239000011810 insulating material Substances 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 18
- 239000002131 composite material Substances 0.000 claims description 5
- 239000004033 plastic Substances 0.000 claims description 5
- 229920003023 plastic Polymers 0.000 claims description 5
- 239000011150 reinforced concrete Substances 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 230000002459 sustained effect Effects 0.000 claims 2
- 238000009408 flooring Methods 0.000 claims 1
- 230000002787 reinforcement Effects 0.000 description 25
- 238000009413 insulation Methods 0.000 description 14
- 230000005540 biological transmission Effects 0.000 description 5
- 238000009415 formwork Methods 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 239000011153 ceramic matrix composite Substances 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000011490 mineral wool Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000004567 concrete Substances 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000005431 greenhouse gas Substances 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000002905 metal composite material Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009422 external insulation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011156 metal matrix composite Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009418 renovation Methods 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/003—Balconies; Decks
- E04B1/0038—Anchoring devices specially adapted therefor with means for preventing cold bridging
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B2001/7679—Means preventing cold bridging at the junction of an exterior wall with an interior wall or a floor
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/16—Load-carrying floor structures wholly or partly cast or similarly formed in situ
- E04B5/32—Floor structures wholly cast in situ with or without form units or reinforcements
- E04B2005/322—Floor structures wholly cast in situ with or without form units or reinforcements with permanent forms for the floor edges
Definitions
- the field of the invention is that of earthquake-resistant construction, in particular the earthquake resistant construction of reinforced concrete buildings cast in situ.
- the invention relates more specifically to modules according to claim 1 forming a thermal bridge breaker at the junctions between a floor slab and a facade wall or between a floor slab and a balcony slab, in a material having a low conductivity thermal.
- the invention applies in particular, but not exclusively, to the construction of administrative, commercial, school, hospital, residential and office buildings.
- the RT 2005 is a continuation of the Thermal Regulation. 2000. It is applicable to new buildings in the residential and non-residential sectors whose residential building permit has been filed since 1 July 2006.
- the RT 2005 aims to reduce by 15% the energy consumption of new buildings compared with the RT 2000, constraints and performance requirements thermal reinforced. It is now up to the professionals to propose solutions to improve the energy performance of buildings in order to meet these new thermal requirements, in particular those of the 2012 Thermal Regulation.
- Improving the thermal performance of a building includes improving its thermal insulation. Although the insulation of walls and glass walls is now very efficient, there are still areas of heat loss untreated, which are the cause of overconsumption of energy.
- Thermal bridges are physical phenomena that mean that, in a part of the building, for reasons related to the material or the method of construction, thermal flows greater than those in adjacent areas exist. Such thermal bridges are formed in particular at the junction slab / facade, slit / facade and slab / balcony.
- thermal bridges are at the origin of a strong energetic loss. In general, the losses associated with thermal bridges represent 30 to 40% of the losses by the walls in a collective building. Thus, one meter of thermal bridge untreated in France is responsible for overconsumption per year of 77 kWh; 101 of fuel; that is 5 Kg of CO 2 rejected each year.
- the surface temperature inside a room of a building is greatly reduced, condensation or even mold can form at the thermal bridges, generating substantial costs of maintenance and renovation.
- thermal bridges The treatment of thermal bridges is therefore a major challenge in improving the energy performance of new buildings.
- Horizontal thermal bridge breakers composed of a rock wool insulation 40 or 60 mm thick (according to the thermal requirements), crossed by a network of corrosion resistant reinforcement, distributed and arranged in lattice, are known in particular. to take all the solicitations applied.
- the insulation on one of these faces is provided with a PVC profile.
- Horizontal thermal bridge breakers are also known, composed of a rock wool insulation combined with a polyurethane hard foam of variable thickness depending on the thermal requirements, traversed by a network of corrosion-resistant reinforcements, distributed and arranged in accordance with the invention. lattice to take all the applied solicitations.
- thermal breakers are composed of a polystyrene hard foam insulation of variable thickness depending on the thermal requirements, crossed by a network of corrosion resistant reinforcement, distributed and arranged in lattice to take the whole. applied solicitations.
- thermal bridge breakers may be provided on at least one of their faces with a fire protection profile or a fireproof plate.
- thermal breakers are provided with rigid plates passing through the insulating material, such plates are intended to improve the resistance to shear.
- WO00 / 47834A1 , DE19543768 and CH701351 thus disclose different types of thermal bridge breakers incorporating an insulator and metal frames.
- thermal bridge breakers are an important source of loss. Indeed, the stop and the resumption of the pouring of the veil generates at the level of the sails of facade, in particular at the level of the chaining of floor, a lack of homogeneity at the origin of fissures even a defect in the behavior of the supported elements and / or contiguous.
- thermal bridge switches for seismic zone constructions is also not in accordance with the requirements of seismic construction standards.
- These building standards constitute a set of rules to be applied to buildings to ensure their resistance to an earthquake of intensity less than or equal to the nominal intensity set by law. In France, the earthquake-resistant construction must guarantee the resistance of the buildings to an earthquake of intensity 7 to 8 on the MSK scale.
- professionals include in buildings one or more additional devices intended to limit the response of buildings to the earthquake.
- additional devices intended to limit the response of buildings to the earthquake.
- anti-seismic support devices bracing elements, counterweight devices, seismic joints, etc.
- the object of the invention is to propose a module forming a thermal bridge breaker for a floor of a reinforced concrete construction:
- the invention also aims to provide such a module whose manufacture is easy and inexpensive.
- Another object of the invention is to provide a thermal bridge breaker equipped with such a profile meeting the ever-increasing requirements of the regulations concerning the thermal properties and structural strength of such breakers.
- An object of the invention is to provide a thermal bridge breaker whose implementation compared to the thermal bridge breakers of the prior art allows to obtain a higher earthquake resistance.
- Another object of the invention in at least one of its embodiments, is in particular to provide such a breaker that allows to improve the thermal performance of new constructions.
- Another object of the invention in at least one of its embodiments, is to provide such a breaker that reduces the loss of new constructions.
- the profile has a Z-shape integrating two horizontal flat portions connected by an oblique planar portion, the horizontal flat portions being intended to transmit the stresses having a vertical component undergone by the module and the oblique planar portion being intended to transmit the stresses having a horizontal component undergone by the module. It is made of a ceramic matrix composite material or metal, said composite material having a thermal conductivity lower than that of the metal.
- the module according to the invention is thus able to transmit and dissipate the stresses of a physical phenomenon having multidirectional, horizontal and / or vertical components, as is the case in particular with the stresses generated at the level of the buildings by a seismic jolt. .
- the Z shape of the profile optimizes the transmission of structural stresses and also has the advantage of being easily manufactured.
- CMC ceramic matrix
- metal composite material having a thermal conductivity lower than that of the metal to produce the profile makes it possible not to significantly degrade the thermal insulation performance of thermal switches equipped with such profiles.
- the material in question will therefore be chosen so that the profile can both transmit the mechanical stresses, and thus fulfill its seismic role, and limit as much as possible the conduction of heat so as not to damage the thermal insulation performance of the equipped breakers. such profiles.
- CMC ceramic matrix
- the thermal conductivity of the material used for the profile must be less than that of the metal, in practice less than 15 WK 1 .m -1 .
- the oblique planar portion of the profile has at least one orifice intended to accommodate the chaining of a web or slab, or a reinforcement intended to cooperate with the chaining of a web or a web. slab.
- the profile is therefore likely to cooperate directly or indirectly with the chaining of a web and / or a slab.
- the chaining of the sail and / or slab may in particular be secured to the profile by any technique known to those skilled in the art, in particular by covering reinforcements.
