EP2449887B1 - Verfahren zur Herstellung von Haustierfutter enthaltend probiotische Mikroorganismen - Google Patents

Verfahren zur Herstellung von Haustierfutter enthaltend probiotische Mikroorganismen Download PDF

Info

Publication number
EP2449887B1
EP2449887B1 EP10190118.9A EP10190118A EP2449887B1 EP 2449887 B1 EP2449887 B1 EP 2449887B1 EP 10190118 A EP10190118 A EP 10190118A EP 2449887 B1 EP2449887 B1 EP 2449887B1
Authority
EP
European Patent Office
Prior art keywords
lactobacillus
ncc
organisms
weight
cncm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10190118.9A
Other languages
English (en)
French (fr)
Other versions
EP2449887A1 (de
Inventor
Annick Mercenier
Guénolée Prioult
Sophie Nutten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nestec SA
Original Assignee
Nestec SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44022861&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2449887(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nestec SA filed Critical Nestec SA
Priority to ES10190118.9T priority Critical patent/ES2565407T3/es
Priority to EP10190118.9A priority patent/EP2449887B1/de
Priority to CN201180064176.8A priority patent/CN103702569B/zh
Priority to RU2013125765/13A priority patent/RU2580881C2/ru
Priority to MX2013005042A priority patent/MX347262B/es
Priority to AU2011325207A priority patent/AU2011325207B2/en
Priority to PCT/EP2011/069209 priority patent/WO2012059499A1/en
Priority to US13/881,492 priority patent/US20130309357A1/en
Priority to BR112013010891A priority patent/BR112013010891A2/pt
Priority to CA2816386A priority patent/CA2816386C/en
Priority to JP2013537122A priority patent/JP6321376B2/ja
Priority to ES11781488.9T priority patent/ES2623837T3/es
Priority to EP11781488.9A priority patent/EP2635132B1/de
Publication of EP2449887A1 publication Critical patent/EP2449887A1/de
Priority to ZA2013/04086A priority patent/ZA201304086B/en
Publication of EP2449887B1 publication Critical patent/EP2449887B1/de
Application granted granted Critical
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • A23K10/18Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/40Feeding-stuffs specially adapted for particular animals for carnivorous animals, e.g. cats or dogs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators

Definitions

  • the present invention relates to the field of pet food.
  • the present invention provides method for preparing pet food compositions comprising non-replicating probiotic microorganisms.
  • These non-replicating probiotic micro-organisms are bioactive heat treated probiotic micro-organisms.
  • probiotics are meanwhile well accepted in the art and were summarized, e.g., by Blum et al. in Curr Issues Intest Microbiol. 2003 Sep;4(2):53-60 . Oftentimes probiotics are administered together with prebiotics in symbiotic formulations which may even have enhanced health benefits.
  • canine and feline gastrointestinal disorders are linked to bacterial overgrowth and the production of enterotoxins produced by pathogenic bacteria.
  • Probiotics are considered to be viable microbial preparations which promote mammalian health by preserving the natural microflora in the intestine. Probiotics are thought to attach to the intestinal mucosa, colonize the intestinal tract and thereby prevent attachment of harmful microorganisms thereon. A prerequisite for their action resides in that they have to reach the gut's mucosa in a proper and viable form and especially do not get destroyed by the influence of the low pH prevailing in the stomach.
  • the physiology of the digestive tract of cats and dogs differs from humans. For example, the average pH in the stomach is 3.4 for dogs and 4.2 for cats.
  • United States Patent 7189390 describes novel lactic acid bacterial micro-organisms that have been isolated and selected for their probiotic potential and their use for the preparation of pet food compositions intended to improve the health of pets.
  • Probiotic bacteria are known to be capable of adhering to intestinal cells and of excluding pathogenic bacteria on intestinal cells. To have this activity, the probiotic bacteria must remain viable in the product until it is consumed. Adding live bacteria into pet food kibble so that they stay viable until the product is consumed and the bacteria arrive viable in the intestinal tract remains to be a challenge and to accomplish this requires significant technical effort.
  • the present inventors have addressed this need. It was hence the objective of the present invention to improve the state of the art and to provide a method for preparing pet food compositions that satisfy the needs expressed above.
  • the present inventors propose a method to provide a pet food composition comprising non-replicating probiotic micro-organisms.
  • the invention is directed to a method for preparing a pet food composition comprising non-replicating probiotic micro-organisms in an amount corresponding to 10 6 to 10 12 cfu per serving said method comprising treating the probiotic micro-organisms with a high temperature/ short time (HTST) treatment at a temperature of 120-140°C for 1-30 seconds or a ultra-high temperature (UHT) treatment at a temperature exceeding 135°C for 1-10 seconds, and thus rendering at least 90% of the micro-organisms non-replicating.
  • HTST high temperature/ short time
  • UHT ultra-high temperature
  • said pet food composition is comprising from 4 to 40 weight-% dry weight fat, from 12 to 70 weight-% dry weight carbohydrates, and from 12 to 50 weight-% dry weight proteins.
  • said pet food composition is comprising from 10 to 20 weight-% dry weight fat, from 30 to 60 weight-% dry weight carbohydrates, and from 20 to 35 weight-% dry weight proteins.
  • said pet food composition is further comprising from 0.5 to 40 weight-% dry weight, preferably from 0.5 to 30 weight-% dry weight, more preferably from 1 to 20 weight-% dry weight, most preferably from 1 to 10 weight-% dry weight dietary fiber.
  • the pet food composition is selected from the group consisting of pet foods, nutritional diets for pets, supplements for pets, treats for pets, and food toys for pets such as chewable and consumable toys.
  • said pet food composition is further comprising prebiotics, for example oligofructose and inulin.
  • said pet food composition at least 95 %, preferably at least 98 %, more preferably at least 99 %, most at least 99.9 %, ideally all of the probiotics are non-replicating.
  • the probiotic micro-organisms are selected from the group consisting of bifidobacteria, lactobacilli , propionibacteria, or combinations thereof, for example Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium animalis, Bifidobacterium breve, Bifidobacterium infantis, Bifidobacterium adolescentis, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus salivarius, Lactobacillus reuteri, Lactobacillus rhamnosus, Lactobacillus johnsonii Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Streptococcus thermophilics, Lactococcus lactis, Lactococcus diacetylactis, Lactococcus cremoris, Lacto
  • the probiotic micro-organisms are selected from the group consisting of Bifidobacterium longum NCC 3001 (ATCC BAA-999), Bifidobacterium longum NCC 2705 (CNCM I-2618), Bifidobacterium breve NCC 2950 (CNCM I-3865), Bifidobacterium lactis NCC 2818 (CNCM I-3446), Lactobacillus johnsonii La 1 (CNCM I-1225), Lactobacillus paracasei NCC 2461 (CNCM I-2116), Lactobacillus rhamnosus NCC 4007 (CGMCC 1.3274), Lactobacillus reuteri DSM17983, Lactobacillus reuteri ATCC 55730, Streptococcus thermophilus NCC 2059 (CNCM I-4153), Lactobacillus casei NCC 1825 (ACA-DC 6002), Escherichia coli Nissle (DSM 6601), Lac
  • said pet food composition is containing 0,005 mg - 1000 mg non- replicating micro-organisms per daily dose.
  • Pet food compositions comprise a variety of compositions e.g., foods, nutritional diets, supplements, treats, and food toys such as chewable and consumable toys.
  • Pets include domestic animals such as dogs, cats, birds, rabbits, guinea pigs, goats, cows, horses, pigs, for example.
  • compositions can be foods having any suitable form, e.g., liquid or solid foods.
  • the non-replicating probiotic micro-organisms may be admixed with the foods.
  • the non-replicating probiotic micro-organisms may be coated on the foods, incorporated into the foods, or both.
  • the non-replicating probiotic micro-organisms can be homogeneously or non-homogeneously dispersed into or onto the foods.
  • the pet food compositions typically contain a carbohydrate fraction, a protein fraction and a fat fraction.
  • the percentages are - if not otherwise indicated - weight-% on a dry matter basis.
  • the pet food composition may comprise from 12% to 70%, preferably from 16% to 65%, more preferably from 20% to 60%, most preferably from 30% to 60% of a carbohydrate fraction; from 12% to 50%, preferably from 16% to 45%, more preferably from 18% to 40%, most preferably from 20% to 35% of a protein fraction; and from 4% to 40%, preferably from 6% to 30%, more preferably from 8% to 25%, most preferably from 10% to 20% of a fat fraction.
  • compositions may contain from 1 to 12% fat, typically in the form of a coating to enhance palatability.
  • the pet food composition may also comprise dietary fiber from 0.5% to 40%, preferably from 0.5% to 30%, more preferably from 1% to 20%, most preferably from 1% to 10%
  • Nutritional balancing agents i.e., vitamins, minerals, trace elements, and combinations thereof
  • Suitable amounts for each ingredient in a composition will depend on a variety of factors such as the species of animal consuming the composition; the particular ingredients included in the composition; the age, weight, general health, sex, and diet of the animal; the animal's consumption rate; and the like. Thus, the ingredient amounts may vary widely, and may even deviate from the proportions given herein. Selection of such components and amounts of the components are within the scope of the skilled artisan. For some companion animals such as dogs and cats, the American Feed Control Officials (AAFCO) provides recommended amounts of such ingredients.
  • AAFCO American Feed Control Officials
  • the protein food source may be obtained from a variety of sources such as plants, animals, or both.
  • Animal protein includes meat, meat by products, dairy, and eggs. Meats include the flesh from poultry, fish, and animals such as cattle, swine, sheep, goats, and the like. Meat by products include lungs, kidneys, brain, livers, stomachs, and intestines.
  • the protein food ingredient may also be free amino acids and/or peptides.
  • the protein food ingredient comprises meat, a meat by-product, dairy products, or eggs.
  • the fat and carbohydrate food source may be obtained from a variety of sources such as animal fat, fish oil, vegetable oil, meat, meat by products, grains, other animal or plant sources, and mixtures thereof.
  • Grains include wheat, corn, barley, and rice.
  • the fiber food ingredient may be obtained from a variety of sources such as vegetable fiber sources, e.g., cellulose, beet pulp, peanut hulls, and soy fiber.
  • sources such as vegetable fiber sources, e.g., cellulose, beet pulp, peanut hulls, and soy fiber.
  • composition is an animal food
  • vitamins and minerals preferably are included in amounts required to avoid deficiency and maintain health. These amounts are readily available in the art.
  • the National Research Council (NRC) provides recommended amounts of such ingredients for farm animals. See, e.g., Nutrient Requirements of Swine (10th Rev. Ed., Nat'l Academy Press, Wash. D.C., 1998 ), Nutrient Requirements of Poultry (9th Rev. Ed., Nat'l Academy Press, Wash. D.C., 1994 ), Nutrient Requirements of Horses (5th Rev. Ed., Nat'l Academy Press, Wash. D.C., 1989 ), etc.
  • the American Feed Control Officials (AAFCO) provides recommended amounts of such ingredients for dogs and cats.
  • Vitamins generally useful as food additives include vitamin A, vitamin B1, vitamin B2, vitamin B6, vitamin B12, vitamin C, vitamin D, vitamin E, vitamin H (biotin), vitamin K, folic acid, inositol, niacin, and pantothenic acid.
  • Minerals and trace elements generally useful as food additives include calcium, phosphorus, sodium, potassium, magnesium, copper, zinc, choline, and iron.
  • compositions may contain additional ingredients such as vitamins, minerals, fillers, palatability enhancers, binding agents, flavors, stabilizers, emulsifiers, sweeteners, colorants, buffers, salts, coatings, and the like known to skilled artisans.
  • Stabilizers include substances that tend to increase the shelf life of the composition such as preservatives, synergists and sequestrants, packaging gases, stabilizers, emulsifiers, thickeners, gelling agents, and humectants.
  • emulsifiers and/or thickening agents include gelatin, cellulose ethers, starch, starch esters, starch ethers, and modified starches.
  • composition component food ingredient, and other ingredients will depend on a variety of factors such as the particular components and ingredients included in the composition; the species of patient; the patient's age, body weight, general health, sex, and diet; the patient's consumption rate; the type of disease being treated (if any); and the like. Therefore, the ingredient amounts may vary widely and may deviate from the preferred proportions described herein.
