EP2319998B1 - Module formant rupteur de pont thermique presentant au moins un profile parasismique - Google Patents

Module formant rupteur de pont thermique presentant au moins un profile parasismique Download PDF

Info

Publication number
EP2319998B1
EP2319998B1 EP11151538.3A EP11151538A EP2319998B1 EP 2319998 B1 EP2319998 B1 EP 2319998B1 EP 11151538 A EP11151538 A EP 11151538A EP 2319998 B1 EP2319998 B1 EP 2319998B1
Authority
EP
European Patent Office
Prior art keywords
module
wall
front wall
profile
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11151538.3A
Other languages
German (de)
English (en)
Other versions
EP2319998A1 (fr
Inventor
Jean-Paul Legendre
Franck Palas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cohb Industrie
Original Assignee
Cohb Industrie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cohb Industrie filed Critical Cohb Industrie
Publication of EP2319998A1 publication Critical patent/EP2319998A1/fr
Application granted granted Critical
Publication of EP2319998B1 publication Critical patent/EP2319998B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing
    • E04G21/125Reinforcement continuity box
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/16Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
    • E04C5/162Connectors or means for connecting parts for reinforcements
    • E04C5/166Connectors or means for connecting parts for reinforcements the reinforcements running in different directions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7679Means preventing cold bridging at the junction of an exterior wall with an interior wall or a floor