- the module forming a thermal bridge breaker for a floor intended to be used in a reinforced concrete construction, said module comprises at least one block of insulating material, metal frames capable of repelling the structural stresses, and at least a profile protruding from said block of insulating material.
- Thermal deck splitter means a thermal bridge breaker capable of forming at the junction between a substantially horizontal slab and a substantially vertical façade, in particular between a floor slab or between two substantially horizontal slabs, in particular between a floor slab and a balcony slab.
- Such a thermal breaker comprises an insulating material.
- insulating material examples include rock wool, polystyrene or hard polyurethane foams.
- metal reinforcements capable of taking up structural stress
- tensile or compressive steels and sharpness profiles. These reinforcements are secured to the chaining of the web and the chaining of the slab to respectively transmit the tensile forces, the shear forces and the compressive forces.
- the metal reinforcements preferentially pass through the module to help maintain the rigidity of the slab / sail joint or slab / slab.
- the cooperation of the insulating material with said at least one seismic profiled low conductivity material according to the invention limits the heat exchange and improves the building insulation.
- Such a module equipped with seismic profiles of thermal conductivity material lower than that of the metal does not have less thermal insulation properties than those of an identical module but devoid of such profiles.
- a module according to the present invention is therefore particularly advantageous for earthquake-resistant construction, the section or profiles allowing the module of the invention to recover the stresses having horizontal and / or vertical multidirectional components, which the modules of the prior art do not have. are not able to do.
- the module according to the invention comprises at least one front wall, an insulating material, metal reinforcements capable of taking up structural stresses and at least one profile according to the invention projecting from said block of insulating material. and said front wall.
- said at least one profile passes through said block of insulating material, and said front wall, when there is one, from one side to the other.
- the profile is found in the insulating material.
- the voltages transmitted by the profile will be partly absorbed by the insulating material, thus contributing to improve the transmission and dissipation of the tensions felt by the building during a seismic shock.
- a module according to the invention advantageously comprises a kind of protective housing comprising a rear wall, an upper wall and a lower wall forming with the front wall a tube assembly of substantially square or rectangular cross section, said metal frames passing right through said tube assembly.
- the tube-shaped assembly inside which the insulating material is protected during the installation of the sail and slab courses and during the casting of the veil and the slab.
- the module according to the present invention comprises a tube assembly, the front wall being a sail side or balcony slab and the rear wall being slab side.
- a protective housing makes it possible to improve the service life and the maintenance of the insulating material in the construction. It allows in particular to keep in time the intrinsic characteristics of the insulation (dimension, humidity, ).
- such a housing makes it possible to reinforce the seismic capacities of the module.
- the front wall of said tube element of a module according to the invention is extended by an upper longitudinal edge provided in the plane of said front wall.
- the longitudinal edge thus extends the front wall upwards.
- the longitudinal bank thus constitutes a part of sayhe, which during the pouring of the sail will be taken in concrete and embedded in the veil.
- the integration of the longitudinal edge of the module into the web makes it possible to reduce the risk of cracks and to reinforce the resistance of the supported and / or contiguous elements.
- the longitudinal edge also makes it possible to define and ensure a continuous vertical alignment for the lifting of the upper panel.
- the longitudinal edge also makes it possible to define and ensure a continuous vertical alignment for the lifting of the upper panel.
- said front wall of said tube member is extended by a lower longitudinal stop provided in the plane of said front wall.
- the longitudinal stop therefore extends the front wall downwards and thus constitutes a part of herehe, which during the pouring of the veil is going to be taken in the concrete and integrated into the veil.
- the integration of the longitudinal stop of the module in the veil makes it possible to reduce the risk of cracks and to reinforce the resistance of the supported and / or contiguous elements.
- the longitudinal edge and / or the longitudinal stop may be brought and secured to the front wall during installation of the module.
- the bank and / or the abutment are not likely to be damaged.
- the bank and / or the abutment may be secured to the front wall by any technique known to those skilled in the art, particularly by welding.
- said front wall and said longitudinal bank and / or said bottom longitudinal stop form a single front plate.
- the specific profile of the housing thus allows its incorporation into a façade wall only by its front wall and its upper longitudinal edge and / or its lower longitudinal stop.
- the incorporation of the module is done directly during the casting of the sails of facade, without resumption of casting in under face of the floor.
- the junction between the floor slab and the facade veil is performed without homogeneity, the risk of cracking and defect in the holding of supported elements and / or contiguous are diminished.
- the fact that the module is incorporated in the sail only by its front wall and its upper longitudinal edge and / or its lower longitudinal stop does not lead to a thinning of the web at the thermal bridge breaker.
- the implementation of a module according to the invention unlike the breakers of the prior art, does not require the thickening of the sails to ensure the holding of the supported elements and / or contiguous or the implementation of steel steels. additional chaining.
- said front wall or said front plate is made of a plastic material having a low thermal conductivity, such as for example PVC or cellular polypropylene.
- the thermal bridges capable of forming at the level of the front wall are limited.
- the front plate constitutes a thermal barrier complementary to the insulating material.
- the thermal performance of the frame is further improved.
- said rear wall, said upper wall and said bottom wall are made in one piece.
- said rear wall, said upper wall and said bottom wall are made of a plastic material having a low thermal conductivity, such as for example PVC.
- the thermal bridges capable of forming at the level of the upper and lower rear walls are limited.
- the thermal performance of the frame is thus further improved.
- the front wall has longitudinal slots and / or orifices and / or that the rear wall has slots and / or orifices.
- the presence of such slots and / or orifices "complicates" the path of the thermal flow through the module and thus makes it possible to further improve the thermal performance of the constructions using such modules.
- the general principle of the invention is based on a Z-shaped seismic profile and made of a ceramic or metal matrix composite material having a thermal conductivity lower than that of the metal and its implementation. works in a module forming thermal breaker for floor,
- a first embodiment of a module 1 according to the invention comprises a block of insulating material 12, traversed from one side by a profile according to the invention 14 and metal frames 13.
- the profile has a Z shape with two flat horizontal portions (141) interconnected by an oblique planar portion (142).
- the horizontal plane portions (141) are intended to transmit the stresses having a vertical component undergone by the module (1) and the oblique plane portion (142) is intended to transmit the stresses having a component horizontally suffered by it.
- the profile is made of ceramic matrix composite material.
- a module (1) according to the invention comprises a tube assembly (11) of rectangular cross section traversed from one side by Z-shaped profiles (that is to say of identical shape to that of the profiles according to the first embodiment) made of ceramic matrix composite material.
- the assembly (11) has a front plate (111), a rear wall (112), an upper wall (113) and a bottom wall (114).
- the plate (111) is a plate in PVC of 3,5 mm thick. It is formed by the front wall (111) of the assembly (11), an upper longitudinal edge (116) and a lower longitudinal stop (117).
- the plate (111) is intended to be integrated in the facade web (2).
- the rear wall (112), the upper wall (113) and the lower wall (114) are made of PVC. As shown, the rear wall (112) is intended to be in contact with the floor slab (3). The upper wall (113) and the lower wall are intended to be in contact with an insulating material (21) placed on the facade web (2), on the inner side.
- the protective housing defined by the front plate (111), the rear wall (112), the top wall (113) and the bottom wall (114) accommodates an insulating material (12), rockwool, in the form of a rectangular parallelepiped of 60 mm thickness.
- the tube assembly (11) and the insulating material (12) are traversed right through by reinforcements (13). These reinforcements (13) allows the transmission of the forces and tensions exerted on the construction module (1).
- the frame (13) is made of stainless steel.