  • the amount of such additives in a composition typically is up to 5% by weight.
  • compositions may be or may contain additional ingredients intended to maintain or improve the health of the animal, e.g., supplements, medications, herbs, holistic drugs and compositions, and the like.
  • Supplements include a feed used with another feed to improve the nutritive balance or performance of the total.
  • Supplements include compositions that are fed undiluted as a supplement to other feeds, offered free choice with other parts of an animal's ration that are separately available, or diluted and mixed with an animal's regular feed to produce a complete feed.
  • the AAFCO provides a discussion relating to supplements in the American Feed Control Officials, Inc. Official Publication, page 220 (2003 ).
  • Supplements may be in various forms including powders, liquids, syrups, pills, encapsulated compositions, and the like.
  • Treats include compositions that are given to an animal to entice the animal to eat during a non meal time, e.g., dog bones for canines. Treats may be nutritional wherein the composition comprises one or more nutrients, and may have a composition as described above for food. Non nutritional treats encompass any other treats that are non toxic. The non-replicating probiotic micro-organisms are coated onto the treat, incorporated into the treat, or both.
  • Toys include chewable toys such as artificial bones.
  • the non-replicating probiotic micro-organisms can form a coating on the surface of the toy or on the surface of a component of the toy, be incorporated partially or fully throughout the toy, or both.
  • the non-replicating probiotic micro-organisms are orally accessible by the intended user.
  • suitable toys e.g., U.S. Pat. No. 5,339,771 , U.S. Pat. No. 5,419,283 , and references disclosed therein.
  • Disclosed are both partially consumable toys, e.g., toys comprising plastic components, and fully consumable toys, e.g., rawhides and various artificial bones.
  • toys are disclosed for both human and non-human use, particularly for companion, farm, and zoo animal use, and particularly for dog, cat, or bird use.
  • the components are adjusted so that the non-replicating probiotic micro-organisms are present in the composition at a concentration of at least 0.01%, preferably from 0.01% to 4%, most preferably from 0.5% to 2% by weight of the composition.
  • the non-replicating probiotic micro-organisms may be incorporated into the composition during the processing of the formulation, such as during and/or after mixing of other components of the composition. Distribution of these components into the composition is accomplished by conventional means.
  • Compositions can be prepared in a dry form using conventional processes. Dry ingredients, including animal protein sources, plant protein sources, grains, etc. can be ground and mixed together. Moist or liquid ingredients, including fats, oils, animal protein sources, water, etc. are then added to and mixed with the dry mix. The mixture is then processed into kibbles or similar dry pieces. Kibble is often formed using an extrusion process in which the mixture of dry and wet ingredients is subjected to mechanical work at a high pressure and temperature, and forced through small openings and cut off into kibble by a rotating knife. The wet kibble is then dried and optionally coated with one or more topical coatings which may include flavors, fats, oils, powders, and the like. Kibble also can be made from the dough using a baking process, rather than extrusion, wherein the dough is placed into a mold before dry-heat processing.
  • the non-replicating probiotic micro-organisms may be added to the pet food composition in its normal preparation procedure such as mixing, extrusion, baking and the like or is preferably added after its preparation post extrusion, such as by spraying or coating the surface of the food.
  • the non-replicating probiotic micro-organisms are mixed with a carrier composition to facilitate application to the surface of the food composition.
  • a carrier composition for example, a liquid, slurry, light gel, or watery solid can all be utilized as a carrier for the compound(s) of this composition.
  • a standard spraying or dipping apparatus is employed to apply the compound(s) to the surface of the food composition.
  • An example of such a carrier is a minced animal by-product treated with proteases in conjunction with amino acids, reducing sugar(s) and thiamin. The carrier is then mixed with the non-replicating probiotic micro-organisms and coated onto a kibble, thereby preparing a very palatable and acceptable dry food.
  • the non-replicating probiotic micro-organisms may simply be mixed with a commercial liquid palatant enhancer or other flavor composition to create a novel flavor palatant which can then be topically applied to the composition.
  • Suitable commercial liquid palatant enhancers for use with the non-replicating probiotic micro-organisms include any known or commercially available liquid palatant enhancers commercially available from pet food palatant enhancer or other flavor suppliers known to those of skill in the art.
  • Compositions can be prepared in a canned or wet form using conventional pet food processes.
  • Ground animal e.g., mammal, poultry, fish and/or seafood
  • proteinaceous tissues can be mixed with the other ingredients, including fish oils, cereal grains, other nutritionally balancing ingredients, special purpose additives (e.g., vitamin and mineral mixtures, inorganic salts, cellulose and beet pulp, bulking agents, and the like). Water sufficient for processing may also be added.
  • the wet form ingredients are typically mixed in a vessel suitable for heating while blending the components. Heating of the mixture may be accomplished using any suitable manner, such as by direct steam injection or by using a vessel fitted with a heat exchanger.
  • the mixture is heated to a temperature range of from 50°F to 212°F. Temperatures outside this range are acceptable, but may be commercially impractical without use of other processing aids.
  • the material When heated to the appropriate temperature, the material will typically be in the form of a thick liquid. The thick liquid is filled into cans. A lid is applied, and the container is hermetically sealed. The sealed can is then placed into conventional equipment designed to sterilize the contents. This is usually accomplished by heating to temperatures of greater than 230°F for an appropriate time, which is dependent on the temperature used and the composition.
  • the non-replicating probiotic micro-organisms can be incorporated into the wet food composition along with a carrier such as an alcohol composition (i.e., propylene glycol or dipropylene glycol), a cyclodextrin, a maltodextrin, or a starch.
  • a carrier such as an alcohol composition (i.e., propylene glycol or dipropylene glycol), a cyclodextrin, a maltodextrin, or a starch.
  • the non-replicating probiotic micro-organisms can be mixed into the dry materials prior to forming the wet food composition.
  • Treats can be prepared by an extrusion or baking process similar to those described above for dry food. Other processes also may be used to either coat the flavoring composition on the exterior of existing treat forms, or inject it into an existing treat form.
  • Animal toys are typically prepared by coating any existing toy with a flavoring composition having the non-replicating probiotic micro-organisms mixed therein.
  • the amount of non-replicating probiotic micro-organisms in the method for preparing a pet food composition corresponds to 10 6 to 10 12 cfu per serving.
  • non-replicating micro-organisms do not form colonies, consequently, this term is to be understood as the amount of non replicating micro-organisms that is obtained from 10 4 and 10 12 cfu/g replicating bacteria.
  • the quantity of micro-organisms which the composition contains is expressed in terms of the colony forming ability (cfu) of that quantity of micro-organisms as if all the micro-organisms were alive irrespective of whether they are, in fact, non replicating, such as inactivated or dead, fragmented or a mixture of any or all of these states.
  • the pet food composition may also comprise prebiotics.
  • Prebiotic means food substances that promote the growth of probiotics in the intestines. They are not broken down in the stomach and/or upper intestine or absorbed in the GI tract of the person ingesting them, but they are fermented by the gastrointestinal microflora and/or by probiotics. Prebiotics are for example defined by Glenn R. Gibson and Marcel B. Roberfroid, Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics, J. Nutr. 1995 125: 1401-1412 .
  • the prebiotics that may be used are not particularly limited and include all food substances that promote the growth of probiotics in the intestines.
  • they may be selected from the group consisting of oligosaccharides, optionally containing fructose, galactose, mannose; dietary fibers, in particular soluble fibers, soy fibers; inulin; or mixtures thereof.
  • Preferred prebiotics are fructo-oligosaccharides (FOS), galacto-oligosaccharides (IOS), isomalto-oligosaccharides, xylo-oligosaccharides, oligosaccharides of soy, glycosylsucrose (GS), lactosucrose (LS), lactulose (LA), palatinose-oligosaccharides (PAO), malto-oligosaccharides (MOS), gums and/or hydrolysates thereof, pectins and/or hydrolysates thereof.
  • FOS fructo-oligosaccharides
  • IOS galacto-oligosaccharides
  • IOS isomalto-oligosaccharides
  • xylo-oligosaccharides oligosaccharides of soy
  • glycosylsucrose GS
  • lactosucrose LS
  • LA lactosucrose
  • LA lactosucrose
  • Typical examples of prebiotics are oligofructose and inulin.
  • the quantity of prebiotics in the pet food composition depends on their capacity to promote the development of lactic acid bacteria.
  • the composition may contain from 0.1 to 20 % of such prebiotics (by weight relative to the dry matter content).
  • a pet food composition that comprises an amount of non-replicating probiotics corresponding to an amount of at least 10 3 cfu per g of prebiotic, preferably 10 4 to 10 7 cfu/g of prebiotic, for example.
  • the inventors were surprised to see that, e.g., in terms of an immune boosting effect and/or in terms of an anti-inflammatory effect non-replicating probiotic microorganisms may even be more effective than replicating probiotic microorganisms.
  • probiotics are often defined as “live micro-organisms that when administered in adequate amounts confer health benefits to the host” (FAO/WHO Guidelines).
  • the vast majority of published literature deals with live probiotics.
  • Non-replicating probiotic micro-organisms include probiotic bacteria which have been heat treated. This includes micro-organisms that are inactivated, dead, non-viable and/or present as fragments such as DNA, metabolites, cytoplasmic compounds, and/or cell wall materials.