Definitions

  • the field of the invention is that of the construction of reinforced concrete buildings, cast in situ or prefabricated, and in particular that of the insulation of the interior of such buildings.
  • the invention more specifically relates to an elementary module for the construction of thermal bridge breakers.
  • the invention applies in particular, but not exclusively, to the construction of administrative, commercial, school, hospital, residential and office buildings.
  • the RT 2005 is a continuation of the Thermal Regulation of 2000. It applies to new buildings in the residential and non-residential sectors in which the building permit was filed since 1 July 2006.
  • the RT 2005 aims to reduce the energy consumption of new buildings by 15% compared to RT 2000, with constraints and thermal performance requirements strengthened. It is now up to the professionals to propose solutions to improve the energy performance of buildings in order to meet these new thermal requirements but also to propose solutions to anticipate the requirements of the new regulations, in particular of the Thermal Regulation of 2010, which will be moreover in addition reinforced.
  • Improving the thermal performance of a building includes improving its thermal insulation. Although the insulation of walls and glass walls is now very efficient, there are still areas of heat loss untreated, which are the cause of overconsumption of energy.
  • Thermal bridges are physical phenomena that mean that, in a part of the building, for reasons related to the material or the method of construction, thermal flows greater than those in adjacent areas exist. Such thermal bridges are formed in particular at the junction slab / facade, slit / facade and slab / balcony.
  • thermal bridges are at the origin of a strong energetic loss. In general, the losses associated with thermal bridges represent 30 to 40% of the losses by the walls in a collective building. Thus, one meter of thermal bridge untreated in France is responsible for overconsumption per year of 77 kWh; 10 liters of fuel; that is 5 Kg of CO 2 rejected each year.
  • the surface temperature inside a room of a building is greatly reduced, condensation or even mold can form at the thermal bridges, generating substantial costs of maintenance and renovation.
  • thermal bridges The treatment of thermal bridges is therefore a major challenge in improving the energy performance of new buildings.
  • breakers are described in EP1892344A1 , DE19814452A1 , WO0186092A1 WO0047834A1 , FR2804793A1 .
  • Horizontal thermal bridge breakers composed of a rock wool insulation 40 or 60 mm thick (according to the thermal requirements), crossed by a network of corrosion resistant reinforcement, distributed and arranged in lattice, are known in particular. to take all the solicitations applied.
  • the insulation on one of these faces is provided with a PVC profile.
  • Horizontal thermal bridge breakers are also known, composed of a rock wool insulation combined with a polyurethane hard foam of variable thickness depending on the thermal requirements, traversed by a network of corrosion-resistant reinforcements, distributed and arranged in accordance with the invention. lattice to take all the applied solicitations.
  • thermal breakers are composed of a polystyrene hard foam insulation of variable thickness depending on the thermal requirements, crossed by a network of corrosion resistant reinforcement, distributed and arranged in lattice to take the whole. applied solicitations.
  • thermal bridge breakers may be provided on at least one of their faces with a fire protection profile or a fireproof plate.
  • thermal break switches described above can not be installed on an existing rack. These products are integrated well upstream by the architects and building designers at the time of the project.
  • the first step of casting the facade can be carried out by implementing a box so that the hardened web defined a location to allow the introduction of the breakers.
  • the resumption of the pouring of the veil is carried out under the face of the floor.
  • thermal breakers are an important source of loss. Indeed, the stop and the resumption of the pouring of the veil generates at the level of the sails of facade, in particular at the level of the chaining of the floor, a lack of homogeneity at the origin of fissures even a defect in the behavior of the supported elements and / or contiguous.
  • thermal bridge breaker consist of a profile of insulating material, especially expanded polystyrene, capable of accommodating a waiting box containing reinforcements intended to take all the applied stresses.
  • the profile / waiting box assembly is incorporated in the formwork of the facade walls against a proofhe, so that the breaker is integrated into the sail during casting.
  • breakers are compatible with the construction techniques of the structural work used in France, especially with poured concrete pouring techniques and floor poured on site or with pre-slab. Furthermore, the implementation of such breakers does not involve stopping and then resumption of casting sails.
  • the invention aims to overcome the disadvantages of the prior art.
  • an objective of the invention in at least one of its embodiments, is to provide a thermal bridge breaker whose implementation compared to the device of the prior art is more suited to structural techniques used in France.
  • Another object of the invention in at least one of its embodiments, is in particular to provide such a breaker that allows to improve the thermal performance of new constructions.
  • Another objective of the invention in at least one of its embodiments, is to provide such a breaker which makes it possible to reduce the loss of property of the new constructions, without calling into question the usual thicknesses of the facade walls.
  • a module according to claim 1 forming a thermal bridge breaker for flooring intended to be implemented in a reinforced concrete construction, said module comprising an insulating material and metal reinforcements capable of taking over. structural demands.
  • a module comprises a tube assembly of substantially square or rectangular cross-section, said tube assembly having a front wall, a back wall, a top wall and a bottom wall, said insulating material being disposed within said tube assembly and said metal frames passing right through said tube assembly.
  • the front wall of said tube member of a module is extended by an upper longitudinal edge provided in the plane of said front wall and said front wall of said tube member is extended by a lower longitudinal stop provided in the plane of said front wall.
  • thermal bridge breaker for floor means a thermal bridge breaker likely to form at the junction between a substantially horizontal slab and a substantially vertical façade veil, in particular between a floor slab or balcony and a facade veil or between two essentially horizontal slabs, in particular between a balcony slab and a floor slab.
  • Such a thermal breaker comprises an insulating material.
  • insulating material examples include rock wool, polystyrene or hard polyurethane foams.
  • reinforcements capable of taking up structural stress reinforcements such as tensile or compressive steels and sharpness profiles. These reinforcements are secured to the chaining of the web and the chaining of the slab to respectively transmit the tensile forces, the shear forces and the compressive forces.
  • metal reinforcements examples include stainless steel or ribbed duplex stainless steel. It may be envisaged to improve the corrosion resistance of metal reinforcements with a protective sheath of elastomer or composite material of low thermal conductivity.
  • the module comprises a tube assembly, the front wall being facade veil side or balcony slab side and the rear wall being slab side floor.
  • the tube assembly constitutes a kind of protective housing, inside which the insulating material is protected during the laying of sail and slab courses and during the casting of the sail and the slab.
  • a protective housing makes it possible to improve the service life and the maintenance of the insulating material in the construction. It allows in particular to keep in time the intrinsic characteristics of the insulation (dimension, humidity, ).
  • passing right through said tube assembly it is meant that the reinforcements such as tensile or compressive steels and shear profiled sections pass through the protective casing so that their projecting end can cooperate with the chaining of the web and that their end projecting slab side can cooperate with the chaining of the slab.
  • the fact that the metal frames pass right through the tube assembly helps maintain the rigidity of the slab / sail joint.
  • the front wall of said tube member of a module according to the invention is extended by an upper longitudinal edge provided in the plane of said front wall.
  • the longitudinal edge thus extends the front wall upwards.
  • the longitudinal bank is thus a part of herehe, which during the pouring of the veil is going to be taken in the concrete and integrated into the veil.
  • the integration of the longitudinal edge of the module into the web makes it possible to reduce the risk of cracks and to reinforce the resistance of the supported and / or contiguous elements.
  • the longitudinal edge also makes it possible to define and ensure a continuous vertical alignment for the lifting of the upper panel.
  • Said front wall of said tube member is extended by a lower longitudinal stop provided in the plane of said front wall.
  • the longitudinal stop therefore extends the front wall downwards and thus constitutes a part of herehe, which during the casting of the veil will be taken in the concrete and integrated into the veil.
  • the integration of the longitudinal stop of the module in the veil makes it possible to reduce the risk of cracks and to reinforce the resistance of the supported and / or contiguous elements.
  • the longitudinal edge and / or the longitudinal stop may be brought and secured to the front wall during installation of the module.
  • the bank and / or the stop will not be damaged.
  • the bank and / or the abutment may be secured to the front wall by any technique known to those skilled in the art, particularly by welding.
  • said front wall and said longitudinal bank and / or said bottom longitudinal stop form a single front plate.
  • the specific profile of the housing thus allows its incorporation into a façade wall only by its front wall and its upper longitudinal edge and / or its lower longitudinal stop.
  • the incorporation of the module is done directly during the casting of the sails of facade, without resumption of casting in under face of the floor.
  • the junction between the floor slab and the facade wall is made without homogeneity defects, the risk of cracking and defect in the holding of supported and / or contiguous elements are reduced.
  • the fact that the module is incorporated in the sail only by its front wall and its upper longitudinal edge and / or its lower longitudinal stop does not lead to a thinning of the web at the thermal bridge breaker.
  • the implementation of the module does not require the thickening of the webs to ensure the holding of the supported and / or contiguous elements, nor the implementation of additional chaining steels.
  • said front wall or said front plate, said rear wall, said upper wall and said bottom wall are made in one piece.
  • “Monobloc” means the characteristic according to which the front wall or the front plate, the rear wall, the top wall and the bottom wall are formed in one piece, without the use of joining elements.
  • the front wall or said front plate of the tube element of the module may be made of a plastic material having a low coefficient of thermal conductivity, such as for example polypropylene or PVC and the rest of the element forming tube can be made of metal and facilitates its manufacture.
  • said front wall or said front plate, said rear wall, said upper wall and said bottom wall are all made of such a plastic material having a low coefficient of thermal conductivity. This variant is more interesting because it gives lightness to the module.
  • the thermal bridges capable of forming at the level of the upper and lower walls of the module are limited.
  • the tube element then constitutes a complementary thermal barrier of the insulating material.
  • the thermal performance of the frame is further improved.
  • the module according to the invention preferably then comprises first irreversible fastening elements of the metal reinforcements to said tube element.
  • said first irreversible fastening elements are hollow inserts which pass right through said tube assembly and receive said metal reinforcements, the latter being provided with welded flanges irreversibly clipping in an upper part of said inserts.
  • the upper wall has longitudinal slots and / or that the rear wall has circular orifices.
  • the presence of such slots and / or orifices "complicates" the path of the thermal flow through the module and thus makes it possible to further improve the thermal performance of the constructions using such modules.
  • said front wall or said front plate and / or said rear plate is / are equipped with a plurality of seismic profiles projecting from the facade or balcony slab side and / or the floor slab side.
  • a seismic section has at least one horizontal flat part and at least one vertical or oblique flat part, the flat horizontal part (s) being intended to transmit the stresses having a vertical component. undergone by the module and the vertical plane or oblique part (s) being intended to transmit the stresses having a horizontal component undergone by the module.
  • the profile according to the invention is thus able to transmit and dissipate the stresses of a physical phenomenon having multidirectional components, horizontal and / or vertical, as is the case in particular of the stresses generated at the level of buildings by a seismic shock .
  • the vertical plane or oblique part (s) have at least one orifice intended to accommodate the connections of a web or slab or an armature intended to cooperate with the chaining of a veil or a slab
  • the profile is therefore likely to cooperate directly or indirectly with the chaining of a web and / or a slab.
  • the chaining of the sail and / or slab may in particular be secured to the profile by any technique known to those skilled in the art, in particular by covering reinforcements.
  • the profile has a shape of Z.
  • said profiles pass through said tube member from one side to the other.
  • This particular configuration makes it possible to reinforce the rigidity of the slab / sail joint, to reduce the risk of cracks and to reinforce the resistance of the elements supported and / or contiguous, especially during seismic jolts.
  • the profiles are brought and secured to the front wall and the rear wall during installation of the module.
  • the profiles will not be damaged.
  • the profile preferably comprises second irreversible fastening elements of said profiles to said tube member.
  • said second fastening elements pass through said front wall.
  • said longitudinal bank and / or said lower longitudinal stop is provided with longitudinal ribs.
  • Such ribs have the advantages of improving the adhesion of concrete to these elements when poured.
  • Such a breaker has the advantage of being much more suitable for applied in structural techniques used in France, compared to the breakers of the prior art.
  • a module (1) comprises a tube assembly (11) of rectangular cross-section.
  • the assembly (11) has a front plate (111), a rear wall (112), an upper wall (113) and a bottom wall (114).
  • the plate (111) is a polypropylene honeycomb plate 3.5 mm thick. It is formed by the front wall (115) of the assembly (11), an upper longitudinal edge (116) and a lower longitudinal stop (117).
  • the honeycomb plate (111) is intended to be integrated into the facade web (2).
  • the rear wall (112), the upper wall (113) and the bottom wall (114) are made of one-piece galvanized sheet 1 mm thick. As shown, the rear wall (112) is intended to be in contact with the floor slab (3). The upper wall (113) and the lower wall are intended to be in contact with an insulating material (21) placed on the facade web (2), on the inner side.
  • the protective housing defined by the front plate (111), the rear wall (112), the top wall (113) and the bottom wall (114) accommodate an insulating material (12), rockwool, in the form of a rectangular parallelepiped of 60 mm thickness.
  • the tube assembly (11) and the insulating material (12) are traversed right through by an armature (13).
  • This armature (13) allows the transmission of forces and tensions that are exerted on the construction module (1).
  • the frame (13) is made of stainless steel.
  • the armature (13) is U-shaped.
  • the arms (131,132) of the armature (13) pass through the honeycomb plate (111) and the rear wall (112). perpendicularly, so that the free ends of the legs (131,132) are on the side of the floor slab (3) while the bent portion (133) of the frame (13) is on the side of the facade web (2 ).
  • the armature (13) is secured to the rear wall (112) at crossing points (134, 135, 136, 137) by welding. It passes through the alveolar plate (111) without being secured to it.
  • the honeycomb plate (111) is secured to the rear wall (112), the upper wall (113) and the bottom wall (114) by punching.
  • the reinforcements (13) cooperate with the chaining (22) of the facade web (2) by their bent portion (133) and cooperate with the chaining (31) of the floor slab by their branches (131, 132).
  • the armatures (13) are secured to the chaining (22, 31) by overlap.
  • modules does not involve resumption of the casting of the web under the face of the floor and in fact reinforces the stiffness of the slab / sail junction, reduces the risk of cracks and strengthens the holding of supported elements and / or contiguous.
  • the implementation of the modules involves neither modification nor reduction or discontinuity of the rebar reinforcement at the edge of the floor.
  • a lower flexible plastic gasket may advantageously be provided between the module and the concrete web to prevent the milt of concrete from intruding into the module.
  • a module (1) such as that previously described in Figures 1 to 3 , may further present on the honeycomb plate (111) and on its rear wall (112) a plurality of Z-shaped profiles (14).
  • the profiles (14) are made of stainless steel and project from the front wall side and the floor slab side. In the embodiment shown, the portions of the profiles (14) protruding are secured by welding to the rear wall (112).
  • the portions of the profiles (14) have on the vertical or oblique planar portion (142) two orifices (143) capable of accommodating an additional reinforcement intended to cooperate with the chaining of a slab or a veil.
  • the implementation of such a reinforcement in the orifices (143) makes it possible to reinforce the anchoring in the concrete mass of the profile (14) and to oppose the phenomenon of loosening of the profile (14).
  • the armature-profiled assembly is a ductile assembly, that is to say that has a slow response to deformation, reducing the risk of frank and rapid rupture of the profile and the module according to the invention.
  • a second embodiment of the invention is described with reference to figures 5 , 6 , 7 and 8 .
  • the armatures (13) are made of stainless steel but the front (111), rear (112), upper (113) and lower (114) walls of the tube element (11) as well as the longitudinal bank (116) and the lower longitudinal stop (117) are made in one piece of PVC.
  • the reinforcements (13) are irreversibly fixed to the tube element (11) by means of first fastening elements (40) and the profiles (14) are also irreversibly fixed to the tube element (11). ) by means of second fixing means.
  • the bank (116) and the abutment (117) are provided with longitudinal ribs which extend over their entire length and which improves the adhesion of these elements to the concrete when poured.
  • the first fixing means (40) are in the form of a hollow plastic insert.
  • a hollow insert has a circular upper portion (41) showing latching windows (42) and a longitudinal portion (43) terminating in two arcuate portions (44) that can move elastically away from each other. one of the other and each terminated by a detent pin (45) delimiting a gutter (46).
  • each arm (131.132) of the armatures (13) is provided with a circular collar (138) to which it is welded.
  • the inserts When mounting the module the inserts are arranged on the module, then the branches (131,132) of the frames are inserted into them.
  • each collar (138) When positioning the branches (131, 132) in the hollow inserts, each collar (138) is designed to cooperate with the circular upper part (41) of a hollow insert such that the periphery of this collar irreversibly locks in the latching windows (42) thereof.
  • the branches (131, 132) separate the arcuate portions (44) of the insert and the latching lugs (45) and the gutters (46) provided in the end thereof cooperates with the rear wall (112) of the tube member (11) so that the armatures (13) are irreversibly locked in the tube member (11) making it impossible or at least very difficult the subsequent separation of the reinforcements (13) from the rest of the module and thus ensuring the use of the module with all its metal frames.
  • the second fastening means (50) for irreversibly fastening the profiles (14) to the tube member (11) is in the form of a plastic nail having a circular flat upper portion (51) and an umbrella-shaped end (53) whose limbs (54) are elastic and delimit a locking space (55).