- the armature (13) is U-shaped. The legs of the armature (13) pass through the plate (111) and the rear wall (112) perpendicularly, so that the free ends of the arms ) are on the side of the floor slab (3) while the bent portion of the frame (13) is on the side of the facade web (2).
- the armature (13) is secured to the rear wall (112) at points by welding (in other embodiments, it may also use a fixation with plastic clips). It passes through the plate (111) without being secured.
- the plate (111) is secured to the rear wall (112), the upper wall (113) and the bottom wall (114) by punching.
- the reinforcements (13) cooperate with the chaining (22) of the facade web (2) by their bent part and cooperate with the chaining (31) of the floor slab (3) by their branches.
- the armatures (13) are secured to the chaining (22, 31) by overlap.
- the portions of the profiles (14) have on the oblique planar portion (142) two orifices (143) intended to accommodate an additional reinforcement intended to cooperate with the chaining of a slab or a veil.
- the implementation of such a reinforcement in the orifices (143) makes it possible to reinforce the anchoring in the concrete mass of the profile (14) and to oppose the phenomenon of loosening of the profile (14).
- the armature-profiled assembly is a ductile assembly, that is to say that has a slow response to deformation, reducing the risk of frank and rapid rupture of the profile and the module according to the invention.
- the tube assembly (11) and the insulating material (12) are traversed from one side by two reinforcements (13, 13 ') and seismic profiles (14) having the same shape as those used in the first and second embodiments and formed in the same material.
- the reinforcements (13, 13 ') allow the transmission of the forces and tensions exerted on the construction to the module (1).
- the frames (13, 13 ') are made of stainless steel. As shown, the reinforcements (13, 13 ') have a U-shape.
- the arms (131, 132) of the armature (13) pass through the plate (111) and the rear wall (12) perpendicularly, so that the free ends of the branches (131, 132) are on the side of the floor slab (3) while the bent portion (133) of the frame (13) is on the side of the balcony slab (2).
- the branches (131 ', 132') of the frame (13 ') pass through the plate (111) and the rear wall (12) with a slight inclination, so that the free ends of the legs (131', 132 ') are on the side of the floor slab (3 ') while the bent portion (133') of the frame (13 ') is on the side of the facade web (2').
- the reinforcements (13, 13 ') are joined by welding to the rear wall (112) at crossing points.
- the reinforcements (13, 13 ') are intended to cooperate with the chaining (22) of a balcony slab by their bent part (133) and to cooperate with the chaining (31) of a floor slab by their branches ( 131, 132, 131 ', 132').
- the plate (111) is constituted by the front wall of the assembly (11) and a lower longitudinal stop (117).
- the plate (111) is intended to be in contact with the balcony slab.
- the rear wall (112) is intended to be in contact with the floor slab (3).
- modules according to the invention does not involve resumption of the casting of the web under the face of the floor and therefore reinforces the rigidity of the slab / sail junction, reduces the risk of cracks and strengthens the strength of supported and / or contiguous elements.
- modules according to the invention does not involve any modification or reduction or discontinuity of the rebar reinforcement at the edge of the floor.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Building Environments (AREA)
Description
- Le domaine de l'invention est celui de la construction parasismique, notamment la construction parasismique de bâtiments en béton armé coulé in situ.
- L'invention concerne plus précisément des modules selon la revendication 1 formant rupteur de pont thermique au niveau des jonctions entre une dalle de plancher et un voile de façade ou entre une dalle de plancher et une dalle de balcon, en un matériau présentant une faible conductivité thermique.
- L'invention s'applique notamment, mais non exclusivement, à la construction de bâtiments administratifs, commerciaux, scolaires, hospitaliers, d'habitation, de bureaux.
- Face au défi majeur du changement climatique, la France a pris des engagements ambitieux en signant le protocole de Kyoto entré en application depuis février 2005 : le gouvernement s'est engagé à ramener les émissions de gaz à effet de serre moyennes de la période 2008 à 2012, au niveau de celles de 1990.
- En France, le secteur du bâtiment est le plus gros consommateur d'énergie avec 70 millions de tonnes d'équivalent pétrole, soit plus de 40 % des consommations énergétiques nationales. Cette consommation entraîne l'émission de 120 millions de tonnes de CO2, soit près de 25 % des émissions de CO2 nationales.
- Afin de préserver l'environnement et réduire les émissions de gaz à effet de serre, il est devenu primordial de diminuer les consommations d'énergie dans le secteur du bâtiment. C'est l'objectif de la Loi d'Orientation sur l'Énergie, votée en 2005, et dans laquelle s'intègre la Réglementation Thermique de 2005, la RT 2005. La RT 2005 s'inscrit dans la continuité de la Réglementation Thermique de 2000. Elle est applicable aux bâtiments neufs des secteurs résidentiel et non résidentiel dont le permis de construire a été déposé depuis le 1er juillet 2006. Cette RT 2005 a pour objectif de réduire de 15 % les consommations d'énergie des bâtiments neufs par rapport à la RT 2000, avec des contraintes et des exigences de performance thermique renforcées. Il incombe désormais aux professionnels de proposer des solutions pour améliorer la performance énergétique des bâtiments afin de répondre à ces nouvelles exigences thermiques notamment celles de la Réglementation Thermique de 2012. Cette réglementation, votée fin 2010, renforce les dispositions de la RT 2005. Elle s'applique aux constructions neuves ou à rénover et imposent des seuils maximums stricts à ne pas dépasser en termes de consommation énergétique (moins de 50 kWh/m2/an).
- L'amélioration de la performance thermique d'un bâtiment passe notamment par l'amélioration de son isolation thermique. Si l'isolation des murs et des parois vitrées est aujourd'hui très performante, il reste cependant des zones de déperdition thermique non traitées, qui sont à l'origine d'une surconsommation d'énergie.
- En France, les professionnels de la construction, qu'elle soit résidentielle ou tertiaire, privilégient l'isolation des bâtiments par l'intérieur. Cette technique, plus largement utilisée en France que l'isolation extérieure a l'inconvénient de laisser de nombreuses zones de point faible appelées ponts thermiques.
- Les ponts thermiques sont des phénomènes physiques qui signifient que, dans une partie du bâtiment, pour des raisons liées au matériau ou au mode de construction, des flux thermiques plus importants que dans les zones adjacentes existent. De tels ponts thermiques sont formés notamment au niveau des jonctions dalle/façade, refend/façade et dalle/balcon.
- Ces ponts thermiques sont à l'origine d'une forte déperdition énergétique. De manière générale, les déperditions liées aux ponts thermiques représentent 30 à 40 % des déperditions par les parois dans un bâtiment collectif. Ainsi, un mètre de pont thermique non traité en France est responsable d'une surconsommation par an de 77 kWh ; de 101 de fuel ; soit 5 Kg de CO2 rejetés supplémentaires par an.
- Par ailleurs, la température de surface à l'intérieur d'une pièce d'un bâtiment est fortement réduite, de la condensation voire des moisissures peuvent se former au niveau des ponts thermiques, engendrant des coûts substantiels d'entretien et de rénovation.
- Le traitement des ponts thermiques représente donc un enjeu majeur dans l'amélioration de la performance énergétique des constructions nouvelles.
- Les professionnels ont donc développé des systèmes de rupteur de pont thermique horizontaux (dalle/façade) et verticaux (refend/façade).
- On connaît notamment des rupteurs de pont thermique horizontaux composés d'un isolant en laine de roche de 40 ou 60 mm d'épaisseur (suivant les exigences thermiques), traversé par un réseau d'armatures résistantes à la corrosion, réparties et disposées en treillis pour reprendre l'ensemble des sollicitations appliquées. L'isolant, sur une de ces faces, est pourvu d'un profil en PVC.