  • Non-replicating means that no viable cells and/or colony forming units can be detected by classical plating methods. Such classical plating methods are summarized in the microbiology book: James Monroe Jay, Martin J. Loessner, David A. Golden. 2005. Modern food microbiology. 7th edition, Springer Science, New York, N.Y. 790 p . Typically, the absence of viable cells can be shown as follows: no visible colony on agar plates or no increasing turbidity in liquid growth medium after inoculation with different concentrations of bacterial preparations ('non replicating' samples) and incubation under appropriate conditions (aerobic and/or anaerobic atmosphere for at least 24h).
  • Probiotics are defined as "Microbial cell preparations or components of microbial cells with a beneficial effect on the health or well-being of the host.” ( Salminen S, Ouwehand A. Benno Y. et al “Probiotics: how should they be defined” Trends Food Sci. Technol. 1999:10 107-10 ).
  • compositions may comprise probiotic micro-organisms and/or non-replicating probiotic micro-organisms in an amount sufficient to at least partially produce a health benefit.
  • An amount adequate to accomplish this is defined as "a therapeutically effective dose”. Amounts effective for this purpose will depend on a number of factors known to those of skill in the art such as the weight and general health state of the animal, and on the effect of the food matrix.
  • compositions are administered to a consumer susceptible to or otherwise at risk of a disorder in an amount that is sufficient to at least partially reduce the risk of developing that disorder.
  • a prophylactic effective dose Such an amount is defined to be "a prophylactic effective dose”.
  • the precise amounts depend on a number of factors such as the animal's state of health and weight, and on the effect of the food matrix.
  • composition can contain non-replicating probiotic micro-organisms in a therapeutically effective dose and/or in a prophylactic effective dose.
  • the therapeutically effective dose and/or the prophylactic effective dose may be in the range of 0,005 mg - 1000 mg non-replicating, probiotic micro-organisms per daily dose.
  • non-replicating micro-organisms may be present in an amount equivalent to between 10 4 to 10 9 cfu/g of dry composition, even more preferably in an amount equivalent to between 10 5 and 10 9 cfu/g of dry composition.
  • the probiotics may be rendered non-replicating by any method that is known in the art.
  • short-time high temperature treated non-replicating micro-organisms may be present in the composition in an amount corresponding to between 10 4 and 10 12 equivalent cfu/g of the dry composition.
  • the present inventors have now surprisingly found, that rendering probiotic micro-organisms non-replicating, e.g., by heat treatment, does not result in the loss of probiotic health benefits, but - to the contrary - may enhance existing health benefits and even generate new health benefits.
  • a pet food composition wherein the non-replicating probiotic microorganisms were rendered non-replicating by a heat-treatment.
  • Such a heat treatment may be carried out at at least 71.5 °C for at least 1 second.
  • the inventors demonstrate for the first time that probiotic micro-organisms, heat treated at high temperatures for short times exhibit anti-inflammatory immune profiles regardless of their initial properties. In particular either a new anti-inflammatory profile is developed or an existing anti-inflammatory profile is enhanced by this heat treatment.
  • the high temperature treatment may be a high temperature/short time (HTST) treatment or a ultra-high temperature (UHT) treatment.
  • HTST high temperature/short time
  • UHT ultra-high temperature
  • the micro-organisms may be subjected to a high temperature treatment at 120 - 140°C, for a short term of 1-30 seconds.
  • This high temperature treatment renders the micro-organisms at least in part non-replicating.
  • the high temperature treatment may be carried out at normal atmospheric pressure but may be also carried out under high pressure. Typical pressure ranges are form 1 to 50 bar, preferably from 1-10 bar, even more preferred from 2 to 5 bar. Obviously, it is preferred if the probiotics are heat treated in a medium that is either liquid or solid, when the heat is applied. An ideal pressure to be applied will therefore depend on the nature of the composition which the micro-organisms are provided in and on the temperature used.
  • the high temperature treatment may be carried out in the temperature range of 120-140 °C.
  • the high temperature treatment may be carried out for a short term of 1-30 seconds, preferably 5-15 seconds.
  • This given time frame refers to the time the probiotic micro-organisms are subjected to the given temperature. Note, that depending on the nature and amount of the composition the micro-organisms are provided in and depending on the architecture of the heating apparatus used, the time of heat application may differ.
  • composition and/or the micro-organisms are treated by a high temperature short time (HTST) treatment or a ultra high temperature (UHT) treatment.
  • HTST high temperature short time
  • UHT ultra high temperature
  • a UHT treatment is Ultra-high temperature processing or a ultra-heat treatment (both abbreviated UHT) involving the at least partial sterilization of a composition by heating it for a short time, around 1-10 seconds, at a temperature exceeding 135°C (275°F), which is the temperature required to kill bacterial spores in milk.
  • UHT Ultra-high temperature processing or a ultra-heat treatment
  • a temperature exceeding 135°C 275°F
  • processing milk in this way using temperatures exceeding 135°C permits a decrease of bacterial load in the necessary holding time (to 2-5 s) enabling a continuous flow operation.
  • UHT systems There are two main types of UHT systems: the direct and indirect systems. In the direct system, products are treated by steam injection or steam infusion, whereas in the indirect system, products are heat treated using plate heat exchanger, tubular heat exchanger or scraped surface heat exchanger. Combinations of UHT systems may be applied at any step or at multiple steps in the process of product preparation.
  • a HTST treatment is defined as follows (High Temperature/Short Time): Pasteurization method designed to achieve a 5-log reduction, killing 99,9999% of the number of viable micro-organisms in milk. This is considered adequate for destroying almost all yeasts, molds and common spoilage bacteria and also to ensure adequate destruction of common pathogenic heat resistant organisms. In the HTST process milk is heated to 71.7oC (161°F) for 15-20 seconds.
  • flash pasteurization is a method of heat pasteurization of perishable beverages like fruit and vegetable juices, beer and dairy products. It is done prior to filling into containers in order to kill spoilage micro-organisms, to make the products safer and extend their shelf life.
  • the liquid moves in controlled continuous flow while subjected to temperatures of 71.5°C (160°F) to 74°C (165°F) for 15 to 30 seconds.
  • short time high temperature treatment shall include high-temperature short time (HTST) treatments, UHT treatments, and flash pasteurization, for example.
  • HTST high-temperature short time
  • the composition may be for use in the prevention or treatment of inflammatory disorders.
  • the inflammatory disorders that can be treated or prevented by the composition are not particularly limited.
  • they may be selected from the group consisting of acute inflammations such as sepsis; burns; and chronic inflammation, such as inflammatory bowel disease, e.g., Crohn's disease, ulcerative colitis, pouchitis; necrotizing enterocolitis; skin inflammation, such as UV or chemical-induced skin inflammation, eczema, reactive skin; irritable bowel syndrome; eye inflammation; allergy, asthma; and combinations thereof.
  • heat treatments which render the probiotic micro-organisms non-replicating such a heat treatment may be carried out in the temperature range of 70-150 °C for 3 minutes - 2 hours, preferably in the range of 80-140°C from 5 minutes - 40 minutes.
  • composition comprising probiotic micro-organisms that were rendered non-replicating by a heat treatment at at least 70 °C for at least 3 minutes.
  • the immune boosting effects of non-replicating probiotics were confirmed by in vitro immunoprofiling.
  • the in vitro model used uses cytokine profiling from human Peripheral Blood Mononuclear Cells (PBMCs) and is well accepted in the art as standard model for tests of immunomodulating compounds ( Schultz et al., 2003, Journal of Dairy Research 70, 165-173 ; Taylor et al., 2006, Clinical and Experimental Allergy, 36, 1227-1235 ; Kekkonen et al., 2008, World Journal of Gastroenterology, 14, 1192-1203 )
  • PBMCs Peripheral Blood Mononuclear Cells
  • the in vitro PBMC assay has been used by several authors/research teams for example to classify probiotics according to their immune profile, i.e. their anti- or pro-inflammatory characteristics ( Kekkonen et al., 2008, World Journal of Gastroenterology, 14, 1192-1203 ).
  • this assay has been shown to allow prediction of an anti-inflammatory effect of probiotic candidates in mouse models of intestinal colitis ( Foligne, B., et al., 2007, World J.Gastroenterol. 13:236-243 ).
  • the pet food composition allows it hence to treat or prevent disorders that are related to a compromised immune defence.
  • disorders linked to a compromised immune defence that can be treated or prevented are not particularly limited.
  • they may be selected from the group consisting of infections, in particular bacterial, viral, fungal and/or parasite infections; phagocyte deficiencies; low to severe immunodepression levels such as those induced by stress or immunodepressive drugs, chemotherapy or radiotherapy; natural states of less immunocompetent immune systems such as those of the neonates; allergies; and combinations thereof.
  • the pet food composition allows it also to enhance an animal's response to vaccines, in particular to oral vaccines.
  • At least 90 % preferably, at least 95 %, more preferably at least 98 %, most preferably at least 99 %, ideally at least 99.9 %, most ideally all of the probiotics are non-replicating.
  • At least 90 % preferably, at least 95 %, more preferably at least 98 %, most preferably at least 99 %, ideally at least 99.9 %, most ideally all of the probiotics may be non-replicating.
  • probiotic micro-organisms may be used for the purpose of the present invention.
  • the probiotic micro-organisms may be selected from the group consisting of bifidobacteria, lactobacilli, propionibacteria, or combinations thereof, for example Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium animalis, Bifidobacterium breve, Bifidobacterium infantis, Bifidobacterium adolescentis, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus salivarius, Lactobacillus reuteri, Lactobacillus rhamnosus, Lactobacillus johnsonii, Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Streptococcus thermophilus , Lactococcus lactis, Lactococcus diacetylactis, Lactococcus cremoris, Lactobacill