Description

    1. Domaine de l'invention
  • Le domaine de l'invention est celui de la construction de bâtiments en béton armé, coulés in situ ou préfabriqués, et en particulier celui de l'isolation par l'intérieur de tels bâtiments.
  • L'invention concerne plus précisément un module élémentaire pour la construction de rupteurs de ponts thermiques.
  • L'invention s'applique notamment, mais non exclusivement, à la construction de bâtiments administratifs, commerciaux, scolaires, hospitaliers, d'habitation, de bureaux.
  • 2. État de l'art antérieur et inconvénients
  • Face au défi majeur du changement climatique, la France a pris des engagements ambitieux en signant le protocole de Kyoto entré en application depuis février 2005 : le gouvernement s'est engagé à ramener les émissions de gaz à effet de serre moyennes de la période 2008 à 2012, au niveau de celles de 1990.
  • En France, le secteur du bâtiment est le plus gros consommateur d'énergie avec 70 millions de tonnes d'équivalent pétrole, soit plus de 40 % des consommations énergétiques nationales. Cette consommation entraîne l'émission de 120 millions de tonnes de CO2, soit près de 25 % des émissions de CO2 nationales.
  • Afin de préserver l'environnement et réduire les émissions de gaz à effet de serre, il est devenu primordial de diminuer les consommations d'énergie dans le secteur du bâtiment. C'est l'objectif de la Loi d'Orientation sur l'Énergie, votée en 2005, et dans laquelle s'intègre la Réglementation Thermique de 2005 (RT 2005). La RT 2005 s'inscrit dans la continuité de la Réglementation Thermique de 2000. Elle est applicable aux bâtiments neufs des secteurs résidentiel et non résidentiel dont le permis de construire a été déposé depuis le 1er juillet 2006. Cette RT 2005 a pour objectif de réduire de 15 % les consommations d'énergie des bâtiments neufs par rapport à la RT 2000, avec des contraintes et des exigences de performance thermique renforcées. Il incombe désormais aux professionnels de proposer des solutions pour améliorer la performance énergétique des bâtiments afin de répondre à ces nouvelles exigences thermiques mais également de proposer des solutions pour anticiper les exigences des nouvelles réglementations, notamment de la Réglementation Thermique de 2010, qui seront de plus en plus renforcées.
  • L'amélioration de la performance thermique d'un bâtiment passe notamment par l'amélioration de son isolation thermique. Si l'isolation des murs et des parois vitrées est aujourd'hui très performante, il reste cependant des zones de déperdition thermique non traitées, qui sont à l'origine d'une surconsommation d'énergie.
  • En France, les professionnels de la construction, qu'elle soit résidentielle ou tertiaire, privilégient l'isolation des bâtiments par l'intérieur. Cette technique, plus largement utilisée en France que l'isolation extérieure a l'inconvénient de laisser de nombreuses zones de point faible appelées ponts thermiques.
  • Les ponts thermiques sont des phénomènes physiques qui signifient que, dans une partie du bâtiment, pour des raisons liées au matériau ou au mode de construction, des flux thermiques plus importants que dans les zones adjacentes existent. De tels ponts thermiques sont formés notamment au niveau des jonctions dalle/façade, refend/façade et dalle/balcon.
  • Ces ponts thermiques sont à l'origine d'une forte déperdition énergétique. De manière générale, les déperditions liées aux ponts thermiques représentent 30 à 40 % des déperditions par les parois dans un bâtiment collectif. Ainsi, un mètre de pont thermique non traité en France est responsable d'une surconsommation par an de 77 kWh ; de 10 l de fuel ; soit 5 Kg de CO2 rejetés supplémentaires par an.
  • Par ailleurs, la température de surface à l'intérieur d'une pièce d'un bâtiment est fortement réduite, de la condensation voire des moisissures peuvent se former au niveau des ponts thermiques, engendrant des coûts substantiels d'entretien et de rénovation.
  • Le traitement des ponts thermiques représente donc un enjeu majeur dans l'amélioration de la performance énergétique des constructions nouvelles.
  • Les professionnels ont donc développé des systèmes de rupteur de pont thermique horizontaux (dalle/façade) et verticaux (refend/façade).
  • Des exemples de tels rupteurs sont décrits dans EP1892344A1 , DE19814452A1 , WO0186092A1 WO0047834A1 , FR2804793A1 .
  • On connaît notamment des rupteurs de pont thermique horizontaux composés d'un isolant en laine de roche de 40 ou 60 mm d'épaisseur (suivant les exigences thermiques), traversé par un réseau d'armatures résistantes à la corrosion, réparties et disposées en treillis pour reprendre l'ensemble des sollicitations appliquées. L'isolant, sur une de ces faces, est pourvu d'un profil en PVC.
  • On connaît également des rupteurs de pont thermique horizontaux composés d'un isolant en laine de roche associé à une mousse dure en polyuréthane d'épaisseur variable selon les exigences thermiques, traversé par un réseau d'armatures résistantes à la corrosion, réparties et disposées en treillis pour reprendre l'ensemble des sollicitations appliquées.
  • D'autres rupteurs de pont thermique horizontaux sont composés d'un isolant en mousse dure de polystyrène d'épaisseur variable selon les exigences thermiques, traversé par un réseau d'armatures résistantes à la corrosion, réparties et disposées en treillis pour reprendre l'ensemble des sollicitations appliquées. De tels rupteurs de pont thermique peuvent être pourvus sur au moins une de leurs faces d'un profilé de recouvrement anti-feu ou d'une plaque anti-feu.
  • D'autres rupteurs de pont thermique horizontaux sont pourvus de plaques rigides traversant le matériau isolant, de telles plaques sont destinées à améliorer la résistance à l'effort tranchant.
  • Les rupteurs de pont thermique décrits ci-dessus ne peuvent pas être installés sur un bâti existant. Ces produits sont intégrés bien en amont par les architectes et concepteurs de bâtiment, au moment du projet.
  • La mise en oeuvre des rupteurs de l'art antérieur comprend :
    • le coulage d'un voile de façade, le niveau haut du voile correspondant au niveau bas du plancher ;
    • la préparation du coffrage de la dalle ;
    • la pose des rupteurs de pont thermique en fond du coffrage, les armatures du rupteur s'insérant dans les cadres du chaînage vertical du voile de façade ;
    • la pose du chaînage horizontal du voile de façade ;
    • le coulage de la dalle ;
    • la reprise du coulage du voile de façade.
  • La première étape de coulage du voile de façade peut être réalisée en mettant en oeuvre un caisson de sorte que, le voile ayant durci défini un emplacement pour permettre la mise en place des rupteurs. Dans ce cas, la reprise du coulage du voile est réalisée en sous face du plancher.
  • Or, les professionnels de la construction constatent au quotidien que la mise en oeuvre de ces rupteurs de pont thermique est une source de sinistralité importante. En effet, l'arrêt puis la reprise du coulage du voile génère au niveau des voiles de façade, notamment au niveau du chaînage du plancher, un défaut d'homogénéité à l'origine de fissurations voire un défaut dans la tenue des éléments supportés et/ou contigus.
  • Afin de pallier à cet inconvénient majeur, il est connu de couler des voiles de façade plus épais. Or cette solution implique d'une part une augmentation du temps de chantier et d'autre part une augmentation de la consommation en matières premières et en énergie. Une telle solution n'est donc pas en accord avec les contraintes et les exigences définies dans la RT 2005.
  • Il a alors été proposé de mettre en oeuvre un nouveau type de rupteur de pont thermique. Ces nouveaux rupteurs sont constitués d'un profilé en matériau isolant, notamment en polystyrène expansé, susceptible d'accueillir une boîte d'attente contenant des armatures destinées à reprendre l'ensemble des sollicitations appliquées. L'ensemble profilé/boîte d'attente est incorporé dans le coffrage des voiles de façade contre une banche, de sorte que le rupteur est intégré dans le voile lors du coulage.
  • De tels rupteurs sont compatibles avec les techniques de construction du gros oeuvre utilisé en France, notamment avec les techniques de coulage béton banché et plancher coulé sur place ou avec pré-dalle. Par ailleurs, la mise en oeuvre de tels rupteurs n'implique pas l'arrêt puis la reprise du coulage des voiles.
  • Cependant, la mise en oeuvre de tels rupteurs conduit à un amincissement du voile au niveau du rupteur thermique. Un tel amincissement est susceptible de fragiliser la structure et d'affaiblir la tenue des éléments supportés et/ou contigus.