- On connaît également des rupteurs de pont thermique horizontaux composés d'un isolant en laine de roche associé à une mousse dure en polyuréthane d'épaisseur variable selon les exigences thermiques, traversé par un réseau d'armatures résistantes à la corrosion, réparties et disposées en treillis pour reprendre l'ensemble des sollicitations appliquées.
- D'autres rupteurs de pont thermique horizontaux sont composés d'un isolant en mousse dure de polystyrène d'épaisseur variable selon les exigences thermiques, traversé par un réseau d'armatures résistantes à la corrosion, réparties et disposées en treillis pour reprendre l'ensemble des sollicitations appliquées. De tels rupteurs de pont thermique peuvent être pourvus sur au moins une de leurs faces d'un profilé de recouvrement anti-feu ou d'une plaque anti-feu.
- D'autres rupteurs de pont thermique horizontaux sont pourvus de plaques rigides traversant le matériau isolant, de telles plaques sont destinées à améliorer la résistance à l'effort tranchant.
WO00/47834A1 DE19543768 etCH701351 - Or, les professionnels de la construction constatent au quotidien que la mise en oeuvre de ces rupteurs de pont thermique est une source de sinistralité importante. En effet, l'arrêt puis la reprise du coulage du voile génère au niveau des voiles de façade, notamment au niveau du chaînage de plancher, un défaut d'homogénéité à l'origine de fissurations voire un défaut dans la tenue des éléments supportés et/ou contigus.
- La mise en oeuvre de tels rupteurs de pont thermique pour des constructions en zone sismique n'est par ailleurs pas en accord avec les exigences des normes de construction parasismique. Ces normes de construction constituent un ensemble de règles à appliquer aux bâtiments pour garantir leur résistance à un séisme d'intensité inférieure ou égale à l'intensité nominale fixée par la loi. En France, la construction parasismique doit garantir une résistance des bâtiments à un séisme d'intensité 7 à 8 sur l'échelle MSK.
- Ainsi afin de répondre à ses exigences parasismiques, les professionnels intègrent aux bâtiments un ou plusieurs dispositifs supplémentaires destinés à, limiter la réponse des bâtiments au séisme. On peut citer par exemple les dispositifs d'appuis antisismiques, les éléments de contreventement, les dispositifs de contrepoids, les joints parasismiques, ....
- Toutefois, jusqu'à présent, il n'existe pas, à la connaissance de la demanderesse, de rupteur de pont thermique doté de moyens leur permettant de répondre à l'ensemble de ces exigences de solidité des constructions et du respect des normes sismiques et environnementales.
- Il existe donc un besoin pour des rupteurs de pont thermique adaptés dans des constructions en béton armé parasismiques.
- L'invention a pour objectif de proposer un module formant rupteur de pont thermique pour plancher d'une construction en béton armé:
- L'invention a également pour objectif de proposer un tel module dont la fabrication est facile et peu onéreuse.
- Egalement un objectif de l'invention est de fournir un rupteur de pont thermique équipé d'un tel profilé répondant aux exigences de plus en plus élevées des réglementations concernant les propriétés thermiques et de résistance structurelle de tels rupteurs.
- Un objectif de l'invention est de fournir un rupteur de pont thermique dont la mise en oeuvre par rapport aux rupteurs de pont thermique de l'art antérieur permet d'obtenir une résistance au séisme supérieure.
- Un autre objectif de l'invention, dans au moins un de ses modes de réalisation, est notamment de fournir un tel rupteur qui permette d'améliorer la performance thermique des nouvelles constructions.
- Un autre objectif de l'invention, dans au moins un de ses modes de réalisation, est de fournir un tel rupteur qui permette de réduire la sinistralité des nouvelles constructions.
- Ces objectifs, ainsi que d'autres qui apparaîtront par la suite sont atteints à l'aide d'un module selon la revendication 1.
- Le profilé présente une forme de Z intégrant deux parties planes horizontales reliées par une partie plane oblique, les parties planes horizontales étant destinées à transmettre les sollicitations ayant une composante verticale subies par le module et la partie plane oblique étant destinée à transmettre les sollicitations ayant une composante horizontale subies par le module. Il est réalisé en un matériau composite à matrice céramique ou métallique, ledit matériau composite présentant une conductivité thermique inférieure à celle du métal.
- Le module selon l'invention est ainsi apte à transmettre et à dissiper les sollicitations d'un phénomène physique ayant des composantes multidirectionnelles, horizontales et/ou verticales, comme c'est le cas notamment des sollicitations générées au niveau des bâtiments par une secousse sismique.
- La forme de Z du profilé permet d'optimiser la transmission des sollicitations structurelles et présente aussi l'avantage de pouvoir être facilement fabriquée.
- L'utilisation d'un matériau composite à matrice céramique (CMC) ou métallique présentant une conductivité thermique inférieure à celle du métal pour réaliser le profilé permet de ne pas dégrader de façon significative les performances d'isolation thermique des rupteurs thermiques équipés de tels profilés.
- Le matériau en question sera donc choisi pour que le profilé puisse à la fois transmettre les sollicitations mécaniques, et ainsi remplir son rôle parasismique, et limiter au maximum la conduction de la chaleur afin de ne pas détériorer les performances d'isolation thermique des rupteurs équipés de tels profilés.
- On entend par « conductivité thermique » d'un matériau la grandeur physique caractérisant son comportement lors du transfert thermique par conduction. Elle représente la quantité de chaleur transférée par unité de surface et par une unité de temps sous un gradient de température de 1 degré par mètre. Cette grandeur répond à la loi :
- La mise en oeuvre d'un profilé en matériau composite à matrice céramique (CMC) ou métallique présente l'avantage de limiter grandement les échanges thermiques, répondant ainsi aux objectifs posés par la norme RT2012 et le Grenelle Environnement.
- Selon l'invention, la conductivité thermique du matériau utilisé pour le profilé doit être inférieure à celle du métal, soit en pratique inférieure à 15 W.K1.m-1.
- Selon un mode de réalisation avantageux, la parte plane oblique du profilé présente au moins un orifice destiné à accueillir les chaînages d'un voile ou d'une dalle, ou une armature destinée à coopérer avec les chaînages d'un voile ou d'une dalle.
- Le profilé est donc susceptible de coopérer directement ou indirectement avec les chaînages d'un voile et/ou d'une dalle. Les chaînages de voile et/ou de dalle pourront notamment être solidarisés au profilé par toute technique connue de l'Homme du métier, notamment par recouvrement d'armatures.
- Une telle coopération entre le profilé et les chaînages d'un voile et/ou d'une dalle permet de manière extrêmement simple et peu coûteuse d'augmenter la résistance mécanique du bâtiment et d'améliorer davantage la transmission et la dissipation des tensions verticales et horizontales ressenties par le bâtiment lors d'une secousse sismique.
- Selon l'invention module formant rupteur de pont thermique pour plancher destiné à être mis en oeuvre dans une construction en béton armé, ledit module comprend au moins un bloc de matériau isolant, des armatures métalliques aptes à rependre les sollicitations de structure, et au moins un profilé faisant saillie dudit bloc de matériau isolant.
- On entend par « rupteur de pont thermique pour plancher » un rupteur de pont thermique susceptible de se former à la jonction entre une dalle essentiellement horizontale et un voile de façade essentiellement vertical, notamment entre une dalle de plancher ou entre deux dalles essentiellement horizontales, notamment entre une dalle de plancher et une dalle de balcon.