  • composition in accordance with the present may, for example comprise probiotic micro-organisms selected from the group consisting of Bifidobacterium longum NCC 3001 (ATCC BAA-999), Bifidobacterium longum NCC 2705 (CNCM I-2618), Bifidobacterium breve NCC 2950 (CNCM I-3865), Bifidobacterium lactis NCC 2818 (CNCM I-3446), Lactobacillus johnsonii La 1 (CNCM I-1225), Lactobacillus paracasei NCC 2461 (CNCM I-2116), Lactobacillus rhamnosus NCC 4007 (CGMCC 1.3274), Lactobacillus reuteri DSM17983, Lactobacillus reuteri ATCC 55730, Streptococcus thermophilus NCC 2059 (CNCM I-4153), Lactobacillus casei NCC 1825 (ACA-DC 6002), Escherichia coli Nissle (DSM
  • ATCC ATCC Patent Depository
  • CNCM were deposited with the COLLECTION NATIONALE DE CULTURES DE MICROORGANISMES (CNCM), 25 rue du Dondel Roux, F-75724 PARIS Cedex 15, France.
  • CGMCC CGMCC
  • Chinese Academy of Sciences Zhongguancun, P.O.Box2714, Beijing 100080, China.
  • DSM DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstr. 7 B ⁇ , 38124 Braunschweig, GERMANY.
  • the health benefits delivered by live probiotics on the host immune system are generally considered to be strain specific.
  • Probiotics inducing high levels of IL-10 and/or inducing low levels of pro-inflammatory cytokines in vitro have been shown to be potent anti-inflammatory strains in vivo ( Foligné, B., et al., 2007, World J.Gastroenterol. 13:236-243 ).
  • probiotic strains were used to investigate the anti-inflammatory properties of heat treated probiotics. These were Bifidobacterium longum NCC 3001, Bifidobacterium longum NCC 2705, Bifidobacterium breve NCC 2950, Bifidobacterium lactis NCC 2818, Lactobacillus paracasei NCC 2461, Lactobacillus rhamnosus NCC 4007, Lactobacillus casei NCC 4006, Lactobacillus acidophilus NCC 3009, Lactobacillus casei ACA-DC 6002 (NCC 1825), and Escherichia coli Nissle.
  • Bacterial cells were cultivated in conditions optimized for each strain in 5-15L bioreactors. All typical bacterial growth media are usable. Such media are known to those skilled in the art. When pH was adjusted to 5.5, 30% base solution (either NaOH or Ca(OH) 2 ) was added continuously. When adequate, anaerobic conditions were maintained by gassing headspace with CO 2 . E. coli was cultivated under standard aerobic conditions.
  • Bacterial cells were collected by centrifugation (5,000 x g, 4°C) and re-suspended in phosphate buffer saline (PBS) in adequate volumes in order to reach a final concentration of around 10 9 -10 10 cfu/ml. Part of the preparation was frozen at -80°C with 15% glycerol. Another part of the cells was heat treated by:
  • PBMCs Human peripheral blood mononuclear cells
  • IMDM Iscove's Modified Dulbecco's Medium
  • PBMCs (7x10 5 cells/well) were then incubated with live and heat treated bacteria (equivalent 7x10 6 cfu/well) in 48 well plates for 36h.
  • live and heat treated bacteria equivalent 7x10 6 cfu/well
  • the effects of live and heat treated bacteria were tested on PBMCs from 8 individual donors splitted into two separated experiments. After 36h incubation, culture plates were frozen and kept at -20°C until cytokine measurement. Cytokine profiling was performed in parallel (i.e. in the same experiment on the same batch of PBMCs) for live bacteria and their heat-treated counterparts.
  • cytokines IFN- ⁇ , IL-12p40, TNF- ⁇ and IL-10
  • ELISA R&D DuoSet Human IL-10, BD OptEIA Human IL12p40, BD OptEIA Human TNF ⁇ , BD OptEIA Human IFN- ⁇
  • IFN- ⁇ , IL-12p40 and TNF- ⁇ are pro-inflammatory cytokines
  • IL-10 is a potent anti-inflammatory mediator.
  • Results are expressed as means (pg/ml) +/- SEM of 4 individual donors and are representative of two individual experiments performed with 4 donors each.
  • the ratio IL-12p40 / IL-10 is calculated for each strain as a predictive value of in vivo anti-inflammatory effect ( Foligné, B., et al., 2007, World J.Gastroenterol. 13:236-243 ).
  • the probiotic strains under investigation were submitted to a series of heat treatments (Ultra High Temperature (UHT), High Temperature Short Time (HTST) and 85°C for 20 min) and their immune profiles were compared to those of live cells in vitro.
  • Live micro-organisms probiotics and/or dairy starter cultures
  • Heat treatment of these micro-organisms modified the levels of cytokines produced by PBMC in a temperature dependent manner.
  • "Short-time high temperature” treatments 120°C or 140°C for 15" generated non replicating bacteria with anti-inflammatory immune profiles ( Figures 1 , 2 , 3 and 4 ).
  • UHT-like treated strains (140°C, 15 sec) induced less pro-inflammatory cytokines (TNF- ⁇ , IFN- ⁇ , IL-12p40) while maintaining or inducing additional IL-10 production (compared to live counterparts).
  • the resulting IL-12p40 / IL-10 ratios were lower for any UHT-like treated strains compared to live cells ( Figures 1 , 2 , 3 and 4 ).
  • This observation was also valid for bacteria treated by HTST-like treatments, i.e. submitted to 120°C for 15 sec ( Figures 1 , 2 , 3 and 4 ), or 74°C and 90°C for 15 sec ( Figure 5 ).
  • Heat treatments had a similar effect on in vitro immune profiles of probiotic strains ( Figures 1 , 2 , 3 and 5 ) and dairy starter cultures ( Figure 4 ).
  • Principal Component Analysis on PBMC data generated with live and heat treated (140°C, 15") probiotic and dairy starter strains revealed that live strains are spread all along the x axis, illustrating that strains exhibit very different immune profiles in vitro, from low (left side) to high (right side) inducers of pro-inflammatory cytokines.
  • Heat treated strains cluster on the left side of the graph, showing that pro-inflammatory cytokines are much less induced by heat treated strains ( Figure 6 ).
  • bacteria heat treated at 85°C for 20 min induced more pro-inflammatory cytokines and less IL-10 than live cells resulting in higher IL-12p40 / IL-10 ratios ( Figure 7 ).
  • Anti-inflammatory profiles are enhanced or generated by UHT-like and HTST-like treatments.
  • UHT and HTST treated strains exhibit anti-inflammatory profiles regardless of their respective initial immune profiles (live cells).
  • Probiotic strains known to be anti-inflammatory in vivo and exhibiting anti-inflammatory profiles in vitro B. longum NCC 3001, B. longum NCC 2705, B. breve NCC 2950, B. lactis NCC 2818
  • B. longum NCC 3001, B. longum NCC 2705, B. breve NCC 2950, B. lactis NCC 2818 were shown to exhibit enhanced anti-inflammatory profiles in vitro after "short-time high temperature" treatments.
  • the IL-12p40 / IL-10 ratios of UHT-like treated Bifidobacterium strains were lower than those from the live counterparts, thus showing improved anti-inflammatory profiles of UHT-like treated samples.
  • UHT/HTST-like treatments were applied to several lactobacilli, bifidobacteria and streptococci exhibiting different in vitro immune profiles. All the strains induced less pro-inflammatory cytokines after UHT/HTST-like treatments than their live counterparts ( Figures 1 , 2 , 3 , 4 , 5 and 6 ) demonstrating that the effect of UHT/HTST-like treatments on the immune properties of the resulting non replicating bacteria can be generalized to all probiotics, in particular to lactobacilli and bifidobacteria and specific E. coli strains and to all dairy starter cultures in particular to streptococci, lactococci and lactobacilli.
  • probiotic strains Five probiotic strains were used to investigate the immune boosting properties of non-replicating probiotics: 3 bifidobacteria ( B. longum NCC3001, B. lactis NCC2818, B. breve NCC2950) and 2 lactobacilli ( L. paracasei NCC2461, L. rhamnosus NCC4007).
  • Bacterial cells were grown on MRS in batch fermentation at 37°C for 16-18h without pH control. Bacterial cells were spun down (5,000 x g, 4°C) and resuspended in phosphate buffer saline prior to be diluted in saline water in order to reach a final concentration of around 10E10 cfu/ml.
  • B. longum NCC3001, B. lactis NCC2818, L. paracasei NCC2461, L. rhamnosus NCC4007 were heat treated at 85°C for 20 min in a water bath.
  • B. breve NCC2950 was heat treated at 90°C for 30 minutes in a water bath. Heat treated bacterial suspensions were aliquoted and kept frozen at -80°C until use. Live bacteria were stored at - 80°C in PBS-glycerol 15% until use.
  • PBMCs Human peripheral blood mononuclear cells
  • IMDM Iscove's Modified Dulbecco's Medium
  • PBMCs (7x10 5 cells/well) were then incubated with live and heat treated bacteria (equivalent 7x10 6 cfu/well) in 48 well plates for 36h.
  • live and heat treated bacteria equivalent 7x10 6 cfu/well
  • the effects of live and heat treated bacteria were tested on PBMCs from 8 individual donors splitted into two separate experiments. After 36h incubation, culture plates were frozen and kept at -20°C until cytokine measurement. Cytokine profiling was performed in parallel (i.e. in the same experiment on the same batch of PBMCs) for live bacteria and their heat-treated counterparts.
  • cytokines IFN- ⁇ , IL-12p40, TNF- ⁇ and IL-10) in cell culture supernatants after 36h incubation were determined by ELISA (R&D DuoSet Human IL-10, BD OptEIA Human IL12p40, BD OptEIA Human TNF, BD OptEIA Human IFN- ⁇ ) following manufacturer's instructions.
  • IFN- ⁇ , IL-12p40 and TNF- ⁇ are pro-inflammatory cytokines, whereas IL-10 is a potent anti-inflammatory mediator. Results are expressed as means (pg/ml) +/- SEM of 4 individual donors and are representative of two individual experiments performed with 4 donors each.
  • a mouse model of allergic diarrhea was used to test the Th1 promoting effect of B. breve NCC2950 ( Brandt E.B et al. JCI 2003; 112 (11) : 1666-1667 ).
  • OVA Ovalbumin
  • mice were orally challenged with OVA for 6 times (days 27, 29, 32, 34, 36, 39) resulting in transient clinical symptoms (diarrhea) and changes of immune parameters (plasma concentration of total IgE, OVA specific IgE, mouse mast cell protease 1, i.e MMCP-1).
  • Bifidobacterium breve NCC2950 live or heat treated at 90°C for 30min was administered by gavage 4 days prior to OVA sensitization (days -3, -2, -1, 0 and days 11, 12, 13 and 14) and during the challenge period (days 23 to 39).
  • a daily bacterial dose of around 10 9 colony forming units (cfu) or equivalent cfu/mouse was used.
  • PBMCs peripheral blood mononuclear cells
  • the heat treated preparations were plated and assessed for the absence of any viable counts. Heat treated bacterial preparations did not produce colonies after plating.
  • Live probiotics induced different and strain dependent levels of cytokine production when incubated with human PBMCs ( Figure 8 ).
  • Heat treatment of probiotics modified the levels of cytokines produced by PBMCs as compared to their live counterparts.
  • Heat treated bacteria induced more pro-inflammatory cytokines (TNF- ⁇ , IFN- ⁇ , IL-12p40) than their live counterparts do.
  • heat treated bacteria induced similar or lower amounts of IL-10 compared to live cells ( Figure 8 ).
  • the following pet food composition may be prepared using standard techniques as described in this patent application: Ingredient g/100g Fat 15 Protein 29 Carbohydrates 46 Dietary fiber 7 Nutritional balancing agents 2 Short term heat treated Lactobacillus johnsonii La1 1