  • Afin de pallier à cet inconvénient, les voiles de façade doivent être coulés plus épais. Or comme il a été expliqué précédemment, une telle solution n'est pas en accord avec les contraintes et les exigences définies dans la RT 2005.
  • 3. Objectifs de l'invention
  • L'invention a pour objectif de pallier les inconvénients de l'art antérieur.
  • Plus précisément, un objectif de l'invention, dans au moins un de ses modes de réalisation, est de fournir un rupteur de pont thermique dont la mise en oeuvre par rapport au dispositif de l'art antérieur est plus adaptée aux techniques de gros oeuvre utilisées en France.
  • Un autre objectif de l'invention, dans au moins un de ses modes de réalisation, est notamment de fournir un tel rupteur qui permette d'améliorer la performance thermique des nouvelles constructions.
  • Un autre objectif de l'invention, dans au moins un de ses modes de réalisation, est de fournir un tel rupteur qui permette de réduire la sinistralité des nouvelles constructions, sans remettre en cause les épaisseurs usuelles des voiles de façade.
  • 4. Exposé de l'invention
  • Ces objectifs sont atteints à l'aide d'un module selon la revendication 1, formant rupteur de pont thermique pour plancher destiné à être mis en oeuvre dans une construction en béton armé, ledit module comprenant un matériau isolant et des armatures métalliques aptes à reprendre les sollicitations de structure. Généralement, un tel module comprend un ensemble formant tube de section transversale essentiellement carrée ou rectangulaire, ledit ensemble formant tube présentant une paroi avant, une paroi arrière, une paroi supérieure et une paroi inférieure, ledit matériau isolant étant disposé à l'intérieur dudit ensemble formant tube et lesdites armatures métalliques traversant de part en part ledit ensemble formant tube. La paroi avant dudit élément formant tube d'un module est prolongée par une rive longitudinale supérieure prévue dans le plan de ladite paroi avant et ladite paroi avant dudit élément formant tube est prolongée par une butée longitudinale inférieure prévue dans le plan de ladite paroi avant.
  • On entend par « rupteur de pont thermique pour plancher » un rupteur de pont thermique susceptible de se former à la jonction entre une dalle essentiellement horizontale et un voile de façade essentiellement vertical, notamment entre une dalle de plancher ou de balcon et un voile de façade ou entre deux dalles essentiellement horizontales, notamment entre une dalle de balcon et une dalle de plancher.
  • Un tel rupteur de pont thermique comprend un matériau isolant.
  • À titre d'exemples de matériau isolant, on peut citer la laine de roche, le polystyrène ou les mousses dures de polyuréthane.
  • On entend par « armatures métalliques aptes à reprendre les sollicitations de structure», les armatures telles que les aciers en traction ou en compression et les profilés pour efforts tranchants. Ces armatures sont solidarisées au chaînage du voile et au chaînage de la dalle pour respectivement transmettre les efforts de traction, les efforts de cisaillement et les efforts de compression.
  • À titre d'exemples de matériau métallique constituant ces armatures métalliques, on peut citer l'acier inoxydable ou l'acier inoxydable duplex nervuré. Il pourra être envisagé d'améliorer la résistance à la corrosion des armatures métalliques avec une gaine de protection en élastomère ou en matériau composite de faible conductivité thermique.
  • Le module comprend un ensemble formant tube, la paroi avant étant côté voile de façade ou côté dalle de balcon et la paroi arrière étant côté dalle de plancher.
  • L'ensemble formant tube constitue une sorte de boîtier protecteur, à l'intérieur duquel le matériau isolant est protégé lors de la pose des chaînages de voile et de dalle et au cours du coulage du voile et de la dalle. Un tel boîtier protecteur permet d'améliorer la durée de vie et le maintien du matériau isolant dans la construction. Il permet notamment de conserver dans le temps les caractéristiques intrinsèques de l'isolant (dimension, humidité, ...).
  • On entend par « traversant de part en part ledit ensemble formant tube », que les armatures tels que les aciers en traction ou en compression et les profilés pour efforts tranchants.traversent le boîtier protecteur de sorte que leur extrémité faisant saillie côté voile puisse coopérer avec les chaînages du voile et que leur extrémité faisant saillie côté dalle puisse coopérer avec les chaînages de la dalle.
  • Le fait que les armatures métalliques traversent de part en part l'ensemble formant tube aide au maintien de la rigidité de la jonction dalle/voile. La paroi avant dudit élément formant tube d'un module selon l'invention est prolongée par une rive longitudinale supérieure prévue dans le plan de ladite paroi avant.
  • La rive longitudinale prolonge donc la paroi avant vers le haut. La rive longitudinale constitue ainsi une partie de banche, qui au cours du coulage du voile va être prise dans le béton et intégrée dans le voile. L'intégration de la rive longitudinale du module dans le voile permet de diminuer les risques de fissures et de renforcer la tenue des éléments supportés et/ou contigus.
  • La rive longitudinale permet en outre de définir et d'assurer un alignement vertical continu pour la levée de banche supérieure. Ainsi la mise en place d'une banche supérieure ne requiert plus de contrôler l'aplomb et la continuité du montage. Ladite paroi avant dudit élément formant tube est prolongée par une butée longitudinale inférieure prévue dans le plan de ladite paroi avant.
  • La butée longitudinale prolonge donc la paroi avant vers le bas et constitue ainsi une partie de banche, qui au cours du coulage du voile va être prise dans le béton et intégrée dans le voile. L'intégration de la butée longitudinale du module dans le voile permet de diminuer les risques de fissures et de renforcer la tenue des éléments supportés et/ou contigus.
  • La rive longitudinale et/ou la butée longitudinale pourront être amenées et solidarisées à la paroi avant lors de la pose du module. Ainsi, lors du transport du module, la rive et/ou la butée ne risqueront pas d'être endommagées.
  • La rive et/ou la butée pourront être solidarisées à la paroi avant par toute technique connue de l'Homme du métier, notamment par soudure.
  • Selon une variante, ladite paroi avant et ladite rive longitudinale et/ou ladite butée longitudinale inférieure forment une seule et même plaque avant.
  • Le profil spécifique du boîtier permet donc son incorporation dans un voile de façade uniquement par sa paroi avant et sa rive longitudinale supérieure et/ou sa butée longitudinale inférieure.
  • L'incorporation du module se fait directement lors du coulage des voiles de façade, sans reprise de coulage en sous face du plancher. La jonction entre la dalle de plancher et le voile de façade est réalisée sans défaut d'homogénéité, les risques de fissurations et de défaut dans la tenue des éléments supportés et/ou contigus sont diminués.
  • D'autre part, le fait que le module soit incorporé dans le voile uniquement par sa paroi avant et sa rive longitudinale supérieure et/ou sa butée longitudinale inférieure ne conduit pas à un amincissement du voile au niveau du rupteur de pont thermique. La mise en oeuvre du module ne nécessite pas l'épaississement des voiles pour assurer la tenue des éléments supportés et/ou contigus, ni la mise en oeuvre d'aciers de chaînage supplémentaires.
  • Selon une variante, ladite paroi avant ou ladite plaque avant, ladite paroi arrière, ladite paroi supérieure et ladite paroi inférieure sont constituées monobloc. On entend par « monobloc » la caractéristique selon laquelle la paroi avant ou la plaque avant, la paroi arrière, la paroi supérieure et la paroi inférieure sont formées par une seule pièce, sans mise en oeuvre d'éléments de jonction.
  • Selon une variante, la paroi avant ou ladite plaque avant de l'élément formant tube du module peut être réalisée en un matériau plastique présentant un faible coefficient de conductivité thermique, tel que par exemple du polypropylène ou du PVC et le reste de l'élément formant tube peut être réalisé en métal et facilite sa fabrication.
  • Toutefois, selon une autre variante, ladite paroi avant ou ladite plaque avant, ladite paroi arrière, ladite paroi supérieure et ladite paroi inférieure sont toutes réalisées en un tel matériau plastique présentant un faible coefficient de conductivité thermique. Cette variante est plus intéressante car elle confère légèreté au module.
  • Selon cette variante, les ponts thermiques susceptibles de se former au niveau des parois supérieure et inférieure du module sont limités. L'élément formant tube constitue alors une barrière thermique complémentaire du matériau isolant. La performance thermique du bâti est davantage améliorée.