- Un tel rupteur de pont thermique comprend un matériau isolant.
- À titre d'exemples de matériau isolant, on peut citer la laine de roche, le polystyrène ou les mousses dures de polyuréthane.
- On entend par « armatures métalliques aptes à reprendre les sollicitations de structure», les aciers en traction ou en compression et les profilés pour efforts tranchants. Ces armatures sont solidarisées au chaînage du voile et au chaînage de la dalle pour respectivement transmettre les efforts de traction, les efforts de cisaillement et les efforts de compression.
- Les armatures métalliques traversent préférentiellement de part en part le module afin d'aider au maintien de la rigidité de la jonction dalle/voile ou dalle/dalle.
- La coopération du matériau isolant avec ledit au moins un profilé parasismique en matériau faiblement conducteur selon l'invention permet de limiter les échanges thermiques et améliore l'isolation du bâtiment. Un tel module équipé de profilés parasismique en matériau de conductivité thermique inférieure à celle du métal ne présente pas de propriétés d'isolation thermique moindres que celles d'un module identique mais dépourvu de tels profilés.
- La présence des profilés selon l'invention et conjointement des armatures métalliques permet d'absorber efficacement les contraintes mécaniques exercées sur le profilé en cas de séisme.
- Un module selon la présente invention est donc particulièrement intéressant pour la construction parasismique, le ou les profilés permettant au module de l'invention de reprendre les sollicitations ayant des composantes multidirectionnelles horizontales et/ou verticales, ce que les modules de l'art antérieur ne sont pas capables de faire.
- Selon un mode de réalisation avantageux, le module selon l'invention comprend au moins une paroi avant, un matériau isolant, des armatures métalliques aptes à reprendre les sollicitations de structure et au moins un profilé selon l'invention faisant saillie dudit bloc de matériau isolant et ladite paroi avant.
- Selon une variante préférentielle, ledit au moins un profilé traverse ledit bloc de matériau isolant, et ladite paroi avant lorsqu'il en existe une, de part en part.
- Selon cette variante, la majeure partie du profilé se retrouve pris dans le matériau isolant. Ainsi les tensions transmises par le profilé vont être en partie absorbée par le matériau isolant, contribuant ainsi à améliorer la transmission et la dissipation des tensions ressenties par le bâtiment au cours d'une secousse sismique.
- Selon une autre mode de réalisation, un module selon l'invention comprend avantageusement une sorte de boîtier protecteur comprenant une paroi arrière, une paroi supérieure et une paroi inférieure formant avec la paroi avant un ensemble formant tube de section transversale essentiellement carrée ou rectangulaire, lesdites armatures métalliques traversant de part en part ledit ensemble formant tube.
- L'ensemble forme tube à l'intérieur duquel le matériau isolant est protégé lors de la pose des chaînages de voile et de dalle et au cours du coulage du voile et de la dalle. Le module selon la présente invention comprend un ensemble formant tube, la paroi avant étant côté voile ou dalle de balcon et la paroi arrière étant côté dalle de plancher. Un tel boîtier protecteur permet d'améliorer la durée de vie et le maintien du matériau isolant dans la construction. Il permet notamment de conserver dans le temps les caractéristiques intrinsèques de l'isolant (dimension, humidité, ...).
- Par ailleurs un tel boîtier permet de renforcer les capacités parasismiques du module.
- Selon une variante intéressante, la paroi avant dudit élément formant tube d'un module selon l'invention est prolongée par une rive longitudinale supérieure prévue dans le plan de ladite paroi avant.
- La rive longitudinale prolonge donc la paroi avant vers le haut. La rive longitudinale constitue ainsi une partie de banche, qui au cours du coulage du voile va être prise dans le béton et intégrée dans le voile. L'intégration de la rive longitudinale du module dans le voile permet de diminuer les risques de fissures et de renforcer la tenue des éléments supportés et/ou contigus.
- La rive longitudinale permet en outre de définir et d'assurer un alignement vertical continu pour la levée de banche supérieure. Ainsi la mise en place d'une banche supérieure ne requiert plus de contrôler l'aplomb et la continuité du montage.
- Avantageusement, ladite paroi avant dudit élément formant tube est prolongée par une butée longitudinale inférieure prévue dans le plan de ladite paroi avant.
- La butée longitudinale prolonge donc la paroi avant vers le bas et constitue ainsi une partie de banche, qui au cours du coulage du voile va être prise dans le béton et intégrée dans le voile. L'intégration de la butée longitudinale du module dans le voile permet de diminuer les risques de fissures et de renforcer la tenue des éléments supportés et/ou contigus.
- La rive longitudinale et/ou la butée longitudinale pourront être amenées et solidarisées à la paroi avant lors de la pose du module. Ainsi, lors du transport du module, la rive et/ou la butée ne risquent pas d'être endommagées.
- La rive et/ou la butée pourront être solidarisées à la paroi avant par toute technique connue de l'Homme du métier, notamment par soudure.
- Selon une variante, ladite paroi avant et ladite rive longitudinale et/ou ladite butée longitudinale inférieure forment une seule et même plaque avant.
- Le profil spécifique du boîtier permet donc son incorporation dans un voile de façade uniquement par sa paroi avant et sa rive longitudinale supérieure et/ou sa butée longitudinale inférieure.
- L'incorporation du module se fait directement lors du coulage des voiles de façade, sans reprise de coulage en sous face du plancher. La jonction entre la dalle de plancher et le voile de façade est réalisée sans défaut d'homogénéité, les risques de fissurations et de défaut dans la tenue des éléments supportés et/ou contigus sont diminués.
- D'autre part, le fait que le module soit incorporé dans le voile uniquement par sa paroi avant et sa rive longitudinale supérieure et/ou sa butée longitudinale inférieure ne conduit pas à un amincissement du voile au niveau du rupteur de pont thermique. La mise en oeuvre d'un module selon l'invention, contrairement aux rupteurs de l'art antérieur, ne nécessite pas l'épaississement des voiles pour assurer la tenue des éléments supportés et/ou contigus ni la mise en oeuvre d'aciers de chaînage supplémentaires.
- Selon une autre variante, ladite paroi avant ou ladite plaque avant est réalisée en un matériau plastique présentant une faible conductivité thermique, tels que par exemple du PVC ou encore du polypropylène alvéolaire.
- Selon cette variante, les ponts thermiques susceptibles de se former au niveau de la paroi avant sont limités. La plaque avant constitue une barrière thermique complémentaire du matériau isolant. La performance thermique du bâti est davantage améliorée.
- Avantageusement, ladite paroi arrière, ladite paroi supérieure et ladite paroi inférieure sont constituées monobloc.
- On entend par « monobloc » que la paroi arrière, la paroi supérieure et la paroi inférieure sont formées par une seule pièce, sans mise en oeuvre d'éléments de jonction ou de jonction de type soudure.
- Préférentiellement, ladite paroi arrière, ladite paroi supérieure et ladite paroi inférieure sont réalisés en un matériau plastique présentant une faible conductivité thermique, tels que par exemple du PVC.
- Selon cette variante, les ponts thermiques susceptibles de se former au niveau des parois arrière supérieure et inférieure sont limités. La performance thermique du bâti est ainsi encore améliorée.
- En outre, il pourra être envisagé, pour limiter davantage le flux thermique traversant le module, que la paroi avant présente des fentes longitudinales et/ou des orifices et/ou que la paroi arrière présente des fentes et/ou des orifices. La présence de telles fentes et/ou orifices « compliquent » le parcours du flux thermique au travers du module et permet ainsi d'améliorer davantage la performance thermique des constructions mettant en oeuvre de tels modules.