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Mycology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Birds (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Nutrition Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fodder In General (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Feed For Specific Animals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Claims (10)

  1. Verfahren zur Zubereitung einer Haustierfutterzusammensetzung mit nicht replizierenden probiotischen Mikroorganismen in einer Menge entsprechend 106 bis 1012 KBE pro Portion, wobei das Verfahren die Behandlung der probiotischen Mikroorganismen mit einer Hochtemperatur-/Kurzzeitbehandlung (HTST) bei einer Temperatur von 120 bis 140°C über 1-30 Sekunden oder einer Ultrahochtemperaturbehandlung (UHT) bei einer Temperatur oberhalb 135°C über 1 bis 10 Sekunden umfasst und somit mindestens 90% der Mikroorganismen nicht replizierend macht.
  2. Verfahren gemäß Anspruch 1, wobei die Haustierfutterzusammensetzung von 4 bis 40 Gew-% Trockenmasse an Fett, von 12 bis 70 Gew-% Trockenmasse an Kohlenhydraten und von 12 bis 50 Gew-% Trockenmasse an Eiweißen enthält.
  3. Verfahren gemäß Anspruch 2, wobei die Haustierfutterzusammensetzung von 10 bis 20 Gew-% Trockenmasse an Fett, von 30 bis 60 Gew-% Trockenmasse an Kohlenhydraten, und von 20 bis 35 Gew-% Trockenmasse an Eiweißen enthält.
  4. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Haustierfutterzusammensetzung weiterhin von 0,5 bis 40 Gew-% Trockenmasse, vorzugsweise von 0,5 bis 30 Gew-% Trockenmasse, weiter bevorzugt von 1 bis 20 Gew-% Trockenmasse, höchst bevorzugt von 1 bis 10 Gew-% Trockenmasse an Ballaststoffen enthält.
  5. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Haustierfutterzusammensetzung aus der Gruppe bestehend aus Haustiernahrungen, Ernährungsdiäten für Haustiere, Ergänzungsstoffe für Haustiere, Leckerli für Haustiere und Futterspielzeug für Haustiere, wie z.B. Beißspielzeug und verzehrbares Spielzeug, ausgewählt ist.
  6. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Haustierfutterzusammensetzung weiterhin Präbiotika enthält, beispielsweise Oligofructose und Inulin.
  7. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei in der Haustierfutterzusammensetzung mindestens 95%, vorzugsweise mindestens 98%, weiter bevorzugt mindestens 99%, höchst bevorzugt mindestens 99,9%, idealerweise die gesamten Probiotika nicht replizierend sind.
  8. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die probiotischen Mikroorganismen aus der Gruppe bestehend aus Bifidobacteria, Lactobacilli, Propionibacteria oder Kombinationen aus diesen, beispielsweise Bifidobacterium longum, Bifidobacterium lactis, Bifidobacterium animalis, Bifidobacterium breve, Bifidobacterium infantis, Bifidobacterium adolescentis, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus salivarius, Lactobacillus reuteri, Lactobacillus rhamnosus, Lactobacillus johnsonii, Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Streptococcus thermophilics, Lactococcus lactis, Lactococcus diacetylactis, Lactococcus cremoris, Lactobacillus bulgaricus, Lactobacillus helveticus, Lactobacillus delbrueckii, Escherichia coli und/oder Mischungen aus diesen ausgewählt sind.
  9. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die probiotischen Mikroorganismen aus der Gruppe bestehend aus Bifidobacterium longum NCC 3001 (ATCC BAA-999), Bifidobacterium longum NCC 2705 (CNCM I-2618), Bifidobacterium breve NCC 2950 (CNCM I-3865), Bifidobacterium lactis NCC 2818 (CNCM I-3446), Lactobacillus johnsonii La 1 (CNCM I-1225), Lactobacillus paracasei NCC 2461 (CNCM I-2116), Lactobacillus rhamnosus NCC 4007 (CGMCC 1.3274), Lactobacillus reuteri DSM17983, Lactobacillus reuteri ATCC 55730, Streptococcus thermophilus NCC 2059 (CNCM I-4153), Lactobacillus casei NCC 1825 (ACA-DC 6002), Escherichia coli Nissle (DSM 6601), Lactobacillus bulgaricus NCC 15 (CNCM I-1198), Lactococcus lactis NCC 2287 (CNCM I-4154) oder Kombinationen aus diesen ausgewählt sind.
  10. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei die Haustierfutterzusammensetzung 0,005 mg bis 1000 mg von nicht replizierenden Mikroorganismen pro Tagesdosis enthält.
EP10190118.9A 2010-11-05 2010-11-05 Verfahren zur Herstellung von Haustierfutter enthaltend probiotische Mikroorganismen Not-in-force EP2449887B1 (de)