  • Toujours selon cette variante, le module selon l'invention comprend alors préférentiellement des premiers éléments de fixation irréversible des armatures métalliques audit élément formant tube.
  • De tels éléments de fixation sont nécessaires dans la mesure où l'élément formant tube est en matériau plastique alors que les armatures sont métalliques. Le caractère irréversible de la solidarisation des armatures à l'élément formant tube permet d'éviter la désolidarisation d'armatures métalliques de l'élément formant tube et d'assurer ainsi que le module est mis en fonction avec toutes ses armatures métalliques.
  • Préférentiellement, lesdits premiers éléments de fixation irréversible sont des inserts creux qui traversent de part en part ledit ensemble formant tube et accueillent lesdites armatures métalliques, celles-ci étant pourvues de collerettes soudées s'encliquetant de manière irréversible dans une partie supérieure desdits inserts.
  • En outre, il pourra être envisagé, pour limiter davantage le flux thermique traversant le module, que la paroi supérieure présente des fentes longitudinales et/ou que la paroi arrière présente des orifices circulaires. La présence de telles fentes et/ou orifices « compliquent » le parcours du flux thermique au travers du module et permet ainsi d'améliorer davantage la performance thermique des constructions mettant en oeuvre de tels modules.
  • Avantageusement, ladite paroi avant ou ladite plaque avant et/ou ladite plaque arrière est/sont équipée(s) d'une pluralité de profilés parasismiques faisant saillie du côté voile de façade ou dalle de balcon et/ou du côté dalle de plancher. Selon l'invention un tel profilé parasismique présente au moins une partie plane horizontale et au moins une partie plane verticale ou oblique, la ou les partie(s) plane(s) horizontale(s) étant destinées à transmettre les sollicitations ayant une composante verticale subies par le module et la ou les partie(s) plane(s) verticale(s) ou oblique(s) étant destinées à transmettre les sollicitations ayant une composante horizontale subies par le module.
  • Le profilé selon l'invention est ainsi apte à transmettre et à dissiper les sollicitations d'un phénomène physique ayant des composantes multidirectionnelles, horizontales et/ou verticales, comme c'est le cas notamment des sollicitations générées au niveau des bâtiments par une secousse sismique.
  • Selon un mode de réalisation avantageux, la ou les partie(s) plane(s) verticale(s) ou oblique(s) présentent au moins un orifice destiné à accueillir les chaînages d'un voile ou d'une dalle ou une armature destinée à coopérer avec les chaînages d'un voile ou d'une dalle
  • Le profilé est donc susceptible de coopérer directement ou indirectement avec les chaînages d'un voile et/ou d'une dalle. Les chaînages de voile et/ou de dalle pourront notamment être solidarisés au profilé par toute technique connue de l'Homme du métier, notamment par recouvrement d'armatures.
  • Une telle coopération entre le profilé et les chaînages d'un voile et/ou d'une dalle permet de manière extrêmement simple et peu coûteuse d'augmenter la résistance mécanique du bâtiment et d'améliorer davantage la transmission et la dissipation des tensions verticales et horizontales ressenties par le bâtiment lors d'une secousse sismique. Selon l'invention le profilé présente une forme de Z.
  • De manière avantageuse, lesdits profilés traversent ledit élément formant tube de part en part.
  • Cette configuration particulière permet davantage de renforcer la rigidité de la jonction dalle/voile, de diminuer les risques de fissures et de renforcer la tenue des éléments supportés et/ou contigus, notamment lors de secousses sismiques.
  • Selon une variante avantageuse de l'invention, les profilés sont amenés et solidarisés à la paroi avant et à la paroi arrière lors de la pose du module. Ainsi, lors du transport du module, les profilés ne risqueront pas d'être endommagés.
  • Lorsque les parois avant, arrière, supérieure et inférieure de l'élément formant tube sont réalisées en matière plastique, le profilé comprend préférentiellement des seconds éléments de fixation irréversible desdits profilés audit élément formant tube.
  • Le caractère irréversible de la fixation des profilés à l'élément formant tube permis grâce à ces seconds éléments de fixation permet de s'assurer que le module est mis en fonction avec ses profilés.
  • Préférentiellement, lesdits seconds éléments de fixation traversent ladite paroi avant.
  • Avantageusement, ladite rive longitudinale et/ou ladite butée longitudinale inférieure est pourvue de nervures longitudinales. De telle nervures ont pour avantages d'améliorer l'adhérence du béton à ces éléments lorsqu'il et coulé.
  • 5. Liste des figures
  • D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante de deux modes de réalisation préférentiel de l'invention, donné à titre de simples exemples illustratifs et non limitatifs, et des dessins annexés, parmi lesquels :
    • les figures 1 et 2 représentent un module formant rupteur de pont thermique, respectivement en perspective et en coupe transversale selon l'axe AA';
    • la figure 3 représente une vue en coupe d'une construction intégrant un module selon les figures 1 et 2 ;
    • la figure 4 représente un premier mode de réalisation d'un module formant rupteur de pont thermique selon la présente invention, selon une vue en perspective ;
    • les figures 5 et 6 représente un deuxième mode de réalisation d'un module formant rupteur de pont thermique selon la présente invention, respectivement en perspective et en coupe transversale selon l'axe BB';
    • la figure 7 représente en vue des cotés un premier moyen de fixation d'une armature métallique à l'élément formant tube ;
    • la figure 8 représente en vue des cotés un second moyen de fixation d'un profilé à l'élément formant tube.
    6. Description détaillée
  • Le principe général d'un tel module repose sur la mise en oeuvre d'un rupteur de pont thermique pour plancher destiné à être mis en oeuvre dans une construction en béton armé, comprenant :
    • un matériau isolant ;
    • des armatures métalliques aptes à reprendre les sollicitations de structure ;
    • un ensemble formant tube de section transversale essentiellement carrée ou rectangulaire, ledit ensemble formant tube présentant une paroi avant, une paroi arrière, une paroi supérieure et une paroi inférieure, ledit matériau isolant étant disposé à l'intérieur dudit ensemble formant tube et lesdites armatures métalliques traversant de part en part ledit ensemble formant tube.
  • Un tel rupteur présente l'avantage d'être beaucoup plus adapté pour être mis en oeuvre dans les techniques de gros oeuvre utilisées en France, par rapport aux rupteurs de l'art antérieur.
  • En outre un tel rupteur permet de manière extrêmement simple et peu onéreuse d'améliorer la performance thermique des nouvelles constructions et de réduire la sinistralité des nouvelles constructions.
  • Tel que cela est représenté, un module (1) selon l'invention comprend un ensemble formant tube (11) de section transversale rectangulaire. L'ensemble (11) présente une plaque avant (111), une paroi arrière (112), une paroi supérieure (113) et une paroi inférieure (114).
  • Dans le mode de réalisation représenté Figures 1 à 3, la plaque (111) est une plaque alvéolaire en polypropylène de 3,5 mm d'épaisseur. Elle est formée par la paroi avant (115) de l'ensemble (11), une rive longitudinale supérieure (116) et une butée longitudinale inférieure (117). La plaque alvéolaire (111) est destinée à être intégrée dans le voile de façade (2).
  • La paroi arrière (112), la paroi supérieure (113) et la paroi inférieure (114) sont constituées monobloc, en tôle galvanisée de 1 mm d'épaisseur. Tel que cela est représenté, la paroi arrière (112) est destinée à être en contact avec la dalle de plancher (3). La paroi supérieure (113) et la paroi inférieure sont destinées à être en contact avec un matériau isolant (21) mis en place sur le voile de façade (2), du côté intérieur.
  • Le boîtier protecteur défini par la plaque avant (111), la paroi arrière (112), la paroi supérieure (113) et la paroi inférieure (114).accueille un matériau isolant (12), de la laine de roche, sous la forme d'un parallélépipède rectangle de 60 mm d'épaisseur.