- Enfin, on notera aussi qu'il pourra être envisagé de prévoir des armatures métalliques recouvertes d'un matériau composite isolant afin d'améliorer encore quelque peu la performance énergétique des rupteurs thermiques selon l'invention.
- D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante de trois modes de réalisation préférentiels d'un module selon l'invention, donnés à titre de simples exemples illustratifs et non limitatifs, et des dessins annexés, parmi lesquels :
- la
figure 1 représente un premier mode de réalisation d'un module formant rupteur de pont thermique selon la présente invention ; - la
figure 2 représente un second mode de réalisation d'un module formant rupteur de pont thermique pour plancher selon la présente invention en coupe transversale; - la
figure 3 représente une vue en coupe d'une construction intégrant un module selon lafigure 2 ; - la
figure 4 représente un troisième mode de réalisation d'un module formant rupteur de pont thermique pour l'association entre plancher et balcon selon la présente invention, selon une vue en perspective ; - la
figure 5 représente une vue de dessus d'un module selon lafigure 4 . - Le principe général de l'invention repose sur la un profilé parasismique en forme de Z et réalisé en un matériau composite à matrice céramique ou métallique présentant une conductivité thermique inférieure à celle du métal et à sa mise en oeuvre dans un module formant rupteur thermique pour plancher,
- La mise en oeuvre d'un tel profilé sur un module formant rupteur de pont thermique permet d'obtenir un module plus adapté pour être mis en oeuvre dans des constructions parasismiques.
- En outre un tel profilé mis en oeuvre sur un module formant rupteur de pont thermique permet de manière extrêmement simple et peu onéreuse d'améliorer la performance parasismique des nouvelles constructions et de réduire la sinistralité des nouvelles constructions.
- Tel que cela est représenté sur la
figure 1 , un premier mode de réalisation d'un module 1 selon l'invention comprend un bloc de matériau isolant 12, traversé de part en part par un profilé selon l'invention 14 et des armatures métalliques 13. Le profilé présente une forme de Z avec deux parties planes horizontales (141) reliées entre elles par une partie plane oblique (142). - Les partie(s) plane(s) horizontale(s) (141) sont destinées à transmettre les sollicitations ayant une composante verticale subies par le module (1) et la partie plane oblique (142) est destinée à transmettre les sollicitations ayant une composante horizontale subies par celui-ci.
- Dans ce mode de réalisation, le profilé est réalisé en matériau composite à matrice céramique.
- Dans le deuxième mode de réalisation représenté aux
figures 2 et3 un module (1) selon l'invention comprend un ensemble formant tube (11) de section transversale rectangulaire traversé de part en part par des profilés en forme de Z (c'est-à-dire de forme identique à celle des profilés selon le premier mode de réalisation) réalisés en matériau composite à matrice céramique. L'ensemble (11) présente une plaque avant (111), une paroi arrière (112), une paroi supérieure (113) et une paroi inférieure (114). - Dans ce deuxième mode de réalisation la plaque (111) est une plaque en PVC de 3,5 mm d'épaisseur. Elle est formée par la paroi avant (111) de l'ensemble (11), une rive longitudinale supérieure (116) et une butée longitudinale inférieure (117). La plaque (111) est destinée à être intégrée dans le voile de façade (2).
- La paroi arrière (112), la paroi supérieure (113) et la paroi inférieure (114) sont constituées monobloc en PVC . Tel que cela est représenté, la paroi arrière (112) est destinée à être en contact avec la dalle de plancher (3). La paroi supérieure (113) et la paroi inférieure sont destinées à être en contact avec un matériau isolant (21) mis en place sur le voile de façade (2), du côté intérieur.
- Le boîtier protecteur défini par la plaque avant (111), la paroi arrière (112), la paroi supérieure (113) et la paroi inférieure (114) accueille un matériau isolant (12), de la laine de roche, sous la forme d'un parallélépipède rectangle de 60 mm d'épaisseur.
- Tel que cela est représenté en
figure 3 , l'ensemble formant tube (11) et le matériau isolant (12) sont traversés de part en part par des armatures (13). Ces armatures (13) permet la transmission des forces et tensions qui s'exercent sur la construction au module (1). L'armature (13) est en acier inox. Tel que cela est représenté, l'armature (13) a une forme en U. Les branches de l'armature (13) traversent la plaque (111) et la paroi arrière (112) perpendiculairement, de sorte que les extrémités libres des branches) se trouvent du côté de la dalle de plancher (3) tandis que la partie coudée de l'armature (13) se trouve du côté du voile de façade (2). L'armature (13) est solidarisée à la paroi arrière (112) au niveau de points de par soudure (dans d'autres modes de réalisation, on pourra aussi utiliser une fixation grâce à des clips en matière plastique). Elle traverse la plaque (111) sans y être solidarisée. La plaque (111) est solidarisée à la paroi arrière (112), à la paroi supérieure (113) et à la paroi inférieure (114) par poinçonnage. - Les armatures (13) coopèrent avec le chaînage (22) du voile de façade (2) par leur partie coudée et coopèrent avec le chaînage (31) de la dalle de plancher (3) par leurs branches. Les armatures (13) sont solidarisées aux chaînages (22, 31) par recouvrement.
- Tel que cela est représenté en
figures 2 et3 , les parties des profilés (14) présentent sur la partie plane oblique (142) deux orifices (143) destinés à accueillir une armature supplémentaire destinée à coopérer avec le chaînage d'une dalle ou d'un voile. La mise en oeuvre d'une telle armature dans les orifices (143) permet de renforcer l'ancrage dans la masse béton du profilé (14) et de s'opposer au phénomène de déchaussement du profilé (14). - En outre l'ensemble armature-profilé constitue un ensemble ductile, c'est-à-dire qui présente une réponse lente à la déformation, diminuant les risques de rupture franche et rapide du profilé et du module selon l'invention.
- Dans un troisième mode de réalisation représenté aux
figures 4 et5 , l'ensemble formant tube (11) et le matériau isolant (12) sont traversés de part en part par deux armatures (13, 13') et des profilés parasismiques (14) ayant la même forme que ceux utilisés dans les premiers et second modes de réalisation et formés dans le même matériau. - Les armatures (13, 13') permettent la transmission des forces et tensions qui s'exercent sur la construction au module (1). Les armatures (13, 13') sont en acier inox. Tel que cela est représenté, les armatures (13, 13') ont une forme en U. Les branches (131,132) de l'armature (13) traversent la plaque (111) et la paroi arrière (12) perpendiculairement, de sorte que les extrémités libres des branches (131,132) se trouvent du côté de la dalle de plancher (3) tandis que la partie coudée (133) de l'armature (13) se trouve du côté de la dalle de balcon (2). Les branches (131', 132') de l'armature (13') traversent la plaque (111) et la paroi arrière (12) avec une légère inclinaison, de sorte que les extrémités libres des branches (131',132') se trouvent du côté de la dalle de plancher (3') tandis que la partie coudée (133') de l'armature (13') se trouve du côté du voile de façade (2'). Les armatures (13, 13') sont solidarisées par soudure à la paroi arrière (112) au niveau de points de traversée.
- Les armatures (13, 13') sont destinées à coopérer avec le chaînage (22) d'une dalle de balcon par leur partie coudée (133) et à coopérer avec le chaînage (31) d'ine dalle de plancher par leurs branches (131, 132, 131', 132').
- Dans ce troisième mode de réalisation, la plaque (111) est constituée par la paroi avant de l'ensemble (11) et une butée longitudinale inférieure (117). La plaque (111) est destinée à être en contact avec la dalle de balcon. La paroi arrière (112) est destinée à être en contact avec la dalle de plancher (3).