Priority Applications (14)

Application Number Priority Date Filing Date Title
ES10190118.9T ES2565407T3 (es) 2010-11-05 2010-11-05 Procedimiento para la preparación de un producto alimenticio para animales de compañía, el cual contiene microorganismos probióticos
EP10190118.9A EP2449887B1 (de) 2010-11-05 2010-11-05 Verfahren zur Herstellung von Haustierfutter enthaltend probiotische Mikroorganismen
BR112013010891A BR112013010891A2 (pt) 2010-11-05 2011-11-02 preparações de ração de animais de estimação contendo micro-organismos probióticos
ES11781488.9T ES2623837T3 (es) 2010-11-05 2011-11-02 Proceso de producción de una preparación alimentaria para animales de compañía que contiene microorganismos probióticos
MX2013005042A MX347262B (es) 2010-11-05 2011-11-02 Preparaciones de alimento para mascotas que contienen microorganismos probióticos.
AU2011325207A AU2011325207B2 (en) 2010-11-05 2011-11-02 Pet food preparations containing probiotic micro-organisms
PCT/EP2011/069209 WO2012059499A1 (en) 2010-11-05 2011-11-02 Pet food preparations containing probiotic micro-organisms
US13/881,492 US20130309357A1 (en) 2010-11-05 2011-11-02 Pet food preparations containing probiotic micro-organisms
CN201180064176.8A CN103702569B (zh) 2010-11-05 2011-11-02 含有益生微生物的宠物食物制品
CA2816386A CA2816386C (en) 2010-11-05 2011-11-02 Pet food preparations containing probiotic micro-organisms
JP2013537122A JP6321376B2 (ja) 2010-11-05 2011-11-02 プロバイオティクス微生物を含有するペットフード調製物
RU2013125765/13A RU2580881C2 (ru) 2010-11-05 2011-11-02 Корма для домашних животных, содержащие пробиотические микроорганизмы
EP11781488.9A EP2635132B1 (de) 2010-11-05 2011-11-02 Herstellungsverfahren für tierfutterzusammensetzung enthaltend probiotische mikroorganismen
ZA2013/04086A ZA201304086B (en) 2010-11-05 2013-06-04 Pet food preparations containing probiotic micro-organisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10190118.9A EP2449887B1 (de) 2010-11-05 2010-11-05 Verfahren zur Herstellung von Haustierfutter enthaltend probiotische Mikroorganismen

Publications (2)

Publication Number Publication Date
EP2449887A1 EP2449887A1 (de) 2012-05-09
EP2449887B1 true EP2449887B1 (de) 2016-01-06

Family

ID=44022861

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10190118.9A Not-in-force EP2449887B1 (de) 2010-11-05 2010-11-05 Verfahren zur Herstellung von Haustierfutter enthaltend probiotische Mikroorganismen
EP11781488.9A Not-in-force EP2635132B1 (de) 2010-11-05 2011-11-02 Herstellungsverfahren für tierfutterzusammensetzung enthaltend probiotische mikroorganismen

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11781488.9A Not-in-force EP2635132B1 (de) 2010-11-05 2011-11-02 Herstellungsverfahren für tierfutterzusammensetzung enthaltend probiotische mikroorganismen

Country Status (12)

Country Link
US (1) US20130309357A1 (de)
EP (2) EP2449887B1 (de)
JP (1) JP6321376B2 (de)
CN (1) CN103702569B (de)
AU (1) AU2011325207B2 (de)
BR (1) BR112013010891A2 (de)
CA (1) CA2816386C (de)
ES (2) ES2565407T3 (de)
MX (1) MX347262B (de)
RU (1) RU2580881C2 (de)
WO (1) WO2012059499A1 (de)
ZA (1) ZA201304086B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022246015A1 (en) * 2021-05-20 2022-11-24 Blue Buffalo Enterprises, Inc. Pet food composition