  • Tel que cela est représenté en figures 2 et 3, l'ensemble formant tube (11) et le matériau isolant (12) sont traversés de part en part par une armature (13). Cette armature (13) permet la transmission des forces et tensions qui s'exercent sur la construction au module (1). L'armature (13) est en acier inox. Tel que cela est représenté, l'armature (13) a une forme en U. Les branches (131,132) de l'armature (13) traversent la plaque alvéolaire (111) et la paroi arrière (112) perpendiculairement, de sorte que les extrémités libres des branches (131,132) se trouvent du côté de la dalle de plancher (3) tandis que la partie coudée (133) de l'armature (13) se trouve du côté du voile de façade (2). L'armature (13) est solidarisée à la paroi arrière (112) au niveau de points de traversée (134, 135, 136, 137) par soudure. Elle traverse la plaque alvéolaire (111) sans y être solidarisée. La plaque alvéolaire (111) est solidarisée à la paroi arrière (112), à la paroi supérieure (113) et à la paroi inférieure (114) par poinçonnage.
  • Les armatures (13) coopèrent avec le chaînage (22) du voile de façade (2) par leur partie coudée (133) et coopèrent avec le chaînage (31) de la dalle de plancher par leurs branches (131, 132). Les armatures (13) sont solidarisées aux chaînages (22, 31) par recouvrement.
  • 7. Mise en oeuvre d'un module formant rupteur de pont thermique
  • La mise en oeuvre de ces rupteurs comprend :
    • la mise en place de banches dissymétriques pour le coulage du voile de façade, la banche côté extérieur est arasée au dessus de l'arase supérieure du plancher à couler, au niveau de la rive longitudinale supérieure (116), la banche côté intérieur est arasée en sous face du plancher à couler;
    • la pose des armatures en élévation de banches ;
    • la pose des modules (1) en tête de banche côté intérieur, la paroi inférieure (114) de chaque module (1) est positionnée et calée sur l'épaisseur de la banche grâce à un système de cale en bois.La plaque alvéolaire (111) de chaque module (1) vient en butée contre la banche côté intérieur et la cale en bois par sa butée longitudinale inférieure (117). Les armatures (13) de chaque module (1) s'insèrent dans les cadres du chaînage vertical du voile de façade (2) et de la dalle (3). Les modules sont disposés le long du voile de façade de manière à obtenir une isolation ininterrompue ;
    • la pose des chaînages horizontaux du voile de façade ;
    • le coulage du voile de façade;
    • le décoffrage des banches. Les modules (1) sont fixés dans le voile de façade, la paroi supérieure, la paroi inférieure et la paroi arrière du module formant une talonnette faisant saillie du côté plancher ;
    • la pose du coffrage de plancher ;
    • le ferraillage du plancher ;
    • le coulage du plancher ;
    • la mise en place des banches pour le coulage du voile supérieur à partir de la talonnette.
  • Ainsi, selon la mise en oeuvre des modules n'implique pas de reprise du coulage du voile en sous face du plancher et de fait renforce la rigidité de la jonction dalle/voile, diminue les risques de fissures et renforce la tenue des éléments supportés et/ou contigus.
  • Par ailleurs, la mise en oeuvre des modules n'implique ni de modification, ni de réduction ou de discontinuité des armatures de chaînage en rive de plancher.
  • On notera qu'un joint d'étanchéité inférieur en plastique souple pourra avantageusement être prévu entre le module et le voile en béton pour empêcher que la laitance du béton vienne s'immiscer dans le module.
  • 8. Description détaillée d'un premier mode de réalisation
  • Tel que cela est représenté en figure 4 un module (1) tel que celui précédemment décrit en figures 1 à 3, pourra en outre présenter sur la plaque alvéolaire (111) et sur sa paroi arrière (112) une pluralité de profilés en forme de Z (14).
  • Dans le mode de réalisation représenté figure 4, les profilés (14) sont en inox et font saillie du côté voile de façade et du côté dalle de plancher. Dans le mode de réalisation représenté, les parties des profilés (14) faisant saillies sont solidarisées par soudure à la paroi arrière (112).
  • Tel que cela est représenté en figure 4, les parties des profilés (14) présentent sur la partie plane verticale ou oblique (142) deux orifices (143) susceptibles d'accueillir une armature supplémentaire destinée à coopérer avec le chaînage d'une dalle ou d'un voile. La mise en oeuvre d'une telle armature dans les orifices (143) permet de renforcer l'ancrage dans la masse béton du profilé (14) et de s'opposer au phénomène de déchaussement du profilé (14).
  • En outre l'ensemble armature-profilé constitue un ensemble ductile, c'est-à-dire qui présente une réponse lente à la déformation, diminuant les risques de rupture franche et rapide du profilé et du module selon l'invention.
  • Des études comparatives sur les performances mécaniques et parasismiques des modules selon l'invention et des modules de l'art antérieur ont été réalisées.
  • Les résultats obtenus mettent en évidence que les modules selon l'invention permettent de réduire d'un facteur trois les déplacements à la liaison module-plancher, par rapport à des modules de l'art antérieur, pour des sollicitations identiques.
  • Les résultats obtenus montrent par ailleurs que la valeur de l'effort à appliquer pour obtenir une rupture du module selon l'invention est 30 à 50 % supérieur à la valeur de l'effort conduisant à la rupture des modules de l'art antérieur.
  • Les tests de performances parasismiques montrent que les modules de l'art antérieur ne présentent pas de résistance mécanique à des efforts ayant une composante horizontale. De tels modules ne sont donc pas adaptés à résister à des secousses sismiques. En revanche, les résultats obtenus pour les modules selon l'invention mettent en évidence leur résistance mécanique face à des efforts à composantes multidirectionnelles verticales et horizontales. Cette rigidité est obtenue d'une part par la partie verticale du profilé et d'autre part par la combinaison du profilé avec les armatures.
  • 9. Description détaillée d'un deuxième mode de réalisation
  • Un deuxième mode de réalisation de l'invention est décrit en référence aux figures 5, 6, 7 et 8.
  • Dans ce mode de réalisation, les armartures (13) sont en inox mais les parois avant (111), arrière (112), supérieure (113) et inférieure (114) de l'élément formant tube (11) ainsi que la rive longitudinale (116) et la butée longitudinale inférieure (117) sont réalisées monobloc en PVC. En référence à la figure 5, les armatures (13) sont fixées de façon irréversible à l'élément formant tube (11) grâce à des premiers éléments de fixation (40) et les profilés (14) sont également fixées de façon irréversible à l'élément formant tube (11) grâce à des seconds moyens de fixation.
  • La rive (116) et la buté (117) sont pourvues de nervures longitudinales qui s'étendent sur toute leur longueur et qui permette d'améliorer l'adhérence de ces éléments au béton lorsqu'il est coulé.
  • En référence à la figure 7, les premiers moyens de fixation (40) sont réalisés sous la forme d'un insert creux en matière plastique. Un tel insert creux présente une partie supérieure (41) circulaire montrant des fenêtres d'encliquetage (42) et une partie longitudinale (43) se terminant par deux parties en arc de cercle (44) susceptibles de s'écarter de façon élastique l'une de l'autre et terminées chacune par un ergot d'encliquetage (45) délimitant une gouttière (46).
  • En référence à la figure 6, les inserts creux traversent de part en part l'élément formant tube (11). Chacune des branches (131.132) des armatures (13) est pourvue d'une collerette (138) circulaire à laquelle elle est soudée.
  • Lors du montage du module les inserts sont disposés sur le module, puis les branches (131,132) des armatures sont insérées dans ceux-ci.
  • Lors du positionnement des branches (131,132) dans les inserts creux, chaque collerette (138) est conçue pour coopérer avec la partie supérieure circulaire (41) d'un insert creux de façon telle que le pourtour de cette collerette se bloque de façon irréversible dans les fenêtres d'encliquetage (42) de celle-ci. Concomitamment, les branches (131,132) écartent les parties en arc de cercle (44) de l'insert et les ergots d'encliquetage (45) et les gouttières (46) prévue à l'extrémité de celles-ci coopère avec la paroi arrière (112) de l'élément formant tube (11) de façon telle que les armatures (13) se trouvent bloquées de façon irréversible dans l'élément formant tube (11) rendant impossible ou à tout le moins très difficile la désolidarisation ultérieure des armatures (13) du reste du module et garantissant ainsi l'utilisation du module avec toutes ses armatures métalliques.
  • En référence à la figure 8, les seconds moyens de fixation (50) destinés à fixer de façon irréversible les profilés (14) à l'élément formant tube (11) se présente sous la forme d'un clou en matière plastique présentant une partie supérieure plane circulaire (51) et une extrémité (53) en forme de parapluie dont les branches (54) sont élastiques et délimitent un espace de blocage (55).
  • Ces seconds moyens de fixation (50 sont montés traversant la paroi avant (111) de façon telle qu'elle vienne se bloquer de façon irréversible dans l'espace de blocage (55).