- La mise en oeuvre d'un rupteur thermique selon le premier mode de réalisation comprend :
- la mise en place de banches dissymétriques pour le coulage du voile de façade, la banche côté extérieur est arasée au-dessus de l'arase supérieure du plancher à couler,la banche côté intérieur est arasée en sous face du plancher à couler;
- la pose des armatures en élévation de banches ;
- la pose des modules (1) selon l'invention en tête de banche côté intérieur, la partie inférieure de chaque module (1) est positionnée et calée sur l'épaisseur de la banche grâce à un système de cale en bois. La partie avant de chaque module (1) vient en butée contre la banche côté intérieur. Les armatures (13) de chaque module (1) s'insèrent dans les cadres du chaînage vertical du voile de façade (2) et de la dalle (3). Les modules sont disposés le long du voile de façade de manière à obtenir une isolation ininterrompue ;
- la pose des chaînages horizontaux du voile de façade ;
- le coulage du voile de façade;
- le décoffrage des banches. Les modules (1) sont fixés dans le voile de façade;
- la pose du coffrage de plancher ;
- le ferraillage du plancher ;
- le coulage du plancher ;
- la mise en place des banches pour le coulage du voile supérieur.
- La mise en oeuvre d'un rupteur thermique selon le deuxième mode de réaistion comprend :
- la mise en place de banches dissymétriques pour le coulage du voile de façade, la banche côté extérieur est arasée au dessus de l'arase supérieure du plancher à couler, au niveau de la rive longitudinale supérieure (116), la banche côté intérieur est arasée en sous face du plancher à couler;
- la pose des armatures en élévation de banches ;
- la pose des modules (1) selon l'invention en tête de banche côté intérieur, la paroi inférieure (114) de chaque module (1) est positionnée et calée sur l'épaisseur de la banche grâce à un système de cale en bois. La plaque (111) de chaque module (1) vient en butée contre la banche côté intérieur et la cale en bois par sa butée longitudinale inférieure (117). Les armatures (13) de chaque module (1) s'insèrent dans les cadres du chaînage vertical du voile de façade (2) et de la dalle (3). Les modules sont disposés le long du voile de façade de manière à obtenir une isolation ininterrompue ;
- la pose des chaînages horizontaux du voile de façade ;
- le coulage du voile de façade;
- le décoffrage des banches. Les modules (1) sont fixés dans le voile de façade, la paroi supérieure, la paroi inférieure et la paroi arrière du module formant une talonnette faisant saillie du côté plancher ;
- la pose du coffrage de plancher ;
- le ferraillage du plancher ;
- le coulage du plancher ;
- la mise en place des banches pour le coulage du voile supérieur à partir de la talonnette.
- La mise en oeuvre d'un module selon le deuxième mode de réalisation diffère de celle d'un module selon le deuxième mode de réalisation en ce qu'elle implique :
- le coulage du voile séparant le plancher et le balcon ;
- la pose des coffrages de plancher et de balcon ;
- la pose d'un module selon le deuxième mode de réalisation, la butée longitudinale inférieure s'insérant entre le voile banché déjà coulé et le contre-plaqué du coffrage plancher ;
- la pose des ferraillages du plancher et du balcon ;
- le coulage du plancher et du balcon.
- Ainsi, la mise en oeuvre de modules selon l'invention n'implique pas de reprise du coulage du voile en sous face du plancher et de fait renforce la rigidité de la jonction dalle/voile, diminue les risques de fissures et renforce la tenue des éléments supportés et/ou contigus.
- Par ailleurs, la mise en oeuvre de modules selon l'invention n'implique ni de modification, ni de réduction ou de discontinuité des armatures de chaînage en rive de plancher.
- Des études comparatives sur les performances mécaniques et parasismiques des modules selon l'invention et des modules de l'art antérieur ont été réalisées.
- Les résultats obtenus mettent en évidence que les modules selon l'invention permettent de réduire d'un facteur trois les déplacements à la liaison module-plancher, par rapport à des modules de l'art antérieur, pour des sollicitations identiques.
- Les résultats obtenus montrent par ailleurs que la valeur de l'effort à appliquer pour obtenir une rupture du module selon l'invention est 30 à 50 % supérieure à la valeur de l'effort conduisant à la rupture des modules de l'art antérieur.
- Les tests de performances parasismiques montrent que les modules de l'art antérieur ne présentent pas de résistance mécanique à des efforts ayant une composante horizontale. De tels modules ne sont donc pas adaptés à résister à des secousses sismiques. En revanche, les résultats obtenus pour les modules selon l'invention mettent en évidence leur résistance mécanique face à des efforts à composantes multidirectionnelles verticales et horizontales. Cette rigidité est obtenue grâce aux profilés parasismiques selon l'invention, et par la combinaison de ces profilés avec les armatures métalliques.
Claims (13)
- Module (1) formant rupteur de pont thermique pour plancher destiné à être mis en oeuvre dans une construction en béton armé, ledit module (1) comprenant au moins un bloc de matériau isolant (12) et des armatures métalliques (13) aptes à reprendre les sollicitations de structure, de manière en ce que ledit module (1) comprend au moins un profilé (14) faisant saillie dudit bloc de matériau isolant (12), caractérise en ce que ledit profilé présentant une forme de Z intégrant deux parties planes horizontales (141) reliées par une partie plane oblique (142), les parties planes horizontales (141) étant destinées à transmettre les sollicitations ayant une composante verticale subies par le module (1) et la partie plane oblique (142) étant destinée à transmettre les sollicitations ayant une composante horizontale subies par le module (1) et ledit profilé (14) étant réalisé en un matériau composite à matrice céramique ou métallique, ledit matériau composite présentant une conductivité thermique inférieure à celle du métal.
- Module selon la revendication 1 caractérisé en ce que la partie plane oblique (142) du profilé présente au moins un orifice (143) destiné à accueillir les chaînages d'un voile ou d'une dalle ou une armature destinée à coopérer avec les chaînages d'un voile ou d'une dalle.
- Module selon la revendication 1 ou 2 caractérisé en ce qu'il comprend une paroi avant (111), au moins un bloc de matériau isolant (12) et des armatures métalliques (13) aptes à reprendre les sollicitations de structure, ledit au moins un profilé (14) faisant saillie dudit bloc de matériau isolant (12) et de ladite paroi avant (111).
- Module selon la revendication 3 caractérisé en ce que ledit au moins un profilé traverse ledit bloc de matériau isolant (12) et/ou ladite paroi avant (111).
- Module selon les revendications 3 et 4, caractérisé en ce qu'il comprend une paroi arrière (112), une paroi supérieure (113) et une paroi inférieure (114) formant avec la paroi avant (111) un ensemble formant tube (11) de section transversale essentiellement carrée ou rectangulaire, lesdites armatures métalliques (13) et lesdits profilés (14) traversant de part en part ledit ensemble formant tube (11).
- Module selon la revendications 5, caractérisé en ce que ladite paroi avant (111) dudit élément formant tube (11) est prolongée par une rive longitudinale supérieure (116) prévue dans le plan de ladite paroi avant.
- Module selon l'une quelconque des revendications 5 ou 6 caractérisé en ce que ladite paroi avant (111) dudit élément formant tube (11) est prolongée par une butée longitudinale inférieure (117) prévue dans le plan de ladite paroi avant.
- Module selon l'une quelconque des revendications 6 ou 7 caractérisé en ce que ladite paroi avant (111) et ladite rive longitudinale (116) et/ou ladite butée longitudinale inférieure (117) forment une seule et même plaque avant.