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10104903B2 (en) 2009-07-31 2018-10-23 Mars, Incorporated Animal food and its appearance
EP2455094A1 (de) * 2010-11-11 2012-05-23 Nestec S.A. Nicht replizierende probiotische Mikroorganismen als Schutz vor Magen-Darm-Infektionen bei Kindern
CN105658226B (zh) * 2013-08-16 2019-05-14 港大科桥有限公司 使用益生菌治疗癌症的方法和组合物
EP3091861A1 (de) * 2013-11-25 2016-11-16 Nestec S.A. Wärmebehandelte formulierung von bifidobacterium lactis ncc 2818 zur reduzierung allergischer leiden
US20150173397A1 (en) * 2013-12-20 2015-06-25 The Lams Company Pet food composition having probiotic bifidobacterium animalis
CN104546944B (zh) * 2014-09-30 2019-02-01 深圳华大基因科技有限公司 乳酸乳球菌在治疗或预防类风湿性关节炎或其相关疾病中的应用
WO2016099571A1 (en) * 2014-12-19 2016-06-23 Hill's Pet Nutrition, Inc. Animal food product for dental efficacy, methods of manufacture and use
MX2017013715A (es) 2015-04-28 2018-03-02 Mars Inc Proceso de preparacion de un producto de alimento para mascotas humedo esterilizado.
DK3292135T3 (da) 2015-05-06 2022-10-31 Univ Wageningen Anvendelse af et polypeptid til at fremkalde immunsignalering og/eller påvirke tarmbarrierefunktion og/eller modulere metabolsk status
DK3626081T3 (da) * 2015-09-10 2022-02-28 Univ Catholique Louvain Pasteuriseret akkermansia til fremme af vægttab
KR102454681B1 (ko) * 2016-03-09 2022-10-17 (주)에스틴 반려동물용 음수 보충 및 식이 보조제
KR101873899B1 (ko) * 2016-08-09 2018-07-03 씨제이제일제당(주) 락토바실러스 살리바리우스 cjls1511, 상기 균 또는 이의 사균체를 포함하는 동물 사료 첨가제 조성물, 및 상기 사균체의 제조 방법
KR101868067B1 (ko) * 2016-09-30 2018-06-15 정문주 모링가 잎과 딸기를 함유한 애견용 건강보조사료 조성물
RU2655856C1 (ru) * 2017-05-29 2018-05-29 Федеральное государственное бюджетное научное учреждение "Северо-Кавказский научно-исследовательский институт животноводства" Способ применения пробиотической кормовой добавки при выращивании свиней на мясо
CN107242351A (zh) * 2017-06-14 2017-10-13 南京天益鸿胜生物科技有限公司 一种益生菌组合物及其应用
CN107868764A (zh) * 2017-11-27 2018-04-03 内蒙古普泽生物制品有限责任公司 一种增强宠物免疫力的复合益生菌粉制剂及其制备方法
CN108323641A (zh) * 2018-02-07 2018-07-27 上海宠幸宠物用品有限公司 一种用于调理宠物犬猫肠道功能的保健食品及其制备方法
US11590182B2 (en) 2018-09-10 2023-02-28 Ohio State Innovation Foundation Methods and compositions to modulate antibiotic resistance and gastrointestinal microbiota
BR112021005316A2 (pt) * 2018-10-02 2021-06-15 Société des Produits Nestlé S.A. combinação de probióticos para o tratamento de distúrbios gastrointestinais relacionados à inflamação
AU2019410036A1 (en) * 2018-12-21 2021-06-03 Société des Produits Nestlé S.A. Probiotic combination for treatment of allergic disorders
KR102364483B1 (ko) * 2019-07-04 2022-02-21 백우인 천연성분을 주원료로 한 애완동물용 영양제 조성물
KR102254310B1 (ko) * 2019-10-02 2021-05-21 주식회사 고바이오랩 락토바실러스 애시도필러스 kbl409 균주 및 그 용도
CN111961623B (zh) * 2020-08-25 2022-06-28 青岛农业大学 一种复方乳酸菌制剂及其应用、复方脱霉剂及其应用
CN114903119A (zh) * 2021-02-08 2022-08-16 安徽安宠宠物用品有限公司 一种宠物用天然发酵多肽肉浆及其制作方法
CN115044514A (zh) * 2022-06-30 2022-09-13 中国农业科学院饲料研究所 植物乳杆菌、宠物保健品及其使用方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5419283A (en) 1992-04-08 1995-05-30 Ciuffo Gatto S.R.L. Animal chew toy of starch material and degradable ethylene copolymer
US5339771A (en) 1993-09-15 1994-08-23 Axelrod Herbert R Animal chew toy containing animal meal
EP1541673B1 (de) * 2000-05-25 2007-04-04 Société des Produits Nestlé S.A. Probiotica zur Verwendung als Futter für Haustiere
WO2004069156A2 (en) * 2003-01-30 2004-08-19 The Regents Of The University Of California Inactivated probiotic bacteria and methods of use thereof
CN1217587C (zh) * 2003-08-29 2005-09-07 周青许 宠物除臭型饼干及其加工工艺
US8871266B2 (en) * 2003-10-01 2014-10-28 Commonwealth Scientific & Industrial Research Organisation Probiotic storage and delivery
US8877178B2 (en) * 2003-12-19 2014-11-04 The Iams Company Methods of use of probiotic bifidobacteria for companion animals
CN101155518A (zh) * 2005-04-11 2008-04-02 爱默思公司 包含两种组分的宠物食物组合物
WO2007093619A1 (en) * 2006-02-15 2007-08-23 Nestec S.A. Use of bifidobacterium longum for the prevention and treatment of inflammation
CN101808527A (zh) * 2007-07-25 2010-08-18 康必奶荷兰控股有限公司 用于诱导饱腹感和/或饱食的益生菌
US9113641B2 (en) * 2007-12-06 2015-08-25 Arla Foods Amba Probiotic bacteria and regulation of fat storage
GB0809665D0 (en) * 2008-05-28 2008-07-02 Mars Uk Ltd Food product
US8137718B2 (en) * 2008-09-19 2012-03-20 Mead Johnson Nutrition Company Probiotic infant products
EP2373185B1 (de) * 2009-01-02 2018-08-08 Nestec S.A. Nahrungsmittelzusammensetzungen mit realitätsgetreuer äusserer erscheinung, haptik und textur von fleisch
CN102802648A (zh) * 2009-05-11 2012-11-28 雀巢产品技术援助有限公司 约氏乳杆菌La1 NCC533(CNCM I-1225)和免疫病症
CN101584418B (zh) * 2009-06-15 2012-07-04 丁淑绿 宠物食品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022246015A1 (en) * 2021-05-20 2022-11-24 Blue Buffalo Enterprises, Inc. Pet food composition

Also Published As

Publication number Publication date
ZA201304086B (en) 2014-12-23
BR112013010891A2 (pt) 2016-07-12
MX2013005042A (es) 2013-06-03
CA2816386A1 (en) 2012-05-10
EP2635132A1 (de) 2013-09-11
US20130309357A1 (en) 2013-11-21
EP2635132B1 (de) 2017-01-11
ES2623837T3 (es) 2017-07-12
MX347262B (es) 2017-04-20
RU2580881C2 (ru) 2016-04-10
EP2449887A1 (de) 2012-05-09
CA2816386C (en) 2019-04-16
AU2011325207A1 (en) 2013-05-23
WO2012059499A1 (en) 2012-05-10
CN103702569B (zh) 2016-05-11
AU2011325207B2 (en) 2015-10-01
JP6321376B2 (ja) 2018-05-09
JP2014500007A (ja) 2014-01-09
ES2565407T3 (es) 2016-04-04
RU2013125765A (ru) 2014-12-10
CN103702569A (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
EP2449887B1 (de) Verfahren zur Herstellung von Haustierfutter enthaltend probiotische Mikroorganismen
US8691244B2 (en) Instant thickener comprising probiotics for hot or cold foods and beverages to be administered to dysphagic patients
CN102724987A (zh) 非复制性微生物及其免疫强化效应
US20130224166A1 (en) Powdered cereal compositions comprising non-replicating probiotic microorganisms
Çapan et al. Usage of Probiotics in the Poultry Industry and Effects on Meat Quality

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20121109

17Q First examination report despatched

Effective date: 20130909

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602010029855

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: A23K0001160000

Ipc: A23L0001300000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: A23K 1/00 20060101ALI20150706BHEP

Ipc: A23K 1/18 20060101ALI20150706BHEP

Ipc: A23L 1/30 20060101AFI20150706BHEP

INTG Intention to grant announced

Effective date: 20150729

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 768044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010029855

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2565407

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160404

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 768044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160407

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160506

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160506

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010029855

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

26N No opposition filed

Effective date: 20161007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20181114

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181023

Year of fee payment: 9

RIC2 Information provided on ipc code assigned after grant

Ipc: A23L 1/30 20060101AFI20150706BHEP

Ipc: A23K 1/00 20060101ALI20150706BHEP

Ipc: A23K 1/18 20060101ALI20150706BHEP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20181122

Year of fee payment: 9

Ref country code: ES

Payment date: 20181203

Year of fee payment: 9

Ref country code: FR

Payment date: 20181011

Year of fee payment: 9

Ref country code: GB

Payment date: 20181031

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010029855

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20191201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191105

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191105

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191106