Claims (8)

  1. Module (1) formant rupteur de pont thermique pour plancher destiné à être mis en oeuvre dans une construction en béton armé, ledit module comprenant un matériau isolant (12) et des armatures métalliques (13) aptes à reprendre les sollicitations de structure, caractérisé en ce qu'il présente au moins un profilé parasismique (14) présentant une forme de Z, ledit profilé présentant une forme de Z intégrant deux parties planes horizontales (141) reliées par une partie plane verticale ou oblique (142), les parties planes horizontales (141) étant destinées à transmettre les sollicitations ayant une composante verticale subies par le module (1) et la partie plane verticale ou oblique (142) étant destinée à transmettre les sollicitations ayant une composante horizontale subies par le module (1).
  2. Module (1) selon la revendication 1 caractérisé en ce que ladite partie plane verticale ou oblique (142) dudit profilé présente au moins un orifice (143) destiné à accueillir les chaînages d'un voile ou d'une dalle ou une armature destinée à coopérer avec les chaînages d'un voile ou d'une dalle.
  3. Module (1) selon la revendication 2 caractérisé en ce qu'il comprend au moins une paroi avant (111), un matériau isolant (12) et des armatures métalliques (13) aptes à reprendre les sollicitations de structure, ledit au moins un profilé parasismique faisant saillie de ladite paroi avant (111).
  4. Module selon la revendication 3, caractérisé en ce qu'il comprend une paroi arrière (112), une paroi supérieure (113) et une paroi inférieure (114) formant avec la paroi avant (111) un ensemble formant tube (11) de section transversale essentiellement carrée ou rectangulaire.
  5. Module selon la revendication 3 ou 4, caractérisé en ce que ladite paroi avant (111) dudit élément formant tube est prolongée par une rive longitudinale supérieure (116) prévue dans le plan de ladite paroi avant.
  6. Module selon l'une quelconque des revendications 3 à 5 caractérisé en ce que ladite paroi avant (111) dudit élément formant tube est prolongée par une butée longitudinale inférieure (117) prévue dans le plan de ladite paroi avant (111).
  7. Module selon l'une quelconque des revendications 3 à 6, caractérisé en ce que ladite paroi avant (111) et ladite rive longitudinale (116) et/ou ladite butée longitudinale inférieure (111) forment une seule et même plaque avant.
  8. Module selon l'une quelconque des revendications 1 à 7 caractérisé en ce que ledit au moins un profilé (14) traverse de part en part ledit module.
EP11151538.3A 2009-07-16 2010-07-13 Module formant rupteur de pont thermique presentant au moins un profile parasismique Active EP2319998B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0954947A FR2948135A1 (fr) 2009-07-16 2009-07-16 Module elementaire pour la construction de rupteur de ponts thermiques
EP10169417A EP2292855B1 (fr) 2009-07-16 2010-07-13 Module armé formant rupteur de pont thermiques pour dalles en béton