- Module selon l'une quelconque des revendications 3 à 8 caractérisé en ce que ladite paroi avant (111) ou ladite plaque avant est réalisée en un matériau plastique présentant une faible conductivité thermique.
- Module selon l'une quelconque des revendications 5 à 9 caractérisé en ce que ladite paroi arrière, ladite paroi supérieure et ladite paroi inférieure sont constituées monobloc.
- Module selon l'une quelconque des revendications 5 à 10, caractérisé en que ladite paroi arrière, ladite paroi supérieure et ladite paroi inférieure sont réalisées en un matériau plastique présentant une faible conductivité thermique.
- Module selon l'une quelconque des revendications 5 à 11 caractérisé en ce que ladite paroi avant (111) à et/ou ladite paroi arrière (112) présente des fentes et /ou des orifices.
- Module selon l'une des revendications 1 à 12 caractérisé en ce que lesdites armatures métalliques (13) sont recouvertes d'un matériau composite isolant.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1150449A FR2970722B1 (fr) | 2011-01-20 | 2011-01-20 | Profile parasismique a faible conductivite thermique et module formant rupteur de pont thermique equipe d'un tel profile. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2479354A1 EP2479354A1 (fr) | 2012-07-25 |
EP2479354B1 true EP2479354B1 (fr) | 2019-07-31 |
Family
ID=45566835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12151948.2A Active EP2479354B1 (fr) | 2011-01-20 | 2012-01-20 | Un module formant rupteur de pont thermique équipé avec un profilé d'une forme de Z |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2479354B1 (fr) |
FR (1) | FR2970722B1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2821558B1 (fr) * | 2013-07-03 | 2017-09-20 | F.J. Aschwanden AG | Composant destiné à relier deux parties de bâtiment de façon thermiquement isolée |
FR3031529B1 (fr) * | 2015-01-08 | 2017-01-13 | Keizh | Module formant rupteur de pont thermique ponctuel pour batiments isoles par l'exterieur |
FR3031528B1 (fr) * | 2015-01-08 | 2017-01-13 | Keizh | Module formant rupteur de pont thermique pour batiments isoles par l'exterieur |
EP4450723A1 (fr) * | 2023-04-19 | 2024-10-23 | Fischer Rista AG | Raccord pour éléments de construction en béton |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH701351A1 (de) * | 2009-06-24 | 2010-12-31 | Stefan Schweizer | Kragplattenanschlusselement. |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH676615A5 (fr) * | 1988-04-22 | 1991-02-15 | Bau Box Ewiag | |
DE4300181C2 (de) * | 1993-01-07 | 2001-11-29 | Schoeck Bauteile Gmbh | Bauelement zur Wärmedämmung bei Gebäuden |
DE19543768A1 (de) * | 1995-11-20 | 1997-05-22 | Frank Gmbh & Co Kg Max | Balkonanschluß |
AT408675B (de) * | 1999-02-12 | 2002-02-25 | Avi Alpenlaendische Vered | Einrichtung zum anschliessen von kragplatten an eine wand- oder deckenkonstruktion |
-
2011
- 2011-01-20 FR FR1150449A patent/FR2970722B1/fr not_active Expired - Fee Related
-
2012
- 2012-01-20 EP EP12151948.2A patent/EP2479354B1/fr active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH701351A1 (de) * | 2009-06-24 | 2010-12-31 | Stefan Schweizer | Kragplattenanschlusselement. |
Also Published As
Publication number | Publication date |
---|---|
FR2970722A1 (fr) | 2012-07-27 |
FR2970722B1 (fr) | 2015-05-01 |
EP2479354A1 (fr) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2479354B1 (fr) | Un module formant rupteur de pont thermique équipé avec un profilé d'une forme de Z | |
EP3242980B1 (fr) | Module perfectionné formant rupteur de pont thermique pour bâtiments isolés par l'extérieur | |
EP1196665B1 (fr) | Module elementaire pour la constitution d'un rupteur de pont thermique entre un mur et une dalle de beton et structure de batiment en comportant application | |
EP2920377B1 (fr) | Procédé de construction d'un bâtiment à haute isolation thermique et bâtiment construit par ce procédé | |
EP2319998B1 (fr) | Module formant rupteur de pont thermique presentant au moins un profile parasismique | |
EP0369914A1 (fr) | Procédé de solidarisation d'une masse de matière à un support fonctionnel et dispositifs ainsi obtenus | |
EP2423402B1 (fr) | Elément préfabriqué hautement isolé | |
FR3031529A1 (fr) | Module formant rupteur de pont thermique ponctuel pour batiments isoles par l'exterieur | |
EP3293318B1 (fr) | Structures composites bois-béton | |
FR2948134A1 (fr) | Profile parasismique pour la construction de rupteur de ponts thermiques | |
FR2862994A1 (fr) | Elements de structure en beton arme legers et isolants pour la construction ou la renovation d'immeubles. | |
WO2016046496A1 (fr) | Batiment a isolation thermique amelioree, procédé de construction dudit bâtiment et agrafes conçues pour la mise en œuvre dudit procede | |
EP2476822B1 (fr) | Elément de rupteur thermique destiné à être implanté à la jonction entre un mur de refend et un voile de façade d'une construction en béton armé | |
FR3130300A1 (fr) | Panneau de façade composite préfabriqué et procédé de construction d’une façade d’un bâtiment | |
FR2924451A1 (fr) | Plancher prefabrique limitant les ponts thermiques et adapte a des constructions situees en zones sismiques | |
FR3035892A1 (fr) | Assemblage de poutres et de poteaux pour construction par empilage | |
EP1528175B1 (fr) | Procédé de réalisation de façades, de toitures ou de planchers au moyen de panneaux autoportants résistants au feu | |
FR2962462A1 (fr) | Panneau isolant pour l'execution de parois de batiment et son procede de fabrication | |
FR2854416A3 (fr) | Rupteur de ponts thermiques et procede de construction de batiment comportant de tels elements | |
WO2015067909A1 (fr) | Mur isolant a structure autoporteuse appareillee | |
FR2854417A1 (fr) | Rupteur de ponts thermiques et procede de construction de batiment comportant de tels elements. | |
FR3116286A1 (fr) | Système et procédé de construction de bâtiment préfabriqué et bâtiment construit avec ce système et procédé ainsi que procédé d’isolation. | |
FR2923231A1 (fr) | Thermo planelle : planelle legere et isolante qui contribue a la resistance thermique d'un plancher en conformite avec la reglementation thermique | |
FR2976301A1 (fr) | Structure de batiment. | |
EP1585872A1 (fr) | Systeme de construction de murs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20130111 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KEIZH |
|
17Q | First examination report despatched |
Effective date: 20160708 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COHB INDUSTRIE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190308 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012062386 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1161026 Country of ref document: AT Kind code of ref document: T Effective date: 20190815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: COHB INDUSTRIE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602012062386 Country of ref document: DE Representative=s name: EISENFUEHR SPEISER PATENTANWAELTE RECHTSANWAEL, DE Ref country code: DE Ref legal event code: R081 Ref document number: 602012062386 Country of ref document: DE Owner name: COHB INDUSTRIE, FR Free format text: FORMER OWNER: COHB INDUSTRIE, SAINT-JACQUES DE LA LANDE, FR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190731 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1161026 Country of ref document: AT Kind code of ref document: T Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191202 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191031 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191031 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191130 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012062386 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191030 |
|
26N | No opposition filed |
Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190731 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230519 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240126 Year of fee payment: 13 Ref country code: GB Payment date: 20240129 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240126 Year of fee payment: 13 |