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP10169417.2 Division 2010-07-13
EP10169417A Division EP2292855B1 (fr) 2009-07-16 2010-07-13 Module armé formant rupteur de pont thermiques pour dalles en béton

Publications (2)

Publication Number Publication Date
EP2319998A1 EP2319998A1 (fr) 2011-05-11
EP2319998B1 true EP2319998B1 (fr) 2017-09-06

Family

ID=41727862

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11151538.3A Active EP2319998B1 (fr) 2009-07-16 2010-07-13 Module formant rupteur de pont thermique presentant au moins un profile parasismique
EP10169417A Active EP2292855B1 (fr) 2009-07-16 2010-07-13 Module armé formant rupteur de pont thermiques pour dalles en béton

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10169417A Active EP2292855B1 (fr) 2009-07-16 2010-07-13 Module armé formant rupteur de pont thermiques pour dalles en béton

Country Status (2)

Country Link
EP (2) EP2319998B1 (fr)
FR (1) FR2948135A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2970489B1 (fr) * 2011-01-13 2017-05-19 Ouest Armatures Element de rupteur thermique destine a etre implante a la jonction entre un mur de refend et un voile de facade d'une construction en beton armee
FR3092348B1 (fr) 2019-02-01 2021-10-22 Soletanche Freyssinet Procede de renforcement in situ d’une dalle en console ancree par un rupteur de pont thermique
FR3096699B1 (fr) 2019-05-28 2023-03-03 Omnium Technique D’Etudes Et De Precontrainte O T E P Procédé de construction à base de prédalle d’un plancher à rupture de pont thermique

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH562376A5 (fr) * 1974-02-27 1975-05-30 Brechbuehler Fritz
DE4103278A1 (de) * 1991-02-04 1992-08-13 Schoeck Bauteile Gmbh Bauelement zur waermedaemmung bei gebaeuden
DE4300181C2 (de) * 1993-01-07 2001-11-29 Schoeck Bauteile Gmbh Bauelement zur Wärmedämmung bei Gebäuden
DE19705698B4 (de) * 1997-02-14 2007-08-09 Döllen, Heinz von Vorgefertigtes, zwischen eine tragende Gebäudedecke und eine Balkonplattform im Zuge der Betonierung der Gebäudedecke und der Balkonplattform einzubetonierendes Dämmelement
DE19814452A1 (de) * 1997-04-01 1998-11-12 Anton H Erb Anschluß zwischen einem tragenden und einem frei auskragenden Bauteil
DE19718021B4 (de) * 1997-04-29 2006-09-14 Halfen Gmbh & Co. Kommanditgesellschaft Thermisch isolierendes Bauelement
AT408675B (de) * 1999-02-12 2002-02-25 Avi Alpenlaendische Vered Einrichtung zum anschliessen von kragplatten an eine wand- oder deckenkonstruktion
DE50006727D1 (de) * 1999-07-27 2004-07-15 Nivo Ag Bauteil als Verbindungselement zwischen zwei Gebäudeteilen
FR2804703B1 (fr) * 2000-02-04 2002-11-08 Plakabeton Coffratec S C A Procede de construction en beton arme a rupture thermique integree et construction ainsi obtenue
FR2808821B1 (fr) * 2000-05-11 2003-05-09 Electricite De France Module elementaire pour la construction d'un rupteur de pont thermique entre un mur et une dalle de beton et structure de batiment en comportant application
FR2865227B1 (fr) * 2004-01-20 2006-04-14 Armatures Assemblees Mure S N Procede pour limiter les ponts thermiques a la jonction entre deux parois de construction
FR2894264B1 (fr) * 2005-12-06 2009-05-15 Armatures Assemblees Mure Soci Element de raccordement entre deux parois en beton separees par un joint d'isolation et rupteur thermique en faisant application
PL1892344T3 (pl) * 2006-08-22 2009-04-30 Halfen Gmbh Termoizolacyjny element konstrukcyjny

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2319998A1 (fr) 2011-05-11
EP2292855A1 (fr) 2011-03-09
FR2948135A1 (fr) 2011-01-21
EP2292855B1 (fr) 2013-02-20

Similar Documents

Publication Publication Date Title
FR2977611A1 (fr) Module de batiment comprenant au moins un mur de refend en panneau structurel isolant, et batiment realise par assemblage de tels modules
EP3242980B1 (fr) Module perfectionné formant rupteur de pont thermique pour bâtiments isolés par l'extérieur
EP2319998B1 (fr) Module formant rupteur de pont thermique presentant au moins un profile parasismique
FR2808821A1 (fr) Module elementaire pour la construction d'un rupteur de pont thermique entre un mur et une dalle de beton et structure de batiment en comportant application
EP2479354B1 (fr) Un module formant rupteur de pont thermique équipé avec un profilé d'une forme de Z
EP2423402B1 (fr) Elément préfabriqué hautement isolé
EP1409813B1 (fr) Dispositif de liaison realisant, de maniere isolee thermiquement, la liaison entre au moins deux parois d'une construction, et procede de realisation d'un tel dispositif
FR2862994A1 (fr) Elements de structure en beton arme legers et isolants pour la construction ou la renovation d'immeubles.
EP3293318B1 (fr) Structures composites bois-béton
EP2476822B1 (fr) Elément de rupteur thermique destiné à être implanté à la jonction entre un mur de refend et un voile de façade d'une construction en béton armé
FR2948134A1 (fr) Profile parasismique pour la construction de rupteur de ponts thermiques
EP3730722A1 (fr) Caisson et procédé d'isolation thermique pour éléments techniques
FR3035892A1 (fr) Assemblage de poutres et de poteaux pour construction par empilage
EP2060687A1 (fr) Dispositif destiné à assurer l'isolation en cas de rupture thermique
FR3057289B1 (fr) Element de construction pour poutre mixe acier-beton arme, ensemble de construction et kits de construction
EP2987921B1 (fr) Mur a coffrage integre a rupture thermique, procede de construction d'un batiment a partir dudit mur, et batiment obtenu
FR3005670A1 (fr) Panneau de construction bois-beton
EP2339085A1 (fr) Elément préfabriqué pour la construction d'extensions d'immeubles et extensions d'immeubles ainsi réalisées
FR2854416A3 (fr) Rupteur de ponts thermiques et procede de construction de batiment comportant de tels elements
WO2017005896A1 (fr) Dispositif de chaînage, ainsi qu'ensemble de chaînage comprenant deux tels dispositifs
FR2904015A1 (fr) Procede de fabrication de panneaux composites acoustiques
FR2497858A1 (fr) Element porteur pour la construction de plafonds ou de toits
FR3130300A1 (fr) Panneau de façade composite préfabriqué et procédé de construction d’une façade d’un bâtiment
CH716058A1 (fr) Caisson d'isolation et procédé de protection ignifuge pour éléments techniques d'un bâtiment.
EP2464798B1 (fr) Element prefabrique pour la construction de batiments, permettant la suppression des ponts thermiques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2292855

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20111104

17Q First examination report despatched

Effective date: 20160705

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161021

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20170315

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COHB INDUSTRIE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2292855

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 926090

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010045143

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170906

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 926090

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010045143

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

26N No opposition filed

Effective date: 20180607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100713

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170906

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20230721

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230621

Year of fee payment: 14

Ref country code: GB

Payment date: 20230731

Year of fee payment: 14

Ref country code: CH

Payment date: 20230801

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230727

Year of fee payment: 14

Ref country code: DE

Payment date: 20230724

Year of fee payment: 14

Ref country code: BE

Payment date: 20230724

Year of fee payment: 14